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Bandwidth Scaling for Fading Multipath Channels
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Abstract—We show that very large bandwidths on fading mul-
tipath channels cannot be effectively utilized by spread-spectrum
systems that (in a particular sense) spread the available power uni-
formly over both time and frequency. The approach is to express
the input process as an expansion in an orthonormal set of func-
tions each localized in time and frequency. The fourth moment of
each coefficient in this expansion is then uniformly constrained. We
show that such a constraint forces the mutual information to0 in-
versely with increasing bandwidth. Simply constraining the second
moment of these coefficients does not achieve this effect. The results
suggest strongly that conventional direct-sequence code-division
multiple-access (CDMA) systems do not scale well to extremely
large bandwidths. To illustrate how the interplay between channel
estimation and symbol detection affects capacity, we present results
for a specific channel and CDMA signaling scheme.

Index Terms—Broad-band communication, channel capacity,
code-division multiple access (CDMA), fading multipath, wireless.

I. INTRODUCTION

T HE objective of this paper is to help understand the effect
of increasing the available bandwidth for channels sub-

ject to both additive white Gaussian noise (WGN) and multi-
path fading. We describe our model for fading multipath chan-
nels precisely later, but in essence we are considering a clas-
sical scattering model (i.e., a channel with no specular compo-
nent and with finite time and frequency coherence). We also as-
sume no feedback and no side information about the channel
state. For WGN channels without fading, it is well known that,
with a power constraint and with noise spectral density ,
the capacity, in natural units per second, as a function of avail-
able bandwidth , is . This increases with

to the limit . This infinite bandwidth capacity can be
approached arbitrarily closely by a set of orthogonal equal en-
ergy waveforms, and it makes no difference what set of orthog-
onal waveforms are used. A set of orthogonal time-limited sine
waves, a set of nonoverlapping pulses, or a set of orthogonal
pseudo-noise waveforms are all equivalent in terms of proba-
bility of decoding error.

For WGN fading multipath channels, there is an old, rather
surprising, result due to Kennedy (see, for example, [14], [26],
[8], [32], [1]) saying that the infinite bandwidth capacity of the
channel is the same as the infinite bandwidth capacity of the

Manuscript received September 23, 1999; revised September 15, 2001. The
material in this paper was presented in part at the International Symposium on
Information Theory, Ulm, Germany, June 29–July 4, 1997 and at the Asilomar
Conference on Signals and Systems, Nov. 1997.

The authors are with the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail:
medard@mit.edu; gallager@mit.edu).

Communicated by S. Shamai, Associate Editor for Shannon Theory.
Publisher Item Identifier S 0018-9448(02)01942-9.

nonfading WGN channel of the same average received power.
This result differs from the nonfading result in two important
ways. First, in the fading case, the infinite bandwidth result is
approached impractically slowly with increasing. Second, al-
though the infinite bandwidth result can be approached with or-
thogonal codewords for the fading case, the results appear to
depend critically on the particular choice of orthogonal set. For
example, orthogonal sinusoids of increasingly high power and
low duty cycle (so as to remain inside the average power con-
straint) work, but sinusoids with constant average power do not.

Fading multipath channels filter the input with a response that
varies slowly both with time and frequency shifts of the input.
Because of these shifts, it is insightful to use an expansion for
the signal space in which the available bandwidth is separated
into fixed slices of bandwidth, using the sampling theorem to
represent the baseband representation of each slice by an or-
thonormal expansion (with complex coefficients) of normalized
sinc functions. The relationship between the slices in this ex-
pansion is explained in Section V. Representing waveforms by
such an expansion, the channel becomes a discrete-time channel
where each discrete-time input corresponds to a given time/fre-
quency slot. Note that using these expansions does not constrain
the choice of signaling waveforms except for the overall band-
width constraint.

The capacity of a fading WGN channel is equal to the max-
imum average mutual information per unit time over the above
discrete-time channel, modeling the bandwidth constraint by the
number of frequency slices available. The major result of this
paper is to show that if a particular type of fourth moment con-
straint is placed on the input variables for this channel, then the
maximum mutual information is significantly degraded for large

, in fact approaching at least as as . Coding
theorems and converses [13], [23] apply to these mutual infor-
mations in much the same way as with more conventional chan-
nels, so, in what follows, we deal exclusively with mutual infor-
mations.

With a bandwidth , there are complex input random
variables per second. With a power constraint, the average
second moment constraint on these input variables (which need
not be uniformly applied) is . The fourth moment con-
straint above is then, for any finite constant, to constrain the
fourth moment of each complex input variable to be at most

. With such a constraint, we show that the average mu-
tual information per unit time approachesas . Note that
if the input variables are independent and identically distributed
(i.i.d.) Gaussian, with independent real and imaginary parts,
then the fourth moment of each complex variable is ,
so the above result applies with . If we want to maintain
or increase mutual information with increasing, it is neces-
sary for the input random variables to either become increas-
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ingly nonuniform or to become increasingly “peaky” in distri-
bution.

