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Electrons can organize themselves into charge-ordered states to minimize the effects of long-
ranged Coulomb interactions. In the presence of a lattice, commensurability constraints lead to
the emergence of incompressible Wigner-Mott (WM) insulators at various rational electron fillings,
ν = p/q. The mechanism for quantum fluctuation-mediated melting of the WM insulators with
increasing electron kinetic energy remains an outstanding problem. Here we analyze numerically the
bandwidth-tuned transition out of the WM insulator at ν = 1/5 on infinite cylinders with varying
circumference. For the two-leg ladder, the transition from the WM insulator to the Luttinger liquid
proceeds via a distinct intermediate gapless phase – the Luther-Emery liquid. We place these results
in the context of a low-energy bosonization based theory for the transition. We also comment on
the bandwidth-tuned transition(s) on the five-leg cylinder, and connections to ongoing experiments
in dual-gated bilayer moiré transition metal dichalcogenide materials.

Introduction.- The emergence of Wigner-Mott (WM)
insulators 1 at a partial commensurate filling of electronic
bands is one of the hallmarks of an interaction-induced
phenomenon [1]. Despite being an old problem, much
remains to be understood about how a WM insulator
emerges from a Landau-Fermi liquid (FL) at a fixed elec-
tronic filling (ν) as a function of increasing strength of
interactions. The FL metal hosts an electronic Fermi
surface whose area is fixed by Luttinger’s theorem [2, 3].
On the other hand, the WM insulator does not host any
electronic Fermi surface and spontaneously breaks space-
group (and, possibly, spin-rotation) symmetries. Given
these differences, one might expect that the most com-
mon scenario would be for the metal-insulator transi-
tion to be first-order in nature, which is seen in many
solid-state materials [4]. An alternative “weak-coupling”
perspective suggests that the transition can proceed via
intermediate metallic phases with broken translational
symmetry and an even number of electrons in the en-
larged unit-cell. Examples of both classes of transitions,
including the additional effects of disorder, have been an-
alyzed in a large body of earlier work [5–7]. The most
intriguing scenario involves a direct continuous transition
between a symmetry-preserving FL metal and a WM in-
sulator. As a matter of principle, such continuous tran-
sitions can be described using quantum field theoretic
methods involving fractionalized degrees of freedom and
emergent gauge-fields [8, 9], but they typically rely on
artificial limits to make computational progress.

In this letter, we study the transition(s) between a WM
insulator and a FL metal at a fixed filling ν = 1/5 for
spinful electrons on the triangular lattice using infinite
matrix product state (MPS) techniques [10, 11]. In the
strong-coupling regime, superexchange leads to a spin-
singlet WM insulating ground state with finite spin and

1 These are also referred to as “generalized” Wigner crystals.
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FIG. 1. Schematic for two possible scenarios for continuous
bandwidth-tuned WM transitions at ν = 1/5, where ∆c, ∆s

vanish at: (a) two separate QCP, with an intermediate gap-
less phase, or (b) the same QCP but with distinct critical
exponents. (c) The two quasi-2D infinite cylinder geome-
tries, XC2 and YC5, along with the respective WM insulators
(t/U ≪ 1) and the electronic Fermi surface in the metallic
phase (t/U ≫ 1). The blue ovals denote singlet bonds and
the orange lines denote cuts through the electronic Fermi sur-
face, corresponding to the allowed momentum modes around
the cylinder circumference.

charge gaps, ∆s, ∆c, respectively; see Fig. 1. Starting
with the fully-gapped WM insulator, which can be ef-
ficiently represented using MPS, we address the quan-
tum fluctuation-induced melting of the WM insulator
with increasing single-electron bandwidth. In particu-
lar, are there intermediate gapless phases distinct from
a symmetry-preserving FL metal (Fig. 1a), or is there
a direct transition to the FL across which ∆s, ∆c van-
ish simultaneously (Fig. 1b)? With increasing quantum
fluctuations, the spin-singlets in the WM insulator could
also transition into delocalized, but strongly fluctuating,
Cooper-pairs. The resulting Luther-Emery liquid [12, 13]
would then host a gap to single-electron excitations, but
not to the spin-singlet Cooper pairs.
Experimental motivation.- Bilayers of transition metal

dichalcogenides (TMDs), which realize an effective moiré
triangular lattice, have presented experimental evidence
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for a bandwidth-tuned continuous metal-Mott insulator
transition at ν = 1/2 [14, 15]. In parallel, a number
of experiments using moiré TMDs have reported evi-
dence for a plethora of WM insulators at electron fillings
ν = 1/6, 1/5, 1/4 etc., induced by the screened long-
range Coulomb interactions [16–18]. Wigner crystals
in the absence of a moiré potential have been reported
across different platforms in earlier work [19–23]. While
the nature of the electron spin-configuration, and its pos-
sible ordering, is presently unclear for all of these WM
insulators, the charge-order for ν = 1/6 has been im-
aged directly [24]. The competing spin-exchange inter-
actions in a Wigner crystal are highly frustrated and the
ordering (or lack thereof) is a delicate question, with a
long theoretical history; see Refs. [25–27]. In the con-
text of moiré systems, previous theoretical effort has
focused on the crystalline regime deep in the WM in-
sulator [28, 29]; Hartree-Fock [30–32], classical Monte-
Carlo [33], and DMRG-based [34] methods have also been
used to study the competition between spin and charge-
orderings over a range of coupling strength and density.
Momentum-space-based exact diagonalization methods
have also been employed to study the metal-insulator
transition for a host of other fillings [35, 36]. The WM
insulator 2 at ν = 1/5 provides a useful starting point to
study the onset of electron delocalization and melting of
the spin-gap, going beyond any Hartree-Fock or classical
Monte-Carlo-based approach.

