
BANKLAVES: Concept for a Trustworthy
Decentralized Payment Service for Bitcoin

Matthias Grundmann, Marc Leinweber, Hannes Hartenstein
firstname.lastname@kit.edu

Institute of Telematics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Abstract—We explore challenges of and present a concept
for a decentralized payment service which is based on trusted
execution environments. The system guarantees that users can
always cash out their funds without depending on the cooperation
of other network members, hence minimizing the trust required
in other network members. We present an overview of the system,
motivate key components for a secure architecture and provide a
communication protocol. We prove that the payment service users
can cash out their funds at any time without any dependence on
other network members.

I. INTRODUCTION

In the last years, several second layer technologies have
emerged that are built on top of cryptocurrencies such as
Bitcoin [1]. Whether those are sidechains, smart contracts, or
payment channel networks – a common use case is a payment
service that allows a subgroup of the cryptocurrency’s users to
manage their funds. Money can be transferred into the second
layer, moved between participating users and cashed back
out to the cryptocurrency. An exchange or an online wallet
provider can also be seen as such a service on the second
layer.

All those approaches come with their specific shortcomings.
A central provider needs to be trusted, in a sidechain the ma-
jority of the chain’s miners need to be trusted, smart contracts
make all transactions public, and payment channel networks
require a valid route to exist between the sender and the
receiver of a transaction. In this work we explore how trusted
execution environments (TEEs) can be used to build a payment
service that does not require trust into other users, hides
the users’ transaction history, and enables users to transfer
their funds freely inside the network. TEEs empower users to
validate via remote attestation that the correct code is executed
and their data is secured even from a malicious operating
system. To keep the scope focused, we choose Bitcoin as the
underlying cryptocurrency of the payment service.

We explore challenges of and present an example for
a decentralized trustworthy payment service for Bitcoin
based on a network of TEEs called BANKLAVES. The pay-
ment service offers the following functions and can thus be
compared to a decentralized “bank” for bitcoins: (1) account
creation and closing, (2) deposit of bitcoins, (3) internal
transactions to other accounts and (4) external transactions,
including withdrawals, to Bitcoin addresses. In contrast to a
centralized solution, we require for our concept that each user

can cash out their balance at any time without dependence
on a third party.

To perform any of the operations above, a user has to par-
ticipate in the decentralized network and execute the payment
service client locally in a TEE. Since it is unrealistic that
all users are willing or able to run the client continuously,
it is required that the functions above work without all users
being online and that the current local state can be backed
up. State extraction, however, makes it possible to replay old
states. Now, the challenge is to allow a local client being in a
particular state to perform a cash out, but to prevent this cash
out if the client was reverted to that state.

In sum, the developed protocol (1) enables every user to
cash out their funds at any time, (2) is secure against attackers
replaying old states and (3) offers its functionality without all
users being online.

The remainder of this work is structured as follows. In
Section II we give an overview of TEEs and TEE-based
approaches for Bitcoin services. In Section III a concept
overview and a simplistic approach are presented from which
we derive the challenges related to the security objectives.
Those challenges are addressed in Section IV where we
present the key components of our concept. In Section V
the BANKLAVES protocol based on the key components is
explained. We provide a proof to show that the proposed
protocol allows a user to cash out at any time (Section VI).
We discuss potentials for improvement and future work in
Section VII before drawing a conclusion.

II. RELATED WORK

In this section, we outline trusted execution environments
and our requirements on concrete TEE implementations. Sub-
sequently, we describe related work from the field of Bitcoin
combined with TEEs. In the past, research has shown that
specific TEE implementations, due to implementation flaws,
are vulnerable to attacks [2]. In this work, we assume “bug-
free” implementations and explore how such an “ideal” TEE
can be used to build a payment service.

A. Trusted Execution Environments (TEEs)

A trusted execution environment is established by trust-
worthy features in hard- and software that assist, protect or
monitor user and system processes and that are, to a certain
degree, demonstrably compliant to their stated functionality.
Prominent examples for TEE implementations are Intel’s978-1-7281-1328-9/19/$31.00 ©2019 IEEE

Security Guard Extensions (SGX) [3, 4] or AMD’s Memory
Encryption Technology [5]. Those technologies differ in the
features they provide and in the use cases and attacker models
they are designed for. Due to its feature set, current research
and proposed architectures are typically based on SGX or
at least concepts borrowed from SGX. SGX is designed to
separate user space applications from the entire system. All
components of the system except the CPU are considered
as potentially malicious. Hence, the root of trust is the Intel
CPU and the required trust is therefore reduced to Intel as the
hardware manufacturer.

The features required for our work are isolated execution,
protected memory, and remote attestation. Thereby, code exe-
cution cannot be interfered with by any third party and runtime
data is protected with regard to confidentiality, integrity and
freshness. The code becomes identifiable and its identity can
be proven to a remote party. The secure container separating
the code and data from the host operating system is called
enclave. To run code inside an enclave it needs to be initialized
by an untrusted wrapper application that starts the enclave and
performs its system calls.

