
Bare bones particle swarm optimization with adaptive chaotic jump for feature selection in
classification

Chenye Qiu

 School of Internet of Things, Nanjing University of Posts and Telecommunications
No.66 Xinmofan Road

Nanjing, Jiangsu, 210003, China
E-mail: qiuchenye@njupt.edu.cn

Abstract

Feature selection (FS) is a crucial data pre-processing process in classification problems. It aims to reduce the
dimensionality of the problem by eliminating irrelevant or redundant features while achieve similar or even higher
classification accuracy than using all the features. As a variant of particle swarm optimization (PSO), Bare bones
particle swarm optimization (BBPSO) is a simple but very powerful optimizer. However, it also suffers from
premature convergence like other PSO algorithms, especially in high-dimensional optimization problems. In order
to improve its performance in FS problems, this paper proposes a novel BBPSO based FS method called BBPSO-
ACJ. An adaptive chaotic jump strategy is designed to help the stagnated particles make a large change in their
searching trajectory. It can enrich the search behavior of BBPSO and prevent the particles from being trapped into
local attractors. A new global best updating mechanism is employed to reduce the size of obtained feature subset.
The proposed BBPSO-ACJ is compared with eight evolutionary computation (EC) based wrapper methods and two
filter methods on nine benchmark datasets with different number of dimensions and instances. The experimenta l
results indicate that the proposed method can select the most discriminative features from the entire feature set and
achieve significantly better classification performance than other comparative methods.

Keywords: feature selection, bare bones particle swarm, adaptive chaotic jump, global best updating mechanism.

1. Introduction

Feature selection (FS) is an effective and important data
pre-processing step for data mining and pattern
recognition1. In high-dimensional classification
problem, a large number of features may significantly
degrade the classification performance of learning
algorithm and increase the computational cost, which
causes “the curse of dimensionality”. FS aims to select
the most informative and discriminative features from
the original entire feature set to train a classification
model2. By discarding irrelevant or redundant features,
a smaller feature subset has three main advantages: 1)
reduce the computational cost; 2) improve the
performance of classifier and avoid over-fitting; 3)

enhance the interpretation ability of the classification
model.

According to the method used to evaluate the
feature subsets, FS approaches can be divided into two
categories: wrapper3,4 and filter5 approaches. The
wrapper approach uses a given learning algorithm to
evaluate the feature subsets while the filter approach
utilizes the inherent characteristics of the dataset to
evaluate the feature subsets, such as the correlation,
redundancy, and statistical dependence6,7. The wrapper
approach usually gets better classification performance
since the feature subsets are directly chosen according
to their classification accuracies, but it also needs
considerable computational time due to the learning
algorithm in the evaluation process8,9.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1–14

1

Received 11 April 2017

Accepted 13 September 2017

Copyright © 2018, the Authors. Published by Atlantis Press.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

The goal of FS is to find optimal feature subsets
according to some evaluation criteria. Therefore, FS can
be modelled as a combinatorial optimization problem.
The main difficulty of FS lies in the large search space
because the number of features would make an
exponentially increase for the search space10,11. For a
dataset with n features, there are 2n possible feature
subsets. In this situation, an exhaustive search method
which considers all the possible feature subsets is not
suitable for solving FS problem due to very high
computational cost12. In order to solve the complicated
combinatorial optimization problem accurately and
efficiently, a powerful global search algorithm is an
essential requirement. Particle swarm optimization is a
population based optimization algorithm which is
inspired by the social behavior of bird flocking13 and it
shows strong global search capacity due to its exquisite
design of algorithm structure. It has been successfully
used in many real-world applications due to its fast
convergence speed and ease of implementation. PSO
has been extended to FS problems recently and many
PSO-based approaches have shown promising results.
Wang et al.14 proposed a FS model based on PSO and
rough sets theory and the experimental results shows the
proposed approach outperforms GA based FS methods.
In order to prevent premature convergence in FS
problem, Chuang et al.15 introduced the catfish effect to
binary PSO to strength its search ability. In Ref. 16, the
inertia weight of binary PSO was generated with chaotic
sequences in order to improve the performance of PSO
in FS problem16. Jiang et al.17 applied artificial fish
swarm algorithm to PSO in order to improve its local
search capacity. In Ref.18, PSO with novel initialization
methods and global best updating strategies was applied
to FS problem. Butler-Yeoman et al.19 proposed two
versions of hybrid PSO based FS methods which take
advantages of both filter and wrapper evaluations.
Moradi et al.20 improved the performance of PSO by
introducing a local search operator to reduce the size of
obtained feature subsets.

These studies demonstrate the capability of PSO in
solving FS problems. But there is one problem when
applying PSO to FS which would largely affect the
quality of the obtained feature subsets. In PSO, there are
several important control parameters which would
strongly affect the search behavior and the optimization
ability of the algorithm, such as the inertia weight,
cognitive weight, and social weight. Many studies have

indicated that the proper setting of these parameters is
crucial for PSO21,22. Inappropriate setting of these
problems may lead to premature convergence or low
convergence speed.

However, there exist no simple principles about
how to select these parameters appropriately in different
application scenarios. It is still an open question about
how to set and adjust these parameters in different
optimization problems.

In order to deal with the disadvantages of PSO,
Kennedy23 proposed a variant of PSO, called bare bones
PSO (BBPSO). Unlike the traditional PSO, BBPSO
eliminates the velocity term and uses the Gaussian
sampling to update the positions of particles based on
social and personal flying experience. In the standard
BBPSO, those important parameters in PSO do not exist
anymore and only the position term is considered in the
evolutionary process. Therefore, BBPSO is almost a
parameter free algorithm which makes the structure of
the algorithm very simple but it also shows powerful
optimization ability.

However, BBPSO also suffers from premature
convergence in the evolutionary process due to its
special search mechanism. In BBPSO, if a particle’s
personal best is also the global best, it would stay in its
present position until some other particles finds better
solutions. Therefore, BBPSO may get stuck into local
optimal, especially in high-dimensional optimization
problems. In order to overcome the premature
convergence problem, some jump or disruption
strategies were introduced to strengthen the search
ability of the algorithm. Krohling and Mendel24

performed Gaussian or Cauchy jump on the stagnated
particles to help them escape from local optimal. Liu et
al.25 introduced a new disruption strategy to keep the
balance between exploration and exploitation ability of
the algorithm. Lee et al.26 introduced a heterogeneous
cooperation and jump strategy to strength the
exploration ability of the BBPSO. Blackwell27 analyzed
BBPSO theoretically and a series of experimental
results showed that an adaptive distribution can
effectively improve the performance of the algorithm.

