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Bardoxolone methyl prevents high-fat diet-induced alterations in
prefrontal cortex signalling molecules involved in recognition memory

Abstract
High fat (HF) diets are known to induce changes in synaptic plasticity in the forebrain leading to learning and
memory impairments. Previous studies of oleanolic acid derivatives have found that these compounds can
cross the blood-brain barrier to prevent neuronal cell death. We examined the hypothesis that the oleanolic
acid derivative, bardoxolone methyl (BM) would prevent diet-induced cognitive deficits in mice fed a HF diet.
C57BL/6J male mice were fed a lab chow (LC) (5% of energy as fat), a HF (40% of energy as fat), or a HF
diet supplemented with 10 mg/kg/day BM orally for 21 weeks. Recognition memory was assessed by
performing a novel object recognition test on the treated mice. Downstream brain-derived neurotrophic
factor (BDNF) signalling molecules were examined in the prefrontal cortex (PFC) and hippocampus of mice
via Western blotting and N-methyl-d-aspartate (NMDA) receptor binding. BM treatment prevented HF diet-
induced impairment in recognition memory (p < 0.001). In HF diet fed mice, BM administration attenuated
alterations in the NMDA receptor binding density in the PFC (p < 0.05), however, no changes were seen in
the hippocampus (p > 0.05). In the PFC and hippocampus of the HF diet fed mice, BM administration
improved downstream BDNF signalling as indicated by increased protein levels of BDNF, phosphorylated
tropomyosin related kinase B (pTrkB) and phosphorylated protein kinase B (pAkt), and increased
phosphorylated AMP-activated protein kinase (pAMPK) (p < 0.05). BM administration also prevented the
HF diet-induced increase in the protein levels of inflammatory molecules, phosphorylated c-Jun N-terminal
kinase (pJNK) in the PFC, and protein tyrosine phosphatase 1B (PTP1B) in both the PFC and hippocampus.
In summary, these findings suggest that BM prevents HF diet-induced impairments in recognition memory by
improving downstream BDNF signal transduction, increasing pAMPK, and reducing inflammation in the
PFC and hippocampus.
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Abstract  

High-fat (HF) diets are known to induce changes in synaptic plasticity in the forebrain leading to 

learning and memory impairments. Previous studies of oleanolic acid derivatives have found that these 

compounds can cross the blood brain barrier to prevent neuronal cell death. We examined the 

hypothesis that the oleanolic acid derivative, bardoxolone methyl (BM) would prevent diet-induced 

cognitive deficits in mice fed a HF diet. C57BL/6J male mice were fed a lab chow (LC) (5% of energy as 

fat), HF (40% of energy as fat), or HF diet supplemented with 10 mg/kg/day BM orally for 21 weeks. 

Recognition memory was assessed by performing a novel object recognition test on the treated mice. 

Downstream brain derived neurotrophic factor (BDNF) signalling molecules were examined in the 

prefrontal cortex (PFC) and hippocampus of mice via western blotting and N-methyl-D-aspartate 

(NMDA) receptor binding. BM treatment prevented HF diet induced impairment in recognition memory 

(p<0.001). In HF diet fed mice, BM administration attenuated alterations in NMDA receptor binding 

density in the PFC (p<0.05), however, no changes were seen in the hippocampus (p>0.05). In the PFC 

and hippocampus of HF diet fed mice, BM administration improved downstream BDNF signalling as 

indicated by increased protein levels of BDNF, phosphorylated tropomyosin related kinase B (pTrkB) 

and phosphorylated protein kinase B (pAkt), and increased phosphorylated AMP-activated protein 

kinase (pAMPK) (p<0.05). BM administration also prevented the HF diet induced increase in the protein 

levels of inflammatory molecules, phosphorylated c-Jun N-terminal kinase (pJNK) in the PFC, and 

protein tyrosine phosphatase 1B (PTP1B) in both the PFC and hippocampus. In summary, these 

findings suggest that BM prevents HF diet induced impairments in recognition memory by improving 

downstream BDNF signal transduction, increasing pAMPK, and reducing inflammation in the PFC and 

hippocampus. 