B. Use of TEEs in Bitcoin environments

Teechain [6] uses TEEs to implement a payment channel
network. In a payment channel network, users have to deposit
their funds into payment channels between them and other
users. This limits the transferable credit to the capacity of
the channels and it is not guaranteed that a route to another
user exists. Furthermore, this implies that transactions have
to be routed via other network members, which causes a
transaction delay and communication overhead. In our ap-
proach, all funds can be moved freely inside the network.
To defend against replay attacks, Teechain relies on hard-
ware monotonic counters. As hardware monotonic counters
are limited in their performance [7], Teechain does not use
hardware monotonic counters for setups that require higher
performance, but then enclaves are required to always be
running in order to prevent replaying old states. To backup
those running enclaves, their state can be replicated to other
running enclaves (chain replication). When transactions are
performed, all chain members have to acknowledge the state
transition. As replication chains induce performance overhead
and limit the cash-out possibility, we developed an approach
which is secure against replay attacks without the need of hard-
ware monotonic counters while still allowing backups of an
enclave’s state. Concerning the implemented service, Teechain
is most likely the closest approach to our work because it
can also be seen as an implementation of a decentralized
payment service. By presenting BANKLAVES, which differs
largely from Teechain’s design, we show by example that the
design space of blockchain technology and TEEs is not yet
fully explored and comprises different approaches to solve
similar challenges.

Tesseract [8] implements a cryptocurrency exchange where
users can deposit coins and trade them against other coins. To
ensure that users can still access their funds in case the services

Bitcoin Network

E

Bitcoin
Client

U
se

r A

E

Bitcoin
Client

U
se

r B

E

Bitcoin
Client

U
se

r C

Extern
alTran

sactio
n

s, C
ash

 O
u

t

Internal Transactions

D
ep

o
si

t

Fig. 1. Overview of an enclave network with three users. The dashed boxes
show which machines are controlled by each user. Each machine (blue box)
runs the same application (purple box) and a Bitcoin client, which is used by
the application to request new blocks and transactions. The main part of an
application is the enclave (orange box) with the trusted execution environment.
All enclaves are connected to each other over the Internet.

becomes unavailable, Tesseract implements a time limit for
each deposit transaction. A deposit transaction can be spent
on two conditions: either with the secret the Tesseract server
knows or two weeks after publication with a secret owned
by the user. So, the deposit is valid only for a limited time
of two weeks. Obscuro [9] uses a similar mechanism. In our
approach deposits are valid for an unlimited time and it is
guaranteed that users are always able to reclaim their deposits
(cf. Section VI).

III. CONCEPT OVERVIEW AND CHALLENGES

Our proposed approach is built on top of a decentral-
ized network of enclaves (Fig. 1). To be a member of the
BANKLAVES enclave network, each user executes the same
client code, which is an open source software that can be
publicly validated. The client consists of a trusted and an
untrusted part. The trusted part is the code that is run inside
the enclave and is therefore protected against tampering and
reading of data. The untrusted part provides the user interface
and network communication as well as secondary storage
accesses. Each user also runs a client for Bitcoin, which is
used by the enclave to retrieve blocks and transactions. The
enclaves run by the users connect to each other and form the
network of enclaves.

Each enclave runs the same code and offers its owner
the following actions: depositing bitcoins, performing internal
transactions to another network member, performing external
transactions to Bitcoin addresses, and cashing out the cur-
rent balance. Each enclave Ei stores a list containing the
balances cm of each network member m in its state SEi

.
After an enclave performed a transaction, it distributes the
updated balances in the network. To give a better overview of
the system’s functions, we present a simplified and insecure
approach before we explain the key components of our full
approach that are needed for a secure protocol.

A. Simplistic approach

To create a new network, Alice starts her client which
creates the first enclave EAlice and Bob joins the network by
letting his enclave EBob perform a remote attestation with
EAlice. To make a deposit, Alice asks her enclave to generate
a deposit address for her. Then, Alice creates a Bitcoin
transaction to this address, publishes it on the blockchain and
gives the transaction to her enclave. EAlice checks that the
transaction is part of a confirmed block on the blockchain and
increments Alice’s balance in the state. The unspent output of
the transaction used for the deposit is also stored in the state.

If Alice wants to make an internal transaction to Bob, she
calls the respective function in her enclave and passes the
amount and the receiver of the transaction. EAlice verifies
that Alice has enough balance available for that transaction
and then updates the balances and sends them to EBob. At
any time Alice and Bob can do a cash out without requiring
interaction with the other party. If Alice wants to cash out, her
enclave creates a Bitcoin transaction that she can publish on
the blockchain. This transaction spends cAlice bitcoins from the
unspent transaction outputs managed by the enclave network
to an address provided by Alice.

B. Assumptions and attack model

The users do not trust each other. This implies that the local
trusted parts do not trust the local and remote untrusted parts
which include the Bitcoin clients and, thus, the blockchain I/O.
Users trust TEEs, both their own and those of other users, as
well as their own computer including the operating system
and the Bitcoin client. We assume that the network members
generally aim to provide a working payment service.

We assume that an attacker can roll back their local enclave
to an arbitrary older state. Furthermore, an attacker can prevent
communication between the overlay network members without
any restrictions. However, we do not consider an attacker that
could attack arbitrary connections of the underlying Internet
architecture because this would break the security of the
Bitcoin ecosystem and, thus, the foundation of our approach.
This means that we assume users to always be able to read
and write to the Bitcoin blockchain. We do not consider
problems specific to concrete trusted execution environment
implementations and assume a bug free implementation of the
proposed architecture.

