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Abstract

In this paper we develop statistical models for bankruptcy prediction

of Norwegian firms in the limited liability sector using annual balance

sheet information. We fit generalized linear-, generalized linear mixed-

and generalized additive models in a discrete hazard setting. It is demon-

strated that careful examination of the functional relationship between

the explanatory variables and the probability of bankruptcy enhances the

models’ forecasting performance. Using information on the industry sector

we model the unobserved heterogeneity between different sectors through

an industry-specific random factor in the generalized linear mixed model.

The models developed in this paper are shown to outperform the model

with Altman’s variables at all levels of risk. As a measure of models’

forecasting accuracy the area under the ROC curve is used.
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1 Introduction

Bankruptcy prediction is attracting the attention of both academics and practi-
tioners since the seminal works of Beaver (1966) and Altman (1968) in the late
1960s. Researchers traditionally rely on linear combinations of financial ratios
as predictors and use a single observation per company. Several recent stud-
ies emphasize that the relationship between explanatory variables and the logit
(probit) of the default probability is often non-linear (see Sobehart and Stein
(2000), Falkenstein et al. (2000), Berg (2007)). Additionally, Shumway (2001),
Chava and Jarrow (2004) and Hillegeist et al. (2004) emphasize that a single-
period approach neglects important information when a company is at risk but
remains solvent. To avoid these deficiencies of the traditional approaches, sug-
gestions have been made to use neural networks or generalized additive models
to model non-linearities and hazard models instead of single-period static mod-
els to incorporate information from the complete period at risk (see Shumway
(2001), Chava and Jarrow (2004) and Hillegeist et al. (2004)). In this paper
we follow the pattern of non-linear modeling and evaluate the forecast perfor-
mance of both static- and hazard models. Our models are broad in scope in
the sense that they apply to all industry sectors, including financial institutions.
Additionally, we model the unobserved heterogeneity between different industry
sectors by introducing an industry-specific intercept as a random factor in our
non-linear logistic regression.

The purpose of this paper is to develop statistical models for bankruptcy
prediction of firms in the limited liability sector of Norway. The 98, 421 firms
in our database are observed on an annual basis and most of them are not reg-
istered on any exchange. Therefore, we have to rely on traditional accounting-
based methods. We examine whether one can enhance bankruptcy prediction
accuracy by a careful examination of the functional relationship between ex-
planatory variables and the probability of bankruptcy. We utilize generalized
additive models (GAM) in exploratory analysis to reveal non-linear relations to
be used in the generalized linear model (GLM). Further, we show that when
one carefully models, through linear and non-linear transformations of covari-
ates in GLM, prediction accuracies of GLM and GAM are approximately the
same. A slight improvement of model performance is further obtained by es-
timating an industry-specific intercept as a random factor. In the assessment
of model accuracy we use ROC and CAP curve analysis, which became widely
accepted in the bankruptcy prediction literature since they were introduced in
Sobehart et al. (2000) and Sobehart and Keenan (2001). Forecasting ability of
our models is stable over different subsets of the dataset and over time. The
models are then compared to the celebrated Altman’s Z-score model which uses
a linear combination of 5 financial ratios as a proxy of the default probability.
The Altman’s model is reestimated and shown to capture less publicly-available
information than the models we use in our analysis for this specific dataset.
Improvements obtained by using a hazard instead of static setting are minimal,
possibly because the maximal period at risk in our sample is low compared to
previous studies of hazard models.

The paper is organized as follows. In Section 2 we give a brief historical
overview of bankruptcy prediction methods and outline statistical methods used
in our analysis. Section 3 describes our bankruptcy database. In Section 4 we
present the fitted models and evaluate their out-of-time prediction performance.
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Section 5 concludes and discusses open problems for further research.

