IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 12, DECEMBER 1982

remaining steps assume no type-1 or type-2 degeneracies are in the
data set. The benign degeneracy signaled by Degen-type-3 set true
can in fact be ignored and is dealt with below.

M2: (Comment: This step determines a set of (preliminary) illu-
mination regions, and for each region determines its illuminated
vertex set.)

begin/ — 1,k «— 0;
while — (LEFT;)do k — k + 1 od;
re— Ag;

(Comment: The point x; = p, is the first left intercept in the list xo,
X1, Xan—10)

for o <= O until 2n — 1 step | do
begin Ra ~ [xzxs X+ 1];

(Comment: R, is an illumination region defined by endpoints x, and
Xqot+10onbd K.)

if X, = xa41, then V(R,) < {vi—1, 01, Uy, Upi1};
else V(R,) < {v;, v,};

(Comment: V(R,) is the illuminated vertex set associated with region
R..)

if LEFTy+, thenr < r + 1 mod n;
else / </ 4+ 1 mod n;
end
end

(Comment: This step is essentially identical to step 4 of construction
procedure 1in Silio [1], and arguments justifying why this step cor-
rectly identifies and names the IR’s can be found in [1]. This step
takes time O(n).)

M3: Merge the ordered list x; and the vertices of K (as in step 5
of construction procedure 1 in [1]). Because a preliminary illumi-
nation region from step M2 may extend over more than one edge of
K, break these regions into further subregions if they overlap with
more than one edge of X, and associate with each subregion the il-
luminated vertex set of its parent region.

(Comment: This step takes time O(n + m).)
end Procedure 1.

Application of the above algorithm to the illustration in Fig. 2 re-
sults in the illumination regions and corresponding illuminated vertex
sets shown in the figure. Note that preliminary IR R, extends from
xo to and including x, R, extends from x, to and including x,, and
so on with Rg extending from x4 to and including x,. Note that R
is a single point region with Degen-type-3 set true. Sample parameters
for step M1 are also shown in the figure, as space permits. Note that
step M3 would break regions R, R4, R¢, and Ry into two subregions
each, respectively. Each pair of subregions would inherit the IVS of
its parent, and each would then be described as a single straight line
segment in a single facet of K.

IV. CONCLUSION

We have presented an optimal algorithm for computing illumi-
nation regions and associated illuminated vertex sets for one convex
polygon P contained in another convex polygon K. This O(n + m)
algorithm can be used to replace the less efficient construction pro-
cedure 1 in [1] for deciding simplex coverability of similarly situated
convex polygons. After the set of illumination regions and illuminated
vertex sets have been obtained using the optimal illumination region
algorithm presented here, one can solve the simplex coverability
problem by applying construction procedure 2 in Silio [1]. Note that
line 3 in step 2 of construction procedure 2 in [1] contains a typo-
graphical error and incorrectly reads: “while NEXT] = false and

1227

NEXT2 # false, do.” This line should be corrected to read “while
NEXT! # false or NEXT2 5 false, do”; thereby replacing the “and”
with “or.”” With this correction in place construction procedure 2 in
[1] proceeds in linear time to produce a collection of what are called
coverable candidate sets of vertices of P with associated sets of illu-
mination region combinations to be used as constraint sets. To de-
termine the existence of a covering triangle, one solves systems of
second order equations, also in linear time, subject to the finite list
of constraint sets provided by construction procedure 2 in [1]. Hence
by using the optimal illumination region algorithm presented here,
coupled with construction procedure 2 in [1], an optimal simplex
coverability algorithm for convex polygons results.

When applying these optimal algorithms to stochastic sequential
machine covering problems, the input vertices may be randomly re-
lated sets of points; in which case, one must first apply an appropriate
convex hull algorithm (e.g., [9], [10]) to find the hulls in time O(n
log n + m log m). One can then apply the O(n + m) procedure de-
scribed here first to compute and name illumination regions and then
apply the O(n + m) algorithm from [1] that uses the illumination
regions to generate and solve constrained simultaneous equations to
determine simplex coverability.

ACKNOWLEDGMENT

The authors are grateful to the referees for comments and sug-
gestions on a prior version of the material presented here.

REFERENCES

[t} C.B.Silio, Jr., “An efficient simplex coverability algorithm in £2 with
application to stochastic sequential machines,” IEEE Trans. Comput.,
vol. C-28, pp. 109-120, Feb. 1979.

