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Abstract 

Feature selection (FS) is a crucial data pre-processing process in classification problems. It aims to reduce the 
dimensionality of the problem by eliminating irrelevant or redundant features while achieve similar or even higher 
classification accuracy than using all the features. As a variant of particle swarm optimization (PSO), Bare bones 
particle swarm optimization (BBPSO) is a simple but very powerful optimizer. However, it also suffers from 
premature convergence like other PSO algorithms, especially in high-dimensional optimization problems. In order 
to improve its performance in FS problems, this paper proposes a novel BBPSO based FS method called BBPSO-
ACJ. An adaptive chaotic jump strategy is designed to help the stagnated particles make a large change in their 
searching trajectory. It can enrich the search behavior of BBPSO and prevent the particles from being trapped into 
local attractors. A new global best updating mechanism is employed to reduce the size of obtained feature subset. 
The proposed BBPSO-ACJ is compared with eight evolutionary computation (EC) based wrapper methods and two 
filter methods on nine benchmark datasets with different number of dimensions and instances. The experimenta l 
results indicate that the proposed method can select the most discriminative features from the entire feature set and 
achieve significantly better classification performance than other comparative methods. 

Keywords: feature selection, bare bones particle swarm, adaptive chaotic jump, global best updating mechanism. 

1. Introduction 

Feature selection (FS) is an effective and important data 
pre-processing step for data mining and pattern 
recognition1. In high-dimensional classification 
problem, a large number of features may significantly 
degrade the classification performance of learning 
algorithm and increase the computational cost, which 
causes “the curse of dimensionality”. FS aims to select 
the most informative and discriminative features from 
the original entire feature set to train a classification 
model2. By discarding irrelevant or redundant features, 
a smaller feature subset has three main advantages: 1) 
reduce the computational cost; 2) improve the 
performance of classifier and avoid over-fitting; 3) 

enhance the interpretation ability of the classification 
model. 

According to the method used to evaluate the 
feature subsets, FS approaches can be divided into two 
categories: wrapper3,4 and filter5 approaches. The 
wrapper approach uses a given learning algorithm to 
evaluate the feature subsets while the filter approach 
utilizes the inherent characteristics of the dataset to 
evaluate the feature subsets, such as the correlation, 
redundancy, and statistical dependence6,7. The wrapper 
approach usually gets better classification performance 
since the feature subsets are directly chosen according 
to their classification accuracies, but it also needs 
considerable computational time due to the learning 
algorithm in the evaluation process8,9.  
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The goal of FS is to find optimal feature subsets 
according to some evaluation criteria. Therefore, FS can 
be modelled as a combinatorial optimization problem. 
The main difficulty of FS lies in the large search space 
because the number of features would make an 
exponentially increase for the search space10,11. For a 
dataset with n features, there are 2n possible feature 
subsets. In this situation, an exhaustive search method 
which considers all the possible feature subsets is not 
suitable for solving FS problem due to very high 
computational cost12. In order to solve the complicated 
combinatorial optimization problem accurately and 
efficiently, a powerful global search algorithm is an 
essential requirement. Particle swarm optimization is a 
population based optimization algorithm which is 
inspired by the social behavior of bird flocking13 and it 
shows strong global search capacity due to its exquisite 
design of algorithm structure. It has been successfully 
used in many real-world applications due to its fast 
convergence speed and ease of implementation. PSO 
has been extended to FS problems recently and many 
PSO-based approaches have shown promising results. 
Wang et al.14  proposed a FS model based on PSO and 
rough sets theory and the experimental results shows the 
proposed approach outperforms GA based FS methods. 
In order to prevent premature convergence in FS 
problem,  Chuang et al.15 introduced the catfish effect to 
binary PSO to strength its search ability. In Ref. 16, the 
inertia weight of binary PSO was generated with chaotic 
sequences in order to improve the performance of PSO 
in FS problem16. Jiang et al.17 applied artificial fish 
swarm algorithm to PSO in order to improve its local 
search capacity. In Ref.18, PSO with novel initialization 
methods and global best updating strategies was applied 
to FS problem. Butler-Yeoman et al.19 proposed two 
versions of hybrid PSO based FS methods which take 
advantages of both filter and wrapper evaluations. 
Moradi et al.20 improved the performance of PSO by 
introducing a local search operator to reduce the size of 
obtained feature subsets. 

These studies demonstrate the capability of PSO in 
solving FS problems. But there is one problem when 
applying PSO to FS which would largely affect the 
quality of the obtained feature subsets. In PSO, there are 
several important control parameters which would 
strongly affect the search behavior and the optimization 
ability of the algorithm, such as the inertia weight, 
cognitive weight, and social weight. Many studies have 

indicated that the proper setting of these parameters is 
crucial for PSO21,22. Inappropriate setting of these 
problems may lead to premature convergence or low 
convergence speed.  

However, there exist no simple principles about 
how to select these parameters appropriately in different 
application scenarios. It is still an open question about 
how to set and adjust these parameters in different 
optimization problems. 

In order to deal with the disadvantages of PSO, 
Kennedy23 proposed a variant of PSO, called bare bones 
PSO (BBPSO). Unlike the traditional PSO, BBPSO 
eliminates the velocity term and uses the Gaussian 
sampling to update the positions of particles based on 
social and personal flying experience. In the standard 
BBPSO, those important parameters in PSO do not exist 
anymore and only the position term is considered in the 
evolutionary process. Therefore, BBPSO is almost a 
parameter free algorithm which makes the structure of 
the algorithm very simple but it also shows powerful 
optimization ability. 