C. Security objectives and challenges

A payment service is subject to several objectives that
are demanded by its users. The balances of users and the
transactions should stay confidential. In a distributed setup,
the network members need to have a consistent view of
the system. Hence, the integrity of the overall system is
another objective. Lastly, the users of a payment service want
to control their deposited coins, as far as possible, without
restrictions. Thus, the service must be available for its users.
Being based on TEEs, the simplistic approach can easily
fulfill the confidentiality objective. Availability and integrity

cannot be fulfilled trivially which is shown by the following
challenges:

C1 No system boundary: The simplistic approach lacks a
binding between the enclaves to the payment service they
form. It has to be ensured that an enclave only operates in
its enclave network to prevent inconsistencies.

C2 Wrong blockchain: Alice’s enclave EAlice depends on
Alice to provide her with the correct blockchain. Alice might
create a deposit transaction and include it in a forked block-
chain that is mined by her, but not publish it on the main
chain. If the enclave only sees Alice’s fork, EAlice accepts the
deposit and allows an internal transaction to Bob.

C3 Rollback attack: Alice could perform a double spend
by running a rollback attack. Storing the state of her enclave
as S0, she can transfer some bitcoins internally to Bob, which
leads to state S1. After doing a rollback of her enclave to state
S0, she can (1) perform an internal transaction to Charlie, who
does not know of state S1, or (2) perform a cash out and get
her original balance cashed out.

C4 Conflicting cash out transactions: If Alice and Bob both
cash out, it is possible that their cash out transactions both
spend the same transaction output if they share a deposit, as
a consequence of an internal transaction.

IV. KEY COMPONENTS

The aforementioned challenges lead to several key compo-
nents of the proposed concept which are elaborated in this
section. Table I relates the key components to the challenges.

A. Shared secrets as relationship binding

Each enclave has to know to which enclave network it
belongs to. Firstly, the enclaves perform mutual remote attes-
tations to ensure that they communicate with a code-identical
counterpart. Secondly, the first enclave of a new payment
service network draws a random byte string KSystem that
serves as an identifier of the new network. The enclaves
compare their KSystem at communication establishment.

Furthermore, an enclave has to be able to identify the user
on behalf of which it performs payment service operations.
Thus, we introduce shared secrets Ku between each user u
and the user’s local enclave. A user has to use this secret to
authenticate against the enclave if the enclave is (re-)started.

B. Block identifier comparison as blockchain verification

To defend against an attacker providing a wrong blockchain,
we introduce the identifier bEi

of the most current confirmed
block that is stored by each enclave Ei and compared when
performing transactions. Each enclave receives all new headers
of the Bitcoin blockchain and verifies them starting from the
genesis block or, for better performance, from a hardcoded
newer checkpoint. During an internal transaction to Bob, the
system compares the latest confirmed block identifiers of Alice
and Bob and aborts if they do not match. If Bob gives the
correct blockchain to his enclave EBob, but Alice provides
her enclave with a forked chain, the block identifiers will not
match and the transaction will not succeed. Because the code

run inside the enclaves is trusted, it is enough to verify that the
enclaves see the same blockchain. The enclave that accepted a
deposit can be trusted to have verified that the deposit is part
of the given blockchain.

As an optimization, each enclave can validate that new
blocks adhere to the difficulty rule of Bitcoin and that blocks
arrive in intervals according to the expected distribution, as
proposed in [8]. This makes a fork attack more difficult.
However, to perform time-based validations, a trusted clock
[10] is required.

C. Leader as rollback protection for internal transactions

Say, Alice has a balance of 5 bitcoins. The simplistic
approach allows her to do the following attack: She stores her
current state S0 and then transfers 3 bitcoins to Bob, which
decrements her balance to 2 in her and Bob’s enclave. Then she
restores state S0 and transfers 3 bitcoins to Charlie. Charlies
enclave does not know about her previous transaction to Bob
and so it accepts her transaction. Now Alice successfully
executed a double spend because there are two views in the
network about who received Alice’s coins. To mitigate this
attack we could prevent rollbacks by using hardware mono-
tonic counters in the TEE, but those limit the performance,
bind the TEE to specific hardware and render the counter
unusable as soon as the counter reaches its maximum [7].
Instead, we handle rollbacks by introducing the role of a leader
who is involved in all state updates. With each state update,
a (non-hardware) state counter is incremented. The enclave
with the highest state counter becomes leader and verifies and
executes all state updates. The leader itself cannot be rolled
back, because when the leader is stopped or fails, it loses its
status as leader and the enclave with the most current state
becomes leader (cf. Section V-C4). Introducing a leader to a
decentralized concept might sound contradictory. We therefore
emphasize that our concept is indeed decentralized, because
each enclave is able to provide a cash out operation self-
sufficiently, because it has the most current state that is relevant
for its owner.

D. Emergency cash outs as rollback protection for cash outs

In the presented simplistic approach it is possible for a user
Alice to rollback to an old state and cash out the balance at that
time. As long as Alice’s enclave EAlice does not communicate
with other enclaves, it cannot distinguish whether its current
state was replayed or it has the correct most current state.
Therefore, EAlice will always allow to create a cash out
transaction and we use the Bitcoin blockchain to resolve
possible conflicts. We construct a cash out transaction that
locks the output for a given time span and makes the output
also spendable for the other enclaves. Now, Bob’s enclave
has to watch the blockchain and when it sees a cash out
transaction, it verifies that the transaction gives only so many
bitcoins to Alice as EBob has stored as cAlice. If Alice tried to
cheat using a rollback attack and the amount in the transaction
is too high, EBob creates a breach remedy transaction which
moves the bitcoins back to the enclave. This mechanism is