  



Introduction 

Obesity is a major risk factor for the development of cognitive decline in neurodegenerative disease 

such as vascular dementia (Hassing et al. , 2002). A number of studies provide direct evidence 

demonstrating a link between high-fat (HF) diet-induced obesity and impairments in learning and 

memory performance, including a decline in recognition memory (Greenwood and Winocur, 1990, 

1996, Heyward et al. , 2012). Furthermore, preclinical animal studies have demonstrated that a HF diet 

reduces synaptic plasticity in the prefrontal cortex (PFC) (Val-Laillet et al. , 2011) and hippocampus 

(Molteni et al. , 2002, Wu et al. , 2003), which leads to learning and memory impairments (Laroche et 

al. , 2000). A HF diet can further induce cognitive decline by promoting neuroinflammation in the 

forebrain (Miller and Spencer, 2014). Despite this, therapeutic interventions targeting HF diet induced 

cognitive impairment are lacking.  

The oleanolic acid synthetic derivative, bardoxolone methyl (BM) has attracted attention due to its 

potential application in a wide variety of diseases (Camer and Huang, 2014, Camer et al. , 2014, Liby 

and Sporn, 2012, Reisman et al. , 2012, Wang et al. , 2011). A recent study found that BM can promote 

dopaminergic neuroprotection via attenuation of the inflammatory mediator, tumour necrosis factor 

alpha (TNFα), and reactive oxygen species (ROS) production in vitro (Tran et al. , 2008). Despite this 

finding no study has subsequently investigated the effects of BM on the brain in vivo. However, a 

derivative of BM, CDDO-MA, improved spatial memory and reduced hippocampal amyloid plaques in a 

mouse model of Alzheimer’s disease (Dumont et al. , 2009). It has been demonstrated that 

administration of oleanolic acid has been found to reverse recognition memory impairments in mice 

(Park et al. , 2014). Furthermore, synthetically modifying side chains on oleanolic acid to a derivative 

form, such as BM, significantly increases its potency (Zhang et al. , 2008). Therefore, this suggests that 

BM has the potential to significantly prevent recognition memory decline, which was examined in our 

study. 



Obesity induced cognitive impairment is attributed to a reduction of synaptic plasticity (Molteni, Barnard, 

2002). Recent evidence has indicated that HF diet-induced impairment in neuronal plasticity may be 

caused notably by the reduction of brain derived neurotrophic factor (BDNF) protein expression in the 

PFC and hippocampus, which are key brain areas in learning and memory (Kanoski et al. , 2007). 

BDNF signalling is a critical pathway for promoting long term potentiation (LTP), a form of synaptic 

plasticity responsible for long term memory (LTM) formation, and neurogenesis in the forebrain (Noble 

et al. , 2011). Tropomyosin related kinase B (pTrkB) receptor phosphorylation and activation by BDNF 

leads to a downstream intracellular cascade resulting in activation of protein kinase B (pAkt) signalling 

(Cunha et al. , 2010). Akt signalling regulates the translation and transport of synaptic proteins in order 

to promote synaptic plasticity in learning and memory (Yoshii and Constantine-Paton, 2007). Along with 

the activation of TrkB, BDNF also triggers the opening of Na+ gated ion channels, resulting in an influx 

of Ca2+ and the enhancement of glutamate activation of N-methyl-D-aspartate (NMDA) receptors (Rose 

et al. , 2004). NMDA receptors also play a crucial role in synaptic plasticity with their activation by 

glutamate leading to the induction of LTP (Bliss and Collingridge, 1993, Cooke and Bliss, 2006). A 

previous study has reported that a HF diet desensitises NMDA receptors in the hippocampus in mice 

causing impairment in NMDA-induced long term depression (LTD), suggesting that its alteration may 

also account for cognitive defects (Valladolid-Acebes et al. , 2012). Another important signalling protein 

that is linked to BDNF is phosphorylated AMP-activated protein kinase (pAMPK). Studies have 

demonstrated that pAMPK activation increases BDNF expression in the brain (Gomez-Pinilla et al. , 

2008, Yoon et al. , 2008, Zhao et al. , 2008), suggesting that its activation plays a crucial role in 

promoting synaptic plasticity. Furthermore, it has been reported that a HF diet reduces phosphorylation 

of AMPK in the hippocampus in rats (Wu et al. , 2006). However, the effect of chronically administered 

BM in preventing HF diet-induced alterations in BDNF signalling, pAMPK, and NMDA receptor 

neurotransmission in the PFC and hippocampus of mice remains unexplored, and was investigated in 

this study.  