Some researchers have adopted BBPSO for FS
problem. Zhang et al. 28 proposed a BBPSO with a new
local leader updating strategy and uniform combination
for FS problem. In Ref.29, BBPSO with a chaotic
initialization strategy was applied to solve FS
problem29. However, there are some problems need to

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1–14

2

be further investigated in order to improve the
performance of BBPSO in FS.
(i) In high-dimensional FS problem with a large
number of candidate feature subsets, BBPSO may fall
into local optimal during the search process. Therefore,
the optimization ability of BBPSO needs to be enhanced
to overcome the premature convergence problem.
(ii) Various real-world FS problems show great
diversity over the data characteristics and the number of
features and instances. In order to obtain optimal feature
subsets in different application scenarios, BBPSO
should adjust its search behavior according to the
evolutionary status of population adaptively.

Available researches on applying BBPSO for FS
problems are relatively few and they cannot fully
exploit the potential of BBPSO in this area. In order to
solve above issues and fully validate the ability of
BBPSO in FS problems, a novel BBPSO with adaptive
chaotic jump strategy and new global best updating
mechanism (BBPSO-ACJ) is proposed. By employing
the adaptive chaotic jump strategy, each particle will
choose its position updating mechanism adaptively
according to its own condition where the stagnated
particles have more opportunity to perform a chaotic
jump to escape from local attractor and good particles
would update its position in the canonical way.
Therefore, the novel operator not only prevents particles
from falling into local optimal, but also maintains
balance between global exploration and local
exploitation. In addition, the new global best updating
mechanism can effectively reduce the number of
selected features.

This paper is organized as follows. Section 2
introduces PSO, BBPSO, and KNN briefly. In section 3,
we propose a BBPSO with adaptive chaotic jump
strategy for FS problem. Section 4 includes experiments
design, results and analyses of the results, respectively.
The conclusions are given in Section 5.

2. Background

2.1. Particle swarm optimization

PSO is a swarm intelligence based optimization
algorithm which simulates the behavior of bird flying or
fish schooling13. The whole population is called swarm
which concludes a set of particles. Each particle
represents a candidate solution of the optimization
problem. Let),...,,(21 iDiii xxxx = be the ith particle in

the swarm. D denotes the dimension of the search space.
The velocity of particle i is),...,,(21 iDiii vvvv = which
indicates the speed and direction that the particle should
move in the next cycle. The initial positions are
randomly generated in the multi-dimensional search
space and the initial velocities are generally set to 0. In
the iteration process, all the particles are evaluated with
a fitness function. The best fitness value of each particle
is its own personal best (pbest) and the best fitness value
of the whole swarm is recorded as the global best
(gbest). Each particle adjusts its speed and direction
according to its own flying experience and the
experience of other particles in the swarm. The
information exchange in the swarm is realized in this
way. In the basic PSO algorithm, the velocity and
position of each particle are updated by the following
equations:

1
1 1 2 2() ()t t t t t t t t

id id id id d idv w v c r pbest x c r gbest x+ = × + × × − + × × − (1)
1 1t t t

id id idx x v+ += + (2)

where t
idv is the dth dimension of the velocity of particle

i in cycle t; t
idx the dth dimension of the position of

particle i in cycle t; t
idpbest is the dth dimension of the

position of personal best of particle i in cycle t; t
dgbest

is the dth dimension of the position of gbest in cycle t; w
is the inertia weight which can be used to balance global
and local search. The value is typically set between 0
and 1. When a particle converges to a local optimal and
moves very slowly, a relatively large inertia weight can
help the particle escape from the local attractor. A
relatively small inertia weight is more appropriate for
performing local search. c1 is the cognitive weight and
c2 is the social weight; 1

tr and 2
tr are two random

numbers.
The original PSO was proposed for optimization

problems in continuous space. FS is a discrete
optimization problem. In order to extend PSO to FS,
two methods have been proposed:
(i) Binary PSO (BPSO) was developed for discrete
problems by Kennedy and Eberhart30. In BPSO, the
position of particle can take value 1 or 0. The velocity
denotes the probability of the position taking value 1. In
BPSO, the positions and velocities of the particles are
initialized by:

1, if () 0.5
0,

t
id

rand
x

otherwise
>

= 


 (3)

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1–14

3

 max max2 ()t
idv v rand v= − + × × (4)

where rand() is a random number between [0,1]. maxv is
the maximum speed of particle which is very important
in BPSO. The maximum speed should be set properly in
order to prevent premature convergence. If the value is
too large, the position would always be 1 and it cannot
search more spaces.

The velocities of particles are updated by Eq.(1).
The positions of particles are updated by the following
equations:

1, if () ()
0,

t
t id
id

S v rand
x

otherwise
 >

= 


 (5)

where rand() is a random number between [0,1]. S() is a
sigmoid function which is used to transform t

idv to the
range of (0,1).

1()
1 exp()

t
id t

id

S v
v

=
+ − (6)

(ii) Canonical PSO: In this method, the positions are
restricted between [0,1]. The velocities and positions are
updated as the canonical PSO, with Eq.(1) and Eq.(2).
Before evaluating the population, a decoding procedure
is needed. In Ref. 31, the position of a particle can be
decoded into a feature subset. A threshold (e.g. 0.6) is
chosen to decide if the feature is chosen. If a dimension
of a particle’s position is larger than the threshold, the
corresponding feature is chosen. Otherwise, the feature
does not exist in this feature subset.

2.2. Bare bones Particle Swarm Optimization

The BBPSO is the simplest variant of PSO. It eliminates
the velocity term and only the positions of the particles
are used in the search process. Therefore, users do not
need to consider those control parameters in PSO which
would largely affect the performance of PSO. Due to the
simplicity and powerful optimization ability of BBPSO,
it has aroused a lot of attentions from researchers. When
BBPSO updates the positions of particles, all the
particles learn from its own flying experience and the
flying experience of the best particle of the swarm. The
positions in BBPSO are updated according to the
following equation:

 +1 (,)
2

t t
t t tid d
id id d

pbest gbestx N pbest gbest+
= − (7)

As is shown in Eq.(7), the positions are randomly
generated by the Gaussian distribution with the mean of
(pbest+gbest)/2 and the variance of |pbest-gbest|.

Kennedy also proposed another version called BBPSO-
Exp23 which promotes local search around the pbest
position. The positions are updated by:

+1 (,), <0.5
2

, otherwise

t t
t tid d

t id d
id

t
id

pbest gbestN pbest gbest Rx
pbest

 +
−= 



 (8)

where R is a random number between [0,1]. It can be
included from Eq.(8) that the particle has 50% chance to
jump to its own pbest position in BBPSO-Exp.