However, BBPSO also suffers from premature 
convergence in the evolutionary process due to its 
special search mechanism. In BBPSO, if a particle’s 
personal best is also the global best, it would stay in its 
present position until some other particles finds better 
solutions. Therefore, BBPSO may get stuck into local 
optimal, especially in high-dimensional optimization 
problems. In order to overcome the premature 
convergence problem, some jump or disruption 
strategies were introduced to strengthen the search 
ability of the algorithm. Krohling and Mendel24 

performed Gaussian or Cauchy jump on the stagnated 
particles to help them escape from local optimal. Liu et 
al.25 introduced a new disruption strategy to keep the 
balance between exploration and exploitation ability of 
the algorithm. Lee et al.26 introduced a heterogeneous 
cooperation and jump strategy to strength the 
exploration ability of the BBPSO. Blackwell27 analyzed 
BBPSO theoretically and a series of experimental 
results showed that an adaptive distribution can 
effectively improve the performance of the algorithm. 

Some researchers have adopted BBPSO for FS 
problem. Zhang et al. 28 proposed a BBPSO with a new 
local leader updating strategy and uniform combination 
for FS problem. In Ref.29, BBPSO with a chaotic 
initialization strategy was applied to solve FS 
problem29. However, there are some problems need to 
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be further investigated in order to improve the 
performance of BBPSO in FS. 
(i) In high-dimensional FS problem with a large 
number of candidate feature subsets, BBPSO may fall 
into local optimal during the search process. Therefore, 
the optimization ability of BBPSO needs to be enhanced 
to overcome the premature convergence problem. 
(ii) Various real-world FS problems show great 
diversity over the data characteristics and the number of 
features and instances. In order to obtain optimal feature 
subsets in different application scenarios, BBPSO 
should adjust its search behavior according to the 
evolutionary status of population adaptively. 

Available researches on applying BBPSO for FS 
problems are relatively few and they cannot fully 
exploit the potential of BBPSO in this area. In order to 
solve above issues and fully validate the ability of 
BBPSO in FS problems, a novel BBPSO with adaptive 
chaotic jump strategy and new global best updating 
mechanism (BBPSO-ACJ) is proposed. By employing 
the adaptive chaotic jump strategy, each particle will 
choose its position updating mechanism adaptively 
according to its own condition where the stagnated 
particles have more opportunity to perform a chaotic 
jump to escape from local attractor and good particles 
would update its position in the canonical way. 
Therefore, the novel operator not only prevents particles 
from falling into local optimal, but also maintains 
balance between global exploration and local 
exploitation. In addition, the new global best updating 
mechanism can effectively reduce the number of 
selected features.  

This paper is organized as follows. Section 2 
introduces PSO, BBPSO, and KNN briefly. In section 3, 
we propose a BBPSO with adaptive chaotic jump 
strategy for FS problem. Section 4 includes experiments 
design, results and analyses of the results, respectively. 
The conclusions are given in Section 5. 

2. Background 

2.1. Particle swarm optimization 

PSO is a swarm intelligence based optimization 
algorithm which simulates the behavior of bird flying or 
fish schooling13. The whole population is called swarm 
which concludes a set of particles. Each particle 
represents a candidate solution of the optimization 
problem. Let ),...,,( 21 iDiii xxxx =  be the ith particle in 

the swarm. D denotes the dimension of the search space. 
The velocity of particle i is ),...,,( 21 iDiii vvvv =  which 
indicates the speed and direction that the particle should 
move in the next cycle. The initial positions are 
randomly generated in the multi-dimensional search 
space and the initial velocities are generally set to 0. In 
the iteration process, all the particles are evaluated with 
a fitness function. The best fitness value of each particle 
is its own personal best (pbest) and the best fitness value 
of the whole swarm is recorded as the global best 
(gbest). Each particle adjusts its speed and direction 
according to its own flying experience and the 
experience of other particles in the swarm. The 
information exchange in the swarm is realized in this 
way. In the basic PSO algorithm, the velocity and 
position of each particle are updated by the following 
equations:  

1
1 1 2 2( ) ( )t t t t t t t t

id id id id d idv w v c r pbest x c r gbest x+ = × + × × − + × × −  (1) 
1 1t t t

id id idx x v+ += +                                 (2) 

where t
idv is the dth dimension of the velocity of particle 

i in cycle t; t
idx  the dth dimension of the position of 

particle i in cycle t; t
idpbest  is the dth dimension of the 

position of personal best of particle i in cycle t; t
dgbest  

is the dth dimension of the position of gbest in cycle t; w 
is the inertia weight which can be used to balance global 
and local search. The value is typically set between 0 
and 1. When a particle converges to a local optimal and 
moves very slowly, a relatively large inertia weight can 
help the particle escape from the local attractor. A 
relatively small inertia weight is more appropriate for 
performing local search. c1 is the cognitive weight and 
c2 is the social weight; 1

tr  and 2
tr  are two random 

numbers. 
The original PSO was proposed for optimization 

problems in continuous space. FS is a discrete 
optimization problem. In order to extend PSO to FS, 
two methods have been proposed: 
(i) Binary PSO (BPSO) was developed for discrete 
problems by Kennedy and Eberhart30. In BPSO, the 
position of particle can take value 1 or 0. The velocity 
denotes the probability of the position taking value 1. In 
BPSO, the positions and velocities of the particles are 
initialized by: 

1, if () 0.5
0,

t
id

rand
x

otherwise
>

= 


                         (3) 
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 max max2 ()t
idv v rand v= − + × ×                   (4) 

where rand() is a random number between [0,1]. maxv is 
the maximum speed of particle which is very important 
in BPSO. The maximum speed should be set properly in 
order to prevent premature convergence. If the value is 
too large, the position would always be 1 and it cannot 
search more spaces. 

The velocities of particles are updated by Eq.(1). 
The positions of particles are updated by the following 
equations: 

1, if ( ) ()
0,

t
t id
id

S v rand
x

otherwise
 >

= 


                    (5) 

where rand() is a random number between [0,1]. S() is a 
sigmoid function which is used to transform t

idv to the 
range of (0,1).  

