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Competitive equilibrium theory assumes large and anonymous markets in which 
every buyer can trade with every seller. Underlying these assumptions are standard 
goods and services that may be traded at low transaction costs by agents who are 
not in specific relationships with one another. However, in many markets goods 
and services are heterogeneous (e.g., cars, apartments) or need to be tailored to 
particular needs (e.g., manufacturing inputs, technical support). Furthermore, trad-
ing opportunities may depend on transportation costs, social relationships, infor-
mation, advertising, trust, technological compatibility, joint business opportunities, 
free trade agreements, etc. In such cases it is natural to model the market using a 
network, where only pairs of connected agents may engage in exchange.

New theories are needed to explore the influence of the network structure on 
market outcomes. Many questions arise: How does an agent’s position in the net-
work determine his bargaining power and the local prices he faces? Who trades with 
whom and on what terms? When are prices uniform in the network?

One possible conjecture is that an agent’s bargaining power is determined by his 
(relative) number of connections in the network. However, this simple theory is 
implausible. Consider the network of four sellers (located at the top nodes) and nine 
buyers (located at the bottom nodes) depicted in Figure 1. Assume that each seller 
supplies one unit of a homogeneous indivisible good, each buyer demands one unit 
of the good, and all buyers have identical values for the good. The buyer located in 
the middle has the largest number of links in the network, as he is connected to each 
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Bargaining in Stationary Networks†

By Mihai Manea*

We study an infinite horizon game in which pairs of players con-
nected in a network are randomly matched to bargain. Players who 
reach agreement are replaced by new players at the same positions 
in the network. We show that all equilibria are payoff equivalent. The 
payoffs and the set of agreement links converge as players become 
patient. Several new concepts—mutually estranged sets, partners, 
and shortage ratios—provide insights into the relative strengths 
of the positions in the network. We develop a procedure to deter-
mine the limit equilibrium payoffs for all players. Characterizations 
of equitable and nondiscriminatory networks are also obtained.  
(JEL C78, D85)
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of the four sellers. Yet every seller has monopoly power over two other buyers whom 
he can extort, even if trade with the better connected buyer is unattainable. Hence 
the middle buyer is not able to extract a large fraction of the surplus from any seller 
despite his relatively large number of connections.

The example above illustrates that the relative strengths of the positions in a net-
work are highly interdependent. An agent’s bargaining power does not depend only 
on the number of his partners, but also on the identities and bargaining power of his 
partners. Each partner’s bargaining power depends in turn on the strengths of his cor-
responding partners, and so forth. An adequate measure of bargaining power needs to 
reflect the global network structure.

A recent book by Matthew O. Jackson (2008) surveys the emerging field of social 
and economic networks and concludes that several central issues remain unsolved.

There are important open questions regarding how network structure 
affects the distribution of the benefits that accrue to different actors in a 
network (p. 459).

In particular, Jackson notes that analyzing “a noncooperative game that completely 
models the bargaining process through which ultimate payoffs are determined […] 
is usually intractable” (p. 412). The present paper attempts to fill this gap using a 
noncooperative model of decentralized bilateral bargaining in networks. Our model 
is tractable and provides answers to the questions raised earlier.

The benchmark model is as follows. We consider a network where each pair of 
players connected by a link can jointly produce a unit surplus. The network gener-
ates the following infinite horizon discrete time bargaining game. Each period a link 
is selected according to some probability distribution, and one of the two matched 
players is randomly chosen to make an offer to the other player specifying a division 
of the unit surplus between themselves. If the offer is accepted, the two players exit 
the game with the shares agreed on. We make the following steady state assumption. 
The two players who reached agreement are replaced in the next period by two new 
players at the same positions in the network. If the offer is rejected, the two players 
remain in the game for the next period. All players have a common discount factor.

The steady state assumption captures the idea that in many markets agents face 
stationary distributions of bargaining opportunities. In such cases, some agents take 
similar positions in relationships and transactions at different points in time. Our 
benchmark model provides a stylized depiction of steady states in an economy with 
multiple populations and a complex pattern of trading opportunities. In the  multiple 

Figure 1. The Position with the Largest Number of Connections  
Is Not Necessarily the Strongest
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population interpretation, each node corresponds to a population of identical agents, 
and the network represents the structure of interactions among populations. From 
this perspective, our setting constitutes an extension of Ariel Rubinstein and Asher 
Wolinsky’s (1985) fundamental model of bargaining in stationary markets with two 
populations.

Indeed, the results carry over to a model in the spirit of Douglas M. Gale’s (1987), 
where every period a continuum of players is present at each node in the network, 
and a positive measure of player pairs are matched to bargain across each link. 
While in the benchmark model the replacement assumption entails that every period 
an inflow of agents matches the stochastic endogenous outflow of agents reaching 
agreements in equilibrium, in the multiple population version the steady state analy-
sis involves a deterministic inflow. This enables us to investigate how the size of the 
population at each node is determined in a steady state of an economy with exog-
enously specified inflows of agents into the network. Manea (2010) studies a more 
general model of multipopulation bargaining with an emphasis on nonstationary 
markets.

Depending on the application, populations may correspond to buyers and sellers 
of used cars with specific parameters (brand, mileage, manufacturing year, fuel effi-
ciency, warranty, etc.); renters with specific demands (in terms of location, number 
of bedrooms, recent renovation, dishwasher availability, etc.) and the corresponding 
landlords; firms with different types of production technologies and workers with 
particular training and job preferences; importers and exporters who trade goods 
that meet certain quality standards. In the former two applications, populations can 
be further divided according to exposure to various advertising platforms, demo-
graphics, and locations of buyers and sellers. In the latter, trading companies are 
differentiated by the ability to meet the requirements of particular markets, trade 
permits, and business connections.

In general, a population is defined by a category of agents who share the same 
relevant attributes for the market under consideration. The network of exchange 
is determined by the compatibility of the factors describing various populations. 
Background elements such as word-of-mouth communication, consumer protection 
laws, transportation costs, and trade agreements also shape the network. For example, 
a prospective renter is effectively connected only to landlords who meet his apart-
ment search criteria and whom he finds through acquaintances, real estate agencies, 
or advertisements. In markets with multiple populations, the steady state assumption 
translates into the stationarity of the distribution of buyer and seller types.

Suppose that in the underlying network a certain group of buyers can trade only 
with a relatively small number of sellers. One might surmise that these sellers can 
use their oligopoly power to capture a significant fraction of the gains from trade. 
This is not necessarily the case for each seller involved. Due to network asymmetries, 
the sellers may have unequal bargaining power. Indeed, some subsets of the original 
oligopoly may face higher demand and exert more market power relative to others. 
For instance, if a subset of the sellers is connected to only one of the buyers, then 
the buyer can exploit his monopsony power. Some of the remaining sellers will form 
an oligopoly with greater market power than initially assumed. Other delicate issues 
arise. For example, overlapping oligopolies may cater to a common customer base 
or split up into several smaller oligopolies with varying degrees of bargaining power.
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The set of oligopolies and the price distribution emerging in equilibrium depend 
on the network structure in a complex fashion. The partition of the market into 
oligopolies and the relative strengths of the oligopolies are determined endoge-
nously via decentralized bargaining. Our analysis reveals that the most powerful 
oligopolies—the ones with the lowest seller-to-buyer ratio—drive market outcomes. 
Roughly speaking, for patient agents, the network is decomposed into a series of 
oligopolies, which are ordered decreasingly according to market power. Each oli-
gopoly in the list includes all buyers and sellers with extremal payoffs among those 
not involved in the preceding oligopolies.