2 Statistical models for bankruptcy prediction

The bankruptcy prediction literature involves a number of statistical techniques
used to obtain reliable estimates of default probability. The studies of Beaver
(1966) and Altman (1968) that employ univariate and multivariate discriminant
analysis respectively, are considered pioneering investigations of the relationship
between the financial status of a company and its probability of failure. Sub-
sequently, new statistical methods including gambler’s ruin and option pricing
theory, as well as linear regression, have been successfully applied in empiri-
cal analysis (see Wilcox (1971), Merton (1974), Martin (1977), Ohlson (1980),
Zmijewski (1984)). Techniques used nowadays to construct bankruptcy pre-
diction models involve neural and Bayesian networks (Tam and Kiang (1992),
Sun and Shenoy (2007)), theory of point processes (Das et al. (2007), Duffie
et al. (2007)), support vector machines (Härdle et al. (2005)), and many others.
For extensive reviews of related literature the reader is referred to Altman and
Hotchkiss (2005), Altman and Narayanan (1997) or Falkenstein et al. (2000).
We focus our attention on methods that emphasize the use of survival analysis
and industry effects in failure prediction.

Recently, several studies including Shumway (2001), Chava and Jarrow (2004),
Hillegeist et al. (2004) have indicated that conventional models have a drawback
of being based on the utilization of only a single observation per company. Tra-
ditionally the default probability of a company, irrespective of its bankruptcy
status, has been dependent solely on its last available set of predictors. Such
models, often called static, are shown to be outperformed by dynamical haz-
ard models that incorporate the financial history of a company from the entire
observation period. Applications of survival analysis techniques in bank failure
prediction has a long history (see LeClere (2000) and Haling and Hayden (2006)
for a review), while in bankruptcy prediction of non-financial institutions these
methods have been disregarded since the work of Shumway (2001). Shumway
argues that information neglected by static models can significantly improve
model’s forecasting accuracy, and highlights the simplicity of maximum likeli-
hood estimation in the dynamical framework. Since the discrete hazard model
plays one of the central roles in our investigation, we briefly outline its setting.

Assume that each firm i in the study has a failure time Ti and a censor-
ing time Ci, both observed at discrete times, and that Ti, Ci are independent
random variables with values in {1, . . . , k}, where k denotes the end of the ob-
servation period. The observable lifetime of a firm i is then Si = min(Ti, Ci).
Let ∆i denote the random censoring indicator given by

∆i =

{

1, Ti ≤ Ci, (non-censored),

0, Ti > Ci, (censored).

In addition to the observed lifetime si, we consider firm-specific time-varying
covariates xit ∈ R

p, that are assumed to have an influence on the lifetime. The
data is given by

(si, δi,xi(si)), i = 1, . . . , n,
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where x
′

i(si) := (x
′

i1, . . . ,x
′

isi
) is the history of firm i until the observed lifetime

si, and δi is the observed censoring indicator.

The basic quantity characterizing Si is the discrete hazard function

λ(t|xi(t)) := P(Si = t|Si > t − 1,xi(t)), t ∈ {1, . . . , k}, (1)

which is assumed to be dependent on parameters or functions to be estimated.
The exact form of the dependence of the hazard rate λ(t|xi(t)) on time-varying
firm-specific covariates is given in Section 4.2. Under certain conditions, param-
eters of dynamical hazard model can be estimated in the framework of ordinary
binary regression by treating the annual bankruptcy indicators as independent
binomials (see Fahrmeir and Tutz (2001) or Shumway (2001)). Precise assump-
tions under which the correspondence between the two models holds can be
found in Arjas and Haara (1987) or Fahrmeir and Tutz (2001, p. 396). We note
here that the hazard model built on only one year of data coincides with the
static model.

