
Barcelona OpenMP Tasks Suite: A Set of
Benchmarks Targeting the Exploitation of Task

Parallelism in OpenMP
Alejandro Duran, Xavier Teruel, Roger Ferrer

Computer Sciences Department
Barcelona Supercomputing Center
Jordi Girona, 31, Barcelona, Spain.

{alex.duran,xavier.teruel,roger.ferrer}@bsc.es

Xavier Martorell, Eduard Ayguadé
Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya
Jordi Girona, 1-3, Barcelona, Spain.
{xavim,eduard}@ac.upc.edu

Abstract—Traditional parallel applications have exploited reg-
ular parallelism, based on parallel loops. Only a few applications
exploit sections parallelism. With the release of the new OpenMP
specification (3.0), this programming model supports tasking.
Parallel tasks allow the exploitation of irregular parallelism, but
there is a lack of benchmarks exploiting tasks in OpenMP.

With the current (and projected) multicore architectures that
offer many more alternatives to execute parallel applications than
traditional SMP machines, this kind of parallelism is increasingly
important. And so, the need to have some set of benchmarks to
evaluate it.

In this paper, we motivate the need of having such a bench-
marks suite, for irregular and/or recursive task parallelism.
We present our proposal, the Barcelona OpenMP Tasks Suite
(BOTS), with a set of applications exploiting regular and irregular
parallelism, based on tasks.

We present an overall evaluation of the BOTS benchmarks in
an Altix system and we discuss some of the different experiments
that can be done with the different compilation and runtime
alternatives of the benchmarks.

Index Terms—OpenMP, benchmark suite, task parallelism

I. INTRODUCTION AND MOTIVATION

Multicore processors, both in homogeneous and heteroge-
neous environments, pose new challenges in the evaluation of
application performance and programmer productivity. The in-
creased density of processing cores radically changes resource
availability, communication costs, data placement and locality
management. Such changes allow to execute applications with
a much diversity schemes and scheduling options than before.

New architectural features are available in such environ-
ments. Their use can be of high complexity. For this reason,
most of traditional compilation environments fail to obtain
high performance on such environments. By now, exploitation
of such features results in complex programming and large
time investments from programmers.

Parallel to the development of multicore processors, the lat-
est OpenMP specification (3.0)[1] introduced a new execution
model for task parallelism to address the needs to express
parallelism in irregular applications, which seems to reduce
the complexity of programming multicores.

We think that we are facing a great opportunity to develop
new schemes supporting irregular parallelism, and different
ways to execute applications. For these reasons, a new set
of benchmarks is needed to evaluate all alternatives that pro-
grammers will be able to exploit with new advanced features
provided by the programming model.

This paper presents a collection of applications, the
Barcelona OpenMP Tasks Suite (BOTS), that makes use of the
new task parallelism in OpenMP. Our aim is to provide a basic
set of applications that will allow researchers and vendors alike
to evaluate OpenMP implementations, and that can be easily
ported to other programming models. And an additional goal
is for the OpenMP community to have a set of examples using
the tasking model.

II. RELATED WORK

There are a number of OpenMP benchmark suites in the
literature, including OpenMP microbenchmarks, kernels and
applications, namely EPCC microbenchmarks[2], the LLNL
OpenMP Performance Suite[3], the OpenMP Source code
Repository (OmpSCR)[4], PARSEC[5], NAS[6], [7], [8], and
SPEComp[9] benchmarks.

The EPCC microbenchmarks[2] are designed to measure
the overhead of OpenMP directives and clauses on different
platforms. There is a microbenchmark for each one of the
features of OpenMP, from parallel support and synchronization
to loop scheduling. They have been used in a number of
publications to evaluate different OpenMP implementations.

A similar approach is taken by The LLNL OpenMP Perfor-
mance Suite[3], which also includes a set of microbenchmarks
to evaluate the overhead of the directives and clauses.

The OmpSCR[4] contains a total of 12 benchmarks, ranging
from computing PI and QuickSort, to a molecular dynamics
application. The PARSEC[5], [10] benchmark suite includes 4
benchmarks (out of 12) parallelized with OpenMP, including
body tracking, simlarity search, and an association rule mining
application. The NAS benchmarks[7] are a collection of 7
kernels (EP, IS, MG, CG, DC, FT, UA) and 3 applications (BT,
SP, and LU). Most of them are written in Fortran, and include

versions in MPI and OpenMP. There is a version written
in C with OpenMP from the OMNI Compiler Project[11].
SPEComp[9], distributed by the Standard Performance Eval-
uation Corporation, includes 9 Fortran applications, and 2 C
applications, parallelized with OpenMP constructs.