[2] A. Aho,). Hopcroft, and J. Ullman, The Design and Analysis of
Computer Algorithms. Reading, MA: Addison-Wesley, 1974.

[3] M. 1. Shamos and D. Hoey, “Closest-point problems,” in Proc. IEEE
16th Symp. Foundations Comput. Sci., 1975, pp. 151-162.

[4] G. Ott, “Reconsider the state minimization problem for stochastic finite

state systems,” in 1966 IEEE Conf. Rec., 7th Annu. Symp. Switching

Automata Theory, 1966, pp. 267-273.

A. Paz, Introduction to Probabilistic Automata. New York: Academic,

1971.

[6] M. L. Shamos, “Computational geometry,” Ph.D. dissertation, Dep.
Comput. Sci., Yale Univ., New Haven, CT, 1977.

[7]1 D.T.Leeand F. P. Preparata, “The all nearest neighbor problem for
convex polygons,” Inform. Proc. Lett., vol. 7, pp. 189-192, June
1978.

[5

—

[8] , “An optimal algorithm for finding the kernel of a polygon,” J.
Ass. Comput. Mach., vol. 26, pp. 415-421, July 1979.

{9] F.P.PreparataandS. J. Hong, “Convex hulls of finite sets of points in
two and three dimensions,” Commun. Ass. Comput. Mach., vol. 20, pp.
87-93, Feb. 1977.

[10] R. Graham, “An efficient algorithm for determining the convex hull
of a finite planar set,” Inform. Proc. Lett., vol. 1, pp. 132-133, June
1972.

Bandwidth of Crossbar and Multiple-Bus Connections for
Multiprocessors

TOMAS LANG, MATEO VALERO, AND
IGNACIO ALEGRE

Abstract—In this paper we compare the effective bandwidth in a multi-
processor with shared memory using as interconnection networks the crossbar

Manuscript received August 4, 1981; revised December 31, 1981 and April
19, 1982.

T. Lang is with the Department of Computer Science, University of Cali-
fornia, Los Angeles, CA 90024.

M. Valero is with the Facultat d’Informatica, Universitat Politecnica de
Barcelona, Barcelona, Spain.

I. Alegre is with the Escola Tecnica Superior de Telecomunicacio, Univ-
ersitat Politecnica de Barcelona, Barcelona, Spain.

0018-9340/82/1200-1227%00.75 © 1982 IEEE

1228

or the multiple-bus. We consider a system with N processors and N memory
modules, in which the processor requests to the memory modules are indepen-
dent and uniformly distributed random variables. We consider two cases: in
the first the processor makes another request immediately after a memory-
service, and in the second there is some internal processing time.

The results of simulations show that the multiple-bus interconnection network
with a number of buses slightly higher than V /2 produces a very small degra-
dation with respect to the crossbar.

In addition, we propose an organization with partial buses that is more
economical than the multiple-bus for the same effective bandwidth.

Index Terms—Bus arbitration, memory bandwidth, multiple buses, mul-
tiprocessors, shared memory,

I. INTRODUCTION

In many multiprocessor systems the shared memory is divided into
independent modules so that each of these modules permits one access
per cycle. The processors are connected to the memories by means
of an interconnection network (Fig. 1).

Two types of operation of the system have been proposed: SIMD,
in which all processors execute the same instruction on different data,
and MIMD in which each processor executed a different instruction
[1]. In this paper we are interested in the MIMD case.

Several interconnection networks have been proposed for these
systems, such as the crossbar [2], single-bus [3]-[5], multiple-bus
[6], shuffle-exchange [7], and others [8], [9]. Of these, the crossbar
provides the largest potential bandwidth because there are no conflicts
in the network. Nevertheless, it has a high cost, which is prohibitive
for a large number of processors [10], {11] and does not allow graceful
degradation. Consequently, other interconnection networks become
attractive provided they do not significantly degrade the system
performance. In this paper, we study the additional degradation in-
troduced by the multiple-bus network.

There are many performance measures that can be used to evaluate
such a system. The one most related to the final objective of the system
is the amount of processing work done per unit of time. Nevertheless,
this measure depends on too many factors, such as the type of pro-
grams executed and the characteristics of the processors, therefore,
make it difficult to isolate the influence of a particular system pa-
rameter on performance. More manageable measures that have been
used are: the average number of instructions executed per time unit,
the average number of memory modules accessed per time unit, the
average processor waiting time, etc. All of these measures are related
and the one that has been most favored in previous studies is the ef-
fective memory bandwidth. We also use this performance mea-
sure.