It is widely accepted that consumption of a HF diet and obesity leads to obesity-induced chronic 

inflammation in a number of tissues, including the brain (Weisberg et al. , 2003, Xu et al. , 2003). 

Several rodent studies have demonstrated that chronic inflammation in the brain induced by a HF diet 

is also associated with a decline in cognitive performance (Morrison et al. , 2010, Pistell et al. , 2010, 

Singh et al. , 2012). In the forebrain, synaptic plasticity is disrupted by increased expression of the 

inflammatory mediators, protein tyrosine phosphatase 1B (PTP1B) (Fuentes et al. , 2012) and 

phosphorylated c-Jun N-terminal kinase (pJNK) (Jiang et al. , 2013). However, whether BM 

administration can prevent HF diet- induced increases in expression of these inflammatory mediators is 

unknown and therefore was examined in this study. 

Although beneficial effects of BM have been demonstrated in animal models and human clinical trials in 

a variety of tissues (Pergola et al. , 2011, Pitha-Rowe et al. , 2009), the effect of BM in the central 

nervous system during HF diet-induced obesity has not been examined previously. Furthermore, no 

study has yet investigated whether chronic BM treatment can prevent HF diet-induced decline in 

recognition memory and synaptic plasticity. Therefore, the purpose of the current study was to 

determine whether chronic oral BM administration in mice fed a HF diet for 21 weeks could prevent 

impairments to recognition memory. Our findings suggest that chronic BM supplementation may be 

useful in reducing impairments in recognition memory by improving BDNF downstream signal 

transduction, increasing phosphorylation of AMPK, and decreasing PTP1B in the PFC and 

hippocampus. In addition to these effects BM supplementation in HF diet fed mice prevented alterations 

in NMDA receptors and the inflammatory mediator pJNK in the PFC, but not the hippocampus. 

Therefore, the present study suggests that BM prevents HF diet-induced alterations in signalling 

molecules involved in recognition memory, with a stronger effect on the PFC compared to the 

hippocampus.  

 

 



Materials and Methods 

Animals and HF diet-induced obesity model 

Male C57BL/6J mice (12 weeks old) were purchased from the Animal Resource Centre (Perth, Western 

Australia) and maintained in the animal facility at the University of Wollongong. The experiments were 

performed in accordance with the Australian Code of Practice for the Care and Use of Animals for 

Scientific Purposes. All procedures were approved by the Animal Ethics Committee, University of 

Wollongong, Wollongong, Australia (AE 12/15). Mice were housed in environmentally controlled 

conditions (temperature 22 °C, 12hr light/dark cycle) and 1 week after acclimatisation were randomly 

divided into 3 groups (n=7 per group). For the next 21 weeks one group of mice were fed a lab chow 

(LC) diet (5% of energy as fat; Vella Stock Feeds, Doonside, New South Wales, Australia), and the 

other two groups a HF diet (40% of energy as fat; SF11-095, Specialty Feeds, Glen Forrest, Western 

Australia). The fat present in the HF diet consisted of half lard and half sunflower oil. Mice in the 

treatment group were one of the groups fed a HF diet for 21 weeks, which also received an oral daily 

dose of BM (10 mg/kg) in their drinking water. We chose the BM dose according to a previous study 

(Wu et al. , 2014). Body weight was measured weekly for the duration of the experiment (Final average 

body weight after 21 weeks: LC, 27.15g; HF, 40.84g; HF+BM, 28.13g). Area under the curve (AUC) for 

glucose following a glucose tolerance test was measured (AUC glucose: LC, 969.14 mmol/l; HF, 

1102.83 mmol/l; HF+BM, 942.75mmol/l). 