Model & Method.- We study the ground state phase di-
agram of the extended Hubbard model on the triangular
lattice, given by

H = Hkin +Hint, (1a)

Hkin = −t
∑

⟨r,r′⟩,σ

(
c†rσcr′σ +H.c.

)
− µ

∑
r

nr, (1b)

Hint = U
∑
r

nr↑nr↓ +
1

2

∑
r ̸=r′

V (r − r′) nrnr′ . (1c)

Here the electron creation and annihilation operators at
site r with spin σ are denoted c†rσ, crσ, respectively.
The on-site interaction, U , and further neighbor interac-
tions, V (r), are kept fixed, with the latter determined by
the screened Coulomb interaction in bilayer TMD exper-
iments [14–16]. For our calculations, we truncate V (r)
at fourth-nearest-neighbor interactions on the triangular
lattice with V2/V1 ≈ 0.512, V3/V1 ≈ 0.423, and V4/V1 ≈
0.284, where Vn is the nth nearest-neighbor interaction
strength [37]. We choose V1/U = 0.5. The single elec-
tron hopping is t, and the chemical potential, µ, couples
to the total electron density with nr =

∑
σ c

†
rσcrσ. In the

remainder of this manuscript, we focus on the electron

2 The same filling is denoted νc = 2/5 in Ref. [16], measured rela-
tive to the full filling of the band (νc = 2).

filling fraction ν = 1/5 and in the zero-magnetization
sector. The phase diagram is then studied by varying t
at fixed filling and interaction.

We make use of infinite matrix product state (iMPS)
techniques on two quasi-2D geometries: the two-leg lad-
der (XC2) and the five-leg cylinder (YC5). These are
shown schematically in Fig. 1(c). Using the VUMPS
algorithm [38], we find the variationally-optimal iMPS
approximation to the ground state for a range of bond
dimensions, χ [10, 11]. In order to deduce the prop-
erties of gapless phases, we utilize finite-entanglement
scaling [39, 40]. This is in some sense analogous to
finite-length scaling at a critical point, where the rel-
evant length scale is the correlation length ξiMPS. By
studying how various measurable properties change as a
function of ξiMPS, one can deduce the properties of the
ground state wavefunction [37]. In this way, we deter-
mine the ground state properties by carefully extrapo-
lating χ → ∞ [37]. For the XC2 geometry, we perform
VUMPS simulations with bond dimensions 100 ≤ χ ≤
800. For the YC5 geometry, we use bond dimensions
χ = 400, 800, 1200, 1600 and 2400, respectively.

Two-leg ladders.- We perform calculations with the
XC2 geometry for two different choices of the hopping
parameters. We denote the hopping amplitude along the
short direction t and the amplitude along the long di-
rection t′ (see Fig. 1). For (a) t = t′, the bandstructure
leads to 2 Fermi points (FP), as in Fig. 2a, while for (b)
t = 6t′ there are 4 FP as in Fig. 2f. Let us denote the
metallic phase in the corresponding bosonized model as
CαSβ, where α (β) denote the number of charge (spin)
modes, respectively. For both cases, we find a WM in-
sulator on the two-leg ladder for U/t≫ 1 and a metallic
Luttinger liquid (LL) for U/t ≪ 1 (see Fig. 1c). How-
ever, we do not find a direct transition between these two
phases with increasing t. We find that the WM insula-
tor first transitions into an intermediate phase with gap-
less charge excitations but gapped spin excitations across
tc1/U . This intermediate phase hosts gapless spin-singlet
Cooper-pair excitations, even though the electron-like ex-
citations are gapped. With increasing t, there is a subse-
quent transition at tc2/U where the spin gap closes and
we recover the LL. Thus, the melting of the WM insu-
lator fits into the schematic shown in Fig. 1a. For case
(a), the WM insulator melting transition follows the se-
quence C0S0 → C1S0 → C1S1, while for case (b), the
sequence is given by C0S0 → C1S0 → C2S2. In both
cases, the transition proceeds via an intermediate Luther-
Emery liquid (C1S0). We elaborate below on three dif-
ferent diagnostics we use to characterize these two-step
transitions.

Let us begin with case (a), where the metallic LL is in
the C1S1 phase. First, in Fig. 2b, we analyze the evo-
lution of the conformal central charge (C) as a function
of t/U . We extract the central charge from the scal-
ing of the entanglement entropy with bond dimension,
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FIG. 2. The two-step WM transition, as shown in Fig. 1a, on the XC2 geometry. Panels (b)-(e) support the scenario
C0S0 → C1S0 → C1S1 for the dispersion shown in (a) with 2 Fermi points. Similarly, panels (g)-(h) support the scenario
C0S0 → C1S0 → C2S2 for the dispersion shown in (f) with 4 Fermi points. The C1S0 phase is a Luther-Emery liquid.
Conformal central charge (C) shows a sharp transition from C = 0 to C = 1 across (b) tc1/U = 0.04 (for (a)), and (g)
tc1/U = 0.01 (for (f)). There is a subsequent gradual increase from (b) C = 1 to C = 2 across tc2/U ≈ 0.1 (for (a)), and (g)
C = 1 to C = 4 across tc2/U ≈ 0.024 (for (f)). Different colors represent C obtained by removing varying number of low-χ
states (see main text). (c) and (h) Extrapolated spectral gaps, ∆(Q,Sz;χ), in different symmetry sectors across the phase
diagram for the dispersions in (a) and (f), respectively. Below tc1 all symmetry sectors are gapped; between tc1 and tc2 the
spin sectors remain gapped while the (Q,Sz) = (0, 0) and (2, 0) gaps vanish. For t > tc2 all sectors are gapless. (d),(i) Spin
and (e),(j) density structure factors for three representative points in the phase diagram (marked by the ‘▲’ in (b) and (g)). In
a gapless sector associated with a specific {Q, Sz}, the corresponding SF∼ |k| for small k and develops singular cusps at 2kF ,
or 2kF+ = 2(kF1 + kF2) (see main text).