In general, the effective bandwidth of such a multiprocessor de-
pends on the distribution of the requests to the memory modules, the
service time of the memory, the propagation delay and conflicts in
the interconnection network, and the time between two consecutive
requests by a processor.

Several performance studies have been reported for different in-
terconnection networks and different model assumptions [2]-{7]. In
particular, for the crossbar there exists an ample set of references
[12]-[16] which describe exact and approximate mathematical
models and simulations to calculate the effective memory bandwidth
for different assumptions with respect to the distribution of the pro-
cessor requests, the distribution of the service-time of memory, and
the distribution of the time between requests. In [15] Baskett and
Smith present models for a system with interleaved memory modules
and several hypotheses and also results of simulations with real pro-
grams. They conclude that adequate results are obtained assuming
that the processors are synchronized, that the requests to the memory
have a uniform distribution, that the cycle time of memory is constant,
and that the processing time has a binomial distribution. For these
hypotheses Rau [16] has a good summary of existing models. We also
use these hypotheses.

For these hypotheses and for the case in which a processor issues

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 12, DECEMBER 1982

a new request as soon as the previous one is serviced, Table I indicates
the effective bandwidth for 2, 4, 8, and 16 processors and memory
modules. For N = 2, 4 and 8 results are exact [13]. For N = 16 the
value is obtained from the approximate model proposed in [15],
equation (14). We conclude that with the indicated hypotheses the
potential bandwidth of the crossbar is not fully utilized due to memory
conflicts. As a consequence of the high cost of the crossbar for large
N, its bad fault tolerance features and the degradation due to con-
flicts, it seems convenient to consider other alternative networks.

In this paper we study the performance of the multiple-bus inter-
connection network. The N processors are connected to the M
memory modules by means of B < min (/V,M) buses. For B < min
(N, M) the network produces a degradation in the bandwidth with
respect to the corssbar, due to conflicts that occur in the network when
the number of requests to different memory modules is greater than
B. We are interested in evaluating this degradation as a function of
Band N.

To evaluate this degradation we could use the exact or approximate
models proposed in [6]. Nevertheless, the hypotheses used there are
restrictive (exponential request and service times), and they are dif-
ficult to evaluate for the cases in which the number of processors,
buses, and/or memory modules is large. For this reason, we use
simulations which are sufficient to validate our conclusions. The re-
sults obtained indicate that for B =~ N/2 (for N = M), the degra-
dation with respect to the crossbar is approximately 5 percent.

We also performed simulations for the case in which the processor
does not issue a new request as soon as the previous one is serviced.:
This represents the case in which there is some internal processing.
Following our hypothesis that the processors are synchronized, and
using the validation performed in [15], we assume that in each cycle
a processor issues a request with a fixed probability p. As will be seen
from the simulation results, for p = 0.5, the crossbar is very un-
derutilized and therefore for the same degradation (of 5 percent with
respect to the crossbar) fewer buses than for p = 1 are required.

As is discussed in the following sections, the multiple-bus network
is less expensive than the crossbar. Nevertheless, for large V and B,
its cost is still important due to arbitration time and complexity, and
to the capacitive loads and drive requirements. To reduce further the
network cost, we propose a network with partial buses, discussed in
Section IV, in which the arbitration is simplified and the drive re-
quirements reduced. This network produces a lower bandwidth than
the multiple-bus, for the same number of buses. The bandwidth is
determined by simulation, and we conclude that there are configu-
rations with partial buses which produce roughly the same bandwidth
as the multiple bus at a lower cost.

II. MULTIPLE-BUS ORGANIZATION AND COMPARISON WITH
THE CROSSBAR

As was indicated in the introduction, we are interested in evaluating
the performance of the multiple-bus interconnection network. In this
case, the N processors and M memory modules are connected through
B buses. Each processor is connected to all buses and each bus to all
memory modules, so that a processor can access any memory module
through any of the buses (Fig. 2).

The number of connections of the multiple-bus network is pro-
portional to B(N + M). The number of wires is proportional to B and
each of the buses supports a capacitive load proportional to M + N
+ K(M + N — 1). The value of X is dependent on the technology, and
for present day tristate circuits, is much smaller than one; therefore,
the capacitive load is proportional to M + N.