1( )
1 exp( )

t
id t

id

S v
v

=
+ −                        (6) 

(ii) Canonical PSO: In this method, the positions are 
restricted between [0,1]. The velocities and positions are 
updated as the canonical PSO, with Eq.(1) and Eq.(2). 
Before evaluating the population, a decoding procedure 
is needed. In Ref. 31, the position of a particle can be 
decoded into a feature subset. A threshold (e.g. 0.6) is 
chosen to decide if the feature is chosen. If a dimension 
of a particle’s position is larger than the threshold, the 
corresponding feature is chosen. Otherwise, the feature 
does not exist in this feature subset. 

2.2. Bare bones Particle Swarm Optimization 

The BBPSO is the simplest variant of PSO. It eliminates 
the velocity term and only the positions of the particles 
are used in the search process. Therefore, users do not 
need to consider those control parameters in PSO which 
would largely affect the performance of PSO. Due to the 
simplicity and powerful optimization ability of BBPSO, 
it has aroused a lot of attentions from researchers. When 
BBPSO updates the positions of particles, all the 
particles learn from its own flying experience and the 
flying experience of the best particle of the swarm. The 
positions in BBPSO are updated according to the 
following equation: 

      +1 ( , )
2

t t
t t tid d
id id d

pbest gbestx N pbest gbest+
= −           (7) 

As is shown in Eq.(7), the positions are randomly 
generated by the Gaussian distribution with the mean of 
(pbest+gbest)/2 and the variance of |pbest-gbest|. 

Kennedy also proposed another version called BBPSO-
Exp23 which promotes local search around the pbest 
position. The positions are updated by: 

+1 ( , ), <0.5
2

, otherwise

t t
t tid d

t id d
id

t
id

pbest gbestN pbest gbest Rx
pbest

 +
−= 



    (8) 

where R is a random number between [0,1]. It can be 
included from Eq.(8) that the particle has 50% chance to 
jump to its own pbest position in BBPSO-Exp.  

2.3. K nearest neighbor algorithm  

The K nearest neighbor algorithm (KNN) is a non-
parametric method which can be used for classification 
and regression tasks. The original dataset is divided into 
training set and test set. In classification problems, each 
training sample is a vector in a multi-dimensional 
feature space and contains a class label. Each test 
sample is a vector without a class label. For a new test 
sample to be classified, it is first assigned K closest 
training samples according to some distance or 
similarity function. Some frequently-used distance 
metrics include the Euclidean distance, the Hamming 
distance and etc. Then the test sample is classified by a 
majority vote of its K closest neighbors. KNN is a 
simple machine learning algorithm as the only control 
parameter in KNN is the number of neighbors. The 
main drawback of KNN is that it cannot perform well in 
unbalanced datasets due to its “majority vote” 
mechanism. This mechanism would easily make the test 
samples which belong to the minority class being 
wrongly classified. Besides, the local structure of the 
dataset would also affect the performance of KNN. In 
order to achieve good classification performance, many 
variants of KNN have been proposed. Until now, KNN 
is still widely used in different machine learning tasks. 

3. The proposed approach 

BBPSO is a popular variant of PSO due to simplicity 
and efficiency. Its parameter-free nature makes it 
possible to show good performance in different 
application scenarios. 

The goal of this study is to propose a BBPSO 
based FS method. Due to the large search space and 
many local optimal in FS problems, the search ability of 
BBPSO needs to be enhanced in order to obtain feature 
subsets with high quality. An adaptive chaotic jump 
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strategy is introduced into BBPSO to prevent the 
algorithm from falling into local optimal. Moreover, the 
updating strategy of gbest is modified to encourage the 
algorithm to generate smaller feature subsets. This 
section describes the proposed FS algorithm, called 
BBPSO with adaptive chaotic jump (BBPSO-ACJ).  
 

Initialize
population

Stopping 
criterion

 
Estimate evolutionary 

status

Chaotic jumpUpdate particle 
positions

With Eq.(7)

Calculate fitness

Update pbest 
and gbest

Final feature 
subset

NO

YES

 
Fig. 1. Flowchart of the proposed algorithm. 

 
Fig. 1 shows the flowchart of the proposed 

algorithm. First the population is randomly initialized in 
the search space. Each particle position represents a 
feature subset and its pbest is the initial value. After 
initialization, the following steps are repeated until the 
maximum iteration is reached. The adaptive chaotic 
jump strategy is used to decide the updating mechanism 
of each particle. Update the positions with Gaussian 
sampling or chaotic jump. All the new positions are 
evaluated with the fitness function. If the new position 
is out of the search space, the particle will be assigned 
the value of its corresponding lower or upper bound. 
Update the pbest and gbest according to the fitness 
value. When the maximum iteration is reached, the 
optimal feature subset is reported. 

3.1. Feature subset representation 

In evolutionary computation (EC) based FS approaches, 
a chromosome represents a candidate feature subset 
which is evaluated with some criteria, such as the 

classification accuracy, the mutual information of the 
feature subsets and etc. According to the type of 
evaluation criteria which is employed, the EC based FS 
approaches can be divided into filter approach and 
wrapper approach.  
In PSO based FS methods, binary encoding is widely 
used in which position represents a feature subset and 
velocity denotes the possibility of the feature being 
selected. In BBPSO, due to the absence of the velocity 
term, the encoding scheme needs to be modified. Given 
the position of the ith paricle: 1 2( , , , )i i i iDx x x x= … . D 
denotes the dimension of the problem, i.e., the number 
of the original features. The encoding of a particle’s 
position is shown in Fig.2. The position is restricted 
between [0,1]. 