Novel Object Recognition Test 

Recognition memory was assessed by performing a novel object recognition test based on a previously 

described protocol (Fernandez et al. , 2012). Briefly, a white open-field square box measuring 55cm in 

length, 55cm in width, and 35cm in height was used as the experimental apparatus. The open-field box 

was located in a sound proof room, and lit at approximately 14 lux. The experimental procedure 

consisted of habituation, training and retention sessions, which were recorded using a video camera 

placed above the open-field box. All objects and the open-field box were cleaned with 70% ethanol 



between each mouse. For habituation, mice were individually placed in the box for 10 minutes to 

explore the environment in the absence of objects. During the training session, two identical objects (A) 

were placed at opposing corners of the box, 5cm from the adjacent wall. Each mouse was then placed 

in the middle of the open-field box individually and left to explore the objects for 10 minutes. A mouse 

was considered to be exploring the object if it was sniffing, touching or facing the object within 2cm or 

less, and measurements were recorded in seconds. For the retention session, one familiar object (A) 

was replaced with one novel object (B) and measurements were taken according to how much time 

each mouse spent at each object as per the training session. The retention session commenced upon 

placing the mouse individually in the middle of the open-field box ninety minutes after its training 

session, and leaving it to explore for another 10 minutes. A recognition index was calculated using the 

formula: Recognition Index = Object B/ (Object A + Object B).  

Tissue collection  

For tissue analysis (n=7 per group), mice were euthanised at week 21 of the experiment. Brains were 

dissected from the mice, snap frozen in liquid nitrogen and stored at -80 °C until use.  

Microdissection 

Frozen brain sections containing the PFC and hippocampus regions were cut into 14 μm coronal 

sections with a cryostat at -18°C before being mounted on Polylysine™ microscope slides for receptor 

autoradiography. Further coronal brain sections were cut at 500μm before the PFC and hippocampus 

regions were dissected for western blotting. Sections were collected at levels ranging from Bregma 

3.70mm to -5.20mm based on a standard mouse brain atlas (Paxinos, 2002). Brain sections were 

stored in -20°C until use.  

Receptor Autoradiography 

The procedure for receptor autoradiography to assess NMDA receptor density was based on the 

protocol described by Newell et al. (2005) (Newell et al. , 2005). Briefly, brain sections were incubated 

in 30nM N-2-hydroxyethylpiperazine-N'-2-ethanesulphonic acid (HEPES) buffer, containing 100mM 



glycine and 100mM glutamate, 1 mM ethylenediaminetetraacetic acid (EDTA) and 20nM of the 

radioligand, [3H]MK-801 (specific activity 17.1 Ci/mmol, Perkin Elmer, Boston, Massachusetts, USA) for 

2.5 hours at room temperature. All solutions for this procedure had a pH of 7.5. Non-specific binding 

was determined by incubating adjacent brain sections with [3H] MK-801 in 20 mM MK-801. Following 

incubation, each section was washed twice for 20 minutes at 0 ºC in a solution of 30 mM HEPES and 1 

mM EDTA. NMDA receptor binding autoradiographic images were taken using a Beta-Imager™ camera 

(BioSpace, Paris, France). Sections were scanned at a high-resolution setting for 3.5 hours. A series of 

sections used as standards with known amount of radioactivity were included in all scans. Quantitative 

analysis of these images was performed using the β-Image Plus software (version 4, BioSpace). 

Western Blot analysis 

For protein extraction the frozen PFC and hippocampus tissue samples were homogenised in Nonidet 

P-40 lysis buffer. The following antibodies were used to quantify specific proteins: BDNF (sc-546), 

pTrkB (sc-135645), TrkB (sc-377218), pAkt (sc-135650), Akt (sc-1618), pAMPK (sc-33524), AMPK (sc-

25792) and pJNK (sc-6254) (Santa Cruz Biotechnology, Dallas, TX); PTP1B (#5311) (Cell Signalling 

Technology, Beverly, MA). The bands corresponding to the proteins of interest were scanned and the 

band density analysed using the automatic imaging analysis system, Quantity One (Bio-Rad 

Laboratories, Hercules, California). All quantitative analyses were normalised to β-actin. Western blots 

were performed in triplicate for each sample; however, in some cases only two values for each sample 

were collected. The average of the duplicate/triplicate numbers for each sample were calculated and 

this number was used for statistical analysis 

Statistics 

Data were analysed using the statistical package SPSS 20 (SPSS, Chicago, IL). Data was first tested 

for normality before differences between mice fed a LC, HF, and HF supplemented with BM diet were 

determined by one-way analysis of variance (ANOVA). This was followed by the post hoc Tukey-

Kramer honestly significant difference (HSD) test for multiple comparisons among the groups. A p value 



of <0.05 was considered statistically significant. Values are expressed as mean ± SEM. Pearson’s 

correlations were used to examine the relationship between recognition index and BDNF levels, 

recognition index and NMDA receptor density, and AMPK phosphorylation and BDNF levels in the PFC 

and hippocampus. 