I. Outline of the Results

We assume that the network structure is common knowledge and all players have 
perfect information about the events preceding any of their decision nodes in the 
game. The equilibrium concept we use is subgame perfect equilibrium.1

In Section III, we show that for every discount factor the equilibrium payoff of 
every player present in the game at the beginning of any period is uniquely deter-
mined by his position in the network (Theorem 1). For all but a finite number of 
discount factors, there exists a partition of the set of links into equilibrium agree-
ment and disagreement links (Proposition 1). In every equilibrium, after any history, 
a pair of players connected by an equilibrium agreement link reaches an agreement 
when matched to bargain, and the terms of the agreement are uniquely pinned down 
by the positions in the network of the proposer and the responder. Players con-
nected by disagreement links never reach agreement. We prove that there exists a 
limit equilibrium agreement network that describes the set of agreement links for 
sufficiently high discount factors. Also, the equilibrium payoffs converge as players 
become patient (Theorem 2).

For an illustration, consider the bargaining game on the five-player network  g 1  
shown in Figure 2, where all links are selected for bargaining with equal probability.2 
For every discount factor there is a unique equilibrium, with agreement network  
g 1 . In equilibrium every match ends in agreement because players 4 and 5 cannot 
be monopolized by either player 1 or 2. The limit equilibrium payoffs are 3/5 for 
players 1 and 2, and 2/5 for players 3, 4, and 5. The limit equilibrium agreement 
network coincides with  g 1  .

Consider next the game induced by the network  g 2  , which is obtained from  g 1  
by removing the link (2, 4). We assume again that every link is drawn for bargaining 
with the same probability. For low discount factors there exists a unique equilib-
rium, with the agreement network given by  g 2 . However, for high discount factors, 
players 1 and 5 do not reach an agreement in equilibrium when matched to bargain. 
The intuition is that player 1 can extort players 3 and 4, since these two players do 
not have other bargaining partners. Player 1 cannot extract as much surplus from 
player 5, since 5 has monopoly over player 2. The limit equilibrium payoffs are 

1 Section III discusses the robustness of the results to some features of the information structure and equilib-
rium requirements.

2 In all figures, limit equilibrium payoffs for each player are represented next to the corresponding node, and 
limit equilibrium agreement and disagreement links are drawn as thick and thin line segments, respectively.
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2/3 for player 1, 1/3 for players 3 and 4, and 1/2 for players 2 and 5. The limit 
equilibrium agreement network consists of all links of  g 2  except (1, 5). The equilib-
ria of the bargaining games on the networks  g 1  and  g 2  for all discount factors are 
described in detail in Example 1 from Section III.

The main objective is to characterize the limit equilibrium payoffs for every net-
work. The following essential observation is presented in Section IV. Consider a 
set of players who are pairwise disconnected in the limit equilibrium agreement 
network and the set of players with whom these players share limit agreement links. 
We refer to players in the former set as mutually estranged and to ones in the latter as 
partners. As players become patient, the partners have control over the (equilibrium) 
relevant bargaining opportunities of the mutually estranged players. For high dis-
count factors, since the estranged players can reach agreements only in equilibrium 
with the partners, the mutually estranged set is weak if the partners are relatively 
scarce. The appropriate measure of the strength of a mutually estranged set proves 
to be the simplest that springs to mind—the shortage ratio, which is defined as the 
ratio of the number of partners to estranged players.

For example, in the network  g 1  the shortage ratios of the mutually estranged sets 
{3, 4} and {3, 4, 5} are 1 and 2/3, respectively, since the partner set is {1, 2} in either 
case. In the network  g 2  the shortage ratios of the mutually estranged sets {3, 4} and 
{3, 4, 5} are 1/2 and 2/3, respectively, since the corresponding partner sets are {1} 
and {1, 2}, respectively. The determination of the partners for the mutually estranged 
sets considered here is based on the aforementioned limit equilibrium agreement 
subnetworks for the bargaining games on the networks  g 1  and  g 2 .

The concepts of mutually estranged sets, partners, and shortage ratios play a key 
role in the prediction of bargaining power. Formally, the shortage ratio measures the 
strength of a mutually estranged set in the following sense. For every set of mutually 
estranged players and their partners, the ratio of the limit equilibrium payoffs of the 
worst-off estranged player and the best-off partner is not larger than the shortage 
ratio of the mutually estranged set (Theorem 3). The result yields an upper (lower) 
bound for the limit payoff of the worst-off estranged player (best-off partner).

There may be a multitude of mutually estranged sets, and it is not immediately 
clear which, if any, of the corresponding bounds for the limit equilibrium payoffs 

Figure 2. Networks G1 (left) and G2
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are binding. One delicate step toward the main result (Theorem 4) is the idea that the 
bounds generated by a set of mutually estranged players and their partners need to 
be binding unless the worst-off estranged player is part of an even weaker mutually 
estranged set, and the best-off partner is part of an even stronger partner set. Based 
on this intuition, we prove that the extreme bounds—the ones derived from the (larg-
est) mutually estranged set that minimizes the shortage ratio and the corresponding 
partners—must bind.3 The two sets of players associated with these bounds have 
extremal limit equilibrium payoffs and induce an oligopoly subnetwork enclosing 
all their limit agreement links. Thus, for high discount factors, the partners act as 
an oligopoly that corners and extorts the estranged players. In the equilibrium limit, 
surplus within the oligopoly subnetwork is divided according to the shortage ratio 
of the mutually estranged players with respect to their partners, with all players on 
each side receiving identical payoffs.

Section V develops an algorithm that sequentially determines the limit equilib-
rium payoffs of all players based on the ideas above. At each step, the algorithm 
determines the union of all mutually estranged sets with the lowest shortage ratio 
and removes the corresponding estranged players and their partners. Within the 
identified extremal oligopoly subnetwork surplus is divided between the two sides 
according to the shortage ratio. The algorithm stops when all players have been 
removed or when the lowest shortage ratio is greater than or equal to 1. The latter 
scenario corresponds to limit payoffs of 1/2 for the remaining players.

The limit equilibrium payoffs for the network  g 2  are obtained by computing the 
lowest shortage ratio to be 1/2, attained for the mutually estranged set {3, 4} with 
the partner set {1}. Then the limit payoffs are 2/3 for player 1 and 1/3  for players 3 
and 4. Once we remove players 1, 3, and 4, the lowest shortage ratio in the remain-
ing network is 1; hence, players 2 and 5 obtain limit payoffs of 1/2.