We conclude this section with a short outline of research where the signifi-
cance of industry effects in bankruptcy prediction modeling was discussed. Plat
and Plat (1990, 1991) are among the first studies that illustrate the importance
of industry-relative adjustments in failure prediction. Subsequently, a number of
papers documented the impact of industry groupings on bankruptcy announce-
ments. Lang and Stulz (1992) examine contagion and competitive intra-industry
effects on default rate, while Alfo et al. (2005) use random industry effects to
anticipate problematic firms. For a detailed review of reasons for presence of
industry-specific information in bankruptcy prediction models, and an extensive
list of references where these reasons are elaborated, the reader is referred to
Chava and Jarrow (2004).

3 Data set

3.1 The Data Set

Financial statements and bankruptcy status for limited-liability firms in Norway
are observed on an annual basis in the time period 1996-2000. Firms report-
ing non-positive total assets were eliminated. Balance sheets with book equity,
short term debt or revenue from operations equal to 0 were excluded from further
investigation in order to avoid null divisions when calculating financial ratios.
Exploratory data analysis indicated a substantial lag between the date of the
last reported financial statement and the bankruptcy date. This phenomenon
is also described in Bernhardsen (2001). Among companies that were declared
bankrupt in the time-period 1997-2001, only 25% report their financial state-
ments in the last year of their existence, while for the remaining 75% we observe
at least one year of missing data. For this reason, all companies (bankrupt as
well as non-bankrupt) with missing financial statements for at least one year be-
fore bankruptcy or the end of the observation period were excluded from further
analysis. Since salaried household work and internal organs and organizations
were represented by only 3, respectively 1 firm in the resulting sample, these
two industry sectors were not considered in our paper. For each of the con-
tinuous covariates used to estimate the model, the values below 0.2%-quantile
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and above 99.8%-quantile were calculated, and firms with these financial state-
ments were also excluded from further consideration. Truncation of the data
is often performed in order to remove outliers that frequently occur due to ty-
pos or recording errors (see Shumway (2001), Chava and Jarrow (2004)). Note
that the discrete hazard model can be estimated in the framework of binary
regression, since censoring can occur only at the end of the observation period
due to the data requirements. Our final sample consists of 436, 145 firm-years
corresponding to 98, 421 unique firms, and contains 2, 270 bankruptcies.

3.2 Explanatory variables

The set of covariates included in our model building process combines conven-
tional accounting ratios used in bankruptcy prediction studies, and covariates
traditionally employed in the credit risk analysis at Norges Bank, presented in
Bernhardsen (2001). We take into account 5 frequently used default risk fac-
tors: profitability, solidity, liquidity, size and leverage. Additionally, we include
industry indicator variables, information on the number of auditor remarks, age
of a company, and an indicator of dividends paid current year as predictors of
default probability. The list of time-varying explanatory variables considered in
our analysis consists of

(1) REVANMit – the number of auditor remarks of firm i at time t,

(2) AGEit – age of a firm i at time t measured in years,

(3) DIVit – indicator for dividends paid by firm i at time t (dichotomous),

(4) EKAit – book value of equity to total assets of firm i at time t (solidity),

(5) SIZEit – logarithm of total assets of firm i at time t (size),

(6) CashRit – cash and marketable securities to current liabilities of firm i at
time t (liquidity),

(7) RetAssit – return on assets to total assets of firm i at time t (profitability),

(8) CLTAit – current liabilities to total assets of firm i at time t (leverage).

Here i = 1, . . . , n, t = t0(i), . . . , S0(i), where t0(i) and S0(i) denote the starting
and survival time of firm i. In addition, the information about the sector a firm
belongs to (fixed over time) is included into the model through an industry-
specific intercept estimated as a fixed or random factor. The distribution of
firms and bankruptcies with respect to the industry sector is given in Table 1.

In the remainder of this section we shortly discuss properties of covariates
described above placing the emphasis on the difference between bankrupt and
solvent firms.

