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Abstract

The biofilm matrix, composed of exopolysaccharides, proteins, nucleic acids and lipids, plays a well-known role as a defence
structure, protecting bacteria from the host immune system and antimicrobial therapy. However, little is known about its
responsibility in the interaction of biofilm cells with host tissues. Staphylococcus aureus, a leading cause of biofilm-
associated chronic infections, is able to develop a biofilm built on a proteinaceous Bap-mediated matrix. Here, we used the
Bap protein as a model to investigate the role that components of the biofilm matrix play in the interaction of S. aureus with
host cells. The results show that Bap promotes the adhesion but prevents the entry of S. aureus into epithelial cells. A broad
analysis of potential interaction partners for Bap using ligand overlayer immunoblotting, immunoprecipitation with purified
Bap and pull down with intact bacteria, identified a direct binding between Bap and Gp96/GRP94/Hsp90 protein. The
interaction of Bap with Gp96 provokes a significant reduction in the capacity of S. aureus to invade epithelial cells by
interfering with the fibronectin binding protein invasion pathway. Consistent with these results, Bap deficient bacteria
displayed an enhanced capacity to invade mammary gland epithelial cells in a lactating mice mastitis model. Our
observations begin to elucidate the mechanisms by which components of the biofilm matrix can facilitate the colonization
of host tissues and the establishment of persistent infections.
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Introduction

Staphylococcus aureus is a regular commensal of the skin of animals

and human population and it persistently colonizes the anterior

nares of around 25% of human adults [1]. S. aureus is harmless in

these locations, but it turns into an extremely threatening

pathogen when it traverses the epithelial barrier and gains access

to internal tissues from where it can infect almost any organ and

cause a broad spectrum of infections including abscesses,

pneumonia, endocarditis, osteomyelitis, sepsis and infections

associated with foreign-body implants [2]. Once in the internal

tissue, S. aureus remains mainly extracellular, in the interstitial

space between the cells [3,4], where bacteria encounter cellular,

humoral and complement compounds of the host innate immune

system. To succeed in this environment, S. aureus produces a large

variety of virulence factors that mediate cell and tissue adhesion

(surface proteins), contribute to tissue damage and spreading

(proteases, coagulase, DNAse, lipases, toxins) and protect bacteria

against the host immune defense system (superantigens) [5,6]. In

some cases, S. aureus proliferates producing bacterial aggregates

that grow encased in a self-produced extracellular polymeric

matrix, known as a biofilm [7–11]. Based on the susceptibility of

the biofilm matrix to the disaggregation with glycoside hydrolases

(dispersin B), proteases or DNAse, it is recognized that the S. aureus

biofilm matrix can be made of exopolysaccharides, proteins and

DNA [12–17]. The exopolysaccharidic biofilm matrix is composed

of a polymer of poly-N-acetyl-b-(1–6)-glucosamine, termed poly-

saccharide intercellular adhesin (PIA) or poly-N-acetylglucosamine

(PNAG) [18–21]whereas the proteinaceous biofilm matrix can be

assembled with different surface proteins, namely Bap, FnBPs,

SasG and Protein A [16,17,22–26].

The first example of a surface protein able to induce biofilm

development was Bap. It is a large protein of 2,276-aminoacids

with a series of identical repeats of 86 amino acids that accounts

for more than half of the protein [22], and two canonical calcium

binding EF-hand motifs able to control Bap functionality in

response to the calcium present in the growth media [27]. The bap

gene in S. aureus was initially identified in a mobile pathogenicity

island (SaPIbov2) whose mobility depends on the activity of a self-

encoded recombinase protein [28]. So far, the bap gene has never

been found in S. aureus human isolates. However, a bap ortholog

gene is present in the core genome of several coagulase-negative

staphylococcal species that are frequent colonizers of human skin

[29].All the S. aureus strains harbouring the bap gene are strong
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biofilm producers and Bap-mediated biofilm formation process

occurs independently of the presence of the PIA/PNAG

exopolysaccharide [30].A particularly interesting issue concerning

this Bap assembled matrix is that functionally related proteins

homologous to Bap exist in many phylogenetically unrelated

bacteria including Enterococcus faecalis, Acinetobacter baumanii, Pseudo-

monas aeruginosa, Salmonella enteritidis, Lactobacillus reuteri, Bordetella

pertussis and Escherichia coli (for a review see [31]). All the Bap

homologous proteins show high molecular weight, contain a core

domain of repeats and promote bacterial aggregation and biofilm

development.

It is currently clear that matrix production and subsequent

biofilm formation is very often associated with the establishment of

persistent infections due to the highly resistant nature of the

embedded bacteria to both the host immune defences and the

antimicrobial therapy. In this respect, several studies have

demonstrated that the PIA/PNAG matrix aids S. aureus in the

evasion of host immune defences by protecting bacteria from

macrophage phagocytosis and attenuating host proinflammatory

responses [32–35].Furthermore, phenol-soluble modulins (PSMs)

surfactant peptides secreted to the biofilm matrix of S. aureus act as

biofilm structuring factors but also have multiple functions in

immune system evasion [35,36].

In addition to its protecting role, it is feasible to envision that the

biofilm matrix may mask important bacterial surface antigens, and

in this context, the interaction between bacteria inside the biofilm

and the host might rely on the specific binding of extracellular

matrix components to host cell receptors. Accordingly, various

studies have proposed a role of the Bap-mediated biofilm matrixes,

including BapA of S. Enteritidis, Esp of E. faecalis, Lsp of L. reuteri

and Bap of A. baumanii, in the adhesion to host cells [37–40]. With

regard to Bap of S. aureus, we have previously shown that the

presence of a Bap-mediated biofilm matrix interferes with the

binding of several S. aureus adhesins (fibronectin-binding protein

and clumping factor) to their targets (fibrinogen and fibronectin) in

host tissues [41]. Despite this masking effect caused by the Bap

matrix, S. aureus strains producing Bap display an enhanced

capacity to colonize and persist in the mammary gland

[30].However, the underlying molecular mechanisms of the

interaction between the Bap related proteins and eukaryotic cells

remain unknown.

In this study, we used the staphylococcal Bap mediated matrix

as a model to investigate the role that components of the biofilm

matrix play in the interaction with host cells. Our results revealed

that Bap enhances the adhesion but inhibits the entry of S. aureus

into the epithelial cells. We also identified a direct interaction

between Bap and the Gp96 chaperone protein from host cells.

Binding of Bap to Gp96 was responsible for the inhibition of

bacterial invasion into nonprofessional phagocytic cells by

interfering with the fibronectin-binding protein mediated inter-

nalization pathway. Overall, our results reveal new facets of the

roles that the biofilm matrix plays during the establishment of

persistent infections.

Results

Bap promotes adhesion but inhibits the entry of S. aureus
into epithelial cells
To analyze the involvement of the Bap matrix on the adherence

capacity of S. aureus, we tested the ability of S. aureus V329 strain and

Dbapmutant to adhere to two different cell lines, a bovine mammary

epithelial (MAC-T)and a human hepatocyte (Hep-3B) cell line. The

bacterial inoculum used in cell assays came from an overnight

culture in which S. aureusV329 strain aggregated at the bottom of the

tube and also formed a Bap-dependent biofilm adhered to the glass

wall, whereas Dbap mutant grew planktonically (data not shown).

The results revealed that the V329 strain adhered 4-fold more

efficiently (P,0.05) than the Dbap mutant to both cell lines

(Figure 1A). It is worth noting that Bap-negative bacteria also

showed a reduce capacity to adhere to a HEK293 cell line, despite

the fact that these differences passed unnoticed in a previous study of

our group [41].We then compared the adhesion of a natural bap-

negative strain, S. aureus Newman, and its isogenic derivative

containing a chromosomal copy of the bap gene (S. aureus New-

man_Bap) [27]. S. aureus Newman_Bap showed a5 times (P,0.05)

higher capacity to adhere to both MAC-T and Hep-3B cell lines

than its parental bap-deficient S. aureus Newman strain (Figure 1B).