OpenMP applications in OmpSCR, PARSEC, NAS, and
SPEComp suites are mostly regular, and parallelism is ex-
ploited based on loops, with only a pair of applications
exploiting parallelism based on sections (sort in OmpSCR,
and galgel in SPEComp), and none in PARSEC and the NAS
benchmarks.

Exploiting tasking in OpenMP has been evaluated in several
proposals. Intel Task Queues[12] used a set of 4 benchmarks
written using this style of programming: Strassen[13], FFT,
Queens and Multisort. The last 3 originated from the Cilk
benchmarks[14]. The current task definition has been evaluated
with some of these benchmarks, which have been rewritten to
adopt the new syntax[15], [16], [17], [18].

Other interesting benchmark suites include SPARK [19] and
Lonestar [20].

SPARK contains a number of sparse algorithms based on
techniques like finite elements, direct solvers and eigenvalue
problems, nonlinear systems of equations, differential alge-
braic equations, and finite differences. It targets the evaluation
of the computing power of a given architecture.

Finally, Lonestar contains a collection of widely–used real–
world sequential applications that exhibit irregular behaviour,
but contain a significant amount of amorphous data paral-
lelism. They are intended to serve as examples of data–
parallel programs to which a programmer might apply various
parallelization techniques. Some examples are clustering al-
gorithms, Barnes-Hut N-Body simulations, mesh refinement,
and survey propagation.

III. SUITE OVERVIEW

The OpenMP definition of the tasking model leaves a lot of
freedom to vendors in how this model should be implemeted.
For example, it places few restrictions on task scheduling or
it does not specify whether or not task switching should be
supported. Our aim was to provide a collection of benchmarks
that would allow vendors to test the impact of different
implementation decisions in a multicore architecture.

A. Methodology

While a few of the benchmarks are in-house developments,
most of them are versions of publicly available benchmarks
from either the Cilk project[14], the Application Kernel Matrix
project[21] or the Olden suite [22], which we have ported to
OpenMP in a coherent benchmark framework.

a) Multiple versions: Because at this point the different
trade-offs of the OpenMP tasking model are still not clear
and depend very much on the quality of the implementation,
we have developed different versions of each benchmark with
different characteristics:

1 #pragma omp task i f (c o n d i t i o n)
2 work () ;

Fig. 1. Cut-off implemented with an if clause

1 i f (c o n d i t i o n)
2 #pragma omp task
3 work () ;
4 e l s e
5 w o r k s e q u e n t i a l () ;

Fig. 2. Manually implemented task cut-off

• All benchmarks come with versions with tied and
untied1 tasks that allow to experiment how the im-
plementation behaves with both kinds of tasks.

• Many of the benchmarks create a very large number
of small tasks. Because of this, we have developed
three different versions of those benchmarks in which
controlling the amount of parallelism is important:

– one that does not limit task creation and puts all
the burden on the implementation. This would be
the ideal from the programmmer perspectite because,
potentially, the implementation could limit task cre-
ation by itself. It remains to be seen how effective
implementions will be doing that.

– another where the application controls task creation
by means of an if clause on the task directive (see
Fig. 1). The exact condition varies from benchmark
to benchmark but it usually dependent on the depth
in a recursion path.

– another where the application controls task creation
manually by calling a function with task directives
or without them based on the same condition as in
the previous version (see Fig. 2).

• Some benchmarks allow for either multiple generators
(i.e., tasks under a for/sections construct) or a
single generator (i.e., tasks under a single construct).
In those cases, versions of the same benchmarks under
both approaches have been developed to evaluate the
support for both.
b) Handling indeterminism: It is common that task par-

allelism by its irregular nature presents some kind of indeter-
minism in its execution (e.g. pruning in search algorithms).
Because indeterminism does not fit well with benchmarking,
applications with indeterminism are usually avoided. We think
it is important to incorporate this kind of applications in our
suite as they represent legitimate uses of task parallelism.
In these cases, we have tried to keep the indeterminism
under control by slightly modifiying the application behavior.
Because the approaches are different, we comment each case
individually in the next section.

c) Self-verification: Self-verification is another important
characteristic in any benchmark as it allows to test whether im-
plementations or specific optimizations implement the correct

1tied impose certain restrictions on scheduling (e.g. no thread switching),
while untied have no restrictions.

semantics. As such, all benchmarks come with one of the three
following verification methods:

• In those cases where possible, benchmarks apply some
validation method to the output.