Summary statistics for REVANM can be found in Table 2. The table indi-
cates that distributions of the number of auditor remarks among solvent and
bankrupt firms are distinct. Additionally, we notice the change in the distri-
bution in 1999, when the percentage of companies with more then one remark
becomes lower compared to the period 1996–1998. This change is possibly due
to the fact that prior to 1998 Norwegian law was imposing only moderate sanc-
tions for non-reporting financial information while more stringent regulations
were introduced in 1998.
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Industry sector Total Bankrupt Bankrupt(%)
Forestry and agriculture 607 17 2.80
Fishing 1,059 18 1.70
Mining and extraction 599 6 1.00
Industry 9,810 315 3.21
Water and power supply 300 1 0.33
Building and construction 8,503 242 2.85
Commodity trade, vehicle and

domestic appliance repair 26,340 863 3.28
Hotel and catering activity 3,356 224 6.67
Transport and communication 5,616 123 2.19
Finance and insurance 4,225 22 0.52
Property operations, rental business

and commercial services 32,373 348 1.07
Public administration 46 2 4.35
Education 558 12 2.15
Health and social service 2,086 20 0.96
Other social and personal services 2,943 57 1.94
Total 98,421 2,270 2.31

Table 1: Distribution of firms with respect to the industry sector.

In Figure 1 the histogram of AGE (bellow 50 years) and kernel density esti-
mators of covariates EKA, SIZE, RetAss, CashR and CLTA 1 for bankrupt and
non-bankrupt firms in the complete data-set are given. The difference between
bankrupt and solvent companies is clearly visible. For all covariates except
of CashR, the difference in modes of the respective distributions is evident.
In agreement with econometric intuition, we observe that bankrupt companies
are more likely to have low values of EKA, RetAss, CashR and high values of
CLTA. Notice that for all covariates except of SIZE, the shape of the density
of bankrupt firms differs from respective shape estimated within the group of
solvent companies. Further empirical analysis (not presented here) shows that
distributions of all covariates except of REVANM are stable over time, and that
indicator of dividends payed can be seen as a potentially powerful predictor of
failure.

4 Results

The aim of this section is to describe the models fitted to our dataset and eval-
uate and compare their forecasting performance. We fit a GLM, transforming
covariates according to the exploratory analysis in Section 4.1. We compare it
to the generalized linear mixed model (GLMM) with random, industry-specific
intercept, and a GAM. All models are estimated using the same set of explana-
tory variables, presented in Section 3.2. The three models (GLM, GLMM,

1Since continuous covariates that we consider have heavy-tailed distributions, the kernel
density estimators are given for values of EKA above 2%-quantile, RetAss between 1%- and
99%-quantile, CashR and CLTA below 80%- and 98%-quantile , respectively.
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Year Status 0 1 2 3 ≥ 4
1996 NB 75.42 22.38 0.57 1.46 1.63

B 11.85 64.22 0.71 18.25 23.22
1997 NB 76.33 21.63 0.52 1.38 1.52

B 15.33 59.80 1.26 18.59 23.62
1998 NB 76.03 21.93 0.55 1.35 1.49

B 13.82 63.09 1.09 17.09 22.00
1999 NB 81.58 17.39 0.85 0.02 0.18

B 23.17 67.20 6.60 0.18 3.03
2000 NB 81.82 17.22 0.81 0.00 0.15

B 23.89 68.14 5.90 0.00 2.06

Table 2: Percentage of companies with respect to the number of auditors’ re-
marks for non-bankrupt (NB) and bankrupt (B) firms separately.
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Figure 1: Histogram of AGE. Kernel density estimators of EKA, RetAss, CashR,
SIZE and CLTA for bankrupt (dashed line) and solvent (solid line) firms sepa-
rately.
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GAM) are estimated and validated on different subsets of the complete sam-
ple. To illustrate the discriminative power of our models, we fit them using
financial statements 1996-1999, predict default probabilities in 2000, and con-
struct kernel density estimates of their logits for bankrupt and solvent firms,
respectively. Finally, we estimate a GLM with Altman’s variables (see Altman
(1968)), using only linear transformations of covariates, and compare it to the
models described above. All four models are estimated in a static and hazard
setting, respectively. Their forecasting accuracy does not improve substantially
if the hazard model is used instead of the static one.