These results indicated that the presence of Bap enhances the

capacity of S. aureus to bind to epithelial cells, but they did not answer

the question as to whether the Bap protein was sufficient to promote

adhesion. To elucidate this point, the Bap protein was expressed in a

heterologous surrogate bacterium, Enterococcus faecalis and its

adherence capacity was tested. E. faecalis producing the Bap protein

adhered significantly more efficiently to both MAC-T and Hep-3B

cell lines (P,0.05) than the corresponding wild type strain

(Figure 1B). Taken together, these results demonstrated that the

Bap protein confers the capacity to adhere to epithelial cells.

Next, taking into account that S. aureus strain V329 invaded

human embryonic kidney cells (HEK293)less efficiently than its

corresponding Bap-deficient strain [41],we decided to test whether

Bap could also block S. aureus entry in our cellular models, MAC-T

and Hep-3B cells. Quantification of intracellular bacteria, after

invasion assays with S. aureus V329 and Dbap revealed that S. aureus

Dbap, despite its deficiency in the adhesion capacity to epithelial

cells, was able to invade more efficiently MAC-T and Hep-3B cells

than the wild type strain(Figure 1C). To ensure that inhibition of S.

aureus entry was due to the presence of Bap rather than to the

presence of a biofilm matrix, we compared the invasion capacity of

S. aureus V329 and Dbap strains complemented with a plasmid

carrying the icaADBC operon (pSC18) as well as S. aureus ISP479r,

a strain that constitutively produces large amounts of PIA/PNAG

exopolysaccharide, and its isogenic Dica mutant. The results

Author Summary

Staphylococcus aureus is a pathogen responsible for a wide
variety of infections, some of which become chronic due
to the capacity of this bacteria to form multicellular
communities that grow embedded in a self-produced
extracellular matrix, referred to as biofilms. Numerous
evidences have demonstrated that growing in the biofilm
protects bacteria from the immune system and antimicro-
bial treatments. However, less attention has been paid to
the role that the biofilm extracellular matrix plays in the
interaction with host cells. Here, we investigate this issue
through the use of the proteinaceous biofilm matrix
assembled by the Bap protein as a model. Our results show
that the Bap biofilm matrix triggers the adhesion to
epithelial cells. After adhesion, Bap binds directly to the
host receptor Gp96 and this interaction inhibits the entry
of the bacteria into the cells by interfering with the
fibronectin-binding protein mediated invasion pathway.
As a result, the expression of Bap decreased cell invasion
and increased bacterial persistence in lactating mice
mammary glands. Thus, our findings revealed a dual role
for the Bap-dependent biofilm matrix during the estab-
lishment of persistent infections, promoting adhesion of S.
aureus to epithelial cells and impairing host cell invasion.

Bap Biofilm Matrix Inhibits Host Cell Invasion
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showed that the presence of the PIA/PNAG matrix does not have

any effect on the capacity of bacteria to invade epithelial cells

(Supplementary Figure S1).

Taken together, these results showed that the Bap-mediated

matrix promotes bacterial adhesion to epithelial cells, and on the

other hand, interferes with S. aureus cell entry.

Identification of Gp96 as the ligand for Bap
We then aimed to identify putative host cell receptors

interacting with Bap by means of a ligand overlay approach.

MAC-T and Hep-3B total cell extracts were separated by SDS-

polyacrylamide gel electrophoresis, transferred onto a nitrocellu-

lose membrane and incubated in the presence of purified

recombinant Bap protein containing a 6xHistidine tag replacing

the LPXTG motif. Then, proteins that bound specifically to Bap

were detected by probing the membrane with an anti-Bap serum.

A Coomassie blue stained gel of the total membrane protein

profile of each strain is shown for reference (Figure 2A). We

focused on Bap-reactive bands that were present in both cell

extracts and absent when the membranes were not incubated

with the Bap protein (Figure 2B). A prominent band in the range

of ,100 kDa was apparent in both MAC-T and Hep-3B cell

extracts. To exclude that the 6xhistidine tag present in the

recombinant Bap protein could be responsible for the interaction

with the eukaryotic protein, we performed a similar ligand

overlayer assay using the unrelated6xHis tagged dispersin

protein. As expected, no specific bands reacting with the cell

extracts were detected when this protein was used as a bait (data

not shown).

To determine the identity of the ,100 kDa Bap binding

protein, the region corresponding to the location of the ,100 kDa

band was excised from a parallel Coomassie stained gel and this

sample was subject to trypsin digestion and MALDI-TOF analysis

followed by peptide mass fingerprinting that was compared with

the human proteome. The results showed that the protein band

corresponded to the endoplasmic reticulum chaperone Gp96

(GRP94), a member of the Hsp90 family of molecular chaperones

[42,43].

Gp96 is expressed at the cell surface of MAC-T and Hep-
3B cells
Although Gp96 is recognized as an endoplasmic reticulum

chaperon for Toll-like receptors [44], numerous evidences indicate

that it is also expressed on the plasma membrane of different cell

types [45–55].Thus, we decided to analyze whether Gp96 protein

is expressed at the cell surface of MAC-T and Hep-3B cells. As a

negative control, we also included in the assay two cell lines (Vero

and GPC-16) that have been previously shown to poorly express

extracellular Gp96 [52]. Firstly, we confirmed the expression of

Gp96 in whole MAC-T and Hep-3B cell extracts by immuno-

blotting using anti-Gp96 antibodies (data not shown). Secondly,

we investigated if Gp96 was localized in the plasma membrane of

MAC-T and Hep-3B cells, by means of labelling surface exposed

proteins of intact cells using the membrane-impermeable biotiny-

lation reagent sulpho-N-hydroxysuccinimide (NHS) biotin (Pierce).

After harvesting the cells, the biotinylated proteins were purified

on streptavidine-beads. Upon reduction, the biotinylated proteins

were released from the beads and analyzed by western-blot using

anti-Gp96 antibodies. The results revealed the presence of Gp96

in the biotinylated protein fraction of MAC-T and Hep-3B cells.

Accordingly, a faint band was detected in Vero and GPC-16 cells.

In addition, to verify that membrane impermeability was not

disrupted during the assay and exclude that cytoplasmic Gp96

could be labeled during the experiment, the biotinylated protein

fractions were interrogated using anti-a-catenin antibodies. The

absence of a-catenin, an abundant protein in the cytoplasm,

confirmed that the biotinylated fraction did not contain cytoplas-

mic proteins (Figure 3A).

Lastly, we used immunofluorescence staining to localize Gp96

distribution at the cell surface. Nonpermeabilised MAC-T, Hep-

3B, Vero and GPC-16 cells were incubated with polyclonal anti-

Figure 1. A) Effect of Bap expression in S. aureus adherence to
epithelial cells. Adhesion of S. aureus V329 wild type (Wt) and Dbap
mutant to the bovine mammary gland epithelial cells MAC-T and to
human hepathocytes Hep-3B. B) Adhesion of S. aureus Newman wild
type (Wt), S. aureus Newman expressing Bap (Bap+), E. faecalis 23 wild
type (Wt) and E. faecalis expressing Bap (Bap+) to MAC-T and Hep-3B
epithelial cells. After 1 h of infection, cells were lysed and cell extracts
were vigorously vortexed for 2 min. Bacterial adhesion was measured
by CFU counts. Increase in adhesion was statistically significant (p
value,0,05) in all comparisons shown. C)Effect of Bap expression in S.
aureus entry into MAC-T and Hep-3B epithelial cells. Bacterial invasion
was measured by CFU count after gentamicin assay. Experiments were
performed in triplicate and repeated four times for each cell line.
doi:10.1371/journal.ppat.1002843.g001

Bap Biofilm Matrix Inhibits Host Cell Invasion
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Gp96 followed by incubation with a secondary antibody conjugated

with Alexa-488. Then, cells were permeabilized and F-actin was

labelled with Alexa-Fluor 647-phalloidin. In agreement with

previous results, Gp96 was clearly detected at the cell surface of

nonpermeabilized MAC-T and Hep-3B cells whereas it was absent

from the cell surface of GPC-16 and Vero cells (Figure 3B).