S(χ) [37, 39–41]. In the WM phase, the system is fully
gapped and C = 0. Across tc1/U ≈ 0.04, we see a sharp
increase in C followed by a plateau around C ≈ 1. Dif-
ferent colors in Fig. 2b show how the extracted values
of C depend on the range of bond dimensions used in
the linear regression. As we remove more low-χ states,
the plateau becomes more prominent. A central charge
of C = 1 is consistent with two gapless modes, while the
two-component LL phase has four gapless modes. Hence,
this plateau is strongly suggestive of a distinct interme-
diate phase. Across tc2/U ≈ 0.1, the system enters the
LL phase with C = 2. The precise location of this lat-
ter transition between two gapless phases is difficult to
resolve using our current setup, but can in principle be
addressed better by using larger χ in a future study.

Second, in Fig. 2c, we clarify the nature of the in-
termediate phase by studying the evolution of spectral
gaps in different symmetry sectors. As our iMPS cal-
culation explicitly conserves total particle number and
magnetization, we can label the eigenvalues of the MPS
transfer matrix (i.e. the spectrum of correlation lengths)
with charge (Q) and spin (Sz) quantum numbers, respec-
tively [42]. The spectrum of iMPS correlation lengths
has been shown to be inversely proportional to the en-
ergy spectrum of low-lying excitations [43, 44], so one

can understand the nature of excitations by studying in-
verse correlation lengths. For our purposes, we define the
“spectral gap” in a given symmetry sector, ∆(Q,Sz;χ),
as the inverse of the largest correlation length in that
sector: ∆(Q,Sz;χ) = 1/ξ(Q,Sz;χ).

3 It should be un-
derstood that this is only truly an energy gap up to
a characteristic velocity [43, 44]. In Fig. 2c we plot
∆(Q,Sz) = limχ→∞ ∆(Q,Sz;χ) for some of the rele-
vant low-energy symmetry sectors [37]: (Q,Sz) = (0, 0)
[blue], (1, 1/2) [orange], (0, 1) [green], and (2, 0) [red].
The WM phase is a fully-gapped phase, and consequently
all ∆(Q,Sz) are non-zero. In the intermediate phase,
∆(0, 0) and ∆(2, 0) extrapolate to zero while ∆(1, 1/2)
and ∆(0, 1) remain finite. This implies that spin sec-
tors are gapped but there are gapless charge excitations,
which is consistent with the presence of just two gap-
less modes in Fig. 2b. Here ∆(0, 0) represents the gap
to a composite (neutral) particle-hole spin-singlet exci-
tation, while ∆(2, 0) represents a charge-2e, spin-singlet
(Cooper-pair) excitation. On the other hand, ∆(1, 1/2)
represents the gap for single-electron-like excitations and

3 The MPS correlation length, ξiMPS(χ), is the maximum
ξ(Q,Sz ;χ) over all symmetry sectors.



4

∆(0, 1) is a particle-hole spin-triplet excitation. For
larger t/U , we find that these spin gaps vanish around
the same point in the phase diagram where the central
charge plateaus at C = 2, which again is consistent with
the interpretation of a transition into the LL phase.

Third, in Figs. 2d and e, we show the density and
spin structure-factors (SF) as a function of momentum
in the three distinct phases. The spin SF is defined as
Sk = 1

5

∑5
j=1

∑
l e

ilk⟨Sj · Sl+j⟩ where j iterates over the

5-site unit cell and Sj = (1/2)
∑

α,β c
†
j,ασα,βcj,β . We

define the density SF as Nk = 1
5

∑5
j=1

∑
l e

ilk⟨(nj −
⟨nj⟩)(nl+j −⟨nl+j⟩)⟩, subtracting off the average density
on each site. This removes any Bragg peaks from Nk,
minimizing the role of spurious translational symmetry
breaking at finite χ [37]. In the WM insulator, both the
density and spin SF are featureless (non-singular at any
k). At small k, they vanish smoothly as Nk, Sk ∼ k2, in-
dicating a finite spin and charge gap, respectively [45]. In
the intermediate phase, the spin SF remains featureless
while Nk ∼ |k| for small k, indicating that the charge gap
has closed. The density SF also develops singular peaks
at ±2kF that appear to diverge in the limit χ → ∞.
In the LL phase, both the density and spin SF scale as
Nk, Sk ∼ |k| for small k and develop singular cusps at
±2kF [37].
Let us now move to case (b), where the metallic LL

is in the C2S2 phase. Adopting the same procedure as
before to extract the central charge (Fig. 2g), we find
that C = 0 in the WM phase for t ≤ tc1 ≈ 0.01U and
C = 4 in the LL phase for t ≥ tc2 ≈ 0.024U . 4 The
peak in the central charge near tc2/U is due to a shifting
peak in the spectrum of correlation lengths, which is a
common feature when modeling phase transitions using
matrix product states [42]. We expect this feature will
smooth out as χ is increased. There exists a distinct
intermediate gapless phase with C = 1 for tc1 ≲ t ≲
tc2. The evolution of the spectral gaps in the different
symmetry sectors, (Q,Sz), also proceeds in an identical
fashion, as shown in Fig. 2h.