The results here were first presented in [10]. Some related
results for a memoryless fading model were presented in [18],
[19], using WGN signals and direct-sequence (DS) code-di-
vision multiple-access (CDMA) (DS-CDMA) signals, respec-
tively. Later related results appear in [33], [29], [30], [31]. In
[30], the results in this paper are considered using an output
fourth-order constraint and a capacity per unit cost approach
[34]. In [31], a peak signal constraint going tois considered.
In [33], the type of results in this paper are shown to depend
strongly on having no specular component in the channel mul-
tipath, and the effect of specular components is analyzed. These
results also depend critically on our assumption of finite fre-
quency coherence, which rules out flat-fading models as treated
in [16]. Finally, for a perspective and survey of known results
for a wide variety of models of fading channels, see [5].

The main reason for interest in this result lies in its appli-
cation to DS-CDMA systems. The CDMA standard (IS-95) is
one of the major systems currently deployed for commercial
wireless telephony, and CDMA is particularly attractive for
future integrated systems. CDMA is also being deployed in
ultrawide-band systems as overlays over licensed spectrum.
As shown in [35], [11], [27], [15], CDMA has many system
strengths for cellular systems, taking advantage of the idle
periods in voice and data, and being robust to out-of-cell
interference and noise other than WGN. Also, as shown in [22],
[7], [28], [24], CDMA has many system strengths for military
systems, including anti-jam and low-probability-of-intercept
capabilities. CDMA signals, however, closely resemble WGN
over the available spectrum. Thus, for the orthonormal expan-
sion above, the input variables are reasonably modeled as i.i.d.
Gaussian. The above results then imply that the mutual infor-
mation per unit time approacheswith increasing bandwidth.
The bandwidths of current commercial systems are sufficiently
small that the above limiting regime is not entered. The results
explain, however, why the bandwidth of a pure CDMA system
cannot be expanded arbitrarily over time-varying channels.
This result is particularly relevant in light of some recent
developments in the area of ultrawide-band systems using
CDMA signaling, indicating that such systems should be used
only on channels which vary very slowly.

Some intuition about why signals resembling white noise
are not very effective at increasingly large bandwidths can be
seen by considering a RAKE receiver for a fading channel.
The RAKE receiver both measures the channel and makes
data decisions. The data decisions are made on the basis of
the current channel estimate, and then the current decision
is used to update the channel estimate. As the bandwidth
increases, the power available in any given bandwidth slice
decreases. Thus, the accuracy of the channel measurement in
that bandwidth slice degrades and also the signal-to-noise ratio
(SNR) degrades. Because of the combined effect, the mutual
information per degree of freedom decreases inversely with the
square of the overall bandwidth. We will see in what follows
that this effect is independent of the particular receiver structure
and depends only on the fourth moment constraintabove.
Our results depend on having no side information, so that the

channel state estimation depends only on input and output.
Reference [25] analyzes a situation with a different assumption
about estimate and estimation error.

II. A M ODEL FORFADING MULTIPATH CHANNELS

First we will look at a system in which the input is band-lim-
ited to some fixed bandwidth . Because of Doppler spread,
the output bandwidth will be slightly larger than the input
bandwidth . We represent the output as a complex
baseband process of bandwidth , and using the sampling
theorem, we represent it as a complex sampled time process

with samples at rate . In particular

(1)

Even though the input is band-limited to a smaller band than,
we can still represent the input by the corresponding complex
sampled time process at rate . After
analyzing this system of fixed bandwidth, we then look at band-
widths that are integer multiples of . We will show how to
view these broader band systems as combinations made up of
multiple slices each of input bandwidth .

The channel multipath fading is represented by a randomly
time-varying linear filter whose impulse response is limited to
some multipath time spread . The effect of this filter on the
input over the given band can be represented as a complex, time-
varying, tapped-delay line filter with complex taps at intervals
of . must be at least because of the effective band-
limiting of the filter impulse response, but the exact value of
is noncritical in the arguments to follow. Let be the th tap
of the filter at discrete output time. Thus, the signal, corrupted
by the multipath fading but before the addition of noise, is given
at time by

We denote as a random vector
. The sample value of this vector is called the channel

state at time . We assume that the vector stochastic process
is zero mean, stationary, and complex