4.1 Exploratory Data Analysis

In order to make inference about the form of the functional relationship between
the logit of the hazard rate (1) and continuous explanatory variables, we fit the
GAM

logitλ(t|xit) = β1REVANMit + β2AGEit +

15
∑

j=1

β3jDji + β4DIVit

+ s5(CashRit) + s6(CLTAit)

+ s7(SIZEit) + s8(RetAssit) + s9(EKAit)

(2)

to the complete dataset. Here Dji, j = 1, . . . , 15, are dummy variables being
1 if firm i belongs to industry j and 0 otherwise and ŝ5, . . . , ŝ9 are smoothing
splines to be estimated. We observe non-linear relations in the spline terms
ŝ5, ŝ7, ŝ8 and ŝ9, i.e. for variables CashR, SIZE, RetAss and EKA. The ŝ6

term, describing the effect of CLTA on default probability, can be considered as
linear. The forms of the estimated functions are depicted in Figures 2 and 3.
For more details regarding the theory of GAM, the reader is referred to Hastie
and Tibshirani (1990).

In Figure 2 functions ŝ5, ŝ6 and ŝ7 are plotted. Function ŝ5 is plotted for
values of CashR lower than the 90%-quantile, since above that value the form
of ŝ5 becomes unstable, possibly due to outliers. The plot suggests to use the
function exp(−CashR) in a corresponding GLM model. Similarly, ŝ6 is depicted
for values of CLTA below the 98%-quantile. In that range, the estimated func-
tion can be considered as linear, and therefore CLTA enters linearly in our final
GLM model. Function ŝ7 is plotted on the whole range of the covariate SIZE,
and we decide to use a polynomial of degree 2 to model its influence on the
default probability.

Visual examination of the left plots in Figure 3, where ŝ8 and ŝ9 are plotted
for the entire range of variables RetAss and EKA respectively, suggests that
possibly separate functions should be fitted for negative and positive values for
two of the covariates considered. In the middle and right hand side plots of
Figure 3, the estimated functions are depicted on the negative and positive half
axes, respectively. We decide to use a polynomial of degree 3(2) for modeling
the influence of negative (positive) values of RetAss, while the effect of EKA is
modeled by 2 separate polynomials of degree 2, each fitted on the corresponding
half axis.

We emphasize here that both the shape of functions we use in our analysis
and the list of explanatory variables should be seen as suggestion. Our rec-
ommendation is to carefully investigate functional relationship of covariates to
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default probability, and use the results of exploratory data analysis to build the
final model.

4.2 Fitted models

We assume that the discrete hazard rate (1) depends only on the last value of
the covariates 2, namely

λ(t|xi(t)) := λ(t|xit),

and consider the following three models for λ(t|xit).

Model 1: GLM

The GLM has the form indicated in Section 4.1, namely

logitλ(r|xit) = β1I(REVANMit > 0) + β2AGEit +

15
∑

j=1

β3jDji + β4DIVit

+ β51I(EKAit ≥ 0)EKAit + β52I(EKAit ≥ 0)EKA2

it

+ β53I(EKAit < 0)EKAit + β54I(EKAit < 0)EKA2

it

+ β61SIZEit + β62SIZE2

it + β71I(exp(−CashRit))

+ β81I(RetAssit ≥ 0)RetAssit + β82I(RetAssit ≥ 0)RetAss2it

+ β83I(RetAssit < 0)RetAssit + β84I(RetAssit < 0)RetAss2it

+ β85I(RetAssit < 0)RetAss3it + β9CLTAit

(3)

We remark here that all coefficients included in Model (3) were significant at
the 5%-level when being estimated from the complete dataset. Analysis not
reported here show that interactions of continuous ratios with industry sector
indicators are not significant. Therefore industry-specific slopes for EKA, Re-
tAss, CashR, SIZE and CLTA are not included into our model.