We can use the algorithm to investigate the uniformity of payoffs in a network. A 
network is called equitable if it does not create differentiated bargaining power as 
players become patient; that is, all players have limit equilibrium payoffs of 1/2. In 
Section VI we show that a network is equitable if and only if it is quasi-regularizable; 
another equivalent condition is that the network have an edge cover which is the dis-
joint union of a matching and odd cycles (Theorem 5).

Section VII restricts attention to buyer-seller networks and provides a more 
straightforward characterization of the equilibrium limit (Theorem  4 BS ). Shortage 
ratios smaller than 1 and limit payoffs of 1/2 do not play a special role in the results 
for buyer-seller networks. We also analyze nondiscriminatory buyer-seller net-
works, where the limit payoffs of all buyers are identical. If the buyer-seller ratio is 
an integer, then the network is nondiscriminatory if and only if it can be covered by 
a disjoint union of clusters formed by one seller connected to a number of buyers 
equal to the buyer-seller ratio (Theorem 6).

In Section VIII, we clarify the replacement assumption in the context of a mar-
ket where there is a continuum of agents every period. Each node corresponds to a 
population of identical agents, and the network represents the pattern of exchange 

3 Our analysis reveals that the lowest shortage ratio, when smaller than 1, may be computed by considering sets 
of pairwise disconnected players, along with their neighbors, in the original network rather than in the (a priori 
unknown) limit equilibrium agreement network.
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opportunities between populations. In the analog stationary game for the multiple 
population setting, a constant measure of players is present at each node of the 
network in every period. The matching technology is such that, for each link in the 
network, a mass of pairs of players at the two endpoints is selected for bargain-
ing. The steady state assumption delivering the stationary structure of the game 
is that the set of players from a given node who reach agreements is immediately 
replaced by an equal measure of new players at that node. Under this assumption, 
the steady state analysis of the benchmark model extends without difficulty.

The characterization of the equilibrium payoffs and agreements in the stationary 
game can be used to address the issue of determining a steady state when the set of 
potential market entrants is exogenously specified. Theorem 7 is a corollary of an 
existence result established in the framework of Manea (2010). Suppose that there is 
a constant stream of potential entrants at each node in the network. For any match-
ing technology that varies continuously with the stationary distribution of agents 
in the market, there exist small entry costs for each node such that the resulting 
economy has a steady state. Manea (2010) shows that strengthening this result to 
apply for every set of small entry costs is not possible.

Rubinstein and Wolinsky (1985) and Gale (1987) analyze markets in steady state 
abstracting away from existence issues and invoking replacement assumptions anal-
ogous to ours. Similarly, the focus here is on the equilibrium outcomes of bargaining 
in stationary markets, rather than the mechanics of steady states. While it is useful 
to close the model with exogenous inflows as in the setting of Section VIII, the key 
contribution of this paper is the characterization of bargaining power in stationary 
networks developed in Sections II through VII.

Section IX reviews the related literature, and Section X concludes. An online 
Appendix discusses network stability with respect to the limit equilibrium payoffs, 
extensions of the results to heterogenous discount factors, and an example in which 
the bargaining protocol is asymmetric.

II. Framework

Let n denote the set of n players, n = {1, 2, … , n}. A network is an undirected 
graph H = (V, E) with set of vertices V ⊂ n and set of edges—also called links— 
E ⊂ {(i, j) | i ≠ j ∈ V} such that ( j, i) ∈ E whenever (i, j) ∈ E.4 We identify the pairs 
(i, j) and ( j, i), and use the shorthand ij or ji instead. We say that player i is con-
nected in H to player j, or i has an H link to j, if ij ∈ E. We regularly abuse notation 
and write ij ∈ H for ij ∈ E. A network H′ = (V ′, E′ ) is a subnetwork of H if V ′ ⊂ V 
and E′ ⊂ E. A network H′ = (V ′, E′ ) is the subnetwork of H induced by V ′ if E′ = 
E ⋂ (V ′ × V ′ ).

Fix a network g with vertex set n. Let ( p ij  > 0 ) ij∈g  be a matching technology 
for g, which is a probability distribution over g’s links. A link ij in g is interpreted 
as the ability of players i and j to jointly generate a unit surplus.5 Consider the fol-
lowing infinite horizon bargaining game generated by the network g. Each period 
t = 0, 1, … a link ij in g is selected with probability  p ij  , and one of the players (the 

4 Throughout the paper, ⊂ denotes weak inclusion; other authors prefer the symbol ⊆.
5 Without loss of generality, we assume that each player has at least one link in g.
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proposer) i and j is chosen randomly (with equal probability) to make an offer to 
the other player (the responder) specifying a division of the unit surplus between 
themselves. If the responder accepts the offer, the two players exit the game with the 
shares agreed upon. In period t + 1 two new players assume the same positions in 
the network as i and j, respectively. If the responder rejects the offer, the two play-
ers remain in the game for the next period. In period t + 1 the game is played in the 
same manner with the set of n players, consisting of the ones from period t, with the 
departing players replaced by new players if an agreement obtains in period t. All 
players share a discount factor δ ∈ (0, 1). The game is denoted  Γ  δ .

Formally, there exists a sequence  i 0  ,  i  1  , … ,  i  τ  , … of players of type i ∈ n (a play-
er’s type is defined by his position in the network). When player  i  τ  exits the game 
(following an agreement with another player), player  i  τ+1  replaces him the next 
period.6 All players have common knowledge of the game, including the network 
structure and the matching technology. We assume that players have perfect infor-
mation of all the events preceding any of their decision nodes in the game. Possible 
relaxations of the informational assumptions regarding past bargaining outcomes 
are discussed in the next section.

There are three types of histories. We denote by  h t  a history of the game up to 
(not including) time t, which is a sequence of t pairs of proposers and responders 
connected in g, with corresponding proposals and responses. We call such histories, 
and the subgames that follow them, complete. For simplicity, we assume that for 
every history players are labeled only by their type without reference to the index of 
their copy. The index τ of the player of type i playing the game at time t following 
the history  h t  can be recovered by counting the number of bargaining agreements 
involving i along  h t . Therefore, for each i ∈ n, a history  h  t  uniquely determines the 
player  i  τ  present in the game at time t, and when there is no risk of confusion we 
suppress the index τ. We denote by ( i  τ ) the set of complete histories, or subgames, 
where  i  τ  is the player of type i present in the game. We denote by ( h  t   ; i → j) the 
history consisting of  h  t  followed by nature selecting i to propose to j. We denote by  
( h  t    ; i → j; x) the history consisting of ( h  t   ; i → j) followed by i offering x ∈ [ 0, 1] to j.