Gaussian. We also assume that this process is statistically
independent of the input process . This
assumption implies that the source uses no side information
about the state of the channel, and thus, for example, assumes
that power control is not used. Power control, as used in prac-
tice, decreases the average information rate, since it increases
power when the channel is badly faded. Even if power control
were used to increase the rate (with all the attendant system
problems), it would be ineffective if the channel state could
not be well estimated at the receiver. We conjecture, for this
reason, that CDMA, with the above fourth moment constraint,
still breaks down at very high bandwidths even when power
control is used.
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As a notational convenience, define

Thus, the faded signal at timeis given by . The
additive noise, over the bandwidth is represented at base-
band by a discrete-time, zero-mean, complex Gaussian process

. The complex random variables are
i.i.d., and are independent of the input process and multipath
fading process. The output, at each discrete time, is given by

(2)

A set of complex random variables , and the
corresponding random vector , is said
to be circularly symmetricif, for any angle , the variables

have the same joint distribution as
. A complex stochastic process (or set of com-

plex stochastic processes) iscircularly symmetric(or jointly cir-
cularly symmetric) if each finite set of complex random vari-
ables within the process (or processes) is circularly symmetric.
It is physically almost inevitable to assume that the noise process

is circularly symmetric and that the mul-
tipath fading process is circularly sym-
metric. Since these processes are independent, they are also
jointly circularly symmetric. Finally, conditional on any given
input , we see that,
for any , is circularly symmetric and thus is circu-
larly symmetric. More generally, conditional on a given input
sequence, the output process is circularly symmetric and

, , and are jointly circularly symmetric.
For some large but finite sequence length, let

and

Our first objective is to find a useful upper bound to the average
mutual information over the given band. The reason
for including will become apparent later, but
has little effect for large . Define the number by

(3)

The term inside the braces is a form of correlation between time
and time , and thus , suitably normalized, is proportional to

the time coherence. We assumeis finite, as a precise character-
ization of our assumption of finite time coherence. Also assume
a finite fourth moment constraint such that

(4)

We then develop the following upper bound on .

Theorem 1: Let a discrete-time multipath fading channel
have output for the input process ,
fading process , and noise process defined above.
Then, for any positive integer such that (4) is satisfied

(5)

where .

This theorem will be proven in the next section. It is valid
for all distributions on the input, subject to the constraints
above. Note that the theorem contains no explicit constraint on

, although (4) implicitly implies that .
To understand what Theorem 1 is saying more clearly, define
the Kurtosis, , of a zero-mean random variable to be

. If is antipodal, the Kurtosis is
and, if complex Gaussian, it is. As a more insightful example,
if is with probability and or with probability

each, then . Thus, a random variable with large
Kurtosis has a “peaky” distribution. If we constrain each of
the inputs in (5) to have a Kurtosis of at most some arbitrary
number and a mean-square value at most some number,
then can be expressed as .

We now express this in more familiar SNR terms. The channel
above has complex degrees of freedom per second, and thus
a power constraint can be met by the constraint

. Thus, taking

(6)

Finally, let be the spectral density of the noise. Then
. Substituting this plus (6) in (5), we get

(7)

In the above argument, we have used an energy constraint on
each degree of freedom to motivate the relation in (6) between
and . However, as stated before, the theorem is valid whether
or not there is an explicit constraint on SNR.

Suppose we view a broad-band system with power constraint
as some numberof frequency slices, each with power con-

straint . If we assume for the moment that each fre-
quency slice is independent and satisfies (7), then the average
mutual information per unit time per slice goes down as ,
and the aggregate mutual information over the entire band then
approaches as .

As will be explained in Section V, the slicing interpretation
above is oversimplified, and we must take into account both the
Doppler shift and the correlation in fading between different
frequency slices. The problem caused by the Doppler shift is
that adjacent frequency slices at the input give rise to over-
lapping slices at the output. The problem with correlated fre-
quency slices is that the aggregate of average mutual informa-
tion over several slices might be greater than the sum of the av-
erage mutual informations over the individual slices. However,
after being careful about these issues, we shall still find that the
average mutual information rate goes to zero with increasing
bandwidth if the fourth moments are bounded as
above.

The problems caused by statistical dependence between the
fading on different frequency slices are quite tricky and depend
critically on the model of multipath fading. The model we have
adopted here is a classical scattering model, corresponding to a
continuum of infinitesimal paths. A different model, using a fi-
nite number of time-varying paths, has been investigated by
Telatar and Tse [33]. When they assume that the delay of each
path is known (but the amplitude and phase is not), then the
mutual information does not approachwith increasing , but
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rather is inversely proportional to the number of resolvable paths
(which are upper-bounded by). They also consider the case
in which path delay is unknown. Here they show that the mu-
tual information approachesas but the bound becomes
meaningful only at extremely large . Neither classical scat-
tering models nor finite path models are completely satisfac-
tory for modeling reflecting surfaces and other such physical
multipath mechanisms. All of these models, however, are close
enough to physical wireless media to provide some guidance on
wide-band future systems.