Results  

Bardoxolone Methyl prevented a decline in novel object recognition in mice fed a high-fat diet 

To assess whether BM treatment can prevent HF diet-induced long term memory deficits, we 

performed a novel object recognition test in mice fed a HF diet for 21 weeks. During the training 

session of the test, the percentage of time spent exploring the identical objects in the open-field was not 

significantly different among mice fed a LC diet (18.65%), HF diet (22.83%), and HF diet treated with 

BM (17.29%). However, HF diet fed mice were found to have a significantly reduced recognition index 

compared to mice fed a LC diet, determined from the novel object recognition test (LC= 50.07%, HF= 

26.28%, p = <0.001, Figure 1). This impairment in memory was prevented through BM administration, 

indicated by a significantly higher recognition index (56.82%) in BM treated mice fed a HF diet 

compared to untreated HF diet fed mice (p = <0.001, Figure 1A). These results show that recognition 

memory deficits caused by a HF diet may be prevented with BM treatment. In addition, the total sum of 

exploration time between the familiar and novel object is presented in Figure 1B (Difference in time 

between familiar and novel object (LC= +19.5%, HF= -62.0%, HF+BM= -4.7%) 

 

Figure 1. Effect of chronic bardoxolone methyl (BM) treatment on recognition memory in mice fed a high-fat diet for 21 
weeks (n= 7 per group). Chronic treatment of BM significantly prevented high-fat (HF) diet-induced decline in recognition 
index in mice (A). Total exploration time between familiar and novel object (B). *, p = <0.05 vs. lab chow (LC) group, #, p = 
<0.05 vs. HF group, values are means ±SEM. 
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Table 1 NMDAR binding density in mouse forebrain following 21 weeks of LC, HF or HF + BM diet 

Brain Area LC HF HF+BM F value P value 

Prefrontal Cortex 14.5±1.7b 19.8±0.9a 14.3±1.9b 2.798 0.038 

Hippocampus 16.7±1.9 19.1±2.1 19.5±1.5 0.785 0.473 

Values are means ±SEM. LC, lab chow diet, HF, high-fat diet, HF+BM, high-fat diet and bardoxolone methyl treatment. 
ap<0.05 vs LC, bp<0.05 vs HF. 
 
 

Bardoxolone methyl prevented HF diet induced decline in downstream BDNF signalling and 

phosphorylation of AMPK in the forebrain of mice fed a HF diet 

We evaluated the effect of BM on the expression of BDNF and its associated signalling molecules in 

the PFC and hippocampus of HF diet fed mice using western blotting analysis (n = 6-7 per group for 

each protein). In both the PFC and hippocampus, western blot analysis showed that a HF diet reduced 

BDNF levels and the phosphorylation of TrkB, which was significantly reversed by BM treatment (p = 

<0.05, Figure 3A and B). Furthermore, HF diet induced decreases in phosphorylation of the proteins 

Akt and AMPK was prevented by BM administration (p = <0.05, Figure 3A and B). In addition, BDNF 

levels were positively correlated to the phosphorylation of AMPK in the PFC (r = 0.674, p = <0.01), and 

hippocampus (r = 0.798, p = <0.001) (Figure 4A and B). In examining total protein expression, BM 

prevented HF diet-induced decreases in TrkB levels in the hippocampus, but not the PFC. There were 

no significant differences between the total protein expressions of Akt and AMPK in the PFC or 

hippocampus. These results suggest that BM prevents HF diet induced decreases in BDNF, 

phosphorylation of TrkB and the phosphorylation of associated signalling molecules, Akt and AMPK in 

the PFC and hippocampus. 
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and PFC. This suggests that the actions of BM on the downstream BDNF signalling cascade 

contributed to improved neuronal plasticity in the hippocampus and PFC of mice fed a HF diet, which 

further contributed to an improvement in recognition memory. Furthermore, BDNF levels in the PFC 

were positively correlated to recognition index suggesting that BDNF signalling in the PFC is important 

for recognition memory.  