A strategy  σ  i  τ   for player  i  τ  specifies, for all j connected to i in g and all  h t  ∈  
( i  τ ), the offer  σ  i  τ   ( h  t   ; i → j) that i makes to j following the history ( h  t   ; i → j), and 
the response  σ  i  τ   ( h  t   ; j → i; x) that i gives to j after the history ( h  t   ; j → i; x ). We 
allow for mixed strategies, hence  σ  i  τ  ( h  t   ; i → j) and  σ  i  τ  ( h  t   ; j → i; x) are probability 
distributions over [ 0, 1] and {Yes, No}, respectively. In the context of our game, we 
say that two strategy profiles are payoff equivalent if they induce identical payoffs 
for any player  i  τ  , where  i  τ ’s payoff is evaluated as the expected value of his gains 
from all the agreements discounted relative to his date of entry into the game (which 
is not period 0 for τ ≥ 1). A strategy profile ( σ  i  τ   ) i∈n, τ ≥ 0  is a subgame perfect 
equilibrium of  Γ  δ  if it induces Nash equilibria in subgames following every history  
( h  t   ; i → j) and ( h  t   ; i → j; x).

6 The results extend to an alternative specification of the model where every period there is a continuum of play-
ers at every node and a positive mass of players is matched to bargain across each link. Section VIII develops this 
approach.
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III. Essential Equilibrium Uniqueness and Discounting Asymptotics

We first show that across all equilibria of the bargaining game, the expected pay-
off of every player present in any complete subgame is uniquely determined by his 
position in the network. The unique and stationary equilibrium payoffs associated 
with each player type may be used to describe the possible equilibrium outcomes of 
every bargaining encounter.

THEOREM 1: For every δ ∈ (0, 1), there exists a payoff vector ( v  i  *δ  ) i∈n  such that 
for every subgame perfect equilibrium of  Γ δ  the expected payoff of player  i  τ  in any  
( i  τ ) subgame is uniquely given by  v  i  *δ  for all i ∈ n, τ ≥ 0. For every equilibrium of  
Γ δ , in any subgame where  i  τ  is selected to make an offer to  j  τ  ′   , the following state-
ments hold with probability one:

 (i) if δ( v  i  *δ  +  v  j  *δ ) < 1 then  i  τ  offers δ v  j  *δ  and  j  τ  ′   accepts; 

 (ii) if δ( v  i  *δ  +  v  j  *δ ) > 1 then  i  τ  makes an offer that  j  τ  ′   rejects.

We can extend the conclusions of Theorem 1 to settings in which players do not 
have perfect information about all past matchings but still have common knowledge 
of the network structure. It may be that players know only their own history of inter-
actions or know the history of all pairs matched to bargain but see the outcomes of 
only their own interactions. Players who reach agreements and exit the game may 
pass down information to the players who take their positions in the network. A 
player may learn that his bargaining partner has type i but be uncertain whether he 
is dealing with player  i 0  ,  i 1  , …. In such settings, players need to form beliefs about 
the unrevealed bargaining outcomes. Extending the proof to show uniqueness of 
the sequential equilibrium payoffs for each player type under various information 
structures is straightforward. The uniqueness argument relies solely on the assump-
tion that in every match the proposer knows the position of the responder in the 
(commonly known) network.7

Manea (2010) establishes equilibrium payoff equivalence in markets with mul-
tiple populations where the probability that any two player types are matched at a 
given date is exogenous. Theorem 1 is a special case of that uniqueness result, and 
we omit its proof here. However, we present a partial argument showing that all 
stationary equilibria in the current model are payoff equivalent. The ideas of the 
argument also play an important role in subsequent results.

A strategy profile ( σ  i  τ   ) i∈n, τ  ≥ 0  is stationary if each player’s strategy at any time t 
depends exclusively on his position in the network and the play of the game in period 
t, that is,  σ  i  τ   ( h  t   ; i → j) =  σ   i   τ  ′    ( h  t′  ′     ; i → j) and  σ  i  τ   ( h  t   ; j → i; x) =  σ  i τ ′   ( h′   t  ′    ; j → i; x) 
for all ij ∈ g, x ∈ [ 0, 1 ], τ, τ ′ ≥ 0,  h  t  ∈ ( i  τ ),  h   t   ′   ′   ∈ ( i  τ   ′  ). A stationary equilib-
rium is a subgame perfect equilibrium in stationary strategies.

Let σ be a stationary equilibrium of  Γ δ . Under σ, for every i ∈ n, each player  i  τ  
receives the same expected payoff,    ̃  v   i  , in any ( i  τ ) subgame. Suppose that ij ∈ g 

7 Theorem 1 generalizes to payoff equivalence of security equilibria (K. G. Binmore and M. J. Herrero 1988b).
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and i is selected to propose to j in a subgame. Since j’s continuation payoff in case 
of disagreement is δ    ̃  v   j  , in equilibrium player j accepts any offer larger than δ    ̃  v   j  and 
rejects offers smaller than δ    ̃  v   j  .

If δ   ̃  v   i  < 1 − δ    ̃  v   j  , i offers δ    ̃  v   j  and j accepts with probability 1. Indeed, any offer 
x < δ    ̃  v   j  is rejected, leading to a continuation payoff of δ   ̃  v   i  < 1 − δ    ̃  v   j  for i, while any 
offer x > δ    ̃  v   j  is accepted, leaving i with a payoff of 1 − x. In equilibrium, it must 
be that i offers x = δ    ̃  v   j  and j accepts with probability 1.8 Similarly, if δ   ̃  v   i  > 1 − δ    ̃  v   j  ,  
i makes an offer that j rejects with probability 1. Making any proposal that is accept-
able to j would leave i with at most 1 − δ    ̃  v   j  , which is less than his continuation pay-
off of δ   ̃  v   i  . When δ   ̃  v   i  = 1 − δ    ̃  v   j  , i is indifferent between offering j the minimum δ    ̃  v   j  
necessary for an agreement and making an unacceptable offer. In all cases, j obtains 
a payoff of δ    ̃  v   j  regardless of whether he accepts the offer or the game proceeds to the 
next round without agreement.

The claims above hold for every ij ∈ g. It follows that, for every i ∈ n, in any 
subgame following the selection of a link and a proposer, player i obtains a pay-
off different from δ   ̃  v   i  only if he was selected to make an offer to a player j with 
δ   ̃  v   i  < 1 − δ    ̃  v   j . The latter event occurs with probability  p ij /2 and leads to a payoff of 
1 − δ    ̃  v   j  for i. These observations are succinctly captured by the following equation:

(1)    ̃  v   i  = (1 −  ∑ 
{  j|ij∈g}

  
 

     
 p ij 

 _ 
2
   )δ   ̃  v   i  +  ∑ 

{  j|ij∈g}
  

 

     
 p ij 

 _ 
2
    max(1 − δ    ̃  v   j  , δ   ̃  v   i ).

Hence,   ̃  v  is a fixed point of the function  f  δ  = (   f  1  
δ   ,  f  2  δ   , … ,  f  n  

δ  ) : [ 0, 1 ] n  → [ 0, 1 ] n  defined 
by

(2)  f  i  
δ (v) = (1 −  ∑ 

{  j|ij∈g}
  

 

     
 p ij 

 _ 
2
   )δ v  i  +  ∑ 

{  j|ij∈g}
  

 

     
 p ij 

 _ 
2
    max(1 − δ v j  , δ v i ).