Figure 2. Identification of Gp96 as a Bap cellular receptor by a ligand overlayer assay. A) Total protein extracts from MAC-T and Hep-3B
cells were separated on a SDS gel, transferred to a nitrocellulose membrane by western-blotting and probed with/without pure Bap protein (50 mg/
ml). B) Bound Bap protein was detected with polyclonal anti-Bap antibodies (a-Bap). A ,100 kDa band reacting with anti-Bap antibodies is shown by
the arrow. This protein was identified by MALDI-TOF analysis of the comigrating band on a Coomasie blue stained gel as Gp96.
doi:10.1371/journal.ppat.1002843.g002

Figure 3. Gp96 is expressed at the cell surface of MAC-T and Hep-3B cells. A) Western-blot analysis of Gp96 expressed at the cell surface.
Surface exposed proteins (SF-extract) of MAC-T, Hep-3B, Vero and GPC-16 cells were labeled with sulpho-N-hydroxysuccinimide (NHS) biotin and
purified using streptavid in columns. Captured proteins were separated in 10% SDS gel, transferred onto a nitrocellulose membrane and probed with
anti-Gp96. To control membrane impermeability, a-catenin was detected from the surface proteins (SF-extract) using anti-a-catenin antibodies,
whose specificity was verified using total cell extracts (T-extract). B) Cellular localization of Gp96. The cellular distribution of Gp96 was analyzed by
immunofluorescence using nonpermeabilized MAC-T, Hep-3B, Vero and GPC-16 cells labelled with anti-Gp96 (Gp96 ex.), phalloidin (actin) and DAPI.
doi:10.1371/journal.ppat.1002843.g003

Bap Biofilm Matrix Inhibits Host Cell Invasion
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Gp96 is a ligand for Bap on intact S. aureus
One caution of the ligand overlay assay is that proteins

presented in non-native conformations may interact in artificial

ways with a ligand and lead to the detection of ‘‘false positive’’

interactions. Several lines of evidences were used to indepen-

dently verify that Gp96 is a ligand of Bap. First, we assessed the

interaction of purified Bap with recombinant Gp96 by coimmu-

noprecipitation using anti-Bap polyclonal antibodies, and as a

result, we found a band corresponding to Gp96 after immuno-

precipitation of the complex (Figure 4A). Second, we analyzed

the binding of Gp96 to live, intact S. aureus bacteria. For that, S.

aureusV329 (Bap+) and it isogenic S. aureus Dbap mutant were

incubated with recombinant Gp96 protein. Binding of Gp96 to S.

aureus was detected by western-blot using monoclonalanti-Gp96

antibodies. As shown in figure 4B, the presence of Gp96 was only

detected in cell extracts of S. aureus producing Bap. These results

confirmed that Gp96 serves as a ligand for native Bap in intact

bacteria. Third, the specificity of the Gp96binding to Bap was

further validated by the ability of polyclonal anti-Bap antibodies

to block the binding of Gp96 to Bap producing bacteria

(Figure 4B).Fourth, as Bap homologues have been identified in

several staphylococcal species including S. epidermidis, S.chromogenes

and S. hyicus [29], we investigated whether Bap homologous

proteins were also able to interact with Gp96. For that, live intact

S. epidermidis C533, S. hyicus 12and S. chromogenes C483 bacteria

were incubated with recombinant Gp96 protein and binding of

Gp96 was detected by western-blot using anti-Gp96. As shown in

Figure 4C, all the coagulase negative staphylococcal strains

producing Bap proteins were capable of pulling down Gp96

indicating that all Bap homologous proteins produced by

different coagulase negative staphylococcal species interact with

Gp96.

Bap mediated adhesion to epithelial cells is independent
of the presence of Gp96
To investigate whether the interaction of Bap with Gp96 was

responsible for the Bap-mediated adhesion of S. aureus to

epithelial cells, we measured the adhesion of S. aureus to Hep-

3B cells after knocking down the Gp96 message by siRNA. The

efficiency of Gp96 down regulation was determined by densi-

tometry of Gp96 immunoblots using anti-Gp96 antibodies. As is

shown in figure 5A, transfection of Gp96 specific siRNA duplexes

consistently resulted in a 90% reduction in Gp96 protein levels

compared to the nontransfected cells or to the cells transfected

with control siRNA. The specific silencing of Gp96 expression

was further confirmed by the lack of effect of Gp96 siRNA on the

fibronectin protein. However, inhibition of Gp96 expression had

no significant effect on the adhesion of Bap producing bacteria,

suggesting that Gp96 was not required for Bap-mediated

adhesion (Figure 5B).Additional evidence that Gp96 was not

required for S. aureus adhesion to epithelial cells was obtained by

assessing the adhesion of S. aureus V329 and Dbap to the Gp96

deficient cell lines, Vero and GPC-16. The results revealed that

the V329 strain still adhered significantly more efficiently

(P,0.05) than the Dbap mutant to both cell lines, indicating that

the interaction of Bap with Gp96 was not required for the Bap-

mediated adhesion to epithelial cells (Figure 5C).

Bap and Gp96 interaction inhibits the entry of S. aureus
into epithelial cells
We next examined a plausible role of the interaction of Bap

with Gp96 in the invasion of S. aureus into epithelial cells. For that,

we first determined the entry of S. aureus V329 and Dbap to the

Gp96 deficient cell lines, Vero and GPC-16. The results showed

no significant differences between bacteria expressing Bap and the

Dbap mutant (Figure 6A), suggesting that the presence of Gp96 on

the cell membrane is necessary for Bap-mediated inhibition of

cell invasion. To confirm this, we carried out invasion assays on

Vero cells producing Gp96 from a pcDNA3 vector containing

gp96 cDNA [56] (Figure 6B).The presence of Gp96 signifi-

cantly reduced (P,0.05) the capacity of S. aureus V329 (Bap+) to

invade the cells whereas it did not have any significant effect on

the entry of Dbap deficient bacteria(Figure 6C).These results

Figure 4. Bap binds the cellular receptor Gp96. A) For the co-
immunoprecipitation (Co-IP) recombinant Gp96 was incubated with
purified Bap protein and immunoprecipitated with anti-Bap and protein
G sepharose beads. In the control assay, the incubation step with Bap or
Gp96 was omitted. Immunoprecipitated proteins were separated in
10% SDS gel, transferred onto a nitrocellulose membrane and probed
with anti-Gp96 (a-Gp96) or anti-Bap (a-Bap). B) Recombinant Gp96
binds to S. aureus expressing Bap. Bacteria expressing Bap (V329) and
the Bap deleted mutant (Dbap) were subcultured with 5 mg/ml of
recombinant Gp96 in the absence or presence of anti-Bap serum as
indicated. Unbound Gp96 was removed by extensive washing and
Gp96 bound to bacteria was detected using immunoblot analysis. C)
Bap proteins of coagulase negative staphylococci(S. epidermidis C533, S.
hyicus 12, S. chromogenes C483) bind Bap. Bacteria were subcultured
with 5 mg/ml of recombinant Gp96. Unbound Gp96 was removed by
extensive washing and Gp96 bound to bacteria was detected using
immunoblot analysis (upper part). Bap expression in S. epidermidis
C533, S. hyicus 12, S. chromogenes C483 by immunoblot using
polyclonal anti-Bap (a-Bap) serum (lower part).
doi:10.1371/journal.ppat.1002843.g004

Bap Biofilm Matrix Inhibits Host Cell Invasion
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confirmed that it is the interaction of Bap with Gp96 and not

the fact that Bap producing bacteria are merely coated in a

matrix, which reduces the capacity of S. aureus to invade

epithelial cells. Finally, we determined the entry of S. aureus in

Hep-3B cells after knocking down the expression of Gp96 by

siRNA (Figure 6D). The number of intracellular S. aureus V329

increased significantly (P,0.05) when the expression of Gp96

was inhibited(Figure 6E). Taken together, these results indicate

that the interaction of Bap with Gp96 inhibits the entry of S.

aureus into epithelial cells.