• In some other, we have included validation data in the
input data so the benchmark can validate its output
against it.

• When not possible to apply any of the two previous
methods, a serial version of the benchmark is also ex-
ecuted when the user requests a validation and the result
is compared against that from the parallel execution.

d) Input sets: For each application in the suite we have
defined a set of different data inputs to test the applications
under different scenarios:

test The test class is very small. Such input should be
used only to quickly check that benchmarks work.

small The small input data set is designed so that neither
the overall memory requirements go over 1 Gb.,
nor the serial execution time is greater than one
minute in our reference platform2.

medium The medium data set is designed so that neither
the overall memory memory requirements go over
4 Gb., nor the serial execution time is over ten
minutes in our reference platform.

large The large input data set contains the inputs with
larger memory requirements (up to 10 Gb.) and
larger serial execution times (up to half-hour).

B. Applications

A short description of the benchmarks3 that form the
Barcelona OpenMP Tasks Suite follows:

e) Alignment: aligns all protein sequences from an in-
put file against every other sequence using the Myers and
Miller[23] algorithm. The alignments are scored and the best
score for each pair is provided as a result. The scoring method
is a full dynamic programming algorithm. It uses a weight
matrix to score mismatches, and assigns penalties for opening
and extending gaps. The output is the best score for each pair
of them.

In this application, we parallelized the outer loop with an
omp for worksharing with tasks created inside this parallel
loop. This allows the implementation to break the iterations
when number of threads is large compared to the number
of iterations and when there is imbalance. To be able to
use untied tasks we moved several global variables in the
original version,used as temporal space, to local variables.

f) FFT: computes the one-dimensional Fast Fourier
Transform of a vector of n complex values using the Cooley-
Tukey [24] algorithm. This is a divide and conquer algorithm
that recursively breaks down a Discrete Fourier Transform
(DFT) into many smaller DFT’s. In each of the divisions
multiple tasks are generated.

2An SGI Altix 4700 system.
3This list may grow as we are still exploring new benchmarks.

g) Fibonacci: computes the nth fibonacci number using
a recursive paralellization. While not representative of an
efficient fibonacci computation it is still useful because it is
a simple test case of a deep tree composed of very fine grain
tasks. It comes with versions that use a cut-off based on the
depth of the tree (i.e after a certain level it will not generate
more tasks) to avoid the creation of very fine grained tasks.

h) Floorplan: kernel computes the optimal floorplan dis-
tribution of a number of cells. The algorithm gets an input file
with cell’s description and it returns the minimum area size
which includes all cells. This minimum area is found through a
recursive branch and bound search. We hierarchically generate
tasks for each branch of the solution space. The state of the
algorithm needs to be copied into each newly created task so
they can proceed. This implies that additional synchronizations
have been introduced in the code to maintain the parent state
alive.

The application comes with a pruning mechanism to reduce
the search space. This pruning is very irregular and very
aggressive and, as a result the tree is heavily unbalanced.
The pruning is based on the best result found up to that
moment which generates a source of indeterminism. Because
all nodes of the tree have roughly the same computational
load, we compute the total number of nodes visited to find a
solution. With this metric different versions and optimizations
can be evaluated as the number of nodes per second should
increase if the comptutation is more eficient (e.g., with more
threads) even if it takes more time to find a solution due to
the indeterminism.

As Fibonacci, Floorplan comes with versions that have a
cut-off based on the depth of the tree to avoid creating fine
grain tasks.

i) Health: simulates de Columbian Health Care
System[25]. It uses multilevel lists where each element in the
structure represents a village with a list of potential patients
and one hospital. The hospital has several double-linked lists
representing the possible status of a patient inside it (waiting,
in assessment, in treatment or waiting for reallocation).
At each timestep all patients are simulated according with
several probabilities (of getting sick, needing a convalescence
treatment, or being reallocated to an upper level hospital).
A task is created for each village being simulated. Once the
lower levels have been simulated synchronization occurs.
Health comes with a cut-off mechanism based on the village
level in the hierarchy.