Lemma 6 in the Appendix establishes that  f  δ  is a contraction with respect to the 
sup norm on  핉 n . Hence  f  δ  has a unique fixed point, denoted  v *δ . Since the station-
ary equilibrium payoffs of  Γ  δ  need to be fixed points of  f  δ , they are uniquely given 
by  v *δ .

REMARK 1: The set of pure strategy stationary equilibria of  Γ  δ  is nonempty. 
indeed, the following strategies constitute an equilibrium. When i is selected to pro-
pose to j, he offers min(1 − δ v  i  *δ , δ v  j  *δ ), and when i has to respond—regardless of the 
proposer—he accepts any offer of at least δ v  i  *δ  and rejects smaller offers. However, 
the payoff equivalence of stationary equilibria does not imply uniqueness of the 
equilibrium strategies. For instance, when i is selected to make an offer to j and  
δ( v  i  *δ  +  v  j  *δ ) > 1, we can replace i’s behavior in the equilibrium construction above 
by any mixed strategy over the interval [ 0, δ v  j  *δ  ) or [ 0, δ v  j  *δ  ] (depending on whether 
j’s strategy is to accept offers of δ v  j  *δ  from i with positive probability).

8 As in standard bargaining arguments, an offer x > δ    ̃  v   j  cannot arise in equilibrium because i would have incen-
tives to deviate to any offer x′ ∈ (δ    ̃  v   j  , x). If j does not accept δ    ̃  v   j  with probability 1, then i has no best response to 
j’s strategy.
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The following description of the equilibria for two simple networks illustrates 
the conclusions of Theorem 1. Equilibria for more complex networks are analyzed 
in Example 2. The uniform matching technology for the network g, deployed in 
Examples 1–3, is defined by  p ij  = 1/e, ∀ij ∈ g where e denotes the total number of 
links in g.

Example 1: Consider the network  g 1  illustrated in Figure 2. The equilibrium pay-
offs in the game  Γ δ  played on the network  g 1  , with the uniform matching technol-
ogy, are

  v  1  *δ  =   150 − 250δ + 103 δ  2    ___    
5(100 − 220δ + 158 δ  2  − 37 δ  3 )

    

  v  2  *δ  =   100 − 160δ + 63 δ  2    ___    
5(100 − 220δ + 158 δ  2  − 37 δ  3 )

   

  v  3  *δ  =   
2(25 − 40δ + 16 δ  2 )   ___    

5(100 − 220δ + 158 δ  2  − 37 δ  3 )
    

  v  4  *δ  =  v  5  *δ  =   100 − 165δ + 67 δ  2    ___    
5(100 − 220δ + 158 δ  2  − 37 δ  3 )

   ,

converging to  v  1  *  =  v  2  *  = 3/5 and  v  3  *  =  v  4  *  =  v  5  *  = 2/5 as δ → 1. There exists a unique 
equilibrium in which, for all ij ∈  g 1  , when i is selected to propose to j, he offers δ v  j  *δ ,  
and when i has to respond to a proposal from j, he accepts any offer of at least δ v  i  *δ  
and rejects smaller offers. In equilibrium every match results in agreement.

Consider next the network  g 2  , also illustrated in Figure 2. When players have 
discount factor δ ≤ 10(9 −  √ 

_
 2  )/79 ≈ 0.9602 ≕  _ δ  , the equilibrium payoffs in the 

bargaining game on the network  g 2  , with the uniform matching technology, are

  v  1  *δ  =   300 − 520δ + 223 δ  2    ___    
5(200 − 460δ + 346 δ  2  − 85 δ  3 )

   

   v  2  *δ  =   100 − 160δ + 63 δ  2    ___    
5(200 − 460δ + 346 δ  2  − 85 δ  3 )

   

  v  3  *δ  =  v  4  *δ  =   
2(50 − 85δ + 36 δ  2 )   ___    

5(200 − 460δ + 346 δ  2  − 85 δ  3 )
   

   v  5  *δ  =   
2(100 − 170δ + 71 δ  2 )   ___    

5(200 − 460δ + 346 δ  2  − 85 δ  3 )
   .

For δ ≤  δ _  , there is a unique equilibrium with a description similar to the case of  g 1 .
A payoff irrelevant equilibrium multiplicity arises for the discount factor  δ _ . For 

δ =  δ _  , it is true that δ( v  1  *δ  +  v  5  *δ  ) = 1. Any behavior of player 1 in interactions with 
player 5 satisfying the following conditions is part of an equilibrium. Player 1’s offer 
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is an arbitrary probability distribution over [ 0, δ v  5  *δ  ]. Player 1 rejects offers smaller 
than δ v  1  *δ , accepts with some arbitrary probability an offer of δ v  1  *δ , and accepts with 
probability 1 larger offers.9

The equilibrium payoffs when δ >  δ _   are

  v  1  *δ  =   2 _ 
10 − 7δ   ,  v  3  *δ  =  v  4  *δ  =   1 _ 

10 − 7δ   ,  v  2  *δ  =  v  5  *δ  =   1 _ 
2(5 − 4δ)   ,

converging to  v  1  *  = 2/3,  v  3  *  =  v  4  *  = 1/3, and  v  2  *  =  v  5  *  = 1/2 as δ → 1. For δ >  δ _  , in 
every equilibrium agreement obtains across all links except (1, 5). The equilibrium 
requirements do not pin down the disagreement offer in an encounter between play-
ers 1 and 5, and there exist multiple payoff equivalent equilibria as explained in 
Remark 1. However, in every equilibrium, the strategies for bargaining across the 
links (1, 3), (1, 4), (2, 5) must be as specified in Remark 1.

We call ( v  i  *δ   ) i∈n  the equilibrium payoff vector at δ. The equilibrium agree-
ment network at δ, denoted  g *δ , is defined as the subnetwork of g with the link 
ij included if and only if δ( v  i  *δ  +  v  j  *δ  ) ≤ 1. Hence the equilibrium agreement net-
work consists of all links where the two players at the endpoints can come up 
with a division of the surplus that makes both weakly better off than proceeding 
without agreement to the next period. For δ such that δ( v  i  *δ  +  v  j  *δ  ) ≠ 1, ∀ij ∈ g, 
the agreements and disagreements in any subgame across all equilibria are 
entirely characterized as in the second part of Theorem 1. Across a link ij ∈  g *δ , if 
δ( v  i  *δ  +  v  j  *δ  ) < 1 then agreement is reached with probability 1 in any equilibrium; 
if δ( v  i  *δ  +  v  j  *δ  ) = 1 then there exist equilibria in which agreement is reached with 
any probability. For links ij ∉  g *δ , disagreement arises with probability 1 in any 
equilibrium. We show that the condition δ( v  i  *δ  +  v  j  *δ ) ≠ 1, ∀ij ∈ g holds for all 
but a finite set of discount factors δ, hence the description of equilibrium agree-
ments and disagreements provided by Theorem 1 is complete for generic discount 
factors.

PROPOSITION 1: The condition δ( v  i  *δ  +  v  j  *δ  ) ≠ 1, ∀ij ∈ g holds for all but a finite 
set of δ.