Bap-Gp96 interaction interferes with FnBPs mediated
entry of S. aureus in epithelial cells
We next investigated the mechanisms by which the Bap-Gp96

interaction was inhibiting the entry of S. aureus into the host cell.

To this end, we first analyzed whether Bap-Gp96 interaction was

affecting the signaling pathway downstream Gp96.For that, we

blocked Gp96activityand therefore the downstream signaling

pathway by incubating the cells overnight in the presence of 17-

AAG (17-(Allylamino)-17-demethoxydeldanamycin), which binds

with high affinity into the ATP binding pocket of Gp96. The

results revealed that the presence of 17-AAG (1 mM) did not affect

S. aureusV329 entry (Figure 7A). To confirm these results and also

to rule out the possibility of an indirect effect of the Gp96 absence

on the expression of other Bap receptors we transcomplemented

Gp96 deficient cells with purified soluble Gp96 and analyzed the

infection rates of S. aureus V329 and Dbap. Addition of soluble

Gp96 prior to infection significantly reduced the entry of S. aureus

V329 into Vero cells and this reduction was even higher when

bacteria were preincubated with recombinant Gp96 before

infection (Figure 7B). In contrast, the entry of the Bap deficient

strain was not affected by the preincubation with Gp96 (Figure 7B).

Together, these results indicate that the inhibition of S. aureus entry

caused by Bap-Gp96 interaction is neither due to an interference

with the Gp96 signaling pathway nor to a blockage of Bap binding

to other cell receptors.

In cell culture models, invasion of non-professional phagocytic

cells by S. aureus depends on the presence of FnBPs on the

bacterial surface, and fibronectin and integrins on the host cell.

FnBPs are important not only for adhesion but also for activating

host-cell cytoskeletal remodeling via integrin-coupled signaling

[57–63].We thus investigated the hypothesis that Bap-Gp96

interaction might be somehow interfering with the FnBPs-

mediated invasion process. To this end, we deleted both fnbA

and fnbB genes(Dfnb) in both S. aureus V329 and in the Dbap

mutant. As shown in figure 7C, the wild type strain and its

mutant in fnbAB showed a similar infection rate, whilst deletion of

FnBPs counteracted the increased invasion capacity shown by the

S. aureus V329 Dbap. To further explore this question, we made

use of S. aureus Newman strain that is deficient in the production

of FnBPs [64] and consequently presents a very low invasion rate.

As expected, complementation of this strain with plasmid

pFNBA4 that expresses the fnbA gene significantly enhanced its

entry capacity into MAC-T cells. Notably, when the bap gene was

expressed from the chromosome of this fnbA complemented

strain, the invasion rate decreased significantly (Figure 7D). To

confirm the requirement of Gp96 in the masking effect on FnBPs-

mediated internalization process activity, similar experiments

were carried out in Vero cells transfected with pcDNA3gp96.A-

gain,reductionof FnBPs-mediated invasion of Bap producing

bacteria only occurred when Vero cells were producing Gp96

(Figure S2). Taken together, these results suggest that Bap-Gp96

interaction interferes with FnBPs-mediated entry of S. aureus in

epithelial cells.

A shorter allele of Bap exhibits a low capacity to inhibit
FnBPs-mediated bacterial invasion
As Bap is a large protein of 2276-amino-acid we wondered

whether the interaction of Bap with Gp96 could act as a steric

hindrance, limiting the accessibility of FnBPs to its target,

fibronectin, and in consequence minimizing cell entry. To further

assess this hypothesis we constructed a S. aureus strain that

produces a recombinant short Bap protein, containing a single

repetition (DrepBap), and leading to a Bap derivative about half

Figure 5. Bap mediated adhesion is independent of Gp96. A)
Hep-3B cells were transfected with control (siRNA-Ct), silencer gp96
(siRNA-gp96) or nontransfected (w) for 18 h. Gp96 expression was
analyzed by western-blot using anti-Gp96 antibodies (a-Gp96) followed
by signal quantification with ImageJ software. Right panel shows the
levels of fibronectin expression of transfected cells. Adhesion of S.
aureus V329 wild type (Wt) and Bap deficient strain (Dbap) on Hep-3B
cells transfected with control (siRNA-Ct) or silencer gp96 (siRNA-gp96)
(B) or to Vero and GPC-16 cells that do not express Gp96 at the cell
surface (C). After 1 h of infection, cells were lysed and cell extracts were
vigorously vortexed for 2 min. Bacterial adhesion was measured by CFU
counts. Error bars represent the standard deviation of at least 3
independent experiments.
doi:10.1371/journal.ppat.1002843.g005
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the size of the wild type protein (Figure 8A). Western-blot analysis

using anti-Bap antibodies confirmed that S. aureus DrepBap strain

produced similar levels of the short Bap protein compared to

wildtype strain (Figure 8B). Moreover, the biofilm formed by S.

aureus DrepBap strain was indistinguishable from that produced by

V329 strain indicating that the short Bap variant is functional

(Figure 8 C).

Then, we investigated whether DrepBap still retained the

capacity to interact with Gp96 using the pull-down assay. As

shown in figure 8D, Gp96 was pulled down by intact cells

producing DrepBap as efficiently as bacteria producing wildtype

Bap, indicating that a Bap allele containing a single repetition can

interact with Gp96. S. aureus DrepBap strain was then tested for its

ability to invade epithelial cells. The efficiency of entry of S. aureus

producing a DrepBap-mediated biofilm matrix was significantly

higher than that of wildtype bacteria and very similar to that of the

Bap deficient strain (P,0.05) (Figure 8E). Together these data

indicate that a short version of Bap, although still able to interact

with Gp96, is unable to block the infection capacity of wild type

bacteria, and thus support the hypothesis that the interaction of

Bap with Gp96 might cause a stearic impediment that interferes

with the FnBPs binding to fibronectin.