2.3. K nearest neighbor algorithm

The K nearest neighbor algorithm (KNN) is a non-
parametric method which can be used for classification
and regression tasks. The original dataset is divided into
training set and test set. In classification problems, each
training sample is a vector in a multi-dimensional
feature space and contains a class label. Each test
sample is a vector without a class label. For a new test
sample to be classified, it is first assigned K closest
training samples according to some distance or
similarity function. Some frequently-used distance
metrics include the Euclidean distance, the Hamming
distance and etc. Then the test sample is classified by a
majority vote of its K closest neighbors. KNN is a
simple machine learning algorithm as the only control
parameter in KNN is the number of neighbors. The
main drawback of KNN is that it cannot perform well in
unbalanced datasets due to its “majority vote”
mechanism. This mechanism would easily make the test
samples which belong to the minority class being
wrongly classified. Besides, the local structure of the
dataset would also affect the performance of KNN. In
order to achieve good classification performance, many
variants of KNN have been proposed. Until now, KNN
is still widely used in different machine learning tasks.

3. The proposed approach

BBPSO is a popular variant of PSO due to simplicity
and efficiency. Its parameter-free nature makes it
possible to show good performance in different
application scenarios.

The goal of this study is to propose a BBPSO
based FS method. Due to the large search space and
many local optimal in FS problems, the search ability of
BBPSO needs to be enhanced in order to obtain feature
subsets with high quality. An adaptive chaotic jump

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1–14

4

strategy is introduced into BBPSO to prevent the
algorithm from falling into local optimal. Moreover, the
updating strategy of gbest is modified to encourage the
algorithm to generate smaller feature subsets. This
section describes the proposed FS algorithm, called
BBPSO with adaptive chaotic jump (BBPSO-ACJ).

Initialize
population

Stopping
criterion

Estimate evolutionary

status

Chaotic jumpUpdate particle
positions

With Eq.(7)

Calculate fitness

Update pbest
and gbest

Final feature
subset

NO

YES

Fig. 1. Flowchart of the proposed algorithm.

Fig. 1 shows the flowchart of the proposed

algorithm. First the population is randomly initialized in
the search space. Each particle position represents a
feature subset and its pbest is the initial value. After
initialization, the following steps are repeated until the
maximum iteration is reached. The adaptive chaotic
jump strategy is used to decide the updating mechanism
of each particle. Update the positions with Gaussian
sampling or chaotic jump. All the new positions are
evaluated with the fitness function. If the new position
is out of the search space, the particle will be assigned
the value of its corresponding lower or upper bound.
Update the pbest and gbest according to the fitness
value. When the maximum iteration is reached, the
optimal feature subset is reported.

3.1. Feature subset representation

In evolutionary computation (EC) based FS approaches,
a chromosome represents a candidate feature subset
which is evaluated with some criteria, such as the

classification accuracy, the mutual information of the
feature subsets and etc. According to the type of
evaluation criteria which is employed, the EC based FS
approaches can be divided into filter approach and
wrapper approach.
In PSO based FS methods, binary encoding is widely
used in which position represents a feature subset and
velocity denotes the possibility of the feature being
selected. In BBPSO, due to the absence of the velocity
term, the encoding scheme needs to be modified. Given
the position of the ith paricle: 1 2(, , ,)i i i iDx x x x= … . D
denotes the dimension of the problem, i.e., the number
of the original features. The encoding of a particle’s
position is shown in Fig.2. The position is restricted
between [0,1].

xi1 xi2 … … xiDxi3

Fig. 2. The encoding of a particle

In order to form a feature subset, a decoding
process is needed before the evaluation. Position can be
translated into a feature subset as follows:

1, 0.5
0,

id
id

if x
A

otherwise
 >

= 


 (9)

where idA means the feature subset decoded from the
position of particle idx . idA can take the value of 1 or 0

depending on the value of idx . =1idA means the dth
feature is chosen. Otherwise, this feature is excluded.
Fig. 3 illustrates a 7-dimensional problem which means
the complete dataset has 7 features. The decoded
particle position in the figure indicates that the 1th, 3rd,
and 5th features are selected while the other four
features are not chosen in this feature subset.

1 0 00101

Y Y Y

N N N N

Y=selected
N=not selected

Fig. 3. A 7 dimensional encoding problem

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1–14

5

3.2. Feature subset evaluation

In this paper, the wrapper approach is employed to
evaluate the feature subsets. Therefore, the classification
accuracy is used as the fitness function and it can be
defined as:

TP TNCA
TP TN FP FN

+
=

+ + +
 (10)

where TP (True Positive) is the number of positive
instances that are correctly classified. FP (False Positive)
is the number of negative instances that are wrongly
classified as positive. TN (True Negative) is the number
of negative instances that are correctly classified. FN
(False Negative) is the number of positive instances that
are wrongly classified as negative. The larger CA is, the
more accurate the feature subset is. The aim of the FS
method is to find the feature subset that can maximize
the CA metric.

3.3. Adaptive chaotic jump strategy

BBPSO is known for its fast convergence speed which
may leads to the rapid loss of population diversity and
increases the probability of falling into local optimal. In
high-dimensional FS problems, the search space grows
exponentially with the number of features and there are
many local optimal in the large search space. BBPSO is
prone to premature convergence in this situation.
However, if the algorithm focuses on promoting the
population diversity, the convergence speed would be
decreased. To keep the balance between convergence
speed and population diversity during the optimization
process is very crucial for BBPSO.

In order to improve the diversity of population
while maintaining the high convergence speed, a novel
adaptive chaotic jump strategy (ACJ) is proposed. It
allows each particle to choose its updating mechanism
according to its own accumulated experience. In this
way, good particles update their positions in normal
way, i.e. by the Gaussian sampling, while bad particles
can make a large modification of their search previous
trajectory, i.e. the chaotic jump. This strategy can
promote population diversity without sacrificing the
convergence speed of the algorithm. This section will
first introduce the chaotic jump operator, and then the
adaptive strategy will be described.

3.3.1. Chaotic jump operator

Chaos is a non-linear system which shows a great
sensitivity to initial conditions33. A small variation of
the initial parameter will lead to large differences in its
long-term behavior. Therefore, it is impossible to
predict the long term behavior of the chaotic system.
Although chaos is random and unpredictable, it also
shows some kind of regularity34. Due to the
unpredictable characteristic of chaotic system, it can
reach any possible region in the whole search space
which make it possesses the special merit of escaping
from local optimal35. Moreover, it is very easy and
convenient to generate and store a chaotic sequence.
Therefore, researchers have paid much attention to
chaotic system to make use of its special advantages. It
has been introduce to evolutionary algorithms to
improve their global search ability36,37,38. Recently,
chaotic systems have been embedded into PSO to
promote population diversity and enhance the
optimization performance. These approaches include
chaotic control parameters, chaotic local search and
etc39.