The probabilities in the different steps of the simulation
represent a source of indeterminism. To avoid it we have used,
instead of a single seed for random numbers, one seed for
each village. This way all the probabilities inside each village
(which are computed by a single task) will be the same across
different executions and not affected by other tasks.

j) N Queens: computes all solutions of the n-queens
problem, whose objective is to find a placement for n queens
on an n x n chessboard such that none of the queens attack any
other. It uses a backtracking search algorithm with pruning. A
task is created for each step of the solution. As, in Floorplan,

Application Origin Domain Computation structure # of task directives tasks inside omp... nested tasks Application cut-off

Alignment AKM Dynamic programming Iterative 1 for no none

FFT Cilk Spectral method At leafs 41 single yes none

Fib - Integer At each node 2 single yes depth-based

Floorplan AKM Optimization At each node 1 single yes depth-based

Health Oden Simulation At each node 1 single yes depth-based

NQueens Cilk Search At each node 1 single yes depth-based

Sort Cilk Integer sorting At leafs 9 single yes none

SparseLU - Sparse linear algebra Iterative 4 single/for no none

Strassen Cilk Dense linear algebra At each node 8 single yes depth-based

TABLE I
BOTS APPLICATIONS SUMMARY

the parent state needs to be copied to the children tasks which
introduces additional synchronizations. NQueens prunes those
branches that will not find a correct answer. This generates
some degree of unbalance in the tree. The pruning introduces
some indeterminism, but not as much as in Floorplan because
it does not depend on any current solution, in the number
of nodes to be visited. To avoid it, instead of just finding
one solution to the problem, this kernel will find all possible
solutions. This guarantees that the application has always the
same computational load. To count all the solutions found by
different tasks one approach is to surround the accumulation
with a critical directive but this would cause a lot of con-
tention. To avoid it, we used threadprivate variables.
In this way, all threads can acumulate the solutions they
find. Each thread reduces the variable, within a critical
directive, to the global variable at the end of the parallel region.

k) Sort: sorts a random permutation of n 32-bit numbers
with a fast parallel sorting variation [26] of the ordinary
mergesort. First, it divides an array of elements in two halves,
sorting each half recursively, and then merging the sorted
halves with a parallel divide-and-conquer method rather than
the conventional serial merge. Tasks are used for each split
and merge. When the array is too small, a serial quicksort is
used so increase the task granularity. To avoid the overhead
of quicksort, an insertion sort is used for very small arrays
(below a threshold of 20 elements).

l) SparseLU: computes an LU matrix factorization over
sparse matrices. A first level matrix is composed by pointers
to small submatrices that may not be allocated. Due to the
sparseness of the matrix, a lot of imbalance exists. Matrix
size and submatrix size can be set at execution time. While a
dynamic schedule can reduce the imbalance, a soultion with
tasks paralellism seems to obtain better results[17]. In each of
the sparseLU phases, a task is created for each block of the
matrix that is not empty.

We developed two different versions of the benchmark, one
that generates all the tasks from inside a single worksharing
and another that uses a omp for worksharing to allow
multiple threads to create the tasks for each phase.

m) Strassen: algorithm uses hierarchical decomposition
of a matrix for multiplication of large dense matrices[13]. De-
composition is done by dividing each dimension of the matrix

into two sections of equal size. For each descomposition a
task is created. To avoid the creation of many small tasks, we
developed versions with depth based cut-offs.

n) Summary: TABLE I briefly summarizes the applica-
tions that we have presented, while TABLE II shows some
characteristics of the different benchmarks when executed with
the medium input class. These numbers were collected from a
serial execution in our reference system of a specially profiled
version where the compiler added additional code to obtain
this information4. Most columns are self-explicative but some
require some clarification: Captured environment refers to the
amount of data that is copied from parent tasks to their children
upon creation (i.e. firstprivate variables or memcpy
from the parent memory by a child task). Non-private writes
refer to writes that do not reference a task private variables
and, thus, can be affected by locality decisions. Table II shows
the percentage of writes which are non-private and the average
number of arithmetic operations between two of such writes.