The analysis in the present paper relies heavily on the par-
ticular way the input is scaled with increasing. This type of
scaling does not apply to frequency hopping, since, as the set
of available frequencies for hopping increases, the fraction of
time that a frequency is used decreases. Consequently, as in the
example above, the Kurtosis increases as . It also does not
apply to the increasingly “peaky” type of distribution used to
achieve capacity on fading channels with no bandwidth con-
straint. This scaling does apply to CDMA-type systems, and
helps explain why very broad-band systems tend to use a com-
bination of frequency hopping and CDMA rather than CDMA
alone.

III. M UTUAL INFORMATION FOR A FIXED FREQUENCYBAND;
PROOF OFTHEOREM 1

We begin the proof of Theorem 1 with some standard rela-
tions between expected mutual information and differential en-
tropy. We will then establish a couple of lemmas, and finally
complete the proof of the theorem. First, note that

(8)

where denotes expected mutual information anddenotes dif-
ferential entropy. Information and entropy for complex random
variables and vectors are, by definition, the information and en-
tropy for the joint real and imaginary parts of those complex
variables and vectors.

First look at the differential conditional entropy
for given sample values

and , i.e., we look at . Conditional
on , the random vectors are jointly
Gaussian, and, as explained earlier, jointly circularly sym-
metric. The covariance matrix of a zero-mean complex random
vector is defined to be . A useful property
of arbitrary zero-mean jointly Gaussian, circularly symmetric
random vectors, say and , is that, conditional on some
given value for , the conditional distribution for has a
mean value given by

(9)

The conditional fluctuation , given , is
zero-mean, Gaussian, and circularly symmetric. Its covariance
function, , is not a function of and is given by

(10)

is the minimum mean square error (MMSE) estimate of
given , and is the negative of the estimation error;
(9) and (10) are well-known formulas of elementary estimation
theory.

For the application here, we use for and for ,
with additional conditioning on the input, . With this
conditioning, and are zero-mean, jointly Gaussian, and
circularly symmetric, so the conditional mean and covariance of

, given both and are

(11)

(12)

where

, and is abbreviated . The first
term on the right-hand side of (12) is not conditioned on
since and are independent. In what follows, we call
and the idealizedestimate and error covariance, since

is unknown at the receiver and thuscan not be measured
there.

Lemma 1: Let and be the idealized
estimate and covariance of as given in (11), (12). Then

(13)

(14)

Proof: Let and . Since
, we have and thus .

We can then calculate the conditional variance ofdirectly in
terms of the idealized conditional covariance matrix of

. In particular

(15)

Consider the differential conditional entropy .
Since differential entropy is invariant to translation, this is equal
to . We have seen that , conditional on

and is Gaussian and circularly symmetric.
Because of the circular symmetry, the real and imaginary parts
of are independent, Gaussian, and equally distributed. Thus,
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the combined entropy in natural units (taking account of real
and imaginary parts) is

(16)

Substituting (15) into (16), and recognizing (from the right-hand
side of (15) and (12)) that the covariance in (15) does not depend
on , we have (13), proving the first part of the lemma. Note
that this conditional entropy is expressed directly in terms of the
idealized error covariance matrix .

Next, we find a lower bound to that can be
easily averaged over . From (13)

(17)

We used the inequality for above.
We can now take the expected value over

(18)

(19)

where we used the inequality on the middle term
of (18).

Next, we need to upper-bound in (8). Breaking
into its real and imaginary parts, we have

(20)

We have seen that , conditional on , is circularly
symmetric, and it is then not hard to see that, unconditionally,
is also circularly symmetric (although typically not Gaussian).
It follows that and are equal, and each is
upper-bounded by the Gaussian entropy of the same variance.
Thus,

(21)

We finally bound . Conditional on and
, we have seen that is Gaussian with mean

and with variance given by (15). It follows
that

(22)

Taking the expected value over and

(23)

Substituting this into (21), we get

(24)

Substituting this and (19) into (8), we get

(25)

The first term on the right-hand side of (24) can be interpreted
as the mutual information of a WGN channel for which 1) the
channel strength is the idealized estimate of the channel, and for
which 2) the noise is the original additive noise plus the ideal-
ized covariance. This interpretation helps to support our intu-
ition that the mutual information is intimately tied to channel
measurement (even though the idealized estimate cannot be de-
termined by the receiver).