The multiple-bus network requires an arbiter to assign the buses
to the outstanding requests. To assign the buses to the memory
modules, an M-users B-servers arbiter is needed. This arbiter selects
min (B,J) of the J memory modules with at least one outstanding
request. Once a bus is granted to access a memory module, only one
of the processors that demanded that memory must be chosen. This
choice is implemented by an N-users 1-server type arbiter, since there
are NV demand inputs (each associated with a processor), and only one

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 12, DECEMBER 1982

1229

' Memory Modules

Interconnection

Network

Fig. 1.

Processors

Multiprocessors system.

TABLE |
EFFECTIVE BANDWIDTH FOR CROSSBAR ORGANIZATION
N Eb
2 1.50
4 2.62
8 4.95
16 9.59
Memory
! 2 o ' Modules
1
2
. . Busses
. .
. . Processors

Fig. 2.

can be granted. Therefore, the complete arbiter that the multiple bus
network needs is built by one arbiter of the M-users B-servers type
and M arbiters of the N-users 1-server type.

In [17] we presented the design of such an arbiter with a fair as-
signment policy. It assigns, in a cyclic fashion, the buses to memory
modules that have at least one pending request and, for each module
that obtains a bus, selects one among the processors that have a
pending request for that module. We presented iterative designs with
one and two levels of look-ahead, which produce arbiters that are
modular and easy to integrate with present LSI technology. The ar-
bitration time depends on the number of buses and memory modules
and seems adequate, especially for a system with a not too large
number of microprocessors. Several different designs of N-users 1-
server type arbiters have already appeared in the literature [18]-
[22].

The multiple-bus interconnection network is fault-tolerant because
it can operate in a degraded mode after the failure of a subset of the

Multiple-bus interconnection scheme.

buses.

The above mentioned characteristics are compared with those for
the crossbar in Table IL. The arbitration is simpler for the crossbar,
since it only needs M N-users 1-server type arbiters, each of them
controlling the access to a memory module. Also, the time such arbiter
requires to decide which processors will access memory is less than
the time the arbiter needs for the multiple-bus structure [17]. The
crossbar is less fault-tolerant than the multiple-bus structure because
a failure in one of the M buses disconnects completely one memory
module. '

III. SIMULATIONS

As mentioned in the introduction, we wish to determine the
memcry bandwidth for the multiple bus organization for different
values of N = M (in order to compare the results with the ¥V X N

1230 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 12, DECEMBER 1982

TABLE I
COMPARISON OF CROSSBAR AND MULTIPLE-BUS
Crossbar Hultiple-bus
Number of
connections N*M B{N + M)
Load of
busses N N+ M
Number of
wires M B
Arbiter M of N-users 1 of M-users, B-servers
l-server type type plus M of N-users,
1-server type
Fault-tolerance
‘and Expansion poor good
TABLE 111
EFFECTIVE BANDWIDTH FOR MULTIPLE-BUS ORGANIZATION, WITH
p=1
Number Number of Processors
of
Busses 4 8 12 16
1 1 1 1 1
2 1.97 2 2 2
3 2.55 2.99 3 3
4 2.62 3.93 4 4
5 4.62 4.99 5
6 4.90 5.93 6
7 4.94 6.68 6.98
8 4.95 7.12 7.92
9 7.27 8.72
10 7.28 9.27
11 7.30 - 9.53
12 7.30 9. 61
13 9.63
14 9.63
15 9. 63
16 9.63
crossbar) and a different number of buses (1 < B < N). €) The propagation delays and arbitration times associated with
The hypotheses of the simulations are the following. the interconnection network are not included explicitly but may be
a) The processors are synchronized. thought of as forming part of the memory cycle.
b) The processor requests are independent and uniformly dis- f) In each cycle, the buses are assigned cyclically to the memory
tributed random variables. modules that have at least one outstanding request. For a2 module that
c) The cycle time of all the memory modules is the same and receives a bus, a processor is selected at random from those with
constant. outstanding requests for that module.
d) A processor issues a new request in the next cycle after receiving With these hypotheses we performed a simulation using the tech-

memory service. nique of multiple independent repetitions. The relation defined by

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 12, DECEMBER 1982

1231

Memory Modules

+1

Niew K=

-2

Busses .

.

Njes

Busses

Fig. 3.