The results for the spin and charge SF as C2S2 evolves
into C0S0 as a function of decreasing t/U are quite sim-
ilar to the results for the evolution from C1S1 to C0S0.
The small k behavior for Nk, Sk as a function of t/U
is similar for case (a) and (b). The singular features at
the “2kF ” wavevectors require special care, as there are
two distinct kF1, kF2 associated with the different Fermi
points. We find that the intermediate gapless phase ex-
hibits a singular peak at 2(kF1 + kF2) that appears to
diverge in the limit χ→ ∞; there is no singular peak at
2(kF1 − kF2) [37]. This suggests that the evolution from
C2S2 to C1S0 is not associated with an umklapp-driven

4 Note the scales are much smaller in these units because the band-
width W ≈ 26t when t′ = 6t, whereas W = 6.25t when t′ = t.

transition, which would open a gap to total charge fluctu-
ations [46]. Instead, both LLs (C1S1 and C2S2) appear
to transition into an intermediate C1S0 phase, which is
strongly reminiscent of a Luther-Emery liquid [12, 47].
This is further corroborated by the evolution of the Lut-
tinger parameters, Kρ, Kσ, which we extract from the
density and spin SF, respectively [37]. In the interme-
diate C1S0 phase, Kρ > 0, Kσ → 0, corresponding to
gapless charge fluctuations associated with the total den-
sity.
Five-leg cylinder.- To study the effect of an increas-

ing cylinder width, we perform calculations on the YC5
geometry with isotropic hopping amplitudes. Our re-
sults are summarized in Fig. 3. We compute the effective
charge (spin) gap by studying the curvature of Nk (Sk)
near k = 0. To extract, e.g., the charge gap, we take
a cross section with the transverse momentum ky = 0

and fit N(kx,0) to the form (A∆c)(
√
(kx/∆c)2 + 1−1) at

small kx. The parameter ∆c can then be understood as
the effective gap for the charge sector. We find that this
technique, which essentially averages over transfer ma-
trix eigenvalues that contribute to the charge and spin
sectors, is more amenable to studying complex systems
with moderate bond dimensions.
We find evidence of a WM insulating phase for t/U ≲

0.078 which is well-characterized by the cartoon in
Fig. 1(c): spatially-separated pairs of electrons that form
spin-singlets. This state is characterized by a spin and
charge gap, as shown by the extrapolation (black crosses)
in Fig. 3a, as well as the featureless spin and charge SFs
in Fig. 3c. For t/U ≳ 0.095, we find that both the charge
and spin sectors are gapless and the central charge ap-
proaches C = 6, as expected in the FL phase [37]. In this
phase, the spin and charge SFs exhibit more pronounced
curvature near k = 0.
As shown in Figs. 3a-b, for 0.078 ≲ t/U ≲ 0.095, the

spin and charge gaps appear to vanish, consistent with a
gapless phase. With that said, the transfer matrix eigen-
values in this region change substantially as a function of
χ. Therefore, we cannot rule out the possibility that this
intermediate region will either vanish, or that ∆c/∆s → 0
even as the region survives, as χ is increased further. The
former scenario would then represent a direct WM transi-
tion, while the latter would host an intervening supercon-
ductor. The YC5 geometry is considerably more difficult
to study using a one-dimensional ansatz like a matrix
product state, as the effective Hamiltonian (and ground
state correlations) are highly non-local. A conservative
estimate of the necessary bond dimensions, based on re-
ducing the energy variance such that it is comparable to
that of our XC2 results, is around χ ∼ 20000 − 50000.
This places it around the limits of present computational
capacity, and hence would be an interesting system to
study using large-scale MPS simulations.
Discussion.- In this letter, we have analyzed the quan-

tum melting of a crystalline Wigner-Mott insulator with



5

N(kx,0)

S(kx,0)

0

0.1

(c)

t /U= 0.07

0

0.2

(d)

t /U= 0.086

-π 0 π
0

0.2

kx

(e)

t /U= 0.1

FIG. 3. WM transition on the YC5 geometry. Panels (a) and
(b) show ∆c,s extracted from the curvature of the correspond-
ing SF near k = 0 (see main text). Colored dots show results
for finite χ while crosses show the extrapolated results for
χ → ∞. For t/U ≲ 0.78 the system has a finite ∆c, ∆s, con-
sistent with the WM insulator. For t/U ≳ 0.95 the system has
gapless spin and charge excitations, consistent with the Fermi
liquid phase. For 0.78 ≲ t/U ≲ 0.95, the system appears to
have vanishing charge and spin gaps, but the results continue
to change with increasing χ. Panels (c)-(e) show ky = 0 cross
sections of the charge and spin SFs in each region. In the
WM phase we see smooth features and both SF ∼ k2

x near
k = 0. Plots (d) and (e) show a more pronounced curvature
near k = 0, which we expect to diverge (i.e. SF ∼ |kx|) as the
bond dimension is increased.