TX Alice: 5
Alice: 3

Bob: 2

spends
in

outa)

Alice: 5 Alice: 3 Bob: 2b)

Set of UTXO
before the transaction

Set of UTXO
after the transaction

Alice transfers
2 coins to Bob

Fig. 2. Effect of a transaction of 2 coins from Alice to Bob using a) the
Bitcoin blockchain and b) Satoshi Bookkeeping for internal transactions.
Alice’s UTXO is a) spent and two new UTXO are created (transaction fees
are ignored) or b) internally marked as being shared by Alice and Bob.

known from payment channel networks [11]. However, it has
the drawback that Alice has to wait for her cash out to be
usable for her, while the other enclaves have the opportunity to
verify the cash out. The advantage, however, is that Alice can
always create a cash out transaction without communication
with others. As this feature is only needed in the emergency
case when another party behaves incorrectly, we call this type
of cash out an emergency cash out (ECO). We also introduce
the withdrawal as another type of cash out, which works like
an external transaction and needs cooperation of other network
members, but makes the output directly spendable by Alice.

E. Satoshi bookkeeping to remove the reliance on the leader

Bob’s enclave EBob must not assume misbehavior by Alice
unless it is ensured that Alice did in fact misbehave. If EBob

has an outdated version of cAlice, it might wrongly create
a breach remedy transaction. To make sure that the breach
remedy transaction is only created from the most current state,
we could limit the ability to create it to the leader, but this
would allow the user running the leader enclave to prevent
the breach remedy transaction from being published to the
blockchain. Instead, users should be able to publish breach
remedy transactions independent of the leader. To allow that,
we developed a way that allows users to create correct breach
remedy transactions even if they do not have the most current
global state.

The idea is that each enclave manages its user’s bitcoins.
Therefore we internally emulate the effect of blockchain
transactions on the set of unspent transaction outputs (UTXO).
As Fig. 2 shows, on the blockchain a transaction spending
a UTXO would create two UTXOs: a change UTXO and a
UTXO spendable by the receiver. In the enclave network we
simply store the information that the UTXO is now partially
owned by the receiver, to avoid the creation of blockchain
transactions. We implement this by storing not only the
deposited UTXO, but also the allocation of the UTXO to their
respective owners.

An ECO transaction contains the current state counter and
for each input two numbers that specify which part of the
respective UTXO is spent1. If an ECO transaction is spotted
on the blockchain that does not conflict with the UTXO

180 bytes are available for additional data using one OP RETURN in a
transaction. [9]

TABLE I
OVERVIEW OF THE COMPONENTS

Challenge Component
(C1) No system boundary KSystem Identifier
(C2) Wrong blockchain Block identifier
(C3) (1) Rollback attack (int. transaction) Leader
(C3) (2) Rollback attack (cash out) Emergency cash out (ECO)
(C4) Conflicting cash out transactions Satoshi bookkeeping

belonging to the enclave’s owner, an enclave does not need to
create a breach remedy transaction. However, if the published
transaction conflicts with a UTXO belonging to the enclave’s
owner and the published transaction includes a lower state
counter than the enclave’s state counter, then a breach remedy
transaction should be published. As the leader always knows
the most current state, the leader can create breach remedy
transactions as well. This means in case of the publication of
an outdated ECO transaction, the leader and the users who
are cheated by that transaction can create a breach remedy
transaction.

Note that, with this construction, ECOs may conflict in non-
malicious scenarios, too. When Alice and Bob own shares of
the same UTXO and both create an ECO for the most current
state, the Bitcoin network will not accept both transactions
since both spend the same UTXO. To allow Bob to get his
money, Bob can show Alice’s transaction to his enclave and
EBob will create a new transaction, which spends an output
of Alice’s transaction (so Bob needs to make sure Alice’s
transaction gets confirmed on the blockchain instead of trying
to win the race against Alice and publish his two transactions).

V. BANKLAVES PROTOCOL

The protocol is designed to offer the functions listed in
Section I: network join, deposit, internal and external transac-
tions including withdrawals and network leave. To allow those
functions to be performed, we first need a function to create a
new payment service enclave network and a function to elect a
leader. Furthermore, we provide a function that implements the
emergency cash out component and a function to recover the
local client with global state information. Network members
who wish to perform an operation establish a secure and
reliable communication channel to the parties involved in the
operation and perform a mutual remote attestation. The leader
only accepts one channel per member at a time.

A. Network state and state identification

The state of the network SEu
as stored by enclave Eu at user

u is defined by the set of current network members M , their
identifiers KM and account balances cM , the state counter
value σcM at which state their balances changed last, the current
deposit indices δM , private and public base keys skB

M and pkB
M

for deposit key derivation (cf. Section V-B2), emergency keys
pkE

M, the UTXO set D, the set of ownerships Ω, and a state
counter σEu

:

SEu
= (M,KM , cM , σ

c
M , δM , pk

B
M , sk

B
M , pk

E
M, D,Ω, σEu

).

Here, KM is used for {Kj | j ∈ M}. The set of current
network members M consists of all users who performed

“network join” but did not perform an ECO or a “network
leave”. D is a set of spendable deposits (the UTXOs). Each
entry d ∈ D is a tuple of the transaction id of the deposit
transaction, the deposited amount, and the information needed
to derive the private key to spend the deposit (deposit index
and depositing user). Ω is a set of ownerships that assign
an owner to a part of a UTXO. Each ownership ω ∈ Ω is
a tuple of an owner, the deposit d, and the start position
(ω.startpos) and the size (ω.amount) of the part that is
assigned to the owner. As an example we give the own-
erships according to the new set of UTXO in Fig. 2 b):
Ω = {(“Alice”, d1, 0, 3), (“Bob”, d1, 3, 2)}. We denote by
Ωu ⊆ Ω all ownerships ω of user u. In Section V-B3 we
explain how an internal transaction affects Ω.