In this paper, chaotic sequences are employed to
BBPSO for solving FS problems. A chaotic jump
strategy is proposed to enrich the searching behavior of
BBPSO and strengthen the ability of jumping out of
local attractor. The logistic map is polynomial map and
it can be obtained from very simple non-linear
dynamical equations. Due to its simplicity, the logistic
map is the most frequently used chaotic sequence and it
is defined by:

1 4 (1), (0,1).i i i iz z z z+ = − ∈ (11)

where iz is the chaotic variable and i denotes the
iteration number. Fig. 4 shows the chaotic dynamics of
the logistic map, where 1 0.13z = and the maximum of
iteration is set as 150.

For the ith particle to perform a chaotic local jump,
the position is updated using the following equation:

(1.0 (2 1.0))
id

t t
id kx pbest z= + − (12)

where zk is the chaotic variable generated with Eq.(11).
For the stagnated particles, the chaotic local search can
offer a wider search capability due to the non-
periodicity of the logistic map. It can improve the
performance of BBPSO in terms of preventing
premature convergence.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1–14

6

Fig. 4. Dynamics of logistic map

3.3.2. Adaptive strategy

Based on the chaotic jump strategy proposed in the
above section, this section will introduce the adaptive
strategy. The proposed approach can decide when to
perform the chaotic jump adaptively according to the
evolutionary status of each particle. An array named
stagnation is introduced to monitor the evolutionary
status of each particle. For particle i, stagnation[i]
denotes how many iterations that particle i does not get
fitness improvement.

If there is no fitness improvement for particle i in
one iteration, then stagnation[i] is increased by one. A
large stagnation[i] concludes that particle i is stagnated
and the particle should perform the chaotic jump which
may help the particle jump out of the local attractor. The
adaptive chaotic jump strategy (ACJ) is described in
Algorithm 1 in detail. From the procedure of ACJ, we
can see that the probability of particle i to perform the
chaotic jump is computed as follows:

, 2.0 []

1
1 ecj i stagnation ip −=
+

 (13)

where pcj,i is the probability of particle i performing the
chaotic jump. The probability increases with the number
of iterations that a particle does not get fitness
improvement. Fig. 5 shows the change of the jump
probability with respect to the iterations without fitness
improvement. As is shown in Fig. 5, if a particle does
not update its pbest in 3 iterations, the probability of
chaotic jump is larger than 0.7.

Algorithm 1. Adaptive Chaotic Jump Strategy
For each particle i
 stagnation[i] = 0
End For
DO
For each particle i

IF 2.0 []

1 ()
1 e stagnation i rand− <
+

THEN Update the position of xi according to Eq.(7)
ELSE
Update the position of xi according to Eq.(12)

[] 0stagnation i =
END IF
IF () ()i if x f pbest>
THEN Update pbesti

[] 0stagnation i =
ELSE

[] [] 1stagnation i stagnation i= +
END IF
WHILE termination condition not met.
Output: gbest

Fig. 5. An illustration of jump probability

3.4. Update of gbest

In BBPSO, gbest plays a crucial role in guiding the
whole population searching for better solutions. The FS
algorithm aims to select a reduced set of features from
the original features without losing informative
information. In the evolutionary process, the algorithm
evaluates particles according to classification accuracy
and the feature subset with the highest classification
accuracy is defined the gbest. However, the case that
different feature subsets may have the same

C
ha

ot
ic

 Ju
np

 P
ro

ba
bi

lit
y

1 2 3 4 5 6 7 8 9 10 11 0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Iterations without Fitness Improvement

0 50 100 150 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1–14

7

classification performance would always appear in FS
problem. For example, subset {1, 2, 4, 7, 9} and subset
{2, 5, 7} achieve the same classification accuracy. In
this situation, the latter feature subset which achieves
the same classification accuracy with fewer features is a
better choice. Therefore, the gbest updating mechanism
first considers the classification accuracy. When two
feature subsets tie in terms of classification performance,
the feature subset with fewer features is chosen as the
new gbest. The equation shows our proposed gbest
updating strategy:

1 1

1 1 1 1

() ()
() () & () ()

t t t
i i

t t t t t t
i i i

t

x if f x f gbest
gbest x if f x f gbest Z x Z gbest

gbest otherwise

+ +

+ + + +

 >


= = <



 (14)

where Z() means the number of the features. The new
gbest updating mechanism can encourage the population
to search for feature subsets with higher classification
and fewer features.

4. Experimental results

4.1. Dataset

In order to test the effectiveness of the proposed
method, nine datasets taken from the UCI machine
learning repository are used for experiments and the
general cases of these datasets are shown in Table 1.
These datasets show a large diversity over number of
features, classes, and instances and they are widely used
in research areas such as feature selection and
classification.

Table 1. Datasets
Dataset # Features # Instances # Classes
Glass 9 214 2
Wine 13 178 3
Heart 13 270 2

Australia 16 690 2
Segment 19 2310 7
Germany 24 1000 2

Ionosphere 34 351 2
Sonar 60 208 2
Musk1 166 476 2

For each dataset, all the instances are randomly

divided into two parts: 70% as the training set and 30%
as the test set. All the datasets are normalized to [0,1]
before the FS process. An individual of an EC based
algorithm represents a candidate feature subset. During
the training process, KNN is employed as the learning

algorithm to evaluate the individuals. In this paper, K is
set as 5. The fitness value (classification accuracy) of
each individual is calculated through a 10-fold cross
validation on the training set. The whole training set is
randomly divided into 10 folds. 9 folds are used as the
sub-training data and the remaining 1 fold is used as the
sub-test data. The process is repeated 10 times and the
average value is the fitness value of the individual. The
10-fold cross validation is run on the training set, so it is
independent from the test set. After the training process,
the best feature subset is recorded as the final result and
it is testified on the test set with 5NN.

4.2. Comparative algorithms

To verify the performance of the proposed BBPSO-
ACJ, the following 8 EC based wrappers are employed:
Genetic algorithm (GA)40, PSO31, Binary PSO
(BPSO)30,Binary PSO with chaotic inertia weight
(BPSO-CI)35, BBPSO23, Quantum inspired PSO
(QBPSO)41, Binary PSO with catfish effect (BPSO-CE)
15, PSO (4-2)18.

Furthermore, two filter based methods, linear
forward selection (LFS) and greedy stepwise based
selection (GSBS), are also employed for comparison.
LFS starts from an empty feature subset and selects
features into the subset step by step while GSBS
gradually eliminates features from the original entire
feature subset18. LFS and GSBS are run on WEKA with
the default settings42.

4.3. Parameters setting

The experiments are performed on a machine with
Intel(R) Core(TM) i5-6500 at 3.2 GHz and 8.00 GB of
RAM using MATLAB and the operating system is MS
Windows 10.