Lavenberg [23] was used to establish the number of simulation rep-
ctitions needed in terms of the defined confidence level. In our case,
with a confidence level at 99 percent, we found that the number of
repetitions needed was 5, obtaining as the amplitude of the confidence
semiinterval the 6 percent of the mean. Each repetition of the'simu-
lation required a sample of 35 000 simulated cycles, of which the first
1000 were discarded as transient cycles.

To further validate these simulations, we compared them with
known results. For B = N (corresponding to the crossbar), the sim-
ulation results coincide with those determined using an exact math-
ematical model in [13] for V=4 and 8, and with the value obtained
using equation (8) in [16] for N = 16.

In view of the results of Table Il we conclude that the multiple-bus
organization with a number of buses B ~ N/2 + 1 produces a
bandwidth degradation of less than 5 percent with respect to the
bandwidth obtained with the crossbar.

IV. MULTIPLE BUS ORGANIZATION WITH PARTIAL BUSES

The results obtained in the previous section show that the multi-
ple-bus organization might be an attractive alternative to the crossbar.
Nevertheless, the former structure still might be too costly for large
N in some applications, due to the arbitration and drive requirements.
This has led us to consider another network which is based on the
multiple-bus, but has a lower cost.

This network consists also of B buses to connect the /¥ processors
to the M memory modules. Each of these buses is connected to all ¥
processors, but only to a subset of M/g memory modules. That is, the
memory modules are divided into g groups, and in each group, all
memory modules are connected to the same B/g buses. Fig. 3 shows
the case in which g = 2. In this type of network the number of con-
nections is B(N + M/g) and the load of each bus is proportional to
N+ M/g.

As can be seen, the number of connections and the loads are re-
duced with respect to the multiple-bus. Also, the partial-bus network
requires g arbiters, but these arbiters are less complex and faster than
those for the multiple-bus, because the arbitration time is a function
of the number of buses and memory modules connected to each
bus.

As was discussed in Section II1, in the multiple-bus structure with
B buses, the maximum possible bandwidth is not obtained when there
are more than B memory modules with at least one request, because
only B requests can be handled by the network. In the organization
with partial buses there is an additional degradation due to the fact
that only B/g buses are connected to each group of N/g memory
modules. Therefore, if there are more than B/g memory modules with
requests in a group, only B/g of them can be serviced.

Processors

Muitiple-bus organization with partial buses and g = 2.

We have performed simulations to evaluate this additional deg-
radation using the same hypotheses employed in Section I11. Some
results for g = 2and N =4, 8, 12 and 16 are given in Table I'V. The
number of buses (i + i) indicates that there are 2/ buses divided into
two groups of / buses each.

The comparison of the results of Tables 11T and IV shows the ad-
ditional degradation produced by the network with partial buses with
respect to the multiple-bus case.

Moreover, for the values &V considered, the configuration with (V/4
+ 1, N/4 + 1) partial buses produces a higher bandwidth than the
one produced by the multiple-bus structure with /2 + 1 buses. As
discussed before, the network cost and arbitration time are lower in
the first case.

Of course, this concept of partial buses can be generalized to more
than two groups, up to the case in which each group contains only one
bus. In this latter case we would have an organization with B groups
with partial single buses, which corresponds to the crossbar if B =
N.

_For a given number of buses B, as the number of groups is in-
creased, the effective bandwidth decreases, but so does the cost and
arbitration complexity. In a particular case, the selection of the
number of buses and groups would depend upon the requirements of
the system.

V. CASE IN WHICH THE PROCESSORS DO NOT REQUEST
MEMORY IN ALL CYCLES

In practical situations it might be possible that a processor does
not request access to memory in every cycle. This could occur if the
processor has a local memory and/or if some processor cycles are
required for other than memory accesses. We have included this
possibility in the model with the assumption that, in a given clock
cycle, a processor requests access to memory with a probability p <
1.

In Table V we present simulation results for the multiple-bus
network for N = 4, 8, 12 and 16 with p = 0.5 and p = 1 (for com-
parison). As might be expected, when p = 0.5 the bandwidth obtained
for the crossbar (values for B = N in Table V) is less thanforp = 1,
and therefore, the crossbar is even more underutilized. Moreover, the
degradation of the multiple-bus with respect to the crossbar is smaller
for p = 0.5 than for p = 1. For example, for the case N = 16 and B
= 8, for p = 1, a degradation of 17.8 percent is obtained, while for p
= (0.5 the degradation is only 2.1 percent. Therefore, the multiple-bus
configuration is even more attractive for p < 1.