Figure 6. Bap-Gp96 interaction reduces the entry of S. aureus to epithelial cells. A) Invasion of S. aureus V329 wild type (Wt) and Bap
deficient strain (Dbap) into naturally Gp96-depleted Vero and GPC-16cells. Bacterial invasion was measured by CFU count after 2 h of gentamicin
treatment. Experiments were repeated in triplicate four times for each cell line. B) Vero cells were transfected with the pcDNA3 vector containing
gp96 DNA. Expression of Gp96 was determined by western-blot analysis of cell surface proteins. Surface exposed proteins were labelled with sulpho-
N-hydroxysuccinimide (NHS) biotin and purified using streptavidin columns. Captured proteins were separated in 10% SDS gel, transferred onto a
nitrocellulose membrane and probed with anti-Gp96 (a-Gp96) serum. C) Entry of S. aureus V329 wild type and Dbap mutant to Vero nontransfected
cells (w) and transfected with pcDNA3gp96 was analyzed by gentamicin assay. Bacteria entry was measured by CFU count after 2 h of gentamicin
treatment. D) Silencing Gp96 increases S. aureus V329 invasion. Hep-3B cells were transfected with 25 nM of control siRNA (siRNA-Ct), gp96 siRNA
(siRNA-gp96) or nontransfected (w). Gp96 expression was analyzed by western-blot using anti-Gp96 antibodies (a-Gp96) followed by signal
quantification with imageJ software. Right panel shows the levels of fibronectin expression of transfected cells. E) Hep-3B cells transfected with
control siRNA-Ct and siRNA-gp96 were examined for invasion of S. aureus V329 and Bap deficient strain (Dbap). Bacterial invasion was measured by
CFU count after gentamicin assay. Error bars represent the standard deviation of at least 3 independent experiments.
doi:10.1371/journal.ppat.1002843.g006
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Bap hinders S. aureus mammary gland invasion in a
lactating mouse mastitis model
To investigate the relevance of the Bap-dependent biofilm

matrix in the prevention of in vivo host cell invasion we used a

lactating mouse mastitis model. We first confirmed that Gp96 is

expressed in mammary glands of lactating mice by western-blot

using anti-Gp96 antibodies (Figure 9A). Two mammary glands (L4

and R4) of a group of 7 lactating mice were inoculated with a

bacterial solution containing 106 CFU of S. aureus V329 (Bap+)

and bap::tet strains. After 18 h post-infection mammary glands

were treated 3 h with a solution of PBS containing gentamicin to

remove all the extracellular bacteria. Then, the mammary glands

were removed aseptically, homogenized and several dilutions were

plated on selective agar. To evaluate the invasion capacity of each

strain we used the competition index method. As a previous

control, we first verified that the invasion differences detected in-

vitro between the wild-type and the bap-deficient strain were

maintained when both strains were used to co-infected MAC-T

cells (Figure S3).In agreement with in vitro assays, wild type

bacteria producing Bap showed a significantly lower capacity to

invade the mammary gland cells compared with Bap deficient

bacteria (Figure 9B). Next, the experiment was repeated compar-

ing the in vivo invasion capacity of Bap deficient bacteria and the

strain expressing a short Bap derivative. These two strains showed

a very similar capacity to invade mammary gland cells (Figure 9B).

These results again confirmed in vitro results showing that the entry

efficiency of S. aureus producing a DrepBap-mediated biofilm

matrix is equal to that of the Bap deficient strain. Together, these

results strongly suggest that full-size Bap acts as anti-invasion

factor of the mammary gland in vivo.

Discussion

Biofilm formation is recognized as causing or exacerbating

several S. aureus chronic infections such as osteomyelitis, endocar-

ditis and device related infections. The molecular mechanisms

Figure 7. The expression of Bap minimized S. aureus cell entry by interfering with the FnBPs. A) Evaluation of the effect of 17-AAG on the
invasion phenotype mediated by Bap. MAC-T cells were treated overnight with 1 mmol/l of 17-AAG, an inhibitor of HSP90. Invasion assays were then
carried out with either S. aureus V329 and Dbap strain. Internalized bacteria were determined by CFU count after gentamicin assay. B)
Transcomplementation of Vero cells with Gp96. Invasion assay with S. aureus V329 and Dbap was performed in Vero cells (w), in Vero cells incubated
with 10 mg/ml of recombinant Gp96 for 30 min before infection (Cells+Gp96) or with bacteria pre-incubated with 5 mg/ml of recombinant Gp96
(Bacteria+Gp96). C)Inhibition of bacterial invasion mediated by Bap requires the FnBPs. Invasion of S. aureus V329 wild type (Wt), a mutant in FnBPs
(Dfnb), Dbap and double mutant DfnbDbap. After 1 h infection invasion values were calculated as the number of bacteria that survived to 2 h of
gentamicin treatment in MAC-T cells.(D) MAC-T cells invasion with S. aureus Newman (Nw) and Newman_Bap complemented with plasmid pFNBA4
that expresses the fnbA gene. Experiments were performed in triplicate and repeated three times.
doi:10.1371/journal.ppat.1002843.g007
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underlying the persistence of biofilm infections have been mainly

associated with the protection barrier that the biofilm matrix

provides against the host immune response and the antibiotic

treatments to the embedded bacteria. For example, exopolysac-

charidic PIA/PNAG biofilm matrix protects S. aureus from

phagocytosis by polymorphic neutrophils and from antibodies

mediated opsonisation and retards the rate of antibiotic penetra-

tion enough to induce the expression of genes that mediate

resistance [32,65–67].

With the aim to identify new functions for the biofilm matrix

that may facilitate the development of persistent infections, we

have investigated the role of the proteinaceous Bap-mediated

biofilm matrix in the interaction with host cells. Our results

provide evidences that the Bap biofilm matrix promotes the

adhesion of S. aureus to different types of epithelial cells. For this

function, Bap does not require the participation of any other

staphylococcal factors, because production of Bap in E. faecalis is

sufficient to bestow the capacity to adhere to epithelial cells.

Screening for the specific molecular target on the epithelial cells

using a ligand immunoblot overlay approach revealed that Bap

binds to Gp96, also known as GRP94 or endoplasmin, which is a

major chaperon of the lumen of the endoplasmic reticulum (ER)

[42,43,68]. We initially received this result with caution because,

using the same approach, Gp96 had been previously identified as

the ligand for Vip, a surface protein of Listeria monocytogenes without

homology with Bap [52]. To exclude that Bap might be

interacting with Gp96 in an artificial way, confirmatory pull

down studies were carried out. The results revealed that (i)

recombinant Gp96 was pulled down with native Bap protein

anchored to the cell wall of intact bacteria; (ii) recombinant Gp96

was pulled down with soluble Bap and anti-Bap antibodies; and

(iii)anti-Bap antibodies were able to inhibit the interaction between

Bap and Gp96. Another caution about Gp96 being the ligand for

Bap was that Gp96 was initially described as an endoplasmic

reticulum (ER) protein based on the presence of the KDEL motif

in the carboxy-terminal domain of the protein [47,69,70].

However, in agreement with other studies [45–50,52,54,55], we

have found that Gp96 is not restricted to the ER and is also

present on the surface of some epithelial cell lines (Hep-3B and

MAC-T).

Figure 8. Effect of Bap repetitions in Gp96 interaction and cell invasion. A) Structural organization of Bap with or without repetitions. SP,
signal peptide; A, region A; B, region B; C, repetition region; D, region of serine-aspartate (SD) repeats; MA cell wall anchor. B) Western-blot analysis
with anti-Bap (a-Bap) serum of surface protein preparations obtained under isosmotic conditions from S. aureus V329 (Bap+), Dbap and DrepBap
(truncated Bap). C) Biofilm phenotypes of S. aureus V329, Dbap and DrepBap. Congo red morphology on congo red agar plates and biofilm formation
in microtiter plates. D) Interaction of Bap-truncated protein with Gp96. S. aureus V329 (Bap+), Dbap and DrepBap strains were subcultured with 5 mg/
ml of recombinant Gp96. Unbound Gp96 was removed by extensive washing and Gp96 bound to bacteria was detected using immunoblot analysis.
E) Entry of S. aureus V329, Dbap and DrepBap strains was analyzed by gentamicin assay in MAC-T and Hep-3B cells. Experiments were performed in
triplicate and repeated three times for each cell line.
doi:10.1371/journal.ppat.1002843.g008
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Given that Bap was interacting with Gp96 and promoting

adherence to epithelial cells, we hypothesized that binding of Bap

to Gp96 might be responsible for the enhanced adherence of Bap

producing bacteria to the surface of the epithelial cells. In contrast

to our assumption, we found that depletion of Gp96 expression by

siRNA in Hep-3B cells did not reduce the adhesion capacity of

Bap positive bacteria. Furthermore, bacteria producing Bap also

displayed a higher capacity to adhere to cells that do not produce

Gp96 than Bap deficient bacteria, indicating that Bap was

interacting with another factor, different from Gp96, to promote

the adhesion to the epithelial cells. These results raised the

question as to why this receptor was not identified with the ligand

overlay experiment. At least two reasons can be envisioned to

explain this failure. Either the ligand is not a protein and/or Bap

might recognize its ligand only in its native folded structure.