Model 2: GLMM

In order to incorporate homogeneity within industry sectors, while allowing for
heterogeneity between different sectors, we fit the GLMM with random industry-
specific intercept

logitλ(t|xit) = β1I(REVANMit > 0) + β2AGEit +

15
∑

j=1

bjDji + β4DIVit

+ β51I(EKAit ≥ 0)EKAit + β52I(EKAit ≥ 0)EKA2

it

+ β53I(EKAit < 0)EKAit + β54I(EKAit < 0)EKA2

it

+ β61SIZEit + β62SIZE2

it + β71I(exp(−CashRit))

+ β81I(RetAssit ≥ 0)RetAssit + β82I(RetAssit ≥ 0)RetAss2it

+ β83I(RetAssit < 0)RetAssit + β84I(RetAssit < 0)RetAss2it

+ β85I(RetAssit < 0)RetAss3it + β9CLTAit

(4)

2Other specifications of λ(t|xi(t)) that include time-lagged covariates are possible, but
rarely used in practice. Results not reported here indicate that models with λ(t|xi(t)) =
λ(t|xit,xit−1) when fitted to our dataset do not improve forecasting ability.
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where bj ∼ N(0, σ2), j = 1, . . . , 15, are independent random variables represent-
ing the frailty effect. The model is estimated by the penalized quasi-maximum
likelihood method described in Breslow and Clayton (1993).

Model 3: GAM

Additionally, we compare the previous two models to the GAM indicated in
(2) which was used in the exploratory data analysis.

Model 4: Altman

Finally, our three models are compared to the static and hazard model with
Altman’s variables

logitλ(t|xit) = β0 + β1X1it + β2X2it + β3X3it + β4X4it + β5X5it, (5)

where X1, . . . , X5 are as defined in Altman (1968) 3.

4.3 Predictive performance

The three models, GLM, GLMM and GAM, are fitted to various subsets of our
dataset, and their predictive performance is evaluated. In the assessment of
model performance we use ROC and CAP curve analysis. More specifically, we
use the measure of the area under the ROC curve, denoted AUC. The AUC
is the area under the ROC curve and above the 45◦ line corresponding to the
random model divided by 1/2 (the area between the ROC curve of the per-
fect and random model, respectively). It is a number between zero and one,
one corresponding to the perfect model correctly classifying all firms and zero
indicating the random model. The summary statistic of the CAP curve, the
accuracy ratio AR, can be calculated directly from AUC (see Engelmann et al.
(2003)).

Table 3 shows the AUC for the models GLM, GLMM and GAM, evaluated at
different fitting and prediction periods. We notice that GLM and GAM perform
equally well, while GLMM has a slightly better forecasting accuracy. The lowest
values of AUC are obtained when bankruptcies in 1999 were predicted. This
is possibly due to the change in Norwegian law regarding sanctions for non-
reporting of financial statements. Apart from evaluation of forecasts one year
ahead, we have also computed AUC when bankruptcy prediction is done 2, 3
and 4 years into the future. The results are presented in the lower part of Table
3. We observe that although the forecasting accuracy of models decline when
we increase the number of forthcoming years for prediction, the power of the
depreciation is not very pronounced, and the performance of the models can be
considered as stable even when predicting bankruptcies several years into the
future.

In order to illustrate the discriminatory power of our models we estimate
them using the data 1996-1999, predict default probabilities for companies at
risk in 2000, and plot kernel density estimates of their logits for bankrupt and
solvent firms, respectively. Results are presented in Figure 4. We note that all

3To construct the variables X2 and X4 we use the book value instead of market value of
equity, since market information is unavailable.
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Figure 4: Kernel density estimators of logits of predicted default probabilities
for data from 2000 using GLM, GLM mixed and GAM model for bankrupt
(dashed line) and solvent (solid line) firms separately (1996-1999 data used to
fit the model).

models have relatively high discriminatory power, and conclude that although
plots obtained are suitable for illustration purposes, one needs more sensitive
tools to decide which model has the highest forecasting accuracy.