In Table VI we present simulation results obtained for the par-
tial-bus organization. Again, it is evident that for p < 1 the degra-
dation with (N/2, N/2) buses is less than that for p = 1.

1232 IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 12, DECEMBER 1982

TABLE IV
EFFECTIVE BANDWIDTH FOR THE ORGANIZATION WITH PARTIAL
BUSESAND g =2

Number Number of Processors
of
Busses 4 8 12 16
1 + 1 1.74 1.87 1.92 1.93
2 + 2 2.62 3.61 3.81 3.86
3+ 3 4.72 5.52 5-73
4 + 4 4.93 6.77 7.48
5+ 5 7.24 8.79
6 + 6 7.28 9.43
7+ 7 9.59
8 + 8 9.63
TABLE V

COMPARISON OF THE EFFECTIVE BANDWIDTH OF MULTIPLE-BUS WITHp = 1 AND p = 0.5 -

Number of processors
Number
of
Busses 4 8 12 16
p=1 p=.5 p=1 p=.5 p=1 p=.5 p=1 p=.5
1 1 1 1 1 1 1 1 1
2 1.97 1.65 2 2 2 2 2 2
3 2.55 1.77 3 2.87 3 3 3 3
4 2.62 1.77 3.93 3.33 4 3.95 4 4
5 4,62 3.45 4.99 4.67 5 4,98
6 4,90 3.47 5.93 5.03 6 5.85
7 4,94 3.47 6.68 5.13 6.98 6.43
8 4,95 3.47 7.12 5.16 7.92 6.70
9 7.27 5.16 8.72 6.82
10 7.28 5.16 9.27 6.83
11 7.30 5.16 9.53 6.83
12 7.30 5.16 9.61 6.83
13 9.63 6.84
14 9.63 6.84
15 9.63 6.84
16 9.63 6.84
TABLE VI .
COMPARISON OF THE EFFECTIVE BANDWIDTH OF MULTIPLE-BUS WITH PARTIAL BUSES, WITH p = | AND p = 0.5
Number of processors
Number
of
Busses 4 8 12 16
p=l p=.5 p=l p=.5 p=l p=.5 p=t p=.5
1+1 1.74 1.50 1.87 1.83 1.92 1.90 1,93 1,93
2+2 2.62 1.77 3.61 3.11 3.81 3.64 3.86 3.79
3+3 4.72 3.44 5.62 4.76 5.73 5.43
4+4 4,93 3.47 6.77 5.10 7.48 6.42
5+5 7.24 5.16 8.79 6.77
6+6 7.28 5.16 9.43 6.83
7+7 9.59 6.84
8+8 9,63 6.85

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 12, DECEMBER 1982

1233

------- -Partial busses
Multiple-bus

Busses

4 8
2+2 4+4

12 16
646 8+8

Fig. 4. Effective bandwidth with p = 1.

104

":12

--------- Partial busses

Multiple-bus

Busses

12 16
6+6 8+8

Fig. 5. Effective bandwidth with p = 0.5.

In Fig. 4 we show again the effective bandwidth values for N = 4,
8,12 and 16 and p = 1, for the multiple-bus and multiple-bus with
partial buses structures.

Similarly, Fig. 5 shows the values obtained when p = 0.5.

VI. CONCLUSIONS

In this paper we have compared the effective bandwidth of mul-
tiprocessors with shared memory using crossbar and multiple-bus
interconnection networks. This work is motivated by the high cest and
low fault tolerance of the crossbar.

We have assumed that the processors are synchronized, that the
memory modules cycle time is constant, and that the processor re-
quests are independent and uniformly distributed random variables.
We conclude that with a number of buses slightly larger than N/2,
the effective bandwidth of the multiple-bus organization is less than
5 percent smaller than that produced by the crossbar. In practical
realizations that satisfy the model hypotheses, it would be better to
use the multiple-bus structure because of its better cost and reliability
characteristics.

For large N the cost of the multiple-bus structure can still be large,
as a result of the number of connections, the loads and the complexity
of the arbitration-hardware. This finding has led us to propose the

partial bus organization, which results in a similar bandwidth than
the multiple-bus structure and at a lower cost.