The proof appears in the Appendix. We outline the approach here since some of 
its elements resurface in the proof of the next result. For every δ ∈ (0, 1) and every 
subnetwork H of g, consider the n × n system of linear equations

(3)  v i  = (1 −   ∑ 
{  j|ij∈H}

  
 

     
 p ij 

 _ 
2
   )δ v i  +  ∑ 

{  j|ij∈H}
  

 

     
 p ij 

 _ 
2
    (1 − δ v j ), ∀i =  

_
 1, n .

9 Note that the probability of agreement between 1τ and 5τ ′ does not influence their own payoffs, but affects the 
length of time that future players of types 1 and 5 need to wait before entering the game. However, the equilibrium 
payoffs of future players are not affected by the induced delay since, as already mentioned, a player’s payoff is 
evaluated by discounting relative to his entry into the game rather than period 0.
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We have shown above that  v *δ  solves the system for H =  g *δ . It is easy to check that 
the system (3) has a unique solution  v δ, H . In particular,  v *δ  =  v  δ,  g  *δ  .

All entries in the augmented matrix of the linear system (3) are linear functions 
of δ. Then for each i ∈ n, the solution  v  i  

δ, H  is given by Cramer’s rule, as the ratio of 
two determinants that are polynomials in δ of degree at most n,

  v  i  
δ, H  =  P  i  

H (δ)/ Q  i  
H (δ).

We can then argue that every δ for which there exist ij ∈ g with δ( v  i  *δ  +  v  j  *δ  ) = 1 is 
a root of one of a finite family of nonzero polynomials in δ.

Denote by Δ the finite set of δ for which there exists ij ∈ g with 
δ( v  i  *δ  +  v  j  *δ ) = 1. As established by Theorem 1, for δ ∉ Δ, in every equilibrium 
of  Γ  δ , in any subgame where  i  τ  is chosen to make an offer to  j  τ  ′   , with probability 
one: (1) if ij ∈  g  *δ  then  i  τ  offers δ v  j  *δ  and  j  τ  ′   accepts; (2) if ij ∉  g  *δ  then  i  τ  makes 
an offer that  j  τ  ′   rejects.

The following result establishes convergence of the equilibrium outcomes as 
players become patient. The proof appears in the Appendix.

THEOREM 2: There exist  _ δ  ∈ (0, 1) and a subnetwork  g  *  of g such that the equi-
librium agreement network  g  *δ  is equal to  g  *  for all δ >  δ _ . The equilibrium payoff 
vector  v *δ  converges to a vector  v *  as δ goes to 1. The rate of convergence of  v *δ  to  
v *  is o(1 − δ).

We call  g  *  the limit equilibrium agreement network and  v *  the limit equilib-
rium payoff vector. Our main objective is to determine the limit equilibrium pay-
offs.10 The following preliminary observations are proven in the Appendix.

PROPOSITION 2: if ij ∈ g, then  v  i  *  +  v  j  *  ≥ 1. if ij ∈  g  * , then  v  i  *  +  v  j  *  = 1. in par-
ticular, if  v  i  *  +  v  j  *  > 1, then ij ∉  g  * .

LEMMA 1: Every player has at least one link in  g  *  (under the assumption in foot-
note 5).

REMARK 2: The benchmark model assumes that all agreements generate the 
same surplus. The bargaining protocol specifies that in every match both players 
are equally likely to be chosen as the proposer. However, the results of this section 
generalize without difficulty to a setting with heterogenous link values and arbi-
trary asymmetric probabilities of recognizing the proposer conditional on every 
link selection.

10 One can approximate the equilibrium payoffs for a given discount factor δ by iterating the contraction  f  δ  on 
any initial payoff vector until convergence to its fixed point is obtained. Note that the contraction factor is δ. This 
computational approach can be used to determine the payoffs in any given network. However, we seek to provide a 
conceptual characterization of bargaining power in arbitrary networks.
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IV. Bounds for Limit Equilibrium Payoffs

In order to characterize the limit equilibrium payoffs, we need to introduce sev-
eral new concepts. For every network H and subset of vertices M, let  L H (M) denote 
the set of players who have H-links to players in M, LH(M) = {j | ij ∈ H, i ∈ M}. A 
set M is H-independent if there exists no H-link between two players in M, M ∩   
L H (M) = ∅. A nonempty set of players is mutually estranged if it is  g  * -indepen-
dent. The set of partners for a mutually estranged set M is defined as  L  g  *  (M).11

Fix a mutually estranged set M with partner set L. Basically, as players become 
patient, the set L spans the relevant bargaining opportunities of the set M. For high 
discount factors, since the players in M can reach equilibrium agreements only when 
matched to bargain with players in L, the set M is weak if L is relatively small. This 
intuition is formalized by the shortage ratio of M, defined as the ratio of the number 
of partners to estranged players, | L |/| M |. The shortage ratio measures the collective 
strength of the mutually estranged players in a sense made precise by Theorems 3 
and 4.

The next result is essential for developing a procedure to determine the limit equi-
librium payoffs. For every mutually estranged set M with partner set L, the ratio of 
the limit equilibrium payoffs of the worst-off estranged player,  min  i∈M   v  i  *  , and the 
best-off partner,  max  j∈L   v  j  *  , is not larger than the shortage ratio of M.

THEOREM 3: For every mutually estranged set M with partner set L, the following 
bounds on limit equilibrium payoffs hold:

  min   
i∈M

    v  i  *  ≤   
| L | _  | M | + | L |  

  max   
j∈L

    v  j  *  ≥   
| M | _  | M | + | L |   .

The proof of Theorem 3 is relegated to the Appendix. It uses the following result, 
which follows immediately from rearranging equation (1) (with the substitution  
  ̃  v  =  v *δ ).

LEMMA 2: For every δ, the equilibrium payoff of each player in  Γ  δ  is equal to the 
expected present value of his stream of first mover advantage, i.e.,

  v  i  *δ  =   1 _ 
1 − δ     ∑ 

{  j|ij∈g}
  

 

     
 p ij 

 _ 
2
     max(1 − δ v  i  *δ  − δ v  j  *δ , 0), ∀i ∈ n, ∀δ ∈ (0, 1).

We say that max(1 − δ v  i  *δ  − δ v  j  *δ , 0) measures the first mover advantage that i 
gains from making an offer to j. Indeed, as argued in Section III, the expected pay-

11 To illustrate the definitions, note that the list of all mutually estranged sets and corresponding partner sets 
in the limit equilibrium agreement network for the bargaining game on the network  g 2  (Figure 2) is ({1}, {3, 4}), 
({2}, {5}), ({3}, {1}), ({4}, {1}), ({5}, {2}), ({1, 2}, {3, 4, 5}), ({1, 5}, {2, 3, 4}), ({2, 3}, {1, 5}), ({2, 4}, {1, 5}), ({3, 4}, 
{1}), ({3, 5}, {1, 2}), ({4, 5}, {1, 2}), ({2, 3, 4}, {1, 5}), and ({3, 4, 5}, {1, 2}).
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off of i is δ v  i  *δ  in any subgame following nature’s move where he is not the proposer 
and max(1 − δ v  j  *δ , δ v  i  *δ ) in any subgame where he is selected to make an offer to 
player j. Hence player i’s net benefit from getting the opportunity to make an offer 
to j is the difference max(1 − δ v  j  *δ , δ v  i  *δ ) − δ v  i  *δ  = max(1 − δ v  i  *δ  − δ v  j  *δ , 0).