The maximum number of iterations is empirically
set to 50 and the population size for EC based FS
method is set to 20. The crossover and mutation rates of
GA are set to 0.8 and 0.2, respectively. For PSO, BPSO,
BPSO-CI, BPSO-CE, and PSO(4-2) the cognitive
weight c1 and social weight c2 are both set to 2. The
upper and lower bounds of velocity for binary PSO
based methods are all set to 6 and -6, respectively. The
time decreasing inertia weight is used with

0.9maxw = and 0.4minw = . The parameter β in QBPSO
which is used to control the convergence speed is set as
0.55. For each dataset, all the EC based FS methods are

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1–14

8

repeated 20 independent times to avoid the impact of
random factors.

4.4. Results

4.4.1. Comparison between BBPSO-ACJ with EC
based FS methods

The performance of the proposed BBPSO-ACJ is
compared with 8 other EC based FS methods. For each
dataset, the obtained feature subsets by the 9 algorithms
in the training set are testified with 5NN in the test set.
Table 2 shows the means and standard deviations of
classification accuracy in the test set in 20 independent
runs. The best mean classification accuracy in each
dataset is shown in boldface. Moreover, the

classification accuracy of 5NN on the original entire
features is also shown in Table 2(i.e. Without FS).

From Table 2, we can find that in most cases, the
EC based FS methods can achieve higher classification
accuracy than using the original entire feature set.
Taking the Ionosphere dataset for example, while 5NN
is able to obtain the 79.25% accuracy using all the 34
features, GA based FS method obtains 83.62% accuracy
and other EC based algorithms achieve even higher
accuracy than GA. Hence, it can be inferred that FS is
an effective and crucial data prepossessing step for
classification problem as it is able to improve the
classification performance with fewer features.

Table 2 Classification accuracy of different algorithm. The average of results over 20 independent runs is reported.
Dataset Without FS GA PSO BPSO BPSO-CI BBPSO QBPSO PSO(4-2) BPSO-CE BBPSO-ACJ

Glass 63.08 71.9+8.86 71.08+7.84 76.92+4.87 75.38+6.49 75.05+5.81 72.31+7.94 73.21+6 74.07+7.51 77.18+4.44

Wine 94.44 96.29+2.33 96.67+0.78 97.04+1.66 96.3+0.53 97.04+1.29 97.04+1.29 95.26+1.75 96.67+0.78 97.96+1.37

Heart 81.48 82.46+6.73 83.44+2.53 82.96+2.03 81.98+3.09 83.21+4.12 82.1+3.41 79.78+4.13 84.44+2.68 87.45+2.09

Australia 83.62 83.59+2.22 83.03+1.52 84.23+0.22 84.04+0.87 84+1.06 83.17+1.63 83.34+3.65 83.86+0.96 84.38+0.41

Segment 90.05 83.11+5.08 91.3+0.72 91.58+0.48 91.61+0.46 91.52+0.44 91.64+0.48 85.42+4.81 91.7+0.32 92.07+0.13

German 68 70.94+1.84 71.07+1.79 72.07+2.88 72.6+2.03 73.19+2.9 73+3.6 68.47+1.45 72.29+1.79 75.39+2.15

Ionosphere 79.25 83.62+3.12 84.25+2.67 84.91+2.038 84.81+2.2 84.72+2.26 87.45+2.63 86.89+1.64 83.68+2.09 87.55+0.74

Sonar 73.02 73.28+5.36 77.25+3.27 72.06+3.82 76.03+2.3 76.67+3 76.51+3.16 77.94+3.21 77.1+4.19 79.05+2.97

Musk1 80.42 82.81+2.36 83.36+2.67 83.92+2.08 84.13+3.08 84.42+2.13 84.13+3.26 84.87+2.7 84.92+1.61 87.2+1.28

Average 79.8 80.89+4.21 82.38+2.64 82.85+2.23 82.99+2.34 83.31+2.56 83.04+3.04 81.69+3.26 83.19+2.44 85.36+1.73

Table 3 Selected feature number of different algorithms. The average of results over 20 independent runs is reported.
Dataset All GA PSO BPSO BPSO-CI BBPSO QBPSO PSO(4-2) BPSO-CE BBPSO-

ACJ
Glass 9 4.5 3.8 4.6 4.3 4.1429 3.8 4.1 4 4

Wine 13 6.35 7.4 8.6 8 7.8 7.7 6.84 7.4 8.2

Heart 13 6.8 6.8 8 7.4 7.3 6.7 6.6 7.3 6.2

Australia 16 5.95 5.9 6.88 6.4 6.14 5.3 5.79 6.29 5.4

Segment 19 10.4 10.9 10.6 11.2 11.5 10.9 10.78 10.4 9.9

German 24 10.7 12.4 10.67 10.6 11.14 10.43 12.76 10.29 8.83

Ionosphere 34 10.93 13.2 10.7 10.9 9.4 4.4 3.13 10.6 6.3

Sonar 60 30.8 28.07 29.6 31.4 29.8 28.4 11.24 30.43 25.7

Musk1 166 81.83 82.2 82.14 81.3 80.43 49.8 77.3 85.29 72.5

Average 39.33 18.7 18.96 19.09 19.06 18.63 14.16 15.39 19.11 16.34

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1–14

9

It can be seen from Table 2 that BBPSO-ACJ
achieves the highest classification accuracy in all
datasets compared with 8 other EC based wrappers. For
instance, BBPSO-ACJ gets the mean classification
accuracy 87.2% in Musk1 dataset, while the second best
is 84.92% which is obtained by BPSO-CE. In terms of
average result in all datasets, BBPSO-ACJ obtains the
highest average value 85.36%, while BBPSO (83.31%)
and PSOCE (83.19%) place second and third,
respectively.

In addition, Table 2 also shows that BBPSO-ACJ
obtains the lowest standard deviation. The average
standard deviation is 1.73 for BBPSO-ACJ while the
second best (i.e. BPSO) is 2.23. It can be concluded that
BBPSO-ACJ shows the best robustness among all the
EC based FS algorithms.

Table 3 shows the number of original entire feature
set and the selected feature number of different FS
methods. For each dataset, the algorithm which
produces the smallest feature subset is shown in
boldface. In terms of selected feature number, QBPSO
obtains the optimal performance with the average
feature subset size 14.16. Especially for the Musk1
dataset, QPSO only selects 49.8 features out of the
original 166 features while the second best is 72.5(i.e.
BBPSO-ACJ). PSO(4-2) places second with the average
feature number 15.39. In Sonar dataset, it selects 11.24
features from the entire 60 features with rather good
classification accuracy (rank 2 in all 9 EC based FS
algorithms). BBPSO-ACJ ranks 3 in all the 9 algorithms,
with the average feature number 16.34. It selects the
smallest feature subsets in four datasets: Heart,
Australia, Segment, and German. But it does not
perform as well as QPSO in high dimensional datasets
(i.e. Sonar) which affects its average performance. In
general, it can be concluded that BBPSO-ACJ is
superior to other methods in terms of classification
accuracy and it also shows competitive performance in
terms of selected feature number.