well formed spin-singlets into a symmetry-preserving
metal using iMPS-based methods. Experiments in moiré
TMDs are already well-placed to study such transitions
in detail in the future. For two-leg ladders, we find
clear evidence for an intermediate gapless Luther-Emery
phase, which is distinct from the usual Luttinger liq-
uid. The kinetic energy driven quantum fluctuations thus
favor melting the spin-singlets into a fluctuating (spin-
gapped) superconductor without a gap to Cooper-pair
excitations. We have studied the effect of increasing
the spatial extent along the second dimension by ana-
lyzing the same problem on five-leg cylinders. Whether
the intermediate gapless phase is also a fluctuating su-
perconductor, or whether it survives in the thermody-
namic limit, is presently unclear and will be a topic of
future investigation. Developing complementary analyti-
cal methods in two spatial dimensions, going beyond the
usual large-N parton-based approaches, to study such
transitions is clearly also desirable. It is especially chal-
lenging to describe such continuous transitions in the ab-
sence of any remnant Fermi surface in the insulating state
[48, 49], associated with even neutral (e.g. spinon) exci-
tations [50]. Investigating the effect of inhomogeneities
on transport near this metal-insulator transition, build-
ing on previous studies at other fillings [51–53] will be of

direct experimental interest.

Since there is a strong tendency towards superconduc-
tivity near the melting transition associated with the
WM insulator, it is natural to address the fate of the
ground state with additional doped holes [54, 55]. Given
the proximity to charge-ordered states, the resulting su-
perconductor might also be a pair-density wave [56]. The
importance of proximity to the quantum critical point(s),
if any, on the associated phenomenology for the doped
case also remains an important open question.
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Supplementary Information for
“Bandwidth-tuned Wigner-Mott Transition at ν = 1/5: an Infinite Matrix Product State Study”

Modeling long-range interactions

Electrons in the moiré TMD bilayer experience a long-ranged Coulomb repulsion. By placing two gates parallel
to the surface of the bilayer, this interaction can be screened [14–16]. While a variety of gate geometries could be
envisioned, here we assume the common scenario of two gates equally spaced away from the moiré bilayer by a distance
d/2. This leads to the screened potential [16]

V (r) =
e2

4πϵϵ0

∞∑
k=−∞

(−1)k√
r2 + (kd)2

. (2)

For both the XC2 and YC5 geometries, we choose the experimentally-relevant value d/a = 10 where a is the moiré
lattice spacing.

In general, non-exponential interactions cannot be efficiently represented as a matrix product operator, meaning
that iMPS simulations require some form of truncation. This leaves the additional question of where we truncate the
interactions. This can be a common problem in quasi-two-dimensional geometries, as the shorter cylindrical direction
will often stabilize symmetry-broken states that are unstable in the thermodynamic limit.

In Fig. S1, we plot the classical energy (i.e. in the limit t/U, t/V1 → 0) of the two low-energy charge configurations,
pictured as insets, as a function of d/a. The upper two plots show the energy when we keep up to third-nearest-neighbor
interactions, and the lower two plots show the energy when keeping up to fourth-nearest-neighbor interactions.

For the XC2 geometry, we find that the “zig-zag” ground state (blue) always has a lower energy than the “aligned-
pairs” state (green). Moreover, due to the constrained geometry, both of these states can lower their respective
energies via superexchange when t/U > 0. For the YC5 geometry, we find that third-nearest-neighbor interactions
lead to a crossover as a function of d/a: for d/a ≲ 3, the aligned-pairs state (blue) has a lower energy, while above
that value the zig-zag state (green) is the classical ground state. For the YC5 geometry, this latter state can be
thought of as spatially-separated antiferromagnetic Heisenberg chains. The crossover behavior is not desirable, as the
introduction of superexchange at finite t/U could lead to a transition between these charge-ordered states.
Inclusion of the fourth-nearest-neighbor interaction removes this ambiguity in favor of the aligned-pairs ground

state, which agrees with classical Monte Carlo simulations of the full 2D model [16]. Hence, for consistency, we
include up to fourth-nearest-neighbor interactions on both the XC2 and YC5 geometries.

Description of VUMPS

In this section we provide a brief introduction to the variational uniform matrix product states (VUMPS) algorithm,
which was developed in Ref. [38]. For a more extended discussion of the algorithm and notation, we refer interested
readers to Refs. [38, 40, 57].

A finite MPS on an L-site lattice can be represented as

|ψ⟩ =
∑
σ

Aσ1
1 Aσ2

2 · · ·AσL

L |σ1σ2 · · ·σL⟩ (3)

where the Aσi
i ≡ [Ai]

σi
si,si+1

are rank-3 tensors that exist on physical lattice sites, enumerated by the index i. The
variable σi is taken here to represent the single-site Hilbert space of the model – for the Fermi-Hubbard system we
study here, this Hilbert space is spanned by the states {|∅⟩, | ↑⟩, | ↓⟩, | ↑↓⟩}. The state |σ1σ2 · · ·σL⟩ is understood to
be a product state over the length-L system. In this way, Eq. (3) represents an MPS as a superposition of all possible
product states. The coefficients of each product state is found by contracting the matrices Aσ1

1 Aσ2
2 · · ·AσL

L over the
virtual indices si. The dimensions of these virtual indices are known as the “bond dimensions” of the system. In the
limit that the bond dimension is taken to infinity, Eq. (3) can represent any wavefunction on a length-L lattice.