To complete the proof of the lemma, use the upper bound
in the first term of (24) and drop the extra term

in the denominator

(26)

To upper-bound the numerator of the final term in (25), note,
from (12), that is nonnegative definite for
each . Thus,

(27)

Note that is a (nonrandom) matrix here, and the outer
expectation in (26) is thus over . Substituting (26) into (25)
gives us (14), completing the proof of the lemma.

The following lemma is of interest in its own right, since (29)
bounds the mutual information in terms of the fourth moment
of the pre-noise output . Equation (28) is slightly
stronger, and is needed to complete the proof of Theorem 1.

Lemma 2: Given the conditions of theorem 1,

(28)

(29)
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Proof: First, we upper-bound the numerator of the
first term on the right-hand side of (14). We first look at
a fixed sample value for the input, and bound

, where the expectation is over the
output , conditional on . For this , abbreviate
by , and by . Thus, we want to upper-bound

(30)

From (11), is given by , where is an

abbreviation for . We then have

(31)

(32)

Recall that where . Thus
, where is the -dimensional identity

matrix. It follows that is nonnegative definite for
each input . From this, we see that each eigenvalue of
must be greater than or equal to, and, thus, each eigenvalue
of must be less than or equal to . This in turn means

that must be nonnegative definite. It follows
that for any complex vector

(33)

Taking as , (33) is bounded by

(34)

Observe that is an -dimensional row
vector whose th component is given by

(35)

Thus, it follows that

(36)

Combining (34) and (36) and taking the expected value over

(37)

Combining (37) with (30), and substituting this plus (27) into
(26)

(38)

Summing over , we get

(39)

Finally, denote by and note that
. Thus, we have

(40)

The first two expressions are equal since both sum overand
such that . The final two are equal by interchangingand

and using . By replacing the first sum in (39)
with half that sum, plus half the sum over , we get (28). To
establish (29), note that for each sample value of the input

Thus,

Proof of Theorem 1:To complete the proof of Theorem 1,
we expand each of the fourth moment terms in (28) as follows:

(41)
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The expected values here can now be upper-bounded by re-
peated applications of the Cauchy inequality

(42)

where we used (4) for the final bound on the expected value of
the fourth power of each input variable. Substituting (42) into
(41)

(43)

Substituting this into (28)

This can be further upper-bounded by summingfrom to
. Because of the stationarity of, each term in the sum

over is then the same, and equal toas given in (3). Thus,
, completing the proof.

IV. I NTERPRETATION OFTHEOREM 1

To get the simplest interpretation of our result, assume that
for each , for . This is reasonable
since is the response at timeto the set of paths whose
delay is approximately . We expect these path responses
to be uncorrelated with those paths at some other delay .
With this assumption, in (3) simplifies to

(44)

One of the standard ways [3] of representing fading multipath
channels is by thetwo-frequency correlation function ,
defined as the correlation between the response at timeto a si-
nusoid of unit power at the carrier frequencyand the response
at time to a sinusoid of unit power at . This correlation
function at is simply the correlation function of the re-
sponse to a unit sinusoid at the carrier frequency. In our base-
band representation, this unit sinusoid is simply
for all . Thus,

(45)

If we assume for the moment either that is real for
all or that , then we can substitute (45) into (44),
getting

(46)

As increases, decreases because of the randomly
changing phases and delays on the multiple paths contributing
to each of the channel taps. Thechannel coherence time is the
time until this correlation becomes small, i.e., the value of
at which gets small relative to . This corre-
lation usually drops off gradually with increasing, and thus
is simply a single number characterization of the extent of the
correlation function. For our purposes here, it is convenient to
define this number1 as

(47)

Assuming that is much larger than , the integral in (47)
can be approximated by a sum, and comparing (46) with (47),
we have

(48)

This equation is based on the assumption that is
real. However, if is chosen so that is greater than the
multipath spread (assuming the typical case in which the multi-
path spread is much less than), then the only significant term
in the inner sum of (44) is that for . Thus, moving the
absolute value sign in (44) outside of the inner sum is a good
approximation in this case, thus justifying (46) and (48). Sub-
stituting (48) into (5)

(49)

Let satisfy (6) and . Substituting this into (49), the
mutual information per unit time (rather than per sample) be-
comes

(50)

The term above is simply the power gain (or attenu-
ation) from transmitter to receiver. One usually normalizes the
input and output levels to make this term equal to, but we leave
it in here to avoid confusion. In the section to follow, we look
at a broad bandwidth as a collection of many smaller bandwidth
slices of fixed size. The input variables are then constrained (ap-
proximately) both to a fixed bandwidth and time . With
the constraint (4), we will then see that the mutual information
per unit time decreases with increasing overall bandwidth.