From this profiling we can see that the benchmarks have dif-
ferent characteristics. Some applications have a large amount
of very fine-grained tasks (e.g., Fib, NQueens, Floorplan)
where the challenge is exploiting the available parallelism
while reducing the associated overheads. In other cases, there
are relatively few coarse tasks (e.g., Alignment, sparseLU) and
the challenge for the implementation is to avoid load balance
situations.

We can also see that many are memory-bound applications
(i.e., low Operations per write) but that in many of the
benchmarks most memory accesses are to the private memory
of the task (low % of writes to non-private memory). This
indicates that careful allocation of the private memory with
respect to where the task is executed (including data migration
if the task migrates from one thread to another) may yield
important improvements (see for example Alignment for the
difference between Operations per write and Operations per
non-private write).

Another important characteristic is that is profiled is the
amount of data that is communicated from the parent to
its child tasks at creation. We can see that except in one

4Note that this information is not obtained from performance counters, but
from actual operations which are independent of the architecture.

Average per task

Application Input Serial
time

Memory
size

Number of
potential
tasks

Arithmetic
operations Taskwaits

Captured
environ-
ment size
(in bytes)

of
Writes to
captured
environ-
ment

% of
writes
to non-
private
data

Operations
per write

Arithmetic
operations per
non-private
write

Alignment 100 proteins 44.4 s 4.7GB 4950 ' 14 M 0.00 16 0.00 0.03% 1.88 7 K

FFT 128M floats 98.73 s 3 GB ' 10 M ' 2K 0.18 37.22 0.00 3.49% 1.40 40.11

Fib 50 140 s 3.2 MB ' 40 G 2.50 0.50 4 0.00 100 % 2.50 2.50

Floorplan 20 shapes 37.38s 3 MB ' 67 M 90.78 0.15 ' 5 Kb 5.00 74.10% 1.53 2.06

Health 4 levels with 38
cities each

137 s 4 GB ' 17 M 293.72 0.03 8.00 0.00 12.33% 1.74 14.13

NQueens 14x14 board 73 s 3 MB ' 377 M 463.70 0.07 42.32 1.07 0% 4.75 -

Sort 128M integers 39.17 s 2 GB ' 2 M ' 8 K 0.45 39.91 0.00 25.13% 1.30 5.18

SparseLU 7500x7500
sparse matrix of
100x100 blocks

770 s 120 MB 39480 ' 11 M 0.00 11.71 0.00 49.46% 5.95 12.03

Strassen 8192x8192 ma-
trix

486.94 s 4GB ' 1 M ' 800 K 0.14 37.71 0.00 8.36% 2.63 31.49

TABLE II
APPLICATION CHARACTERISTICS WITH THE MEDIUM INPUT SETS

case (i.e., Floorplan)) the amount of communication is rather
small (i.e., under 45 bytes on average). This seems to suggest
that implementations that pre-allocate small memory areas
associated with tasks descriptors might avoid to allocate in
most case any data related to firstprivate and thus
reducing the creation overheads.

Finally, we can see that in some applications (e.g., Fib,
Floorplan and SparseLU shared access dominate the mem-
ory operations. Not all of them are necessarily shared with
multiple task. For example, in Fib all shared access are writes
to the parent task stack (in OpenMP tasks results are returned
through shared variables). Trying to allocate in parent and
child tasks in the same processor (a common technique) should
provide benefits in this cases. In other cases, being able to
improve shared data reuse between different task (e.g., task
A writes some shared data that will be used by task B)
remains a challenge because the runtime does not have enough
information.

IV. EVALUATION EXAMPLE

In this section, we show the kind of evaluation and experi-
ments that we think can be conducted with the suite that we
have presented. Because of space limitations we have chosen a
small subset of aspects that can be analyzed through the suite.

All the benchmarks were executed on a SGI Altix 4700
with 128 processors running on a cpuset of 32 processors
to avoid interferences with other applications. The compiler
used is the Intel C Compiler version 11.0. In all the cases
we have used the optimization −O3 level. We have executed
all the different versions of each application with the medium
input set previously described in TABLE II. We computed
all the speed-ups using the serial time as the baseline except
for the Floorplan application where the speed-up represents
the improvement in nodes executed per second instead of
execution time5.

5Even so, we have observed that the execution time scales very similarly.

In the following sections, we show some examples of
possible evaluation with BOTS. First, a general evaluation of
the benchmarks. Then, a study of different cut-off mechanisms
and of the differences among the use of tied and untied
tasks. We show the results obtained and we discuss how
such aspects can impact the OpenMP programming model
implementation. Other interesting aspects to study with our
benchmark suite are finally discussed in Section IV-D.