The intuition for the proof of Theorem 3 is as follows. Suppose that M is a mutu-
ally estranged set with partner set L. Fix a discount factor δ >  δ _  , with  δ _  specified as 
in Theorem 2. Thus,  g  *δ  =  g  * . In every equilibrium, in any subgame, each player i 
in M reaches agreements only with players in L with whom he shares  g  *  links. Any 
first mover advantage that a player i in M gains from making an offer to a player 
j in L is mapped to an equal first mover advantage that j gains from making an 
offer to i (max(1 − δ v  i  *δ  − δ v  j  *δ , 0) is symmetric in i and j). Moreover, both gains are 
weighted by the same probability,  p ij /2, in the expected payoffs of i and j since the 
two players are equally likely to make offers when matched to bargain. It follows 
that the sum of the expected present values of the streams of first mover advantage 
enjoyed by all players in M is not larger than the same expression evaluated for the 
players in L.12 Hence, by Lemma 2,  ∑ j∈L  

 
    v  j  *δ   ≥  ∑ i∈M  

 
    v  i  *δ  . Note that the symmetry 

of the bargaining protocol is essential for this conclusion. Taking the limit δ → 1 
we obtain that  ∑ j∈L  

 
    v  j  *   ≥  ∑ i∈M  

 
    v  i  *  . Then the proof is made complete by repeatedly 

using Proposition 2 to establish that  min i∈M   v  i  *  +  max j∈L   v  j  *  = 1.
While Theorem 3 invokes knowledge we do not have a priori about the limit 

equilibrium agreement network  g  * , it has an immediate corollary that exclusively 
involves properties of g.13 It is sufficient to note that since  g  *  is a subnetwork of 
g, if M is g-independent then M is also  g  * -independent, and  L  g  *  (M) ⊂  L g (M), so  
|  L  g  *  (M) | ≤ |  L g (M) |.

COROLLARY 1: For every g-independent set of players M, the following bounds 
on limit equilibrium payoffs hold:

  min   
i∈M

    v  i  *  ≤   
|  L g (M) |  __  

| M | + |  L g (M) |
  

   max    
j∈ L g (M)

   v  j  *  ≥   
| M | __  

| M | + |  L g (M) |
   .

V. Limit Equilibrium Payoff Computation

Theorem 3 suggests that it may be useful to study the mutually estranged sets M 
that minimize the upper bound |  L  g  *  (M) |/(| M | + |  L  g  *  (M) |) for the limit equilib-
rium payoff of the worst-off player in M or, equivalently, minimize the shortage ratio 
|  L  g  *  (M) |/| M |. The next lemma—applied to the network  g  * —shows that the set 
of such minimizers is closed with respect to unions if the attained minimum is less 
than 1. It is useful to generalize this conclusion to all networks. The proof is in the 

12 Players in M gain first mover advantage only from players in L, while players in L gain first mover advantage 
from the corresponding players in M, and possibly from players outside M.

13 However, for the results of the next section we need the full strength of Theorem 3.
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Appendix. For every network H, let (H) denote the set of nonempty H-independent 
sets.

LEMMA 3: Let H be a network. Suppose that

   min   
M∈(H)

    |  L H (M) | _ | M |   < 1,

 and that M′ and M″ are two H-independent sets achieving the minimum. Then 
M′ ∪ M″ is also H-independent and

 M′ ∪ M″ ∈  arg min    
M∈(H)

     |  L H (M) | _ | M |   .

We show that the bounds on limit equilibrium payoffs corresponding to a set of 
mutually estranged players and their partners provided by Theorem 3 need to be 
binding unless the worst-off estranged player is part of an even weaker mutually 
estranged set, and the best-off partner is part of an even stronger partner set. The 
intuition is that each player is part of a limit equilibrium oligopoly subnetwork 
where, as δ → 1, some mutually estranged players and their partners share the 
unit surplus according to the shortage ratio. Consequently, the limit payoff of 
any player cannot be smaller than the upper bound for the worst-off player from 
a mutually estranged set with the lowest shortage ratio. Therefore, the bounds for 
the limit equilibrium payoffs of the worst-off estranged player and the best-off 
partner corresponding to a mutually estranged set with the lowest shortage ratio 
must be binding.

Suppose that the lowest shortage ratio,  r 1  =  min  M∈(g)  |  L g (M) |/| M |, is smaller 
than 1. Let  M 1  be the union of all g-independent sets M minimizing the shortage 
ratio. By Lemma 3,  M 1  is also a g-independent set with minimal shortage ratio. Let  
L 1  =  L g ( M 1 ) be the corresponding set of partners.

REMARK 3: note that  g  *  is a priori unknown. our analysis is self-contained in 
that it does not directly involve  g  * . Many steps in the proof of Theorem 4 below 
uncover properties of  g  *  that enable the application of Theorem 3. in particular, 
we show that the lowest shortage ratio—when smaller than 1—may be computed 
by restricting attention to sets that are g-independent rather than  g  * -independent. 
Another key finding is that  L  g  *  ( M 1 ) =  L g ( M 1 ). Therefore, we legitimately refer to  
M 1  as the largest mutually estranged set minimizing the shortage ratio, to  L 1  as the 
partner set of  M 1  , and to  r 1  as the shortage ratio of  M 1 .

We have argued above that  min i∈ M 1    v  i  *  =  r 1 /( r 1  + 1) and  max j∈ L 1    v  j  *  = 1/( r 1  + 1). 
We set out to show that the limit equilibrium payoffs are given by   r 1 /( r 1  + 1) for 
all players in  M 1  and 1/( r 1  + 1) for all players in  L 1 . That is, all players in  M 1  ∪  L 1  , 
not only the worst-off estranged player and the best-off partner, have extremal limit 
payoffs. The following algorithm sequentially iterates this hypothesis in order to 
determine the limit equilibrium payoffs of all players.
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DEFINITION 1: (Algorithm (g) = ( r  s  ,  x s  ,  M  s  ,  L s  ,  n  s  ,  g s  ) s=1, 2, … ,  
_
 s  ) Define the 

sequence ( r  s  ,  x s  ,  M  s  ,  L s  ,  n s  ,  g s  ) s  recursively as follows: Let  n  1  = n and  g  1  = g. For 
s ≥ 1, if  n s  = ∅ then stop. otherwise, let14

(4)  r  s  =   min    
M⊂ n s  , M∈ (g)

    |  L  g s  (M) | _ |M |   .