V. MUTUAL INFORMATION OVER MULTIPLE

FREQUENCYSLICES

Consider an arbitrary numberof frequency slices. The con-
tinuous time input , at passband, is
then constrained to a bandwidth . Let be the con-
tinuous time passband input in theth of the slices. Thus,

. Aside from the constraints, which we dis-
cuss later, viewing the input asslices, each of bandwidth ,
is simply an analytical tool and has nothing to do with the actual
choice of the input within the overall bandwidth constraint .

1t is also often defined as the time� at whichjR(0; �)j drops to some fixed
fraction � of Rj(0; �)j . The fraction� is assigned various values between
0:37 and0:9 [4], [6], [12]. This does not suffice here since we need a measure
involving how jR(0; �)j goes to zero with� .
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Let be the impulse response of the fading channel at
time to an input at time . Then the response of the channel
to the input slice is . If the overall
Doppler spread is , then this response is band-limited to a
bandwidth . Let

where is a stationary real Gaussian noise process
whose spectral density is flat over the bandwidthof interest
and is zero elsewhere. The baseband version of and

, sampled at rate , corresponds to the model of the
previous section. For the passband systems just defined,
consider the somewhat artificial system ,
where

and where the noise processes , even though overlap-
ping in frequency, are independent between different values
of . The frequency bands occupied by adjacent outputs, say

and overlap by the Doppler spread , and
therefore the process does not necessarily specify the
individual processes . Because of the data processing
theorem, the average mutual information per unit time be-
tween and is less than or equal to the average
mutual information per unit time between the set of inputs

and .
Since , we can represent by

where . We assume that , so
that only adjacent bands overlap. This entails no essential loss
of generality, since was arbitrary up until this point. This
means that the spectral density of is twice as large in the
overlap regions as in the nonoverlap regions of the band. The
actual received waveform , on the other hand, is given by

where has spectral density over the received band.
Now suppose we define the spectral density of each noise

process above to be . In that case, has spectral
density in the overlap regions and in the nonoverlap
regions. We can get the true output from the artificial
output by adding stationary Gaussian noise of spectral
density in each of the nonoverlap regions. By the data
processing theorem, again, the mutual information per unit time
between and is then upper-bounded by that
between and , and that is further upper-bounded
by that between

and

Next we represent each of thepairs , above by
a discrete-time baseband channel. Let , , and be
the th time sample in the complex baseband representation of

, , and . Let and
be the vector input and output over

the th frequency band. Also, let and

. We want to find an upper bound on
, which, as we have seen, is an upper bound on

the mutual information between and over an interval
of duration . As before, we can expand this mutual infor-
mation as

(51)

At this point, we have reduced the continuous-time channel to a
vector discrete-time channel. We have been somewhat cavalier
about truncating ideal band-limited processes, but this is a fa-
miliar problem in capacity arguments, and the fading multipath
does not change that problem in any critical way.

To complete the model, let be the th tap of
the th baseband equivalent channel filter at time, let

, and, as before, let
denote . Let be the
faded signal at time for frequency slice . Then

(52)

As before, we impose the constraint

for all for some fixed . We also assume (since has
spectral density ) that

for all

Lemma 1 generalizes with no change, except for the addi-
tional conditioning on . The following lemma gives
this generalization; the proof is omitted since it is the same as
Lemma 1.

Lemma 3: Let be the conditional
mean of , conditional on
and . Let

be the corresponding fluctuation. Let be the co-
variance matrix of this conditional fluctuation and abbreviate

by . Then

(53)

The following lemma is a slightly less straightforward general-
ization of Lemma 2, and we give a proof for those details that
are different.
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Lemma 4:

(54)

(55)

Proof: Consider the numerator of the first term
in (53) for a fixed input . Abbreviate

by . Thus, we want to
upper-bound

where the expectation is overfor fixed . Using the same
argument as in (34)

(56)

The vector here has components, consisting
both of the first received variables in frequency bandplus
all received variables in each of the bandsto . Thus,

is an -dimensional row
vector whose th component, , is given by

(57)

The other components are indexed by( ) and ,
( )

(58)

Substituting (58) and (57) into (56)

(59)

The expected value of this, over , is the numerator of the
first term of (53). Thus, substituting this expectation into (53),
we have

(60)

Summing this over and using the trick in (40)

(61)

Finally, summing over and applying the trick in (40) to

(62)

This is (54), proving the first part of Lemma 4. The second part
follows as in Lemma 2, completing the proof.

Using the Cauchy inequality in the same way as (41)–(43)

(63)

Substituting this into (62)

(64)

This upper bound on mutual information makes no assumptions
about the stationarity of the fading process. We now assume that
the fading process is wide-sense stationary, both in time and
in frequency. This is a reasonable assumption for overall band-
widths less than 10% or so of the carrier frequency. In particular,
we assume that

(65)

for all .