Finally, we have simulated the case in which the processor requests
memory with probability p = 0.5. This represents the case in which
all clock cycles are not devoted to memory accesses. The results in-
dicate that the crossbar is even more underutilized than for the case
in which p = 1 and, therefore, that the multiple-bus and partial-bus
organizations are even more attractive because the 5 percent per-
formance degradation is obtained for a smaller number of buses.

REFERENCES

{1] M. Flynn, “Some computer organizations and their effectiveness,” IEEE
Trans. Comput., vol. C-21, Sept. 1972.

[2] W.A. Wulfand C. G. Bell, “C.mmp—A multi-mini-processor,” in Proc.
Fall Joint Comput. Conf. AFIPS, 1972, pp. 756-771.

[3] M. Ajmone et al., “A study on processor-memory interconnection in
multimicroprocessor system,” Alta Frequenza, vol. L, no. 3, pp.
120-130, May-June 1981.

{4] S.Hoener and N. Roehder, “Efficiency of a multi-microprocessor system
with time shared buses,” Euromicro, pp. 35-42, 1977.

[51 R.J.Swan et al., CM*—A Modular Multimicroprocessor. AFIPS,
1977, pp. 637-644,

[6] M. Ajmone and M. Gerla, “Markov models for multiple bus multipro-

1234

{7

8
(%]

[lur

(10]

(1}
[12]

f13]

[14]

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 12, DECEMBER 1982

cessor systems,” U.C.L.A., Los Angeles, CA, Tech. Rep. CSD-810304,
Feb. 1981.

S. Thanawastien and V. P. Nelson, “Interference analysis of shuffle-
exchange networks,” IEEE Trans. Comput., vol. C-30, pp. 545-556,
Aug. 1981.

H. Siegel et al., “A survey of interconnection methods for reconfigurable
paralle] processing systems,” in Proc. NCC, June 1979, pp. 529-542.
S. Wuand M. T. Liu, “A cluster structure as an interconnection network
for large multimicrocomputer systems,” IEEE Trans. Comput., vol.
C-30, pp. 254-264, Apr. 1981.

R. J. Swan, “The switching and addressing structure of an extensible
multiprocessor: CM*.” Ph.D. dissertation, Carnegie-Mellon Univ.,
Pittsburgh, PA, Aug. 1978.

W. A. Wulf et al. HYDRA/C.mmp. An Experimental Computer Sys-
tem. New York: McGraw-Hill, 1981.

W. D, Strecker, “Analysis of the instruction execution rate in certain
computer structures,” Ph.D. dissertation, Carnegie-Mellon Univ.,
Pittsburgh, PA, 1970.

D. P. Bhandarkar “Analysis of memory interference in multiprocessors,”
1EEE Trans. Comput., vol. C-24, pp. 897-908, Sept. 1975.

C. M. Hoogendoorn, “A general model for memory interference in
multiprocessors,” IEEE Trans. Comput.,vol. C-26, pp. 998-1005, Oct.
1977.

(15]

[16]

{17]

(18]
(19]
[20]
[21]
(22]

(23]

F. Baskett and A. Smith, “Interference in multiprocessor computer
systems with interleaved memory,” Commun. Ass. Comput. Mach., vol.
19, pp. 327-334, June 1976.

B. R. Rau, “Interleaved memory bandwidth in a model of a multipro-
cessor computer system,” IEEE Trans. Comput., vol. C-28, pp. 678-
681, Sept. 1979.

T. Lang and M. Valero, “M-users, B-servers arbiter for multiple-bus
multiprocessor,” Microprocessing and Microprogramming, J. Eu-
romicro, to be published.

W. Plummer, “Asynchronous arbiters,” /EEE Trans. Comput., vol.
C-21, pp. 37-42, Jan. 1972.

R. C. Pearce et al., “Asynchronous arbiter module,” JEEE Trans.
Comput. pp. 931-932, Sept. 1975.

K. Sge Hgjberg “One-step programmable arbiters for multiprocessors,”
Comput. Design, pp. 154-158, Apr. 1978.

M. Courvoisier, “One-step N-user programmable arbiter,” Electron.
Lert.,vol. 15, pp. 430-432, July 1979.

E. Petriu, “/N-channel asynchronous arbiter resolves resource allocation
conflicts,” Comput. Design, pp. 126-132, Aug. 1980.

S. Lavengerg et al., “Sequential stopping rules for the regenerative
method of simulation,” IBM J. Res. Develop., vol. 21, pp. 545-558,
1977.