The state counter σEu is a unique identifier for the current
state. The leader increments σEu for network joins, deposits,
external and internal transactions, network leaves and ECOs.
To ensure that the state counter increases monotonically and
identifies a state unambiguously, other enclaves do not change
the state counter.

B. Payment service operations

1) Network join: Bob wants to join an enclave network.
He starts his client, which initializes EBob and starts the
join procedure parameterized with the IP address2 of the
current leader client, which runs the ELeader enclave. Using
this function, Bob’s enclave and ELeader perform a mutual
remote attestation, which verifies that both run the correct
code. EBob marks that it is owned by Bob, generates KBob

and a secp256k1 [12] elliptic curve private key skB
Bob with

the public key pkB
Bob. Furthermore, EBob asks Bob for his

emergency cash out address pkE
Bob. The generated keys and

pkE
Bob are sent to ELeader, which adds them to its state.

ELeader in return sends the current state SELeader
to EBob. The

generated keys are owned and managed by the decentralized
enclave network. A public key is associated with a specific
network member to identify the corresponding deposits. The
TEE ensures that the implemented access control mechanisms
on the private keys are always enforced.

2) Deposit: To get bitcoins into the payment service, Bob
can make a deposit. Bob starts the deposit function offered by
his enclave EBob, which creates a new Bitcoin deposit key pair
(pkD

Bob,δBob
, skD

Bob,δBob
). This deposit key pair is generated

from Bob’s secp256k1 base key pair (skB
Bob and pkB

Bob), δBob

and KSystem using the key derivation algorithm used in the
Lightning Network [13]. After the key generation, EBob gives
pkD

Bob,δBob
to Bob. Bob uses his Bitcoin client to create a

transaction tDeposit transferring some bitcoins to pkD
Bob,δBob

and publishes it on the Bitcoin blockchain.
Bob’s enclave EBob monitors the blockchain using Bob’s

Bitcoin client and waits until a block containing tDeposit is
confirmed. EBob sends tDeposit, Bob’s name, and the most
current confirmed block id bEBob

to ELeader. ELeader then

2In practice it might be necessary to be invited to a network or that the
current network members need to accept the new member.

Es ELeader Er

(s, r, v, bEs)

(s, v, bEs)

(“ack”)

(“fin”, s, r, v, σcs)

(SELeader
) (SELeader)

Set inTransaction

Verify cs ≥ v

Verify bEs = bELeader

Verify bEs = bEr

Update Ω, cs, cr

Check σc
s

Update Ω, cs, cr, σ
c
s

Increment σELeader

X
Unset inTransaction

X

Fig. 3. Sequence diagram of an internal transaction from user s to user r.

verifies that bEBob
matches bELeader

to make sure that EBob

verified the confirmation of the deposit transaction on the
same blockchain that the leader knows3. After a successful
validation, ELeader adds a new deposit to the UTXO set D
and creates an ownership ω in Ω for it, in which the whole
amount of the deposit is marked as being owned by Bob.
ELeader finally increments Bob’s current credit cBob by the
amount transferred to pkD

Bob,δBob
and the deposit index δBob

by 1, updates the state counter σELeader
← σELeader

+ 1, sets
σcBob to the new state counter value and sends the updated
state to all connected enclaves.

3) Internal transaction: For Alice to make a transaction to
another member Bob of the same payment service, Alice calls
the function INTERNALTRANSACTION(“Alice”, “Bob”, v), il-
lustrated in Fig. 3, on EAlice. The parameter v is the amount
of bitcoins that Alice wants to transfer. Alice’s enclave sets the
inTransaction flag to make sure that no other transaction
is started in parallel. Then, EAlice sends a tuple containing
the transaction parameters and her last confirmed block id to
ELeader. ELeader verifies that Alice has enough credit to cover
the transaction and that Alice’s block id and its own block id
match. If they match, ELeader sends the data to EBob, which
also verifies that the received block id matches the local one
and sends an “ack” to EAlice on success.

After receiving the “ack”, EAlice updates the ownerships
Ω (see next paragraph), updates cAlice and cBob to the values
after the transaction and sends a “fin” back to ELeader. ELeader

verifies that Alice included in her “fin” the same value of σcAlice

as ELeader has stored for σcAlice. Then, ELeader also updates
Ω, cAlice and cBob, increments σELeader

, sets σcAlice to the new
σELeader

and sends the new state to all connected enclaves.
When EAlice and EBob receive the new state, they accept the

3It is enough to verify that bEBob
is a parent of bELeader

.

transaction as successfully executed and EAlice removes the
inTransaction flag.

We shortly explain a simplistic algorithm for changing Ω
during an internal transaction of v from sender s to receiver r,
which, however, is not optimized for reducing fragmentation:
Copy v to vt. We loop over each ownership ω in Ωs and
compare vt to ω.amount. If ω.amount ≤ vt, we change the
owner of ω to r and reduce vt by ω.amount. If ω.amount >
vt, we reduce ω.amount by vt, put a new ownership entry
(r, ω.d, ω.startpos + ω.amount, vt) in Ω, and stop.