We then compare the GLM, GLMM and GAM to the model with Altman’s
variables. Both the static and hazard models were fitted using the data from
1996-1999, and validated on the 2000 data. The corresponding ROC and CAP
curves are given in Figure 5, and the AUC’s are given in Table 4. We observe
that the forecasting accuracy of the model with Altman’s variables, in both the
static- and hazard setting, is lower than the corresponding accuracy of models
that include non-linear transformations of covariates. Improvements obtained
by utilizing the hazard instead of the static model are not pronounced, possibly
due to the fact that firms in our sample are observed only for 5 years.

5 Conclusion and discussion

This paper presents an empirical investigation of bankruptcy prediction using
the GLM, GLMM and GAM, in both the static- and hazard setting. Con-
struction of a proper default prediction model is of crucial importance to prac-
titioners. Potential applications include credit risk analysis, development of
investment guidelines and rating methodologies, among others.

We develop empirical bankruptcy prediction models for the limited liability
sector in Norway over the period 1996–2000 using annual balance sheet informa-
tion. Application of non-linear modeling techniques allow us to depict complex
relationships between the hazard rate of a firm at risk and its time-varying
covariates. The structure of the relationship is estimated using a GAM. The
final GLM (3) was constructed after a careful visual inspection of the plots
obtained in the exploratory data analysis. Further, the unobserved heterogene-
ity was taken into account by including a random industry-specific intercept
into the model. We utilized the AUC to compare models. While GLM and
GAM perform equally well, the GLMM is shown to have slightly higher ability
to anticipate problematic firms. Comparisons of models’ forecasting accuracy
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Prediction 1 year ahead

Prediction in 2000
Data used GLM GLM Mixed GAM

96, 97, 98, 99 0.899 0.901 0.900
97, 98, 99 0.899 0.901 0.901

98, 99 0.894 0.900 0.897
99 0.889 0.896 0.893

Prediction in 1999
Data used GLM GLM Mixed GAM
96, 97, 98 0.891 0.891 0.892

97, 98 0.890 0.891 0.892
98 0.891 0.891 0.893

Prediction in 1998
Data used GLM GLM Mixed GAM

96, 97 0.897 0.905 0.898
97 0.894 0.902 0.894

Prediction in 1997
Data used GLM GLM Mixed GAM

96 0.915 0.918 0.915

Prediction 2 years ahead

Prediction in 1999 and 2000
Data used GLM GLM Mixed GAM
96, 97, 98 0.894 0.895 0.894

97, 98 0.893 0.894 0.895
98 0.892 0.894 0.894

Prediction 3 years ahead

Prediction in 1998, 1999 and 2000
Data used GLM GLM Mixed GAM

96, 97 0.891 0.898 0.890
97 0.888 0.896 0.887

Prediction 4 years ahead

Prediction in 1997, 1998, 1999 and 2000
Data used GLM GLM Mixed GAM

96 0.896 0.903 0.895

Table 3: Area under the ROC curve for GLM, GLM mixed and GAM model.
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Model Static Hazard

Altman 0.816 0.830
GLM 0.897 0.899

GLM mixed 0.899 0.901
GAM 0.900 0.900

Table 4: Area under the ROC curve for model with Altman’s variables, GLM,
GLM mixed and GAM static and hazard model. All models are estimated using
the data from 1996 until 1999, and validated on the data from 2000.
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Figure 5: ROC (left) and CAP (right) curve of GLM model, GLM with ran-
dom effects, GAM model and model with Altman’s variables for 1-year default-
horizont out-of-time prediction (1996-1999 data used to fit the model, validation
on 2000 data).

were performed over different subsets of the complete sample. Utilization of the
hazard instead of static setting does not improve the models’ performance sub-
stantially, probably due to the fact that the maximal period at risk for firms in
our dataset is only 5 years. Additionally, the model with Altman’s variables was
reestimated in both the hazard and traditional static setup. The AUC for the
model with Altman’s variables was substantially lower then the corresponding
AUC of GLM, GLMM and GAM.