A. Overall evaluation

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35

S
pe

ed

of threads

alignmena (untied)t
fft (untied)
floorplan (manual-untied)
health (manual-tied)
nqueens (manual-untied)
sort (untied)
sparselu (for-tied)
strassen (nocutoff-tied)

Fig. 3. Benchmark suite results as base code.

Fig. 3 shows the speed-up of the best version for each
of the applications (in parenthesis, we indicate which is the
best version). These results give an idea of the performance
behavior for each application. We have applications (NQueens
or SparseLU) which have an almost linear speed-up and other
applications (Strassen, Health or FFT) which quickly reach a
saturation phase.

B. Cut-off mechanism comparison

Due to the recursive nature of some benchmarks (see Sec-
tion III-B) we can group cut-off mechanisms into two groups:
first, we include cut-off mechanisms which are based on the
task depth (i.e. the recursion level). Such kind of cut-off is
usually implemented in the application itself. Our benchmark
suite implements, when possible, these cut-off mechanisms. In
the second group, we can find cut-off mechanisms based on
the total number of tasks already created, the number of tasks
ready to be executed, etc. Such pruning mechanisms can be
easily implemented in the OpenMP runtime itself.

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 16 24 32

S
pe

ed
-u

p

of threads

with if clause cut-off
with manual cut-off
with no cut-off

Fig. 4. Queens benchmark using different cut-off mechanisms.

Fig. 4 shows the speed-ups obtained using these different
cut-offs for the NQueens benchmark:
• manual cut-off: prunes the generation of tasks in the

application code itself. Compiler and runtime are not
aware of the possibility of creating a task or not.

• pragma if cut-off: uses the OpenMP clause if , as a part
of the task creation directive task. When the condition
evaluates to false the task will not be created. But, the
runtime still has to do some management in order to keep
consistency (e.g. task hierarchy and dependence in order
to execute properly a taskwait).

• no-cutoff: the application does not provide a cut-off and
only the one implemented by the runtime (if any) is
in use. The Intel Compiler uses a cut-off based on the
number of tasks.

We can see in the results that, with the Intel Compiler,
programming a manual cut-off is more effective than using an
if clause, or relying on their runtime cut-off. Being a very
new compiler these results were expected. Hopefully, as the
task implementations mature these differences will disappear,
thus reducing the burden on the programmer.

C. Tied vs. untied tasks

The OpenMP programming model specifies that tasks can
be labeled with the untied clause, establishing two different

kinds of tasks: tied and untied. A tied task is a task
that, when it is suspended, can be resumed only by the
same thread that suspended it, whereas untied tasks can
be resumed by any thread. Tiedness of a task does not only
imply which thread can resume a task but it also implies
some task scheduling constraints which can also impact on
the application performance.

 0

 5

 10

 15

 20

 25

 30

1 2 4 8 16 24 32

S
pe

ed
-u

p

of threads

alignment tied
alignment untied
nqueens tied
nqueens untied

Fig. 5. Benchmark suite results using tied and untied tasks.

The suite comes with versions for all applications with
tied and untied tasks to compare their behavior. Fig. 5
shows the results obtained using tied and untied tasks
with the Alignment and NQueens benchmarks. Results are
similar with both versions. Although a deeper analysis will
be needed, the results suggest two main hypothesis:
• The Intel Compiler does not implement thread switching

and thus untied tasks cannot benefit from this feature
which should avoid imbalances. This is particularly evi-
dent in the Alignment benchmark which has been reported
to scale nicely[27].

• Task scheduling constraints do not seem to impact sig-
nificantly the performance results (at most there is a 4%
difference between the versions). The other applications
show a similar behavior.

D. Other opportunities for analysis

The Intel Compiler does not implement mechanisms that
allow the user choose among different task scheduling policies
but other OpenMP compilers exist[28], [16] that have such ca-
pabilities. One interesting study is to find how task scheduling
policies (and how they can mantain locality across tasks) can
affect the performance results of the benchmarks of the suite.