4.4.2. Comparisons with filter based methods

In this section, BBPSO-ACJ is compared with two filter
based FS methods, LFS and GSBS. Tables 4 shows the
classification accuracy (CA) and number of selected
features (#features) of the three FS methods.

Table 4 Comparison between BBPSO-ACJ and two filter
based methods

Dataset Metric LFS GSBS BBPSO-ACJ

Glass
CA 70.31 66.53 77.18

#features 6 7 4

Wine
CA 74.07 85.19 97.96

#features 7 8 8.2

Heart
CA 76.53 67.48 87.45

#features 6 8 6.2

Australia
CA 70.05 69.57 84.38

#features 4 12 5.4

Segment
CA 88.24 84.67 92.07

#features 4 13 9.9

German

MA 68.67 64.33 75.39

Table 4 continued

#features 3 18 8.83

Ionosphere
MA 86.67 78.1 87.55

#features 4 30 6.3

Sonar
MA 77.78 68.25 79.05

#features 3 48 25.7

Musk1
MA 85.31 76.22 87.2

#features 10 122 72.5

It can be seen from Table 4 that LFS selects fewer

features than GSBS in all the 9 datasets and achieves
higher classification accuracy in 8 out of 9 datasets.
BBPSO-ACJ achieves significantly higher classification
accuracy than LFS in all the datasets. BBPSO-ACJ
selects slightly larger or even smaller feature subsets
than LFS in datasets with small number of features,
such as Glass, Wine, and Heart. LFS shows much better
performance in high-dimensional datasets than BBPSO-
ACJ. This can be attributed to the forward selecting
mechanism of LFS which make it tend to select very
small number of features. Compared with GSBS,
BBPSO-ACJ obtains much higher classification
performance in all datasets and selects smaller feature
subsets in 8 out of 9 datasets. Therefore, it can be
concluded from Table 4 that BBPSO can effectively
reduce the number of features and shows superior
performance to the two deterministic FS methods in
terms of classification accuracy.

4.4.3. Statistical analysis of BBPSO-ACJ

Statistics provides a powerful tool to investigate the
difference between different algorithms. In this study,

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1–14

10

the Friedman test and the multiple comparison approach
are employed to testify whether the difference of the 9
EC based FS methods in terms of classification
accuracy is significant20,28.

The Friedman test is a non-parametric method
which is used to compare the classification performance
of different classifiers over multiple datasets by ranking
each algorithm on each dataset43. In this paper, the
hypothesis is that all the 9 EC based FS methods have
equal classification performance and the Friedman test
is used to test the hypothesis.

When performing the Friedman test, first create a
ranking matrix R in which each element Rij means the
rank (from 1 to 9) of the FS method j on dataset i. If an
FS method obtains the highest classification accuracy, it
gets rank 1 and the second best gets rank 2, and so on.
The test statistic is computed by the following
equations:

2(1)(1){ }
4f

f
f f

nk kn B
T

A B

+
− −

=
−

 (15)

2

1

n

j ij
i

R R
=

=∑ (16)

 2

1 1

n k

f ij
i j

A R
= =

=∑∑ (17)

2

1

1 k

f j
j

B R
n =

= ∑ (18)

The null hypothesis is rejected at the α
significance level if the test statistic is greater the 1 α−
quantile of the F-distribution with 1k − and ()()1 1k n− −
degrees of freedom. In this study, Tf is 7.56 and

()0.05 8,64 2.09F = . Since Tf is larger than ()0.05 8,64F , the
null hypothesis that all 9 EC based FS methods have the
same classification performance is rejected at 0.95
significance level.

The multiple comparison approach is used to
confirm which method shows significantly better
classification performance when the Friedman test is
rejected. The following inequality is used to decide
whether two methods i and j are significantly different.

(2) 2 () (1)(1)j i f fR R t n A B n kα− > − − − (19)

where (2)t α is a value on the t-table using (1)(1)n k− −
degrees of freedom (2 ((2)))P t tα α= > .

Like the Friedman test, the 9 EC based FS methods
are ranked according to their classification performance.
The rank sums of GA, PSO, BPSO, BPSO-CI, BBPSO,
QBPSO, BPSO-CE, PSO (4-2), and BBPSO-ACJ are
70, 59, 44, 48, 37, 44, 56, 38, and 9, respectively. In the
multiple comparison approach, the classification
performances of two methods are considered
significantly different when the sum ranks of the two
methods are greater than a stated unit apart. In this study,
the stated unit at 0.05 significance level is 17.66.
Obviously, BBPSO-ACJ obtains significantly better
classification accuracy than other comparative
algorithms.

4.4.4. Analysis on computational time

This section compares the computational time of the 9
EC based FS methods. Table 5 shows the mean
computational time (in seconds) of 20 independent runs
on each dataset. For each dataset, the algorithm with the
best computational efficiency is shown in boldface.
They are all wrapper-based methods which employ the
5NN classifier to evaluate the individuals in the
optimization process. Hence, most of the computational
time is spent on the evaluation process. First of all, it
can be seen from Table 5 that the 9 methods are close in
the running time. All the methods can generate feature
subsets in relatively short time, less than one minute in
8 out of 9 datasets and about 2 minutes in the German
dataset. Among all the 9 algorithms, PSO shows the
best computational efficiency, with the average CPU
time 26.67 seconds. This is due to the fact that PSO
does not include any extra search strategies. The
difference of the average CPU time between PSO and
BBPSO-ACJ is less than 2 seconds. Moreover, the
proposed BBPSO-ACJ shows superior performance to
PSO in terms of classification accuracy and selected
feature number according to Table 2 and Table 3.
Therefore, there is a trade-off between the quality of
feature subsets and the computational cost.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1–14

11

Table 5 The average time of algorithms on each dataset(in seconds). The last row of the table shows the average CPU time of each
method over the datasets.