Future development of issues addressed in this paper may follow numerous
directions. Primarily, more refined pattern in industry-effects modeling can
be introduced by including information regarding the intra-industry groupings.
The assumption of independence among firms may possibly be relaxed in the
presence of empirical results presented in Lang and Stulz (1992), Das et al.
(2007), Duffie et al. (2006) and references therein. Finally, the appropriate
treatment of firms not reporting their balance sheet information, which were
excluded from our analysis, should be established.

15



Acknowledgements

The authors thank Associate Professor Sjur Westgaard at the Department of
Industrial Economy and Technology Management, Norwegian University of Sci-
ence and Technology, for providing the original data set on which the entire
work is based. Rada Dakovic and Claudia Czado acknowledge the support of
Deutsche Forschungsgemeinschaft (CZ 86/1-1). Daniel Berg’s research is sup-
ported by the Norwegian Research Council, grant number 154079/420.

16



References

Alfo, M., S. Caiazza, and G. Trovato (2005). Extending a Logistic Approach
to Risk Modeling through Semiparametric Mixing. Journal of Financial

Services Research 28, 163–176.

Altman, E. I. (1968). Financial Ratios, Discriminant Analysis and the Pre-
diction of Corporate Bankruptcy. Journal of Finance 23, 580–609.

Altman, E. I. and E. Hotchkiss (2005). Corporate Financial Distress and

Bankruptcy (Third ed.). John Willey & Sons, New York.

Altman, E. I. and P. Narayanan (1997). An International Survey of Business
Failure Classification Models. Financial Markets, Institutions & Instru-

ments 6 (2), 1–57.

Arjas, E. and P. Haara (1987). A logistic regression model for hazard: asymp-
totic results. Scandinavian Journal of Statistics 14 (1), 1–18.

Beaver, W. H. (1966). Financial Ratios as Predictors of Failure. Journal of

Accounting Research 5, 71–111.

Berg, D. (2007). Bankruptcy Prediction by Generalized Additive Models.
Applied Stochastic Models in Business and Industry 23 (2), 129–143.

Bernhardsen, E. (2001). A Model of Bankruptcy Prediction. Working paper.
Norges Bank.

Breslow, N. E. and D. G. Clayton (1993). Approximate inference in gener-
alized linear mixed models. Journal of the American Statistical Associa-

tion 88 (421), 9–25.

Chava, S. and R. A. Jarrow (2004). Bankruptcy Prediction with Industry
Effects. Review of Finance 8 (4), 537–569.

Das, S. R., D. Duffie, N. Kapadia, and L. Saita (2007). Common Filings: How
Corporate Defaults Are Correlated. Journal of Finance 62 (1), 93–117.

Duffie, D., A. Eckner, G. Horel, and L. Saita (2006). Frailty correlated default.
Working paper .

Duffie, D., L. Saita, and K. Wang (2007). Multi-period corporate default pre-
diction with stochastic covariates. Journal of Financial Economics 83 (3),
635–665.

Engelmann, B., E. Hayden, and D. Tasche (2003). Testing Rating Accuracy.
Risk 16 (1), 82–86.

Fahrmeir, L. and G. Tutz (2001). Multivariate Statistical Modelling Based on

Generalized Linear Models (Second ed.). Springer.

Falkenstein, E., A. Borat, and L. Carty (2000). Riskcalc For Private Compa-
nies: Moody’s Default Methodology. Moody’s Investors Service.

Haling, M. and E. Hayden (2006). Bank Failure Prediction: A 2-Step Ap-
proach. Working Paper. Oesterreichische Nationalbank and University of
Vienna.
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