 

xi1 xi2 … … xiDxi3
 

Fig. 2. The encoding of a particle 
 
 

In order to form a feature subset, a decoding 
process is needed before the evaluation. Position can be 
translated into a feature subset as follows: 

1, 0.5
0,

id
id

if x
A

otherwise
 >

= 


                         (9) 

where idA  means the feature subset decoded from the 
position of particle idx . idA  can take the value of 1 or 0 

depending on the value of idx . =1idA  means the dth 
feature is chosen. Otherwise, this feature is excluded. 
Fig. 3 illustrates a 7-dimensional problem which means 
the complete dataset has 7 features. The decoded 
particle position in the figure indicates that the 1th, 3rd, 
and 5th features are selected while the other four 
features are not chosen in this feature subset. 

 
1 0 00101

Y Y Y

N N N N

Y=selected
N=not selected  

Fig. 3. A 7 dimensional encoding problem 
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3.2. Feature subset evaluation 

In this paper, the wrapper approach is employed to 
evaluate the feature subsets. Therefore, the classification 
accuracy is used as the fitness function and it can be 
defined as: 

TP TNCA
TP TN FP FN

+
=

+ + +
                 (10) 

where TP (True Positive) is the number of positive 
instances that are correctly classified. FP (False Positive) 
is the number of negative instances that are wrongly 
classified as positive. TN (True Negative) is the number 
of negative instances that are correctly classified. FN 
(False Negative) is the number of positive instances that 
are wrongly classified as negative. The larger CA is, the 
more accurate the feature subset is. The aim of the FS 
method is to find the feature subset that can maximize 
the CA metric. 

3.3. Adaptive chaotic jump strategy 

BBPSO is known for its fast convergence speed which 
may leads to the rapid loss of population diversity and 
increases the probability of falling into local optimal. In 
high-dimensional FS problems, the search space grows 
exponentially with the number of features and there are 
many local optimal in the large search space. BBPSO is 
prone to premature convergence in this situation. 
However, if the algorithm focuses on promoting the 
population diversity, the convergence speed would be 
decreased. To keep the balance between convergence 
speed and population diversity during the optimization 
process is very crucial for BBPSO. 

In order to improve the diversity of population 
while maintaining the high convergence speed, a novel 
adaptive chaotic jump strategy (ACJ) is proposed. It 
allows each particle to choose its updating mechanism 
according to its own accumulated experience. In this 
way, good particles update their positions in normal 
way, i.e. by the Gaussian sampling, while bad particles 
can make a large modification of their search previous 
trajectory, i.e. the chaotic jump. This strategy can 
promote population diversity without sacrificing the 
convergence speed of the algorithm. This section will 
first introduce the chaotic jump operator, and then the 
adaptive strategy will be described. 

3.3.1. Chaotic jump operator 

Chaos is a non-linear system which shows a great 
sensitivity to initial conditions33. A small variation of 
the initial parameter will lead to large differences in its 
long-term behavior. Therefore, it is impossible to 
predict the long term behavior of the chaotic system. 
Although chaos is random and unpredictable, it also 
shows some kind of regularity34. Due to the 
unpredictable characteristic of chaotic system, it can 
reach any possible region in the whole search space 
which make it possesses the special merit of escaping 
from local optimal35. Moreover, it is very easy and 
convenient to generate and store a chaotic sequence. 
Therefore, researchers have paid much attention to 
chaotic system to make use of its special advantages. It 
has been introduce to evolutionary algorithms to 
improve their global search ability36,37,38. Recently, 
chaotic systems have been embedded into PSO to 
promote population diversity and enhance the 
optimization performance. These approaches include 
chaotic control parameters, chaotic local search and 
etc39. 

In this paper, chaotic sequences are employed to 
BBPSO for solving FS problems. A chaotic jump 
strategy is proposed to enrich the searching behavior of 
BBPSO and strengthen the ability of jumping out of 
local attractor. The logistic map is polynomial map and 
it can be obtained from very simple non-linear 
dynamical equations. Due to its simplicity, the logistic 
map is the most frequently used chaotic sequence and it 
is defined by: 

1 4 (1 ), (0,1).i i i iz z z z+ = − ∈                 (11) 

where iz  is the chaotic variable and i denotes the 
iteration number. Fig. 4 shows the chaotic dynamics of 
the logistic map, where 1 0.13z =  and the maximum of 
iteration is set as 150. 

For the ith particle to perform a chaotic local jump, 
the position is updated using the following equation:  

(1.0 (2 1.0))
id

t t
id kx pbest z= + −                (12) 

where zk is the chaotic variable generated with Eq.(11). 
For the stagnated particles, the chaotic local search can 
offer a wider search capability due to the non-
periodicity of the logistic map. It can improve the 
performance of BBPSO in terms of preventing 
premature convergence. 
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Fig. 4. Dynamics of logistic map 

 

3.3.2. Adaptive strategy 

Based on the chaotic jump strategy proposed in the 
above section, this section will introduce the adaptive 
strategy. The proposed approach can decide when to 
perform the chaotic jump adaptively according to the 
evolutionary status of each particle. An array named 
stagnation is introduced to monitor the evolutionary 
status of each particle. For particle i, stagnation[i] 
denotes how many iterations that particle i does not get 
fitness improvement. 

If there is no fitness improvement for particle i in 
one iteration, then stagnation[i] is increased by one. A 
large stagnation[i] concludes that particle i is stagnated 
and the particle should perform the chaotic jump which 
may help the particle jump out of the local attractor. The 
adaptive chaotic jump strategy (ACJ) is described in 
Algorithm 1 in detail. From the procedure of ACJ, we 
can see that the probability of particle i to perform the 
chaotic jump is computed as follows: 

, 2.0 [ ]

1
1 ecj i stagnation ip −=
+

                       (13) 

where pcj,i is the probability of particle i performing the  
chaotic jump. The probability increases with the number 
of iterations that a particle does not get fitness 
improvement. Fig. 5 shows the change of the jump 
probability with respect to the iterations without fitness 
improvement. As is shown in Fig. 5, if a particle does 
not update its pbest in 3 iterations, the probability of 
chaotic jump is larger than 0.7.  
 