Theorem 2: Assume that the fading process is wide-sense
stationary, in time and frequency, and that the input variables
satisfy . Then

(66)
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where

Proof: We upper-bound (64) by extending the sum over
and from to . Then, using (65), the sum for each

and each is the same, completing the proof.

In order to interpret what this result means, akin to the inter-
pretation in Section IV, we assume again that

whenever . This simplifies to

(67)

Recall that the two-frequency correlation function is the
correlation between the response at timeto a sinusoid of unit
power at the carrier frequencyand the response at timeto a
sinusoid of unit power at . Then

As before, we assume either that these terms are real or that
is small enough that the tapped delay line representing the mul-
tipath has only one significant tap. Then (67) simplifies further
to

(68)

As one final simplifying assumption, assume that the correlation
over time is independent of that over frequency, i.e., that

One can easily find situations in which this is not a good as-
sumption, but it makes sense as an average over which wireless
systems must operate. Using the definition (47) of coherence
time, (68) becomes

(69)

The frequency correlation gets small as becomes
large because of the random strength and phase of different
paths. Thefrequency coherence is the frequency at which

becomes small, and we define it, somewhat arbitrarily
as

(70)

is proportional to the reciprocal of the time spread on the
channel. Substituting (70) into (69), we get

(71)

Recall that the spectral density for the noise process in each slice
was chosen to be so that . Substituting this and
(71) into (66)

(72)

Let be an overall power constraint on the input, and let
be the power constraint in each slice. Then, from (6), we

have . Substituting this into (72), and recalling
that is the overall input bandwidth

(73)

This shows that the upper bound is decreasing inversely with
. The question we now have to answer is whether this upper

bound is meaningful in any region of interest. In the broad-band
region, the capacity of a WGN channel without fading is ,
and the bound in (73) becomes equal to the WGN capacity when

, For conventional cellular mobile communi-
cation and personal communication services (PCS),ranges
from about to and thus the bound is only meaningful
when . What this means is that these channels have
so many degrees of freedom, in time and frequency, over which
the channel remains relatively constant, that the channel can in
principle be measured adequately.

The bandwidth at which this bound becomes significant de-
creases with decreasing and . is inversely propor-
tional to Doppler shift, which is proportional both to carrier fre-
quency and velocity of transmitters, receivers, and reflectors.
is inversely proportional to time spread, which increases as mul-
tiple paths are spread over larger distances. Thus, the bound be-
comes more significant in the regime of high carrier frequencies,
rapid velocities, scattering over widely dispersed paths, and low
SNR.

VI. SPREADING USING CDMA

In this section, we consider the special case of DS-CDMA.
Along with the importance of this special case, we can acquire
additional insight into the general bounds of Theorems 1 and
2 for this simple case. Instead of creating another upper bound
on mutual information, we assume a simplified channel model
and develop a crude approximation to the mutual information,
assuming i.i.d. antipodal inputs.

We still consider the model of Section V where the available
input bandwidth is separated intoslices, each of input band-
width . We choose , which is otherwise arbitrary, to be the
channel coherence bandwidth. With this choice, it is reason-
able to approximate the fading to be flat over each slice, i.e., to
assume that the number of time-varying filter tapsrequired to
model a slice is given by .

Denote the single filter tap (i.e., the channel strength) in slice
at time by . Assume that the time sequence ,

in each slice is statistically independent and identically
distributed with that of all other slices. The assumptions of flat
fading within each frequency slice and independence between
slices is the frequency analog of block fading in time (see [17],
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[16]), where the channel is assumed constant within each time
block and independent between time blocks.

Under the assumption that the frequency coherence is much
larger than the Doppler shifts, we also assume that the Doppler
spreading between frequency slices is negligible, so the output
bandwidth for a frequency slice is taken to be

. This avoids the need to use the artificial noise process
defined in Section V. Thus, in this section, the noise variance
will be taken to be rather than .

In CDMA, the channel input, after coding and spreading, is
typically antipodal. We take some slight liberty with these an-
tipodal inputs here by assuming that the baseband inputs on each
frequency slice are antipodal. This means that the magnitude
squared of the input in each time and slice is simply a
constant, say for each slice. We assume that the inputs are
independent over time and slice, and are , each with proba-
bility . The frequency slices can now be analyzed indepen-
dently, so we drop the subscriptand analyze an arbitrary single
frequency slice.