In previous sections, we have discussed how implementing
a cut-off mechanism can affect application performance but
we have not discussed, due to space limitations, how the
different cut-off values (i.e., at which point in the recursion
we cut) relate with the creation of parallelism and the over-
all performance. Choosing a low cut-off value can restrict
parallelism opportunities but choosing a high cut-off value

can saturate the system with a large amount of tasks which
have no thread available to execute them. The right choice
depends many times of the input data set. Comparing the
application behaviour using different cut-off values or testing
runtime features which allow to modify dynamically the cut-
off mechanism[27] can also be interesting analyses.

The quality of implementations for different task generation
schemes (e.g., in the SparseLU benchmark, which can use
a single or multiple generator scheme), taskwait constructs,
or other task related implementation details could also be
analyzed with our benchmark suite proposal.

V. CONCLUSIONS AND FUTURE WORK

We have presented BOTS (Barcelona OpenMP Task Suite),
built with the double motivation of coping with the great
characteristics of the multicore processors, and offer a set
of benchmarks to evaluate OpenMP tasking. We think that
BOTS will help implementors and programmers to have a
better understanding of the OpenMP tasking model, and its
performance implications.

Each of these benchmarks comes also with different ver-
sions to test different aspects of the tasking model. For exam-
ple they can be used to evaluate task scheduling alternatives,
tiedness. . . Also, a number of input sets are provided, so that
benchmarks can be used as tests, or really stress the processors
and memory system in your machine.

It is interesting to note that we have tried to select bench-
marks with diverse characteristics. In this paper, we have
highlighted the differences, and we have shown their eval-
uation on an SGI Altix machine, with up to 32 processors
and we report some of their characteristics per task (e.g.,
operations, memory writes. . .). Their evaluation also shows
that there is plenty of work to do at all levels (architecture,
compiler, runtime system, programming model) to improve
certain benchmarks given that their current scalability is very
limited. This suite can be used to obtain useful data of the
strenghts and weaknesses of an OpenMP implementation, that
can help developers to improve it.

Currently, we are working to add new benchmarks to the
suite to cover more problem domains and scenarios. We
are, as well, planning to do a full cross-vendor evaluation
to find which is the current state of the OpenMP tasking
implementations.

ACKNOWLEDGMENTS

This research was supported by the Spanish Ministry of
Science and Innovation (contracts no. TIN2007-60625 and
CSD2007-00050), the European Commission in the context
of the SARC project (contract no. 27648), the HiPEAC
Network of Excellence (contract no. IST-004408), the IBM
CAS Program and the Mare Incognito project under the BSC-
IBM collaboration agreement.

REFERENCES

[1] O. ARB, “OpenMP Application Program Interface, v. 3.0,” May 2008.
[2] J. M. Bull, “Measuring Synchronization and Scheduling Overheads in

OpenMP,” in First European Workshop on OpenMP, September 1999.

[3] “LLNL OpenMP Performance Suite Description,” 2001. [Online]. Avail-
able: https://computation.llnl.gov/casc/RTS Report/openmp perf.html

[4] A. Dorta, C. Rodriguez, F. de Sande, and A. Gonzalez, “The OpenMP
Source Code Repository,” Euromicro Conference on Parallel, Dis-
tributed, and Network-Based Processing, vol. 0, pp. 244–250, 2005.

[5] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques, 2008, pp. 72–81.

[6] H. Jin, M. Frumkin, and J. Yan, “The OpenMP Implementation of
NAS Parallel Benchmarks and Its Performance,” NASA Ames Research
Center, Technical Report NAS-99-011, 1999. [Online]. Available:
citeseer.ist.psu.edu/408248.html

[7] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, D. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and
S. K. Weeratunga, “The NAS Parallel Benchmarks,” The International
Journal of Supercomputer Applications, vol. 5, no. 3, pp. 63–73, Fall
1991. [Online]. Available: citeseer.nj.nec.com/bailey95nas.html

[8] H. Jin and R. F. V. der Wijngaart, “Performance Characteristics of the
Multi-zone NAS Parallel Benchmarks,” J. Parallel Distrib. Comput.,
vol. 66, no. 5, pp. 674–685, 2006.

[9] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. B.
Jones, and B. Parady, “SPEComp: A New Benchmark Suite
for Measuring Parallel Computer Performance,” Lecture Notes in
Computer Science, vol. 2104, pp. 1 – 10, 2001. [Online]. Available:
citeseer.nj.nec.com/aslot01specomp.html

[10] C. Bienia, S. Kumar, and K. Li, “PARSEC vs. SPLASH-2: A Quan-
titative Comparison of Two Multithreaded Benchmark Suites on Chip-
Multiprocessors,” IEEE International Symposium on Workload Charac-
terization 2008, pp. 47–56, 2008.