 

Algorithm 1. Adaptive Chaotic Jump Strategy 
For each particle i 
  stagnation[i] = 0     
End For 
DO 
For each particle i 

IF 2.0 [ ]

1 ()
1 e stagnation i rand− <
+

   

THEN Update the position of xi according to Eq.(7) 
ELSE 
Update the position of xi according to Eq.(12) 

[ ] 0stagnation i =  
END IF 
IF ( ) ( )i if x f pbest>   
THEN Update pbesti 

[ ] 0stagnation i =  
ELSE 

[ ] [ ] 1stagnation i stagnation i= +  
END IF 
WHILE termination condition not met. 
Output: gbest 

 
 

 
Fig. 5. An illustration of jump probability 

 

3.4. Update of gbest 

In BBPSO, gbest plays a crucial role in guiding the 
whole population searching for better solutions. The FS 
algorithm aims to select a reduced set of features from 
the original features without losing informative 
information. In the evolutionary process, the algorithm 
evaluates particles according to classification accuracy 
and the feature subset with the highest classification 
accuracy is defined the gbest. However, the case that 
different feature subsets may have the same 
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classification performance would always appear in FS 
problem. For example, subset {1, 2, 4, 7, 9} and subset 
{2, 5, 7} achieve the same classification accuracy. In 
this situation, the latter feature subset which achieves 
the same classification accuracy with fewer features is a 
better choice. Therefore, the gbest updating mechanism 
first considers the classification accuracy. When two 
feature subsets tie in terms of classification performance, 
the feature subset with fewer features is chosen as the 
new gbest. The equation shows our proposed gbest 
updating strategy: 

1 1

1 1 1 1

( ) ( )
( ) ( ) & ( ) ( )

t t t
i i

t t t t t t
i i i

t

x if f x f gbest
gbest x if f x f gbest Z x Z gbest

gbest otherwise

+ +

+ + + +

 >


= = <



  (14) 

where Z() means the number of the features. The new 
gbest updating mechanism can encourage the population 
to search for feature subsets with higher classification 
and fewer features. 

4. Experimental results 

4.1. Dataset 

In order to test the effectiveness of the proposed 
method, nine datasets taken from the UCI machine 
learning repository are used for experiments and the 
general cases of these datasets are shown in Table 1. 
These datasets show a large diversity over number of 
features, classes, and instances and they are widely used 
in research areas such as feature selection and 
classification. 
 

Table 1. Datasets 
Dataset # Features # Instances # Classes 
Glass 9 214 2 
Wine 13 178 3 
Heart 13 270 2 

Australia 16 690 2 
Segment 19 2310 7 
Germany 24 1000 2 

Ionosphere 34 351 2 
Sonar 60 208 2 
Musk1 166 476 2 

 
For each dataset, all the instances are randomly 

divided into two parts: 70% as the training set and 30% 
as the test set. All the datasets are normalized to [0,1] 
before the FS process. An individual of an EC based 
algorithm represents a candidate feature subset. During 
the training process, KNN is employed as the learning 

algorithm to evaluate the individuals. In this paper, K is 
set as 5. The fitness value (classification accuracy) of 
each individual is calculated through a 10-fold cross 
validation on the training set. The whole training set is 
randomly divided into 10 folds. 9 folds are used as the 
sub-training data and the remaining 1 fold is used as the 
sub-test data. The process is repeated 10 times and the 
average value is the fitness value of the individual. The 
10-fold cross validation is run on the training set, so it is 
independent from the test set. After the training process, 
the best feature subset is recorded as the final result and 
it is testified on the test set with 5NN.    

4.2. Comparative algorithms 

To verify the performance of the proposed BBPSO-
ACJ, the following 8 EC based wrappers are employed: 
Genetic algorithm (GA)40, PSO31, Binary PSO 
(BPSO)30,Binary PSO with chaotic inertia weight 
(BPSO-CI)35, BBPSO23, Quantum inspired PSO  
(QBPSO)41, Binary PSO with catfish effect (BPSO-CE) 
15, PSO (4-2)18. 

Furthermore, two filter based methods, linear 
forward selection (LFS) and greedy stepwise based 
selection (GSBS), are also employed for comparison. 
LFS starts from an empty feature subset and selects 
features into the subset step by step while GSBS 
gradually eliminates features from the original entire 
feature subset18. LFS and GSBS are run on WEKA with 
the default settings42.  

4.3. Parameters setting 

The experiments are performed on a machine with 
Intel(R) Core(TM) i5-6500 at 3.2 GHz and 8.00 GB of 
RAM using MATLAB and the operating system is MS 
Windows 10. 

The maximum number of iterations is empirically 
set to 50 and the population size for EC based FS 
method is set to 20. The crossover and mutation rates of 
GA are set to 0.8 and 0.2, respectively. For PSO, BPSO, 
BPSO-CI, BPSO-CE, and PSO(4-2) the cognitive 
weight c1 and social weight c2 are both set to 2. The 
upper and lower bounds of velocity for binary PSO 
based methods are all set to 6 and -6, respectively. The 
time decreasing inertia weight is used with 

0.9maxw = and 0.4minw = . The parameter β  in QBPSO 
which is used to control the convergence speed is set as 
0.55. For each dataset, all the EC based FS methods are 
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repeated 20 independent times to avoid the impact of 
random factors. 