Further experiments will be needed to identify this additional

cellular ligand.

On the other hand, we have shown that the interaction of Bap

with Gp96 inhibits bacterial entry into epithelial cells. Several

results support this conclusion: (i) Bap deficient bacteria showed

higher levels of invasion than the corresponding wildtype strain in

cells producing Gp96; (ii) the invasion differences between Bap

positive and negative strains disappeared when invasion was tested

inGp96 negative cells; (iii) the entry of Bap positive bacteria

decreased in cells overproducing Gp96 and increased in cells

depleted of Gp96 by the expression of siRNA; (iv) preincubation of

cells or bacteria with soluble Gp96 inhibited the S. aureus entry into

the cells. These former results also indicate that Bap does not need

to interact with membrane anchored Gp96 to inhibit bacterial

entry. How does the interaction between Bap and Gp96 interfere

with S. aureus invasion? We initially explored the possibility that the

binding of Bap with Gp96 might interfere with the signaling

pathway downstream Gp96. Against this hypothesis, we have

shown that treatment of MAC-T and Hep-3B cell with 17-AAG, a

drug that affects the signaling pathway regulated by Gp96, does

not affect the invasion levels of Bap producing bacteria.

Furthermore, incubation of Vero cells with soluble Gp96, which

is not linked with the cytoplasmic partners, still reduced the

capacity of S. aureus to invade the cells. Alternatively, the

interaction of Bap with Gp96 could be directly interfering with

the recognition of another host ligand. The main known

mechanism of S. aureus invasion into the host cell is mediated by

the bacterial fibronectin binding proteins, FnBPA and FnBPB and

host cell fibronectin anda5b1 integrins [57–63].Our results suggest

that the interaction of Bap with Gp96 interferes with the FnBPs-

fibronectin-integrin invasion pathway because deletion of FnBP

proteins counteracted the increased invasion rates of Bap deficient

bacteria. In addition, overexpression of FnBPs restored the

invasion capacity of Bap negative bacteria but did not change

the decreased invasion capacity of Bap producing bacteria. It is

worth noting that the interference of the FnBPs invasion pathway

depends on the length of Bap, because a short but still functional

allele of Bap displayed a significantly lower efficiency than the full-

length protein to inhibit bacterial entry.

Gp96 has been reported to be the ligand for various bacterial

surface proteins, though the consequences of this interaction seem

to be different depending on the bacteria [52,53,55,56,71–73].

The bacterial Outer membrane protein A (OmpA) of Escherichia

coli interacts with Ecgp96, an homolog of Gp96 that is highly

expressed in brain microvascular endothelial cells during menin-

gitis infection, and induces bacterial invasion [56,71,72]. Also,

Cabanes et al. [52]identified that the interaction of Vip with Gp96

promotes Listeria monocytogenes invasion of the cell. Gp96 has also

been described to interact with other bacterial products such as the

exotoxin A (TxA) of Clostridium difficile [74]and the outer

membrane vesicles (OMVs) produced by adherent-invasive E. coli

(AIEC) promoting bacterial invasion [55]. In contrast, the

interaction of the outer membrane porin PorBIA of Neisseria

gonorrhoeae with Gp96 inhibits bacterial invasion [53]. Moreover,

the interaction of Hsp90 (a chaperone homolog to Gp96) with the

trimeric surface protein NadA also interferes with bacterial

adhesion and invasion [73]. It is worth noting that OmpA, Vip,

PorB and NadA do not show any homology with Bap that would

explain the interaction with the same ligand. One may speculate

that Gp96 is able to bind unspecifically to these bacterial proteins

due to its chaperone structure. However, pull down and ligand

overlay assays with bacteria producing two other members of the

Bap family (Esp protein of Enterococcus faecalis and BapA from

Salmonella Enteritidis) or an unrelated bacterial protein (dispersin)-

did not show any interaction with Gp96 (data not shown),

excluding the hypothesis that Gp96 can interact with any bacterial

protein. Also, these results indicate that not all the members of the

Bap family can interact with Gp96 protein.

The presence of Bapin S. aureus is specifically enriched, by yet

unknown reasons, in mastitis-derived isolates where Bap facilitates

the persistence of the bacteria in lactating ewes mammary glands

[30]. Bap homologous proteins are also encoded in different

coagulase negative staphylococcal species associated with chronic

mastitis infections [75–77].Gp96 is expressed in the bovine

mammary glands during the lactating period (Figure 9A) and its

Figure 9. Effect of Bap expression in S. aureus invasion into
mammary glands using a murine mastitis model. A) Gp96
expression in mammary glands L4 and R4. Glands were homogenized
and proteins were resolved by 10% SDS-polyacrylamide gels. Gp96 was
detected using anti-Gp96 antibodies. B) Competition indexes of Dbap-
Wt and Dbap-DrepBap. Mice mammary glands were coinfected with
equal numbers of the strains tested. After 18 h post-infection mammary
glands were treated (intra-mammary administration) with PBS with
gentamicin for 3 h. Bacterial counts (CFU) were obtained from each
mammary gland. Competition indexes were calculated and statistical
differences were determined with a t-test. Horizontal bars represent the
means of the competition indexes. Asterisks indicate that competition
indexes are significantly greater than one (**, P,0.01 [very significant]).
ns, non significant differences.
doi:10.1371/journal.ppat.1002843.g009
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presence in the milk has been suggested to be a host defense

mechanism [78]. In the present study, we have found a connection

between these two findings using a lactating mice infection model,

where the Bap expression had a profound impact on the capacity

of the bacteria to adhere and invade the mammary gland epithelial

cells. Overall, our results support the view that Bap mediated

biofilm development facilitates the formation of bacterial aggre-

gates that survive attached to the epithelial cells of the mammary

gland by impairing the bacterial internalization through the

interaction with Gp96. In this situation, the Bap biofilm matrix

promotes the establishment of long-term persistent infections and

mediates immune evasion by masking surface antigens. Whether

the proteinaceous Bap-dependent biofilm matrix of different

bacterial species is playing a similar role in the interaction with

the host cells is worthy of further exploration.

Materials and Methods

Ethics statement
All animal studies were reviewed and approved by the ‘‘Comité

de Etica, Experimentación Animal y Bioseguridad’’ of the

Universidad Pública de Navarra (approved protocol PI-6/10).

Work was carried out at the Centro de Agrobiotecnologı́a building

(Idab) under the principles and guidelines described in the

‘‘European Directive 86/609/EEC’’ for the protection of animals

used for experimental purposes.

Bacterial strains, cell culture and culture conditions
Escherichia coli DH10B was cultured in Luria-Bertani (LB) media

or on LB agar (Pronadisa, Spain) with appropriate antibiotics.