In case Alice does not receive the state update from the
leader, she does not know whether the leader processed the
transaction or not. To prevent an invalid ECO in the first
case, Alice can only cash out her balance available after the
transaction, although in the later case Bob has not received the
transaction. The problem that Alice and the leader need to find
consensus on the new state without knowing whether the other
party received a message is analogous to the Two Generals
Problem [14, 15] and is thus proven unsolvable. In such a
situation, Alice can only send the “fin” again to conclude the
transaction. The verification of σcAlice prevents the transaction
from being executed twice. Note that, while Alice needs to
keep state during the internal transaction, the leader and Bob
do not need to keep state. So, the leader might even change
during the process of the transaction.

4) Emergency cash out: It might happen that Alice’s en-
clave EAlice cannot reach the leader. In that case, Alice cannot
perform or receive any transactions anymore, but she can
still cash out. To that end, EAlice generates a new Bitcoin
transaction with a time-locked output to the emergency address
stored for Alice, a change output to an address owned by the
enclave network, and, as additional data, the value of the state
counter and for each input amounts and the start positions for
the parts that are owned by Alice. As inputs to the transaction,
EAlice chooses all deposits from ΩAlice.

After the time lock Alice is free to spend her coins.
During the time lock all other enclaves Eu have to monitor
the blockchain and check the transactions (this means each
enclave has to be online at least once during the time lock).
If they find Alice’s cash out transaction, they verify that
the ownerships of Alice encoded in the transaction do not
conflict with Ωu. Two ownerships ω1 and ω2 conflict if they
reference the same deposit d and their intervals defined by
[ω.startpos, ω.startpos + ω.amount] intersect. Two sets Ω1

and Ω2 conflict if they contain conflicting ownerships.
If Alice’s transaction conflicts and it has a lower state

counter, they create a breach remedy transaction that transfers
the bitcoins back to the enclave. The time span for the time
lock is a trade-off between Alice being able to spend her coins
quickly and giving the other users enough time to verify her
ECO. We suggest a lock time of 24 hours.

If Alice’s transaction does not conflict but spends the same
UTXO as referenced by Ωu of a user u, u has to update Ω
and D. To be able to perform internal transactions further on,
the leader has to perform and announce a state update when
an ECO is observed.

If the ECO transaction is not accepted by the Bitcoin
network because a double spending transaction tconflict has
been published by another user, Alice can show tconflict to
EAlice, which will create another ECO transaction that spends
the change output of tconflict.

5) External transaction and withdrawal: Making an exter-
nal transaction is similar to an ECO but the leader creates and
publishes the transaction with no time lock. Additionally, the
transaction is sent to Alice’s enclave to publish it from her
computer as well in case the leader’s host does not publish it.
The leader updates the state (cAlice, ΩAlice, σcAlice, σELeader

)
and sends updates to all connected enclaves. Note that, if
Alice shares UTXOs with other network members u, their Ωu
change, too. If the affected users are not online while Alice
performs the external transaction, they receive the changed Ω
from the leader as soon as they are online. A withdrawal is
an external transaction to Alice herself.

6) Network leave: To leave the network, Alice performs a
withdrawal of all her deposits and tells the leader to remove
her from the state. The leader removes Alice’s identifier and
her keys from the state and increments the state counter.

C. Management operations

1) Network creation: To create a new payment service
network, Alice starts her client, which creates an enclave
EAlice. EAlice creates a system identifier KSystem that is used
to identify the payment service internally, but never leaves
the network of enclaves. At this point EAlice is the only
enclave in the network and becomes the networks leader:
ELeader ← EAlice. Then, the network join procedure is
performed locally.

2) Enclave recovery: In case Bob lost his enclave (e.g.,
because his computer crashed), he starts the local client,
which creates EBob and connects to the current ELeader. After
performing a mutual remote attestation, Bob authenticates
himself by providing his identifier KBob to EBob which sends
KBob to ELeader. ELeader then sends the current state to EBob.
Now EBob is ready to be used.

3) Graceful leader handover: When the user running
ELeader shuts down the client, ELeader will start a graceful
leader handover. ELeader chooses one of the enclaves it is
connected to, say EAlice. Then ELeader sends the current state
SELeader

to the chosen enclave and stops being leader. EAlice

updates its state, marks itself as leader and propagates the
information about the new leader in the network.

4) Leader election on loss of connectivity: If an enclave
cannot reach the current leader anymore, it starts a leader
election. A leader election has a timeout (e.g., 24 hours) during
which all members u ∈ M have to get online once and
participate. Each enclave connects to all other enclaves and
sends its own state counter. For each received state counter
it compares the received state counter to its own. For the
first received state counter that is higher than the own state
counter it sends a commit to the sender enclave and ignores
all other received state counters. If the state counters are equal,
both enclaves draw a random value additionally and compare

that instead of the state counter. For each received commit an
enclave either forwards the commit to the enclave it committed
to, or, if it did not commit to another enclave, it counts the
number of received commits. If all enclaves are online, an
enclave will eventually have received commits (directly or
indirectly) from all other enclaves. This enclave becomes the
new leader and publishes the current state to all other enclaves.
In this process, only one enclave with the most current state
(viz. the highest state counter) can become the new leader. It is
not possible to reelect the old leader enclave without additional
checks since it might have been rolled back. If the process is
not successful, a user can use the ECO function or wait.