The iMPS is merely the extension of Eq. (3) to the limit L→ ∞. In order to do this, we have to make a choice that
the wavefunction is periodic with a unit cell of length n. When contracting the iMPS, there is no longer an explicit
open boundary condition. This changes what it means to take expectation values or overlaps with respect to the
iMPS: rather than sequentially contracting tensors from the left or right boundary, one must consider the asymptotic
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XC2 YC5

Supplemental Figure S1. Classical energy (t/U, t/V1 → 0) per unit cell of the two low-energy charge configurations for XC2
and YC5 geometries as a function of gate separation, d/a, for two possible truncations. For both XC2 and YC5, blue and green
curves correspond to the blue and green charge configurations, shown as real-space cartoons in the insets.

iDMRG VUMPS

Supplemental Figure S2. Cartoon representing the distinction between the iDMRG and VUMPS algorithms, reproduced from
Ref. [40]. Individual squares represent the particular rank-2 or rank-3 tensors comprising an MPS. For each method, the
wavefunction from the previous iteration serves as a “bath” from which the next optimal state is chosen. While iDMRG grows
a finite chain outwards by adding tensors in the center, VUMPS performs global updates after each iteration and enforces that
the state be translationally-invariant.

behavior of the iMPS transfer matrix. For a comprehensive discussion of the properties of infinite MPS, we refer the
reader to Ref. [57].

Given this brief introduction, we can now understand the nature of the VUMPS algorithm by contrasting it with the
standard way of determining ground states in the thermodynamic limit: the infinite density matrix renormalization
group (iDMRG) [11, 58, 59]. The iDMRG algorithm consists of an initial finite-size MPS comprising two unit cells.
One then “grows” the initial state by adding two additional unit cells to the center of the chain and solving an
eigenvalue problem to determine their lowest-energy configuration. Note that this step only modifies the additional
two unit cells – the boundary tensors remain fixed. This process is then repeated until the unit cells being added to
the center have converged to a fixed point. This algorithm is illustrated pictorially on the left side of Fig. S2. One
can then construct an iMPS out of those unit cells, which should be the ground state in the thermodynamic limit.

The VUMPS algorithm explicitly considers an iMPS at each stage of the optimization. Starting with an initial
iMPS, one computes the action of the Hamiltonian on that state by computing the left and right fixed points of the
MPO transfer matrix [38, 57]. Given these fixed points, one constructs an effective Hamiltonian that acts on each
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individual tensor of the iMPS. Using one of two methods [38], one then updates each tensor in the unit cell and
constructs a new iMPS out of the updated tensors. This is illustrated on the right half of Fig. S2. The process is
then repeated until the variational gradient (i.e. the gradient of the variational energy with respect to the variational
parameters) is reduced below a desired level. A vanishing gradient implies both that the state is truly uniform and
that the wavefunction is variationally optimal. It was shown in Ref. [38] that the ground states obtained by iDMRG
can have variational gradients as large as ∼ 10−4, while VUMPS can attain considerably lower gradients.

Details of the iMPS calculations

In our calculation, we compute the ground state at a given bond dimension using the VUMPS algorithm with
single-site series-style updates [38]. For the XC2 geometry, we use a five-site unit cell; for the YC5 geometry, we
use a ten-site unit cell. In both cases, we verify that increasing the unit cell has no effect on physical observables.
At a particular bond dimension (defined as the maximum over all possible bond dimensions across the unit cell), we
perform single-site VUMPS updates until the gradient has been reduced below 10−7.

As discussed in the main text, our simulations conserve both the total particle number and total magnetization
of the system. An important problem in the application of VUMPS is that the algorithm was developed with a
single-site update, which does not allow one to grow the bond dimension. Furthermore, when using block-sparse
(symmetry-conserving) tensors, the bond dimension must be grown carefully to ensure that relative block sizes are
optimally chosen. Ref. [38] proposes a way of doing this via a subspace expansion, which has the benefit of preserving
translational invariance in the state. For the XC2 geometry, we expand the bond dimension using this technique. For
the YC5 geometry, however, we found the use of successive expansions and single-site optimizations to be cumbersome
given the larger bond dimensions. For that reason, we employed a alternative integration of the time dependent
variational principle (iTDVP) equations, sweeping from left to right using infinite boundary conditions. This is more
natural when working with larger unit cells and can easily be extended to two-site updates, as is necessary to optimally
increase the bond dimension. The technique will be described in detail in a forthcoming paper [60] and is similar in
spirit to that used in Ref. [61].

Spectral gap extrapolation

As noted in the main text, the spectrum of the iMPS transfer matrix contains all information about correlation
functions in the system. In particular, any two-point correlation function can be written in the eigenbasis of the MPS
transfer matrix, i.e.

⟨AiBj⟩ =
(
Ji(A),

(
T i−j−1,Jj(B)

))
=

χ2−1∑
n=0

(
Ji(A), ν

R
n

)
λi−j−1
n

(
νLn ,Jj(B)

)
(4)

where νL,R
n are the left and right eigenvectors of the transfer matrix, λn is the associated eigenvalue, J are the “form

factors” associated with the operators A and B, and (· · · , · · · ) is an inner product with respect to the virtual degrees
of freedom (i.e. the bond dimension) [43]. Note in particular that the only term depending on the separation |i− j|
is λi−j−1

n . In that sense, the spectrum of the transfer matrix defines a set of correlation lengths out of which every
two-point correlation function is composed.