Staphylococcal strains were grown in Trypticase soy broth (TSB)

or Trypticase soy agar (TSA) supplemented with glucose 0.25%

(TSB-glu) when indicated. Media were supplemented with the

following appropriate antibiotics at indicated concentrations:

erythromycin 20 mg ml21 or 1.5 mg ml21, chloramphenicol

20 mg ml21, ampicillin 100 mg ml21, tetracycline 10 mg ml21.Bo-

vine mammary gland epithelial cell line (MAC-T) was used

because bap gene is frequently present in S. aureus isolates causing

mastitis infections. Human hepathoma cell line (Hep-3B, ATCC

number CCL-2) was used as an example of any other cell line

different from mammary gland epithelial cells. Vero epithelial cells

(ATCC number CCL-81) and guinea–pig GPC-16 epithelial cells

were used due to their low extracellular Gp96 expression [52].

Cells were maintained in Dulbecco’s modified Eagle’s medium

(DMEM) (Gibco-BRL) supplemented with 10% heat-inactivated

fetal bovine serum (Gibco-BRL).

Manipulation of DNA
To generate the deletion in the bap gene we amplified by PCR

two fragments of 500 bp that flanked the left sequence of the gene

using primers Dbap-A (ggatccgacatacattagatatttgg) and Dbap-B

(ctcgagcaattttatgacgcactatt) and the right sequence of bap using

primers Dbap-C (ctcgagcccattttattattggttctg) and Dbap-D

(gaattcgccgaaatgttggccgtattc). Fragments were then fused by

ligation into the shuttle vector pMAD, and the resulting plasmid

was transformed in V329 strain by electroporation. Allelic

exchange in the absence of a selection marker was performed as

previously described [27]. FnBPs mutant in V329 and Dbap strains

was performed as previously described [17]. To generate the

DrepBap strain, the bap gene of S. aureus V858 whose bap contains a

single C-repeat was amplified using DNA polymerase KOD XL

(Merck) with primers BapXho-5 (ctcgagtaaaaaaatttattttgaggtgag)

and BapXho-3 (ctcgagctctccacctttgtaagtg). The gene was cloned

into the pMAD plasmid and the resulting plasmid was

transformed into Dbap strain by electroporation. Allelic exchange

in the absence of a selection marker was performed as previously

described [27]. DrepBap strains were verified using primers Bap-6m

(cctatatcgaaggtgtagaattgcac) and Bap-7c (gctgttgaagttaatactg-

tacctgc).

S. aurues bap::tet strain was constructed using plasmid pJP188

[79].For complementation experiments, the multicopy plasmid

pFNBA4 [80] that carries the wild-type fnbA gene of S. aureus8325-

4 was used. E. faecalis 23 was complemented with plasmid pBT2-

bap.

Generation of purified Bap recombinant protein
For Bap purification we constructed a recombinant Bap protein

in which the LPXTG motif of Bap was replaced by the 6-histidine

tag. For that, a 281 bp fragment upstream the LPXTG was

amplified using primers BapEco-A (gaattcaattcaggtgctggagacac)

and BapBam-B (ggatcctcagtggtggtggtggtggtgttctggtaattcattttg). A

600 bp fragment downstream Bap was amplified using primers

BapBam-C (ggatccatgtttaaattattgtaaat) and BapEco-D (gaattcgcc-

gaaatgttggccgtattc). Fragments were cloned into the EcoRI site of

the pMAD plasmid [81]and the resulting plasmid was transformed

into V329 strain by electroporation using a previously described

protocol [30]. The construction was verified by sequencing the

insert. Allelic exchange in the absence of a selection marker was

performed as previously described [27]. As the LPXTG motif was

replaced by the 6xHis tag, the recombinant Bap-6xHis protein was

obtained at the supernatant. One liter of the supernatant was

concentrated using centrifugal filter units 10,000 wco (Millipore).

Bap-6xHis tagged protein was purified from the supernatant using

His GraviTrap affinity columns (GE Healthcare).

Ligand overlayer assay
MAC-T and Hep-3B epithelial cells were lysed in RIPA-buffer

(150 mM NaCl, 50 mM Tris pH7.5, 0.1% SDS, 1% Triton X-

100, 0.5% sodium deoxycholate, 1 mM sodiumorthovanadate,

10 mM NaF, b-glycerophosphate 100 mM and protease inhibitor

cocktail (Roche)). Lysates were clarified and protein concentration

was determined. 40 mg of cell lysates were resolved by 10% sodium

dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis. Pro-

teins were transferred onto a nitrocellulose membrane and blocked

overnight. The membrane was then incubated with 50 mg/ml of

purified Bap, washed and incubated with anti-bap antibodies

diluted 1:20,000 [30]. Alkaline phosphatase-conjugated goat anti-

rabbit immunoglobulin G diluted 1:10,000 was used as secondary

antibody. Protein identification was analyzed by MALDI-TOF

analysis followed by peptide mass fingerprinting [16].

Pull-down assays
10 mg of the recombinant Gp96 protein (SPP-766 Stressgen)

were mixed with 10 mg of purified Bap. The mix was incubated at

4uC for 2 h in slow agitation. Gp96 was immunoprecipitated using

1.5 ml of anti-Bap antibodies, for 2 h at 4uC and then with 50 ml of

Protein G sepharose beads (GE Healthcare). Immunoprecipitated

proteins were boiled in Laemmli buffer and analyzed by SDS-

polyacrylamide gel electrophoresis, inmmunoblotted with primary

antibodies anti-Bap (1:2500) or anti-Gp96 (1:1000)monoclonal

antibodies (SPA-850 Stressgen)and with secondary antibodies goat

anti-rabbit immunoglobulin-G HRP (Thermo) or anti-rat immu-

noglobulin-G HRP (SAB-200 Stressgen). Pull down experiment

using bacteria was performed as follows. S. aureus V329 expressing

Bap, Dbap, DrepBap and CNS(S. epidermidis C533, S. hyicus 12, and

S. chromogenes C483) were grown overnight at 37uC. A volume of

cells corresponding to an OD600 value of 5 was centrifuged and

washed twice with PBS buffer. Bacteria were then incubated with

Bap Biofilm Matrix Inhibits Host Cell Invasion

PLoS Pathogens | www.plospathogens.org 11 August 2012 | Volume 8 | Issue 8 | e1002843



5 mg/ml of recombinant Gp96 protein in the absence or in the

presence of anti-Bap antibodies for 2 h at 4uC and slow agitation.

Unbound Gp96 was removed by washing the bacteria 4 times with

1 ml of PBS buffer. Immunoprecipitated Gp96 was detected using

anti-Gp96 antibodies and anti-rat immunoglobulin-G HRP.

Biofilm phenotype
Biofilm formation assay in microtiter wells was performed as

described [18]. Briefly, strains were grown overnight at 37uC and

were diluted 1:40 in TSB-gluc. Cell suspension was used to

inoculate sterile 96-well polystyrene microtiter plates (IWAKI).

After 24 hours at 37uC wells were gently rinsed three times with

water, dried and stained with 0.1% of crystal violet for 15 min.

Colony morphology of S. aureus was analyzed using Congo red

agar plates [82–84].Congo red agar was prepared as follow: 30 g/l

of trypticase soy (Pronadisa), 15 g/l of agar (Pronadisa), 0.8 g/l of

Congo red stain (Sigma) and 20 g/l of sucrose. The Congo red

stain and the sucrose solution were autoclaved separately (121uC

for 20 minutes) and (115uC for 15 minutes) respectively. S. aureus

strains were streaked on congo red agar and were incubated at

37uC for 24 hours. Rough colonies are being indicative of biofilm

formation.

Epithelial cell adhesion and invasion assays
Adherence and invasion experiments were performed as

described previously [57]. Briefly, prior to use, wells were seeded

with 0.36106 cells in 6-well tissue culture plates and 0.56105 cells

in 24-well tissue culture plates. Once cells were confluent (1.26106

or 0.2 106 cells per well) the culture medium was removed and

cells were washed with DMEM plus 10% heat-inactivated fetal

bovine serum. For adherence assays, overnight bacterial cultures

were mixed vigorously and added to the monolayer cells in a

multiplicity of infection of 10 in DMEM. Incubation was carried

out 1 hour at 37uC in 5% CO2. To remove non-adherent

bacteria, cells were washed three times with sterile PBS.