D. Asymptotic analysis

The space consumption of the state lies in O(|M |+ |D|+
|Ω|), with the size of the set of ownerships |Ω| being in
O(|D| + n), where n is the number of performed internal
transactions. The size of exchanged messages is maximal for
state updates, which means the message size is in O(|M | +
|D| + |Ω|). The complexity of the leader election lies in
O(|M |2), the complexity of the other operations in O(1).
Please note that the algorithms leave space for optimization
with regard to needed space and complexity.

VI. PROOF OF CASH OUT FEASIBILITY

In this section, we provide a proof for our availability and
integrity objectives. Intuitively spoken, we prove that “As long
as I am honest, I always get my money, no matter what funny
things the others do.”

Theorem 1. At any time, except during the process of doing an
internal transaction, a non-rolled back enclave can perform a
valid cash out without the need for communication with other
enclaves.

Proof. We prove the theorem by showing that
(1) in an enclave network in a non-conflicting state Sn a cash

out is always possible,
(2) when no rollbacks happen in an enclave network, a

system in a non-conflicting state Sn can only change to
a non-conflicting state Sn+1, and

(3) rollback-induced conflicts can be resolved in favor of a
non-rolled back enclave.

An enclave network is in state Sn if all enclaves are in state
Sn. A state Sn is non-conflicting if all ω ∈ Ω of that state are
non-conflicting (see V-B4).

(1) Cash out with no conflicts: The system is in a non-
conflicting state Sn. As long as no ECO transaction has been
published, each user u can create a valid ECO transaction. Say,
Alice has already published an ECO transaction. If another
user Bob, whose ΩBob do not spend common UTXO with
ΩAlice, creates an ECO transaction, the transaction is accepted
by the Bitcoin network. However, if ΩBob do spend common
UTXO with ΩAlice, for the Bitcoin network Bob’s ECO
transaction will be a double spend for Alice’s published ECO
transaction. But because all ω ∈ Ω are non-conflicting, EBob

can verify that Alice’s ECO transaction spends different parts

of the UTXO and so EBob will create an ECO transaction for
Bob depending on Alice’s published ECO transaction. Cases
in which more than one ECO transaction are already published
are handled similarly.

(2) State transition from non-conflicting state leads to
non-conflicting state: Not considering rollbacks, due to the
assumptions of TEEs there are the following operations that
lead to a new state:

Network join: Ω is not changed, so conflicts cannot occur.
Deposit: Deposits only change the Ωu of the user u per-

forming it; no new conflicts are created.
Internal transactions: W.l.o.g. Alice transfers internally c

bitcoins to Bob. During the transaction the owner of parts with
the sum of c bitcoins is changed from Alice to Bob. The Ωu of
the other users u ∈M\{Alice,Bob} stay the same. Therefore,
the new set Ω does not conflict. We except the process of
internal transactions, because if Alice updates her state before
the leader does, she has a different view on ΩAlice and ΩBob

than the rest of the network until the leader updates to the
new state. Thus, if EAlice is separated from the network during
this time frame, Alice can only cash out her balance after the
transaction although the transaction has not yet completed.

External transactions, ECOs, network leaves: These opera-
tions reduce Ωu of the user u performing it and might update
affected ownerships but do not change their amounts; no new
conflicts are created.

(3) Consideration of rollbacks: We pick an arbitrary but
firm non-rolled back enclave Eα. We call the state of Eα Sa
with a ≤ n where n is the index of the most current state.
The other enclaves are in states Si, i ≤ n and some might be
rolled back to earlier states. We prove that, in this situation,
a valid cash out for Eα is still possible. For all enclaves Eu
in a state Sj , j ≤ n two cases are to be distinguished: Either
they are current or they have been rolled back. In the first
case, their local Ωu are the same in Sn as in Sj and, thus,
non-conflicting to Sa. In the second case, for each enclave Eρ
rolled back to state Sr, r < j there exist two possibilities:
Sr, r ≥ a: If the Ωα of Eα would be different in Sr than

in Sa, then Eα would not be in its most current state. Thus,
transactions created by Eρ and Eα might use the same UTXO
but they will not have conflicting Ωρ and Ωα.
Sr, r < a: In this case Ωρ and Ωα may conflict. However,

conflicts can be resolved in favor of α by comparing the state
counters. Eρ creates an ECO with state counter r. Eα will
notice the conflicting Ωρ and Ωα and because r < a it will
create a breach remedy transaction. If Eα creates an ECO with
state counter a, Eρ will notice the conflicting Ωρ and Ωα. It
will not be able to create a breach remedy transaction, because
its own state counter r is smaller than a.

With steps (1) - (3) we proved that starting from a non-
conflicting state, in each following state, even conflicting ones,
a non-rolled back enclave can create a valid cash out transac-
tions that cannot be attacked. As each enclave network starts
with an empty D and Ω, which is trivially non-conflicting,
this proves the statement.

VII. DISCUSSION AND FUTURE WORK

Privacy of the transaction history: The security objectives
contain confidentiality goals for the user balances and their
performed transactions. The TEEs hide their local state from
curious attackers. To prevent information on the transaction
history from being leaked by the additional data in external
transactions, the system identifier KSystem can be used to
derive a symmetric key to encrypt this data.