Normalization of the wavefunction requires that the largest eigenvalue, λ0, be equal to 1. Hence, the correlation
length of the iMPS, ξiMPS, is defined in terms of the magnitude of the second-largest transfer matrix eigenvalue:

ξiMPS ≡ −1/ ln |λ1/λ0| = −1/ ln |λ1|. (5)

By definition, this is the longest possible correlation length of any correlation function computed with respect to the
iMPS.

As suggested by the analysis of Ref. [43], one can map the dominant eigenvalues of the transfer matrix to the
low-energy spectrum of the model being studied. The justification for this is that a system with a gap ∆ will have
a finite correlation length ξ ∼ 1/∆ [39, 43]. Of course, this mapping only holds up to an overall scale factor. For
this reason, we do not concern ourselves with the absolute magnitude of these correlation lengths; rather, we focus on
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their relative sizes and whether they scale to zero. In particular, when modeling a gapless phase, a given iMPS will
always display a gap but limχ→∞ ξiMPS(χ) = 0.
We can learn even more about the state by considering the largest transfer matrix eigenvalues in different symmetry

sectors. For example, if one were to compute the single-particle density matrix, ⟨c†i,↑cj,↑⟩, the form factors encode
the fact the total particle number and total spin changed on site i and changed back on site j. As we are conserving
both particle number and spin, that means the eigenvectors νn that overlap with those form factors are in the sector
(Q,Sz) = (1, 1/2), where Q denotes the charge (particle number) and Sz denotes the ẑ magnetization. By contrast,
the operator ni,↑ does not change the quantum numbers of the wavefunction, and hence the correlation function
⟨ni,↑nj,↑⟩ is propagated by eigenvectors in the (Q,Sz) = (0, 0) sector.

In order to reliably extrapolate the transfer matrix eigenvalues in the limit χ → ∞, we adopt the procedure of
Ref. [62]. We define a refinement parameter δ = ∆1 −∆0 where ∆0 = 1/ξiMPS and ∆1 is the next smallest inverse
correlation length. In the limit χ → ∞, δ should vanish whether one is in a gapped or a gapless phase (up to
degeneracies, see generalizations in Ref. [63]). Hence, one can reliably extrapolate the transfer matrix eigenvalues to
their asymptotic values by studying how they scale in the limit δ → 0. We find that this procedure yields results
consistent with a direct 1/χ→ 0 extrapolation, but it reduces noise.

Central charge

When a conformally-invariant one-dimensional system is confined to a length-L system, the entanglement entropy
of a bipartition of the system scales as S = C

6 ln(L) where C is the conformal central charge [41]. Although an
iMPS is formally infinite, it has been established [39, 40] that its finite correlation length can be treated in a manner
similar to a length cutoff. Hence, one finds that the entanglement entropy of the variational wavefunction scales as
S(χ) = C

6 ln(ξiMPS(χ)). We are able to independently compute the entanglement entropy and iMPS correlation length
for each bond dimension, and hence can extract the conformal central charge via a linear regression.

For the XC2 geometry, the expected central charge of a CαSβ phase (which has α gapless charge modes and β
gapless spin modes) is α+ β. For the YC5 geometry, momentum modes along the transverse direction are quantized
by the periodic geometry. The expected central charge can be found from the number of times that these momentum
cuts intersect the isotropic Fermi surface [42]. As shown in Fig. 1c, the ν = 1/5 Fermi surface is intersected by 3
momentum cuts, yielding an expected central charge of C = 6.

Luttinger parameters

In one-dimensional systems, the long-wavelength behaviors ofNk and Sk are related to the charge and spin Luttinger
parameters, respectively [64]. Specifically, following the definitions proposed in Ref. [45] for spin-1/2 fermions on an
XC2 geometry, we have

Nk =
2Kρ

π
|k|+O(k2), (6)

Sk =
3Kσ

2π
|k|+O(k2). (7)

These definitions are formulated to capture the behavior of the two-component Luttinger liquid phase, and in particular
they satisfy the non-interacting relation in which Kρ = Kσ = 1 and Sk = 3

4Nk. Notably, when applied to the 4-Fermi-
point case, these definitions yield Luttinger parameters for the total spin and charge modes, respectively [45, 46].

As an iMPS is a gapped ansatz, it will never formally satisfy the above relationships – instead, a gapped state
will have leading-order contributions SF(k) ∝ k2 [65]. In gapless phases, however, Eqs. (6) and (7) will emerge
as χ is increased and ξiMPS vanishes. Hence, when extracting approximate Luttinger parameters numerically, it is
important to keep two scales in mind: (1) Generically Eqs. (6) and (7) are only satisfied below some cutoff momentum

qN ,S
cut (t/U) that vanishes in the vicinity of tc1 (for Nk) or tc2 (for Sk); (2) Even when Eqs. (6) and (7) hold, the
correlation function of an iMPS with bond dimension χ will only faithfully represent this behavior down to momenta
qN ,S
iMPS(χ, t/U) ∼ 1/ξiMPS(χ, t/U). Thus, resolving the spin and charge Luttinger parameters requires one to identify
the smallest range of momenta that are faithfully represented in the iMPS correlation functions. The behavior of the
Luttinger parameters in the vicinity of critical points is often rounded off, as this is a place where qN ,S

cut → 0. This
behavior can be ameliorated, but never completely removed, by further increasing the bond dimension.
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Supplemental Figure S3. Plot of the Luttinger parameters Kρ and Kσ extracted via a fit of the form Aµ|k| + Bµk
2 to the

structure factors Nk and Sk for small k. Top row are results for the 2-Fermi-point calculation and bottom row are for the
4-Fermi-point results. We constrain the fit to values of |k| ≤ qmax, with qmax labeled on each plot. Different curves correspond
to different bond dimensions, with more opaque curves corresponding to a larger χ.