[11] K. Kusano, S. Satoh, and M. Sato, “Performance Evaluation of the
Omni OpenMP Compiler,” in Prooceedings of the Third International
Symposium on High Performance Computing, 2000, pp. 403–414.

[12] S. Shah, G. Haab, P. Petersen, and J. Throop, “Flexible Control
Structures for Parallellism in OpenMP,” in 1st European Workshop on
OpenMP, September 1999.

[13] P. C. Fischer and R. L. Probert, “Efficient Procedures for Using Matrix
Algorithms,” in Proceedings of the 2nd Colloquium on Automata,
Languages and Programming. Springer-Verlag, 1974, pp. 413–427.

[14] M. Frigo, C. E. Leiserson, and K. H. Randall, “The Implementation
of the Cilk-5 Multithreaded Language,” in Proceedings of the ACM
SIGPLAN 1998 conference on Programming Language Design and
Implementation, 1998, pp. 212–223.

[15] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli,
E. Su, P. Unnikrishnan, and G. Zhang, “A Proposal for Task Parallelism
in OpenMP,” in Proceedings of the 3rd International Workshop on
OpenMP, Beijing, China, June 2007.

[16] X. Teruel, X. Martorell, A. Duran, R. Ferrer, and E. Ayguadé, “Support
for OpenMP Tasks in Nanos v4,” in CAS Conference 2007, October
2007.

[17] E. Ayguadé, A. Duran, J. Hoeflinger, F. Massaioli, and X. Teruel,
“An Experimental Evaluation of the New OpenMP Tasking Model,”
in Proceedings of the 20th International Workshop on Languages and
Compilers for Parallel Computing, October 2007.

[18] A. Duran, J. Corbalán, and E. Ayguadé, “Evaluation of OpenMP Task
Scheduling Strategies,” in Proceedings of the 4th International Workshop
on OpenMP, 2008.

[19] H. L. van der Spek, E. M. Bakker, and H. A. Wijshoff, “Characterizing
the performance penalties induced by irregular code using pointer
structures and indirection arrays on the intel core 2 architecture,” in
Computing Frontiers 2009, May 2009.

[20] M. Burtscher, P. Carribault, M. Kulkarni, K. Pingali,
C. Cascaval, and C. von Praun, “Lonestar benchmark suite,”
http://iss.ices.utexas.edu/lonestar/, 2009.

[21] B. Chamberlain, J. Feo, J. Lewis, and D. Mizell, “An Application
Kernel Matrix for Studying the Productivity of Parallel Programming
Languages,” in W3S Workshop - 26th International Conference on
Software Engineering, May 2004, pp. 37–41.

[22] M. C. and A. Rogers, “Software Caching and Computation Migration
in Olden,” 1995.

[23] G. Myers and S. Selznick and Z. Zhang and W. Miller, “Progressive
Multiple Alignment with Constraints,” in RECOMB ’97: Proceedings

of the first annual international conference on Computational molecular
biology, New York, NY, USA, 1997, pp. 220–225.

[24] J. Cooley and J. Tukey, “An Algorithm for the Machine Calculation
of Complex Fourier Series,” Mathematics of Computation, vol. 19, pp.
297–301, 1965.

[25] S. R. Das and R. M. Fujimoto, “A Performance Study of the Cancelback
Protocol for Time Warp,” SIGSIM Simul. Dig., vol. 23, no. 1, pp. 135–
142, 1993.

[26] S. G. Akl and N. Santoro, “Optimal Parallel Merging and Sorting
Without Memory Conflicts,” IEEE Transactions on Computers, vol. 36,
no. 11, pp. 1367–1369, 1987.

[27] A. Duran, J. Corbalán, and E. Ayguadé, “An Adaptive Cut-off for
Task Parallelism,” in Proceedings of the 2008 ACM/IEEE conference
on Supercomputing. IEEE Press, 2008.

[28] J. Balart, A. Duran, M. Gonzàlez, X. Martorell, E. Ayguadé, and
J. Labarta, “Nanos Mercurium: a Research Compiler for OpenMP,”
in Proceedings of the European Workshop on OpenMP 2004, October
2004.