Power of the leader’s host, incentives and fees: The system
running the leader enclave is in a position where it is possible
to prevent the enclave network from performing its actual task.
It can actively refuse the network’s services for dedicated
network members. Additionally, it is able to sabotage the
complete network by going offline permanently and refuse
participation in a leader election process. However, because
of the assumptions of TEEs, the leader enclave itself cannot
be malicious and, thus, the leader’s host cannot manipulate
the network’s state in its favor. An idea to incentivize correct
behavior and availability by the leader is to introduce a fee,
which is paid to the leader. Additionally, fees can be used
as a reserve to pay for blockchain transactions issued by the
enclave network itself. We consider such a system as future
work. Unwarranted ECOs should be punished by the payment
system to discourage users from trying to cheat the system.

Usability: We require users to be online to receive trans-
actions to prevent rollback attacks against the receiver of a
transaction. If users want to receive transactions without their
active participation and are willing to take the risk, they could
inform the leader to accept transactions in their absence.

Extended use cases for future work: The payment service
could be used to participate in a payment channel network
with the whole system instead of each user individually. As
a consequence, more and better funded channels could be
opened. The payment service could also be used in a credit
network as a trustworthy gateway. It would accept deposits
in Bitcoin and open credit links to the depositor in return,
so the depositor could use the credit in the network to make
payments to other parties.

VIII. CONCLUSION

We presented a concept for a payment service that is
implemented as a decentralized network of TEEs in which
users do not need to trust each other. Having TEEs as an
interface between a user and the payment service limits each
user to perform only valid actions by protecting the integrity
of the code and the confidentiality of necessary secrets.
Invalid actions caused by rollbacks of TEEs are prevented by
our protocol instead of using hardware monotonic counters.
However, as our approach heavily relies on the security of
TEEs, which have been shown to be compromisable, we plan
to address challenges coming with stronger adversary models
in future work. Additionally, we plan to conduct a performance
analysis using Intel SGX.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system,” 2008. [Online]. Available: https://bitcoin.org/
bitcoin.pdf

[2] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx, “Foreshadow: Extracting the
Keys to the Intel SGX Kingdom with Transient Out-of-
Order Execution,” in 27th USENIX Security Symposium
(USENIX Security 18). Baltimore, MD: USENIX As-
sociation, 2018.

[3] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas,
H. Shafi, V. Shanbhogue, and U. R. Savagaonkar, “In-
novative Instructions and Software Model for Isolated
Execution,” in Proc. of the 2nd International Workshop
on Hardware and Architectural Support for Security and
Privacy, ser. HASP ’13. New York, NY, USA: ACM,
2013.

[4] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, “Inno-
vative technology for CPU based attestation and sealing,”
in Proc. of the 2nd International Workshop on Hardware
and Architectural Support for Security and Privacy, ser.
HASP ’13. New York, NY, USA: ACM, 2013.

[5] D. Kaplan, J. Powell, and T. Woller, “AMD
memory encryption,” 2016. [Online]. Available:
http://developer.amd.com/wordpress/media/2013/12/
AMD Memory Encryption Whitepaper v7-Public.pdf

[6] J. Lind, I. Eyal, F. Kelbert, O. Naor, P. R. Pietzuch, and
E. G. Sirer, “Teechain: Scalable Blockchain Payments
using Trusted Execution Environments,” 2017. [Online].
Available: http://arxiv.org/abs/1707.05454

[7] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Som-
mer, A. Gervais, A. Juels, and S. Capkun, “ROTE: Roll-
back Protection for Trusted Execution,” IACR Cryptology
ePrint Archive, vol. 2017, p. 48, 2017.

[8] I. Bentov, Y. Ji, F. Zhang, Y. Li, X. Zhao, L. Breidenbach,
P. Daian, and A. Juels, “Tesseract: Real-Time Cryp-
tocurrency Exchange using Trusted Hardware,” IACR
Cryptology ePrint Archive, vol. 2017, p. 1153, 2017.

[9] M. Tran, L. Luu, M. S. Kang, I. Bentov, and P. Saxena,
“Obscuro: A Bitcoin Mixer using Trusted Execution
Environments,” IACR Cryptology ePrint Archive, vol.
2017, p. 974, 2017.

[10] H. Liang, M. Li, Q. Zhang, Y. Yu, L. Jiang, and
Y. Chen, “Aurora: Providing Trusted System Services
for Enclaves On an Untrusted System,” 2018. [Online].
Available: http://arxiv.org/abs/1802.03530

[11] J. Poon and T. Dryja, “The bitcoin lightning
network: Scalable off-chain instant payments,”
2016. [Online]. Available: https://lightning.network/
lightning-network-paper.pdf

[12] Certicom, “SEC 2: Recommended Elliptic Curve Domain
Parameters,” in Standards for Efficient Cryptography 2
(SEC 2). Certicom Research, 2000. [Online]. Available:
http://www.secg.org/sec2-v2.pdf

[13] BOLT 3: Bitcoin Transaction and Script
Formats, Lightning Network In-Progress
Specifications, 2018. [Online]. Available:
https://github.com/lightningnetwork/lightning-rfc/
blob/914ebab9080ccccb0ff176cb16b7a6ba21e2/
03-transactions.md

[14] E. A. Akkoyunlu, K. Ekanadham, and R. V. Huber,
“Some Constraints and Tradeoffs in the Design of Net-
work Communications,” in Proc. of the Fifth ACM Sym-
posium on Operating Systems Principles, ser. SOSP ’75.
New York, NY, USA: ACM, 1975.

[15] J. N. Gray, “Notes on data base operating systems,” in
Operating Systems. Springer, 1978, pp. 393–481.