Dataset GA PSO BPSO BPSO-CI BBPSO QBPSO PSO(4-2) BPSO-CE BBPSO-ACJ

Glass 6.11 5.48 6.63 7.13 6.19 5.93 5.27 7.16 5.55

Wine 8.75 8.01 7.41 7.44 7.69 6.94 8.55 7.93 7.55

Heart 15.23 13.81 14.30 14.12 15.64 12.51 13.90 14.94 13.33

Australia 31.18 29.96 31.88 33.02 32.30 35.17 33.46 35.74 38.47

Segment 16.23 15.64 17.89 15.32 13.80 12.77 14.69 16.01 17.61

German 105.98 101.04 103.95 105.87 109.65 104.04 105.93 111.99 106.10

Ionosphere 15.56 14.02 13.71 11.94 15.70 13.66 13.94 12.79 16.53

Sonar 7.07 6.13 6.30 7.07 6.74 8.19 7.66 6.98 7.02

Musk1 52.20 45.99 46.10 48.22 47.95 43.75 47.83 51.42 43.34

Average 28.70 26.67 27.57 27.79 28.41 27.00 27.91 29.44 28.39

4.4.5. Analysis of the two new operators

In this section, the effect of the two new operators (the
adaptive chaotic jump strategy and the new gbest
updating mechanism) upon FS will be discussed in
detail. Table 2 shows that BBPSO-ACJ obtains
obviously better classification accuracy than the original
BBPSO. Take the Sonar dataset for example, the
classification accuracies for BBPSO-ACJ and BBPSO
are 87.2 and 84.42, respectively. Moreover, BBPSO-
ACJ shows better robustness than BBPSO which can be
illustrated by the lower standard deviation of BBPSO-
ACJ. Table 3 indicates that BBPSO-ACJ obtains
smaller feature subsets than BBPSO in 8 out 9 datasets.
The average selected number of features of BBPSO is
18.63 while the average feature number of BBPSO-ACJ
is 16.34. Table 5 shows that BBPSO-ACJ costs even
slightly shorter CPU time than BBPSO. Consequently,
it can be inferred from the abovementioned results that
the adaptive chaotic jump strategy can help BBPSO to
obtain more discriminative feature subsets with higher
classification performance and the new gbest updating
mechanism can help the algorithm reduce the number of
selected features. Furthermore, the two operators would
not bring additional computational burden for BBPSO
which is demonstrated by the computational time.

5. Conclusions

In this paper, a novel feature selection method called
BBPSO-ACJ is proposed to testify the potential of
BBPSO in FS problems. BBPSO is the simplest variant

of PSO and it also shows good global search ability. But
it also suffers from premature convergence, especially
in high dimensional optimization problems. In order to
improve its performance in FS problem, an adaptive
chaotic jump strategy is employed to improve local
exploitation in order to help the stagnated particles to
jump out of local attractors and keep the balance
between convergence speed population diversity. A new
gbest updating mechanism is proposed to reduce the
number of selected features. To validate the
performance of the proposed algorithm, it is compared
with 8 EC based FS methods and two filter based
methods on nine datasets from UCI machine learning
repository. The experimental results show the proposed
method can effectively eliminate irrelevant or redundant
features, and it achieves the highest classification
accuracy in all the datasets compared with other EC
based wrappers. The comparison with two deterministic
filter methods indicates that BBPSO-ACJ outperforms
LFS and GSBS in terms of classification accuracy and it
achieves smaller feature subsets than GSBS. Two
statistical tests are employed to demonstrate that
BBPSO-ACJ obtains significantly better classification
performance than other EC based FS methods. The CPU
time analysis shows that the BBPSO-ACJ can obtain
feature subsets in a relatively short time. Moreover, the
detailed analysis on the two new operators shows that
they can effectively improve the performance of
BBPSO in FS problems in terms of classification
accuracy and number of selected features. Besides,
these two operators would not bring any additional
computational burden which can be proved by the
computation time.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1–14

12

Future work will focus on introducing filter
methods into BBPSO based FS model to improve the
computational efficiency. Another research area is
multi-objective FS method which aims at improving
multiple objectives simultaneously, such as
classification accuracy, number of selected features,
relevance, and redundancy between features and class
label.

Acknowledgements

This work was supported by the NUPTSF under Grant
No.NY214186 and the Natural Science Foundation of
Jiangsu Province under Grant No.BK20160898.

References

1. H. Liu, L. Yu, Toward integrating feature selection
algorithms for classification and clustering, IEEE Trans.
Know. Data Eng. 17 (2005) 491–502.

2. M. Dash and H. Liu, “Feature selection for
classification,” Intelligent Data Analysis, 1(4), (1997)
131–156.

3. W. Lipo, Z. Nina, C. Feng, A general wrapper approach
to selection of classdependent features, Neural Networks,
IEEE Trans., 19 (2008) 1267–1278.

4. A. Ghosh, A. Datta, S. Ghosh, Self-adaptive differential
evolution for feature selection in hyperspectral image
data, Appl. Soft Comput. 13 (2013), 1969–1977.

5. C.T. Su, H.C. Lin, Applying electromagnetism-like
mechanism for feature selection, Inf. Sci. 181 (5) (2011)
972–986.

6. S. Ding, Feature selection based F-score and ACO
algorithm in support vector machine, in PROC. the 2nd
International Symposium on Knowledge Acquisition and
Modeling, (Wuhan, China, 2009), pp.19-23.

7. L.T. Vinh, S. Lee, Y.-T. Park, B.J. d'Auriol, A novel
feature selection method based on normalized mutual
information, Appl. Intell. 37 (2010) 100–120.

8. M.H. Aghdam, N. Ghasem-Aghaee, M.E. Basiri, Text
feature selection using ant colony optimization, Expert
Syst. Appl. 36 (2009) 6843–6853.

9. M. Kabir, Md. Shahjahan, K. Murase, A new local search
based hybrid genetic algorithm for feature selection,
Neurocomputing 74 (2011) 2914–2928.

10. R. Kohavi and G. H. John, Wrappers for feature subset
selection, Artificial Intelligence 97 (1997) 273–324.

11. I.A. Gheyas, L.S. Smith, Feature subset selection in large
dimensionality domains, Pattern Recogn. 43 (2010) 5–
13.

12. H. Liu, H. Motoda, Computational Methods of Feature
Selection, Chapman & Hall/CRC, 2007.

13. J. Kennedy, R.C. Eberhart, Particle swarm optimization,
in Proc. IEEE International Conference on Neural
Networks, 1995, pp. 1942–1948.

14. X. Wang, J. Yang, X. Teng, W. Xia, R. Jensen, Feature
selection based on rough sets and particle swarm
optimization, Pattern Recogn. Lett. 28 (2007) 459–471.

15. L.-Y. Chuang, S.-W. Tsai, C.-H. Yang, Improved binary
particle swarm optimization using catfish effect for
feature selection, Expert Syst. Appl. 38 (2011) 12699–
12707.

16. L.Y. Chuang, C.H. Yang, J.C. Li, Chaotic maps based on
binary particle swarm optimization for feature selection,
Appl. Soft Comput. 11 (1) (2011) 239–248.