4.4. Results  

4.4.1. Comparison between BBPSO-ACJ with EC 
based FS methods 

The performance of the proposed BBPSO-ACJ is 
compared with 8 other EC based FS methods. For each 
dataset, the obtained feature subsets by the 9 algorithms 
in the training set are testified with 5NN in the test set. 
Table 2 shows the means and standard deviations of 
classification accuracy in the test set in 20 independent 
runs. The best mean classification accuracy in each 
dataset is shown in boldface. Moreover, the 

classification accuracy of 5NN on the original entire 
features is also shown in Table 2(i.e. Without FS).  

From Table 2, we can find that in most cases, the 
EC based FS methods can achieve higher classification 
accuracy than using the original entire feature set. 
Taking the Ionosphere dataset for example, while 5NN 
is able to obtain the 79.25% accuracy using all the 34 
features, GA based FS method obtains 83.62% accuracy 
and other EC based algorithms achieve even higher 
accuracy than GA. Hence, it can be inferred that FS is 
an effective and crucial data prepossessing step for 
classification problem as it is able to improve the 
classification performance with fewer features. 
 

 
 

Table 2 Classification accuracy of different algorithm. The average of results over 20 independent runs is reported. 
Dataset Without FS GA PSO BPSO BPSO-CI BBPSO QBPSO PSO(4-2) BPSO-CE BBPSO-ACJ 

Glass 63.08 71.9+8.86 71.08+7.84 76.92+4.87 75.38+6.49 75.05+5.81 72.31+7.94 73.21+6 74.07+7.51 77.18+4.44 

Wine 94.44 96.29+2.33 96.67+0.78 97.04+1.66 96.3+0.53 97.04+1.29 97.04+1.29 95.26+1.75 96.67+0.78 97.96+1.37 

Heart 81.48 82.46+6.73 83.44+2.53 82.96+2.03 81.98+3.09 83.21+4.12 82.1+3.41 79.78+4.13 84.44+2.68 87.45+2.09 

Australia 83.62 83.59+2.22 83.03+1.52 84.23+0.22 84.04+0.87 84+1.06 83.17+1.63 83.34+3.65 83.86+0.96 84.38+0.41 

Segment 90.05 83.11+5.08 91.3+0.72 91.58+0.48 91.61+0.46 91.52+0.44 91.64+0.48 85.42+4.81 91.7+0.32 92.07+0.13 

German 68 70.94+1.84 71.07+1.79 72.07+2.88 72.6+2.03 73.19+2.9 73+3.6 68.47+1.45 72.29+1.79 75.39+2.15 

Ionosphere 79.25 83.62+3.12 84.25+2.67 84.91+2.038 84.81+2.2 84.72+2.26 87.45+2.63 86.89+1.64 83.68+2.09 87.55+0.74 

Sonar 73.02 73.28+5.36 77.25+3.27 72.06+3.82 76.03+2.3 76.67+3 76.51+3.16 77.94+3.21 77.1+4.19 79.05+2.97 

Musk1 80.42 82.81+2.36 83.36+2.67 83.92+2.08 84.13+3.08 84.42+2.13 84.13+3.26 84.87+2.7 84.92+1.61 87.2+1.28 

Average 79.8 80.89+4.21 82.38+2.64 82.85+2.23 82.99+2.34 83.31+2.56 83.04+3.04 81.69+3.26 83.19+2.44 85.36+1.73 

 
  
 

Table 3 Selected feature number of different algorithms. The average of results over 20 independent runs is reported. 
Dataset All GA PSO BPSO BPSO-CI BBPSO QBPSO PSO(4-2) BPSO-CE BBPSO-

ACJ 
Glass 9 4.5 3.8 4.6 4.3 4.1429 3.8 4.1 4 4 

Wine 13 6.35 7.4 8.6 8 7.8 7.7 6.84 7.4 8.2 

Heart 13 6.8 6.8 8 7.4 7.3 6.7 6.6 7.3 6.2 

Australia 16 5.95 5.9 6.88 6.4 6.14 5.3 5.79 6.29 5.4 

Segment 19 10.4 10.9 10.6 11.2 11.5 10.9 10.78 10.4 9.9 

German 24 10.7 12.4 10.67 10.6 11.14 10.43 12.76 10.29 8.83 

Ionosphere 34 10.93 13.2 10.7 10.9 9.4 4.4 3.13 10.6 6.3 

Sonar 60 30.8 28.07 29.6 31.4 29.8 28.4 11.24 30.43 25.7 

Musk1 166 81.83 82.2 82.14 81.3 80.43 49.8 77.3 85.29 72.5 

Average 39.33 18.7 18.96 19.09 19.06 18.63 14.16 15.39 19.11 16.34 
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It can be seen from Table 2 that BBPSO-ACJ 
achieves the highest classification accuracy in all 
datasets compared with 8 other EC based wrappers. For 
instance, BBPSO-ACJ gets the mean classification 
accuracy 87.2% in Musk1 dataset, while the second best 
is 84.92% which is obtained by BPSO-CE. In terms of 
average result in all datasets, BBPSO-ACJ obtains the 
highest average value 85.36%, while BBPSO (83.31%) 
and PSOCE (83.19%) place second and third, 
respectively. 

In addition, Table 2 also shows that BBPSO-ACJ 
obtains the lowest standard deviation. The average 
standard deviation is 1.73 for BBPSO-ACJ while the 
second best (i.e. BPSO) is 2.23. It can be concluded that 
BBPSO-ACJ shows the best robustness among all the 
EC based FS algorithms. 