For each such slice, we adopt a Gauss–Markov channel model
[20]. Here each time sample evolves as

(74)

where is a random variable representing the innovations
process. The random variables are i.i.d. Gaussian with zero
mean and variance . From (74), we see that

(75)

Since

the constant represents how fast the given canonic channel
decorrelates, and in particular

Using the definition of in (47) and approximating the above
sum by an integral

(76)

The output from a given frequency slice is

(77)

The idealized estimation of from (74) and (77) can now be
represented by the single-dimensional Kalman filtering equa-
tions. In particular, let . Note that
this estimate is based on the current output as well as previous
outputs and differs from the idealized estimateof (11), which
does not depend on the current output. The estimate depends
also on the inputs ; the future inputs are irrelevant to the
estimate. Let be the conditional variance of around

. This variance is independent ofand and sat-
isfies the well-known Kalman recursion equation

(78)

As in (10), and are related by

Finally, we see from (74) that

(79)

The variance in (78) approaches the following steady-
state value as increases:

(80)

Let . This is the steady-state value of
. Substituting this into (80) yields

(81)

Multiplying both sides, first by the denominator of the left-hand
side and, second, by the denominator of the first term on the
right-hand side, and simplifying

(82)

Each of the final terms in (82) are positive, and thus can be
upper-bounded by , leading to

(83)

It can be seen by comparing (82) and (83) that (83) becomes a
good approximation to for small, i.e., for a large number
of slices. Thus, using (79)

(84)

for small. The variance of the fluctuation of around
this idealized estimate is then

(85)

Note that this (and in fact the exact value of) is not a function
of the particular input or output. If we now look at Lemma 1
again, we recall from (13) that

Since this does not depend2 on , we have

(86)

The entropy can be upper-bounded by (23) as

(87)

2There is a familiar subtlety here: this is a conditional entropy, conditional
on the input, but itsvaluedoes not depend on the particular input. Similarly,
the entropy of output conditional on input for an ordinary Gaussian channel is
simply the noise entropy. Itsvaluedoes not depend on the particular input, but
the conditional entropy is certainly different from the unconditional entropy.
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Combining (86) and (87)

(88)

We next show that this upper bound is also a good approxima-
tion when is small. Note that

and

Thus,

(89)

For a given sample value , we can
view the mutual information as the mu-
tual information between the antipodal input random variable

and the output random variable which is the
sum of that input and a Gaussian random variable of variance

. It is well known that one can approach capacity on a
Gaussian noise channel, in the limit of large bandwidth (small

), by using antipodal signals. Thus, for small

(90)

Averaging over and , and then combining with (88)
and (89), we see that

(91)

Combining this with (84)

(92)

We may now relate (92) to (73). Since the signal power is
spread over slices, . From (76),

. Also, and . Thus,

(93)

Let us now use (93) to derive an expression similar to (73).
Multiplying (93) by and , and multiplying numerator and
denominator by

(94)

where we have used the fact that and . For a
rapidly varying channel, is between and . Using the fact
that for the antipodal signaling here, the approximation
in (94) is 9 or 10 dB tighter than the general bound in (73).

VII. CONCLUSION

Our results point to the fact that uniform signaling over time
and frequency (as formalized by a fourth moment constraint)
for time-varying channels over very broad bands does not
achieve good channel utilization. These results indicate that
ultrawide-band systems using such signaling over gigahertzs
of bandwidth should only be used to operate over quasi-static
channels.

Several questions spring from this result, the most natural
being what is a practical and efficient way of transmitting over
very wide spectra. The channel model here almost certainly
breaks down for the bandwidths required to approach capacity
for the impulsive signaling schemes of [14] and [32]. While the
infinite bandwidth capacity for an additive WGN channel is ap-
proached reasonably rapidly as bandwidth increases, the results
in [32], using [9] indicate that the infinite bandwidth capacity for
fading channels is approached impractically slowly. Thus, there
is a large operating regime where the constrained fourth moment
signals of this paper are not desirable but the very broad-band
results of [14] and [32] are not applicable. Moreover, the ex-
tremely impulsive signals required to operate in the regimes
considered by [32] have great practical drawbacks.

A practical scheme may consist of combining traditional
CDMA with frequency hopping, spreading using CDMA to
a moderate extent and then hopping across the spectrum.
In order to evaluate the effectiveness of this technique, one
must first determine the range of bandwidths for which the
type of signaling addressed in this paper is advantageous.
While [21] begins to address this issue for channels which are
block-fading in time and frequency, finding tight bounds for
advantageous spreading regimes for more general channels is
an open problem.

The model here assumes no feedback, and it would be inter-
esting to see how feedback changes the picture. We conjecture
that the results would be basically the same, since the fourth
moment constraint prevents the receiver from estimating the
channel, feedback or not.
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