17. J. Jiang, Y. Bo, C. Song, L. Bao, Hybrid algorithm based
on particle swarm optimization and artificial fish swarm
algorithm, in Proc. Advances in Neural Networks–ISNN
2012, (Springer Berlin Heidelberg), (2012),pp. 607–614.

18. B. Xue, M. Zhang, W.N. Browne, Particle swarm
optimisation for feature selection in classification: novel
initialisation and updating mechanisms, Appl. Soft
Comput. 18 (2014) 261–276.

19. Butler-Yeoman, T., Xue, B., Zhang, M.: Particle swarm
optimisation for feature selection: A hybrid filter-wrapper
approach, in Proc. Evolutionary Computation (CEC),
2015 IEEE Congress on, IEEE (2015), pp. 2428–2435.

20. Parham Moradi, Mozhgan Gholampour. A hybrid particle
swarm optimization for feature subset selection by
integrating a novel local search strategy. Applied Soft
Computing 43 (2016) 117–130.

21. M. Clerc, J. Kennedy, The particle swarm-explosion,
stability, and convergence in a multidimensional complex
space, IEEE Trans. Evol. Comput. 6 (1) (2002) 58–72.

22. F. Van den Bergh, A. Engelbrecht, A study of particle
swarm optimization particle trajectories, Inf. Sci. 176 (8)
(2006) 937–971.

23. J. Kennedy, Bare bones particle swarms, in Proc. 2003
IEEE Swarm Intelligence Symposium, 2003, pp. 80–87.

24. R. A. Krohling, and E. Mendel, Bare Bones Particle
Swarm Optimization with Gaussian or Cauchy Jumps, in
Proc. IEEE Congr. Evol. Comput., (Trondheim, Norway,
2009), pp. 3285-3291.

25. Hao Liu , Guiyan Ding , Bing Wang. Bare-bones particle
swarm optimization with disruption operator. Applied
Mathematics and Computation 238 (2014) 106–122.

26. Joon Woo Lee, Taeyong Choi, Hyunmin Do, Dongil Park,
Chanhun Park, and Young-Su Son. Experimental results
of heterogeneous cooperative Bare Bones Particle Swarm
Optimization with Gaussian jump for large scale global
optimization. in Proc. 2015 IEEE Congress on
Evolutionary Computation (CEC), pp. 1979 – 1985.

27. T. Blackwell, A study of collapse in bare bones particle
swarm optimization, IEEE Trans. Evol. Comput. 16 (3)
(2012) 354–372.

28. Yong Zhang, Dunwei Gong, Ying Hu, Wanqiu Zhang.
Feature selection algorithm based on bare bones particle
swarm optimization, Neurocomputing 148 (2015) 150–
157.

29. Ce Li, Haidong Hu, Hao Gao, Baoyun Wang. Adaptive
Bare Bones Particle Swarm Optimization for Feature

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1–14

13

Selection. in Proc. 2016 Chinese Control and Decision
Conference (CCDC).(Yinchuan, China), pp. 1594-1599.

30. J. Kennedy, R.C. Eberhart, A discrete binary version of
the particle swarm algorithm, in Proc.1997 Conference
Systems Man and Cybernetics, 1997, pp. 4104–4108.

31. Binh Tran, Mengjie Zhang, and Bing Xue. A PSO based
hybrid feature selection algorithm for high-dimensional
classification. in Proc. 2016 IEEE Congress on
Evolutionary Computation (CEC), pp.3801-3808.

32. M.G.H. Omran, A.P. Engelbrecht, A. Salman, Bare bones
differential evolution, Eur J Oper Res 196 (2009) 128–
139.

33. Alatas B, Akin E, Ozer A. Chaos embedded particle
swarm optimization algorithms. Chaos Solitons Fractals
40 (2009) 1715–1734.

34. Yang DX, Yang PX, Zhang CG. Chaotic characteristic
analysis of strong earthquake ground motions, Int J
Bifurcation Chaos 22(3) (2012) 125-145.

35. Li-Yeh Chuang, Cheng-Hong Yang, Jung-Chike Li.
Chaotic maps based on binary particle swarm
optimization for feature selection, Applied Soft
Computing 11 (2011) 239–248.

36. Liu B, Wang L, Jin YH, Tang F, Huang DX. Improved
particle swarm optimization combined with chaos, Chaos
Solitons Fractals 25(5) (2005) 1261–71.

37. Talatahari S, Azar BF, Sheikholeslami R, Gandomi AH.
Imperialist competitive algorithm combined with chaos
for global optimization. Commun Nonlinear Sci Numer
Simul, 17(3), (2012) 1312–9.

38. Alatas B. Uniform big bang-chaotic big crunch
optimization. Commun Nonlinear Sci Numer Simul 16(9),
(2011) 3696–703.

39. K. Tatsumi, T. Ibuki and K. Tatsumi, A chaotic particle
swarm optimization exploiting a virtual quartic objective
function based on the personal and global best solutions,
Applied Mathematics and Computation, 2013(219):
8991–9011.

40. J.H. Holland, Genetic algorithms, Scholarpedia 7 (12)
(2012) 1482.

41. J. Yun-Won, P. Jong-Bae, J. Se-Hwan, K.Y. Lee, A new
quantum-inspired binary pso: application to unit
commitment problems for power systems, IEEE Trans.
Power Syst. 25 (3) (2010) 486–1495.

42. M. Hall, E. Frank, G. Holmes, B. Pfahringer, P.
Reutemann, I.H. Witten, The weka data mining software:
an update, SIGKDD Explor. Newsl. 11 (1), (2009), 10–
18.

43. M. Friedman, A comparison of alternative tests of
significance for the problem of m rankings, Ann. Math.
Stat. 11 (1940) 86–92.

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1–14

14

	1. Introduction
	2. Background
	2.1. Particle swarm optimization
	2.2. Bare bones Particle Swarm Optimization
	2.3. K nearest neighbor algorithm

	3. The proposed approach
	3.1. Feature subset representation
	3.2. Feature subset evaluation
	3.3. Adaptive chaotic jump strategy
	3.3.1. Chaotic jump operator
	3.3.2. Adaptive strategy

	3.4. Update of gbest

	4. Experimental results
	4.1. Dataset
	4.2. Comparative algorithms
	4.3. Parameters setting
	4.4. Results
	4.4.1. Comparison between BBPSO-ACJ with EC based FS methods
	4.4.2. Comparisons with filter based methods
	4.4.3. Statistical analysis of BBPSO-ACJ
	4.4.4. Analysis on computational time
	4.4.5. Analysis of the two new operators

	5. Conclusions
	Acknowledgements
	References