Several studies have recently suggested an association between BDNF and the phosphorylation of 

AMPK (Gomez-Pinilla, Vaynman, 2008, Yoon, Oh, 2008, Zhao, Shen, 2008). Rats who performed a 

week of exercise demonstrated increases in AMPK protein phosphorylation and BDNF mRNA levels, 

which was coupled with an enhancement to spatial memory (Gomez-Pinilla, Vaynman, 2008). 

Furthermore, the activation of AMPK has been found to increase the expression of BDNF in mouse 

hippocampus (Zhao, Shen, 2008). Along with increased BDNF levels, our results demonstrated that BM 

administration increased AMPK protein phosphorylation in the PFC and hippocampus of mice fed a HF 

diet for 21 weeks. Furthermore, our results found a positive correlation between the phosphorylation of 

AMPK and BDNF levels in both the PFC and hippocampus. These results suggest that the BM-induced 

elevation of AMPK protein phosphorylation may modulate BDNF expression, which enhanced synaptic 

plasticity in the PFC and hippocampus, leading to improved recognition memory.  

NMDA receptor activation is important for glutamatergic neurotransmission in learning and memory 

processes, including recognition memory (Bliss and Collingridge, 1993, Cooke and Bliss, 2006, 

Warburton et al. , 2013). It has been reported that a HF diet induces a desensitisation of NMDA 

receptors in the brains of mice, resulting in cognitive deficits (Valladolid-Acebes, Merino, 2012). 

Therefore, the increased NMDA receptor density we observed in the PFC after a chronic HF diet may 

reflect compensation for reduced glutamatergic NMDA receptor function. Importantly, our results found 

that BM prevented alteration of NMDA receptor expression in the PFC during a HF diet, which may be 

involved in its improvement of recognition memory in these mice. Furthermore, NMDA receptor binding 

density was negatively correlated to recognition index, suggesting that HF diet induced alterations of 



NMDA receptors in the PFC leads to impairments in recognition memory that can be prevented by BM 

administration. The PFC and hippocampus are known important brain regions in learning and memory 

that both utilise NMDA receptor dependent synaptic plasticity (Banks et al. , 2012). Previous studies 

have demonstrated that recognition memory can be impaired by lesions on the PFC in monkeys and 

rats (Bachevalier and Mishkin, 1986, Kolb et al. , 1994). On the other hand, studies in rodents showed 

contradictory results regarding the implication the hippocampus in recognition memory, reporting that 

hippocampal lesions may have no effect in object recognition memory in rats (Forwood et al. , 2005, 

Langston and Wood, 2010, Mumby et al. , 2002). This suggests that the PFC may have a more 

influential role in recognition memory compared to the hippocampus in rodents. Our results were in line 

with these studies, since there were no significant changes in NMDA receptor binding density in the 

hippocampus between the groups. 

PTP1B and phosphorylation of JNK in the hippocampus and PFC also influences synaptic plasticity, as 

their activation has been shown to impair learning and memory retention in mice (Fuentes, Zimmer, 

2012, Wang et al. , 2013). Both pJNK and PTP1B are known to cause memory impairments by 

negatively regulating Akt signalling (Lu et al. , 2011, Sunayama et al. , 2005). In addition to preventing 

HF diet induced decline in Akt protein phosphorylation, our results demonstrated that BM prevented HF 

diet induced increases in PTP1B and phosphorylation of JNK in the PFC, and PTP1B in the 

hippocampus. This suggests that HF diet induced impairments of learning and memory via these 

inflammatory mediators were attenuated by BM administration, leading to the promotion of Akt 

signalling and subsequent improvement of recognition memory. 

In conclusion, the findings of this study demonstrate that chronic administration of BM prevents HF diet 

induced impairment to recognition memory in mice. Furthermore our results suggest that BM targets 

signalling molecules in both the PFC and hippocampus that contribute to an improvement in recognition 

memory. However, it appears that the PFC has a more influential role in this effect. A proposed model 

of molecular targets of BM in the PFC in promoting recognition memory is summarised in Figure 7. Our 
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