Table 3 shows the number of original entire feature 
set and the selected feature number of different FS 
methods. For each dataset, the algorithm which 
produces the smallest feature subset is shown in 
boldface. In terms of selected feature number, QBPSO 
obtains the optimal performance with the average 
feature subset size 14.16. Especially for the Musk1 
dataset, QPSO only selects 49.8 features out of the 
original 166 features while the second best is 72.5(i.e. 
BBPSO-ACJ). PSO(4-2) places second with the average 
feature number 15.39. In Sonar dataset, it selects 11.24 
features from the entire 60 features with rather good 
classification accuracy (rank 2 in all 9 EC based FS 
algorithms). BBPSO-ACJ ranks 3 in all the 9 algorithms, 
with the average feature number 16.34. It selects the 
smallest feature subsets in four datasets: Heart, 
Australia, Segment, and German. But it does not 
perform as well as QPSO in high dimensional datasets 
(i.e. Sonar) which affects its average performance. In 
general, it can be concluded that BBPSO-ACJ is 
superior to other methods in terms of classification 
accuracy and it also shows competitive performance in 
terms of selected feature number. 

 

4.4.2. Comparisons with filter based methods  

In this section, BBPSO-ACJ is compared with two filter 
based FS methods, LFS and GSBS. Tables 4 shows the 
classification accuracy (CA) and number of selected 
features (#features) of the three FS methods.  
 

Table 4 Comparison between BBPSO-ACJ and two filter 
based methods 

Dataset Metric LFS GSBS BBPSO-ACJ 

Glass 
CA 70.31 66.53 77.18 

#features 6 7 4 

Wine 
CA 74.07 85.19 97.96 

#features 7 8 8.2 

Heart 
CA 76.53 67.48 87.45 

#features 6 8 6.2 

Australia 
CA 70.05 69.57 84.38 

#features 4 12 5.4 

Segment 
CA 88.24 84.67 92.07 

#features 4 13 9.9 

German 

MA 68.67 64.33 75.39 

Table 4 continued 

#features 3 18 8.83 

Ionosphere 
MA 86.67 78.1 87.55 

#features 4 30 6.3 

Sonar 
MA 77.78 68.25 79.05 

#features 3 48 25.7 

Musk1 
MA 85.31 76.22 87.2 

#features 10 122 72.5 

 
It can be seen from Table 4 that LFS selects fewer 

features than GSBS in all the 9 datasets and achieves 
higher classification accuracy in 8 out of 9 datasets. 
BBPSO-ACJ achieves significantly higher classification 
accuracy than LFS in all the datasets. BBPSO-ACJ 
selects slightly larger or even smaller feature subsets 
than LFS in datasets with small number of features, 
such as Glass, Wine, and Heart. LFS shows much better 
performance in high-dimensional datasets than BBPSO-
ACJ. This can be attributed to the forward selecting 
mechanism of LFS which make it tend to select very 
small number of features. Compared with GSBS, 
BBPSO-ACJ obtains much higher classification 
performance in all datasets and selects smaller feature 
subsets in 8 out of 9 datasets. Therefore, it can be 
concluded from Table 4 that BBPSO can effectively 
reduce the number of features and shows superior 
performance to the two deterministic FS methods in 
terms of classification accuracy. 

4.4.3. Statistical analysis of BBPSO-ACJ 

Statistics provides a powerful tool to investigate the 
difference between different algorithms. In this study, 
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the Friedman test and the multiple comparison approach 
are employed to testify whether the difference of the 9 
EC based FS methods in terms of classification 
accuracy is significant20,28.  

The Friedman test is a non-parametric method 
which is used to compare the classification performance 
of different classifiers over multiple datasets by ranking 
each algorithm on each dataset43. In this paper, the 
hypothesis is that all the 9 EC based FS methods have 
equal classification performance and the Friedman test 
is used to test the hypothesis. 

When performing the Friedman test, first create a 
ranking matrix R in which each element Rij means the 
rank (from 1 to 9) of the FS method j on dataset i. If an 
FS method obtains the highest classification accuracy, it 
gets rank 1 and the second best gets rank 2, and so on. 
The test statistic is computed by the following 
equations: 

2( 1)( 1){ }
4f

f
f f

nk kn B
T

A B

+
− −

=
−

               (15) 

2

1

n

j ij
i

R R
=

=∑                               (16) 

 2

1 1

n k

f ij
i j

A R
= =

=∑∑                            (17) 

2

1

1 k

f j
j

B R
n =

= ∑                             (18) 

The null hypothesis is rejected at the α  
significance level if the test statistic is greater the 1 α−  
quantile of the F-distribution with 1k −  and ( )( )1 1k n− −  
degrees of freedom. In this study, Tf is 7.56 and 

( )0.05 8,64 2.09F = . Since Tf is larger than ( )0.05 8,64F , the 
null hypothesis that all 9 EC based FS methods have the 
same classification performance is rejected at 0.95 
significance level.  

The multiple comparison approach is used to 
confirm which method shows significantly better 
classification performance when the Friedman test is 
rejected. The following inequality is used to decide 
whether two methods i and j are significantly different. 

( 2) 2 ( ) ( 1)( 1)j i f fR R t n A B n kα− > − − −       (19) 

where ( 2)t α  is a value on the t-table using ( 1)( 1)n k− −  
degrees of freedom ( 2 ( ( 2)))P t tα α= > . 

Like the Friedman test, the 9 EC based FS methods 
are ranked according to their classification performance. 
The rank sums of GA, PSO, BPSO, BPSO-CI, BBPSO, 
QBPSO, BPSO-CE, PSO (4-2), and BBPSO-ACJ are 
70, 59, 44, 48, 37, 44, 56, 38, and 9, respectively. In the 
multiple comparison approach, the classification 
performances of two methods are considered 
significantly different when the sum ranks of the two 
methods are greater than a stated unit apart. In this study, 
the stated unit at 0.05 significance level is 17.66. 
Obviously, BBPSO-ACJ obtains significantly better 
classification accuracy than other comparative 
algorithms. 