In Fig. S3 we represent this tradeoff by showing the spin and charge Luttinger parameters across the phase diagram
resulting from fits of the form Aµ|k| + Bµk

2 (µ = ρ, σ) to Nk and Sk, respectively. Each panel uses only momenta
|k| ≤ qmax for the fit, where qmax = 0.1, 0.15 and 0.2 for the 2FP data set and 0.2, 0.25 and 0.3 for the 4FP data
set. Each line denotes coefficients for different bond dimensions, where the more opaque curves have a larger bond
dimension. We find that Kρ increases sharply around tc1 and then smoothly increases as a function of t/U . Kσ, by
contrast, remains essentially zero through tc1 and then gradually increases, plateauing at Kσ ≈ 1 around tc2. This
very gradual increase as a function of t/U is expected because this latter phase transition takes place between two
gapless phases [42]. The final value Kσ = 1 arises in any gapless phase with SU(2) spin symmetry [64], and hence is
consistent with our expectations in the two-component Luttinger liquid phase.

Structure factors

When computing the density structure factor, Nk, we explicitly subtract off the average values of the density on
respective sites. That is, the density SF is defined as

Nk =
1

5N∗

5∑
j=1

N∗∑
l=−N∗

eilk⟨(nj − ⟨nj⟩)(nl+j − ⟨nl+j⟩)⟩ (8)

where N∗ is the maximum displacement included (for the plots in the main text, N∗ = 10000). The reason for this
subtraction is to remove spurious features of the gapless states: we find that all states across the phase diagram
exhibit translational symmetry breaking of some form, but this vanishes asymptotically in the gapless phases.

There are no such Bragg peak contributions to the spin structure factor, so we simply define it as

Sk =
1

5N∗

5∑
j=1

N∗∑
l=−N∗

eilk⟨Sj · Sl+j⟩ (9)

where the spin operators are given by Sj = (1/2)
∑

α,β c
†
j,ασα,βcj,β .
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Supplemental Figure S4. Bragg weights as a function of t/U for the 2-Fermi-point (2FP) and 4-Fermi-point (4FP) systems.
Results for finite-χ are shown, with more opaque data corresponding to larger bond dimensions. In both cases, we find that
the 2kF Bragg peaks vanish continuously at tc1 while the 4kF peaks persist until tc2.

We can study the evolution of these Bragg peak contributions independently by Fourier transforming the density
profile n̄i ≡ ⟨ni⟩. As we use a five-site unit cell when studying the XC2 geometry, reflection symmetry dictates
that there are 3 non-trivial “Bragg peak” contributions: n̄k=0, n̄k=±2kF

, and n̄k=±4kF
. The k = 0 component is

simply the average density per site, and hence remains fixed throughout the phase diagram. The finite-k components,
by contrast, are not fixed – a finite value of these peaks corresponds to long-range charge order at the associated
wavevectors.

In Fig. S4 we plot the “Bragg weight”, which we define as |n̄k|, at the two finite wavevectors across the phase
diagram. We present the data for a variety of bond dimensions 100 ≤ χ ≤ 500, where more opaque points correspond
to larger bond dimensions. For both the 2-Fermi-point and 4-Fermi-point systems, the intermediate phase corresponds
to a vanishing 2kF Bragg peak and a persistent 4kF peak.

As noted in the main text, we use the lack of incommensurate peaks in the 4-Fermi-point Nk as an indication that
the total charge mode remains gapless in the intermediate phase, rather than the relative charge mode [46]. These
singularities can be difficult to identify from Fig. 2 directly, so in Fig. S5 we plot the derivative dNk/dk for the same
three points in the phase diagram.

Of note is the fact that the 2-FP and 4-FP data are indistinguishable in the WM and intermediate phases, while
in the metallic phase the 4-FP data has considerably more structure. These additional peaks occur at other (incom-
mensurate) momenta for which 2-particle scattering events can occur between any of the 4 Fermi points.

Additionally, to support our claims that SF ∼ |k| in phases where the associated sector is gapless, in Fig. S6 we
show a zoom-in to small-k for the structure factors shown in Figs. 2 and S5. Colors are defined to be consistent with
the previous graphs. While an MPS can never have proper SF ∼ |k| behavior, we see that the gapless phases exhibit
approximately linear behavior up to a certain momentum scale, below which it crosses over to quadratic behavior.
In particular, note that the red Sk curves exhibit this feature for both the 2FP and 4FP data, while the green Sk

curves show pronounced quadratic behavior. This is indicative of the spin gap in the Luther-Emery liquid phase. By
contrast, both the green and red Nk curves are linear for the 2FP and 4FP data points.
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Supplemental Figure S5. Derivatives dNk/dk for the density SFs shown in Fig. 2. Panels (a)-(c) correspond to the 2-Fermi-
point data while panels (d)-(f) correspond to 4-Fermi-point data. Notably, while the rightmost panel shows structure in Nk at
a variety of incommensurate wavevectors, the intermediate phase shows peaks only at 2kF+ and 4kF+. This indicates that the
total charge mode remains gapless.
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text.
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