Eukaryotic cells were lysed with 0.1% Triton X-100. Before

plating extracts were mixed vigorously by vortexing and sonica-

tion. The number of adherent bacteria were determined by serial

dilution and plating. For invasion assays, bacteria were added to

the monolayer cells in a multiplicity of infection of 40 in DMEM.

Incubation was carried out for 1 hour at 37uC in 5% CO2. To kill

extracellular bacteria, media was replaced with 2 ml of DMEM

containing 50 mg ml21 of gentamicin (SIGMA) for 2 hour. Cell

monolayers were washed three times with sterile PBS and lysed

with 0.1% Triton X-100. Before plating extracts were mixed

vigorously by vortexing and sonication. The number of intracel-

lular bacteria was determined by serial dilution and plating.

Experiments were performed in triplicate.

Cell surface protein biotinylation
Cell surface biotinylation was performed using Pierce Cell

surface protein isolation kit according to the manufacturer’s

protocol. Briefly, 4 flasks of 75 cm2 of live confluent cells were

incubated with Sulfo-NHS-SS-Biotin for 30 min at 4uC. Sulfo-

NHS-SS-Biotin was quenched and biotinylized cells were lyzed.

For isolation of labelled proteins lyzed cell were incubated with

NeutrAvidin Agarose. Eluted proteins were resolved by 10%

sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophore-

sis. Immunodetection was performed following protein transfer

onto nitrocellulose membrane and incubation with anti-Gp96

antibodies. To control membrane impermeability a-catenin was

detected using anti-a-catenin antibodies (H-297 Santa Cruz

Biotechnologies).

Immunofluorescence analysis
Cells grown on coverslips, fixed with paraformaldehyde 3.5%

(SIGMA) and stained with anti-Gp96 (H-212; Santa Cruz Biotech)

diluted 1:100 and stained secondary antibody Alexa Fluor 488-

conjugated goat anti-rabbit (Invitrogen). Cells were then permea-

bilized (0.1% triton X-100 for 5 min in PBS). Alexa-Fluor 647-

Phalloidin (Invitrogen) diluted 1:200 was used to label actin

filaments. Preparations were observed with an epifluorescence

microscope and images were acquired and analyzed with EZ-C1

software (Nikon).

Plasmid DNA and silencer gp96 transfections
Transient transfection of pcDNA3-gp96 in Vero cells was

performed using Lipofectamine 2000 (Invitrogen) following the

manufacturer’s protocol. Briefly, lipofectamine was diluted 1:25 in

DMEM media. Diluted lipofectamine was then mixed with 0.8 mg

of DNA in a 2:1 ratio and the mixture was incubated for 20 min at

room temperature. After incubation, 100 ml were added to a 24-

well culture vessel containing Vero confluent cells. To silence gene

expression by siRNA, Hep-3B cells were transfected with Gp96

silencer siRNA (Hs_TRA1_9) and control siRNA (Allstars

Negative Control) purchased from Qiagen (Valencia, CA).

Transfection was performed using a Ready-to-Use mix from

Qiagen as described by the manufacturer. Cells were collected for

immunodetection of Gp96 using monoclonal anti-Gp96 antibodies

and fibronectin using anti-fibronectin antibodies (SIGMA).Gp96

expression was determined by density measurement of digital

images using ImageJ software.

Treatment with 17-AAG and transcomplementation with
Gp96
MAC-T and Hep-3B monolayers were treated with 1 mM of 17-

(Allylamino)-17-demethoxydeldanamycin (17-AAG) or the vehicle

control DMSO, one day before the experiments. Overnight

treatments of MAC-T and Hep-3B had no effect on cell

morphology. Then, cells were washed and incubated with bacteria

for invasion assays. Transcomplemetation of Vero cells were

performed as described by Rechner et al., 2007 [53]. Briefly,

0.56106 Vero cells were incubated with 10 mg/ml of Gp96 for

30 min (cells+Gp96) and infected with S. aureus V329 and Dbap

strains (MOI= 40) to perform invasion assays. Additionally, S.

aureus V329 and Dbap strains were incubated with 5 mg/ml of

recombinant Gp96 protein for 2 h at 4uC. After washing bacteria

were used for infection of Vero cells (0.56106) (bacteria+Gp96).

Mice intramammary infection model
CD1 mice were maintained in the animal facility of the Institute

of Agrobiotechnology, Public University of Navarra. Seven to 10

days after parturition, pups of a group of 7 lactating female mice

were removed 2 h before bacterial inoculation. A mixture of

ketamine/xylazine was used to anaesthetize lactating mice. 100 ml

of a solution containing 106 CFU of a mix of S. aureus bap::tet and

V329 strains or a mix of bap::tet and DrepBap strains were used to

inoculate L4 (on the left) and R4 (on the right) mammary glands.

After 18 h post-infection L4 and R4 mammary glands were

inoculated with 200 ml of a solution of PBS containing

100 mg ml21 of gentamicin (SIGMA). After 3 h,L4 and R4

mammary glands were aseptically removed and homogenized.

Viable counts were performed on these homogenates by plating

the samples on TSA and TSA containing tetracycline. To evaluate

the invasion capacity of each strain we used the competition index

method. A competition index equal to 1 indicates similar

invasiveness for both strains. A competition index significantly
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greater than 1 indicates a higher invasion capacity of the Bap

mutant and a competition index lower than 1 indicates the

opposite. Prior to the start of the coinfection assays, a competition

experiment was performed with all strains tested to confirm that

coincubation of the strains did not affect their growth capacity.

Statistical analysis
Data corresponding to adhesion and invasion were compared

using the Mann-Whitney tests. Competition indexes of wild type-

Dbap and Dbap-DrepBap were calculated using t-test and statistical

differences were determined with the t-test.

Supporting Information

Figure S1 Effect of the presence of PIA/PNAG exopolysac-

charidic biofilm matrix in S. aureus invasion capacity. A) Dot-blot

analysis showing PIA/PNAG accumulation in S. aureus V329 and

Dbap complemented with pSC18 and S. aureus ISP479r. Cell

surface extracts were treated with proteinase K and spotted onto

nitrocellulose filters diluted 1/10. PNAG production was detected

with anti-S. aureus PNAG antiserum. Invasion of S. aureus V329,

V329 pSC18, Dbap mutant, Dbap pSC18, ISP479r and ISP479r

Dica into MAC-T (B) and Hep-3B (C) cells. Bacterial invasion was

measured by CFU count after 2 h of gentamicin treatment.

Statistical analyses were performed using Mann-Whitney tests.

(EPS)

Figure S2 Invasion of S. aureus Newman (Nw) and New-

man_Bap complemented with plasmid pFNBA4 that expresses

the fnbA gene to Vero cells and Vero cells transfected with

pcDNA3gp96. After 1 h infection invasion values were calculated

as the number of bacteria that survived to 2 h of gentamicin

treatment.

(EPS)

Figure S3 Competition index of Dbap-Wt and Dbap-DrepBap

strains in vitro. An equal number of bacteria of S. aureus V329 (Wt)

and Dbap or Dbap and DrepBap were used to infected MAC-T

epithelial cells. After 1 h infection, invasion efficiency was

calculated as the number of cfu that survived to 2 h of gentamicin

treatment. Statistical differences were determined with Mann-

Whitney tests. Horizontal bars represent the means of triplicates of

two independent experiments. Asterisks indicate differences in

competition indexes greater than one (P,0,05); ns, non-significant

differences.

(EPS)
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