4.4.4. Analysis on computational time 

This section compares the computational time of the 9 
EC based FS methods. Table 5 shows the mean 
computational time (in seconds) of 20 independent runs 
on each dataset. For each dataset, the algorithm with the 
best computational efficiency is shown in boldface. 
They are all wrapper-based methods which employ the 
5NN classifier to evaluate the individuals in the 
optimization process. Hence, most of the computational 
time is spent on the evaluation process. First of all, it 
can be seen from Table 5 that the 9 methods are close in 
the running time. All the methods can generate feature 
subsets in relatively short time, less than one minute in 
8 out of 9 datasets and about 2 minutes in the German 
dataset. Among all the 9 algorithms, PSO shows the 
best computational efficiency, with the average CPU 
time 26.67 seconds. This is due to the fact that PSO 
does not include any extra search strategies. The 
difference of the average CPU time between PSO and 
BBPSO-ACJ is less than 2 seconds. Moreover, the 
proposed BBPSO-ACJ shows superior performance to 
PSO in terms of classification accuracy and selected 
feature number according to Table 2 and Table 3. 
Therefore, there is a trade-off between the quality of 
feature subsets and the computational cost.  
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Table 5 The average time of algorithms on each dataset(in seconds). The last row of the table shows the average CPU time of each 
method over the datasets. 

Dataset GA PSO BPSO BPSO-CI BBPSO QBPSO PSO(4-2) BPSO-CE BBPSO-ACJ 

Glass 6.11  5.48  6.63  7.13  6.19  5.93  5.27  7.16  5.55  

Wine 8.75  8.01  7.41  7.44  7.69  6.94  8.55  7.93  7.55  

Heart 15.23  13.81  14.30  14.12  15.64  12.51  13.90  14.94  13.33  

Australia 31.18  29.96  31.88  33.02  32.30  35.17  33.46  35.74  38.47  

Segment 16.23  15.64  17.89  15.32  13.80  12.77  14.69  16.01  17.61  

German 105.98  101.04  103.95  105.87  109.65  104.04  105.93  111.99  106.10  

Ionosphere 15.56  14.02  13.71  11.94  15.70  13.66  13.94  12.79  16.53  

Sonar 7.07  6.13  6.30  7.07  6.74  8.19  7.66  6.98  7.02  

Musk1 52.20  45.99  46.10  48.22  47.95  43.75  47.83  51.42  43.34  

Average 28.70  26.67  27.57  27.79  28.41  27.00  27.91  29.44  28.39  

 
4.4.5. Analysis of the two new operators 

In this section, the effect of the two new operators (the 
adaptive chaotic jump strategy and the new gbest 
updating mechanism) upon FS will be discussed in 
detail. Table 2 shows that BBPSO-ACJ obtains 
obviously better classification accuracy than the original 
BBPSO. Take the Sonar dataset for example, the 
classification accuracies for BBPSO-ACJ and BBPSO 
are 87.2 and 84.42, respectively. Moreover, BBPSO-
ACJ shows better robustness than BBPSO which can be 
illustrated by the lower standard deviation of BBPSO-
ACJ. Table 3 indicates that BBPSO-ACJ obtains 
smaller feature subsets than BBPSO in 8 out 9 datasets. 
The average selected number of features of BBPSO is 
18.63 while the average feature number of BBPSO-ACJ 
is 16.34. Table 5 shows that BBPSO-ACJ costs even 
slightly shorter CPU time than BBPSO. Consequently, 
it can be inferred from the abovementioned results that 
the adaptive chaotic jump strategy can help BBPSO to 
obtain more discriminative feature subsets with higher 
classification performance and the new gbest updating 
mechanism can help the algorithm reduce the number of 
selected features. Furthermore, the two operators would 
not bring additional computational burden for BBPSO 
which is demonstrated by the computational time.  
 

5. Conclusions 

In this paper, a novel feature selection method called 
BBPSO-ACJ is proposed to testify the potential of 
BBPSO in FS problems. BBPSO is the simplest variant 

of PSO and it also shows good global search ability. But 
it also suffers from premature convergence, especially 
in high dimensional optimization problems. In order to 
improve its performance in FS problem, an adaptive 
chaotic jump strategy is employed to improve local 
exploitation in order to help the stagnated particles to 
jump out of local attractors and keep the balance 
between convergence speed population diversity. A new 
gbest updating mechanism is proposed to reduce the 
number of selected features. To validate the 
performance of the proposed algorithm, it is compared 
with 8 EC based FS methods and two filter based 
methods on nine datasets from UCI machine learning 
repository. The experimental results show the proposed 
method can effectively eliminate irrelevant or redundant 
features, and it achieves the highest classification 
accuracy in all the datasets compared with other EC 
based wrappers. The comparison with two deterministic 
filter methods indicates that BBPSO-ACJ outperforms 
LFS and GSBS in terms of classification accuracy and it 
achieves smaller feature subsets than GSBS. Two 
statistical tests are employed to demonstrate that 
BBPSO-ACJ obtains significantly better classification 
performance than other EC based FS methods. The CPU 
time analysis shows that the BBPSO-ACJ can obtain 
feature subsets in a relatively short time. Moreover, the 
detailed analysis on the two new operators shows that 
they can effectively improve the performance of 
BBPSO in FS problems in terms of classification 
accuracy and number of selected features. Besides, 
these two operators would not bring any additional 
computational burden which can be proved by the 
computation time. 

International Journal of Computational Intelligence Systems, Vol. 11 (2018) 1–14
___________________________________________________________________________________________________________

12



Future work will focus on introducing filter 
methods into BBPSO based FS model to improve the 
computational efficiency. Another research area is 
multi-objective FS method which aims at improving 
multiple objectives simultaneously, such as 
classification accuracy, number of selected features, 
relevance, and redundancy between features and class 
label. 
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