If  r  s  ≥ 1 then stop. Else, set  x s  =  r  s /(1 +  r  s ). Let  M  s  be the union of all minimizers 
M in (4).15 Denote  L s  =  L  g s  ( M  s ). Let  n  s+1  =  n s \( M  s  ∪  L s ) and  g s+1  be the subnet-
work of g induced by the players in  n  s+1 . Denote by  

_
 s  the finite step at which the 

algorithm ends.16

At each step, the algorithm (g) determines the largest mutually estranged set 
minimizing the shortage ratio in the subnetwork induced by the remaining play-
ers (Lemma 3), and removes the corresponding estranged players and partners. 
Remark 3 is essential to the applicability of the procedure. The definition ensures 
that (g) simultaneously identifies and removes all residual players with extremal 
limit payoffs. Then, for high discount factors, the removed players reach agreements 
only among themselves in equilibrium, and the network induced by the remaining 
players can be analyzed independently. The algorithm terminates when all players 
have been removed or every g-independent set formed by the remaining players has 
shortage ratio greater than or equal to 1.

As an illustration, the algorithm ( g 2 ), for the network  g 2  from the introduc-
tion, ends in  

_
 s  = 2 steps. The relevant outcomes are  r 1  = 1/2,  x 1  = 1/3,  M 1  = {3, 4},  

L 1  = {1} at the first step and  r 2  = 1,  n 2  = {2, 5} at the second.
The next lemma, which is used in the proofs of Proposition 3 and Theorem 4 

below, follows immediately from the specification of the algorithm (g). The proof 
of Proposition 3 is provided in the Appendix.

LEMMA 4: (g) satisfies the following conditions for all 1 ≤ s ≤ s′ <  
_
 s  :

  L  g s  ( M  s  ⋃  M s+1  ⋃ … ⋃  M   s  ′  ) =  L s  ⋃  L s+1  ⋃ … ⋃  L  s  ′  

  L g ( n  s+1 ) ⋂ ( M 1  ⋃  M 2  ⋃ … ⋃  M  s ) = ∅

  M  s  ⋃  M s+1  ⋃ … ⋃  M   s  ′   is g-independent.

PROPOSITION 3: The sequences ( r  s  ) s  and ( x s  ) s  defined by (g) are strictly increasing.

Note that the sets  M 1  ,  L 1  , … ,  M   _ s −1  ,  L   _ s −1  ,  n   _ s   partition n. The limit equilibrium pay-
off of each player is uniquely determined by the partition set that includes him.

14 It can be shown that each player in  n  s  has at least one link in  g s  , hence  r  s  is well defined and positive.
15 By Lemma 3, since  r  s  < 1,  M  s  is also a minimizer in (4).
16 In some cases the last step variables  r  _ s   ,  x   _ s   ,  M  _ s   ,  L   _ s   are unnecessary and are left undefined.



2059MAnEA: BARgAining in STATionARy nETWoRkSVoL. 101 no. 5

THEOREM 4: Let ( r  s  ,  x s  ,  M  s  ,  L s  ,  n  s  ,  g s  ) s=1, 2, … ,  
_
 s  ) be the outcome of the algorithm 

(g). The limit equilibrium payoffs for  Γ  δ  as δ → 1 are given by

  v  i  *  =  x s  , ∀i ∈  M  s  , ∀s <  
_
 s 

  v  j  *  = 1 −  x s  , ∀j ∈  L s  , ∀s <  
_
 s 

  v  k  *  =   1 _ 
2
   ,  ∀k ∈  n  _ s   .

PROOF: 
We prove the theorem by induction on s. Suppose we established the assertion for 

all lower values, and we proceed to proving it for s (1 ≤ s ≤  
_
 s ).17 We treat the case  

s =  
_
 s  separately in the Appendix.

Let s <  
_
 s  and define   x _   s  =  min i∈ n s    v  i  * . Denote by   _ M   s  =   arg min i∈ n s    v  i  *  the set of 

players in  n  s  whose limit equilibrium payoffs equal   _ x   s  and set   L _   s  =  L  g s  (  M _   s ). We first 
show that   _ x   s  =  x s  by arguing that   _ x   s  ≤  x s  and   _ x   s  ≥  x s  .

CLAIM 4.1:   x _   s  ≤  x s 

We proceed by contradiction. Suppose that   _ x   s  >  x s  . Then  v  j  *  ≥ 1 −  x s−1  > 1 −  
x s  > 1 −   _ x   s  for all j in  L 1  ∪  L  2  ∪ … ∪  L s−1 .18 The first inequality follows from the 
induction hypothesis and Proposition 3, and the second from Proposition 3. But  
v  i  *  ≥   _ x   s  for all i in  M  s  . Thus,  v  i  *  +  v  j  *  > 1, ∀i ∈  M  s  , ∀j ∈  L 1  ∪  L  2  ∪ … ∪  L s−1  . By 
Proposition 2 no player i ∈  M  s  has  g  *  links to players j ∈  L 1  ∪  L  2  ∪ … ∪  L s−1  , or  
L  g  *  ( M  s ) ∩ ( L 1  ∪  L  2  ∪ … ∪  L s−1 ) = ∅.

By Lemma 4,  L g ( M  s ) ∩ ( M 1  ∪  M 2  ∪ … ∪  M s−1 ) = ∅.
It follows that  L  g  *  ( M  s ) ⊂  L  g s  ( M  s ) =  L s . Theorem 3 implies that

  min   
i∈ M s 

    v  i  *  ≤   
|  L s  | _  |  M  s  | + |  L s  |

   =  x s  ,

a contradiction with  min i∈ n s    v  i  *  =   _ x   s  >  x s  .

CLAIM 4.2:   x _   s  ≥  x s  and  v  j  *  = 1 −   _ x   s  , ∀j ∈   _ L   s  .

We proved that   _ x   s  ≤  x s  . Since  r  s  < 1 it follows that  x s  < 1/2. By Proposition 2 
and Claim 4.1,

  v  j  *  ≥ 1 −   x _   s  ≥ 1 −  x s  > 1/2, ∀j ∈   _ L   s  .

Then Proposition 2 implies that   _ L   s  is a  g  * -independent set.

17 The following technical detail is used in order to avoid analogous arguments proving the base case and the 
inductive step. Append step 0 to the algorithm, with ( r 0  ,  x 0  ,  M 0  ,  L 0  ,  n 0  ,  g 0 ) = (0, 0, ∅, ∅, n, g). Then the base case 
s = 0 follows trivially, and the inductive steps, s = 1, 2, … ,  

_
 s  − 1, involve analogous arguments.

18 This argument is necessary only for s > 1.
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Fix j ∈   _ L   s  . By Proposition 2 there exist no  g  *  links from j to players k ∈  n s \  M _  s  , 
since for these players  v  k  *  >   _ x   s  (by the definition of   M _   s ) and we already argued that  
v  j  *  ≥ 1 −   x _   s  . Also, there exist no g links from j to players in  M 1  ∪  M 2  ∪ … ∪  M s−1  
by Lemma 4.

By Proposition 2, there exist no  g  *  links from j to players k ∈  L 1  ∪  L  2  ∪ … ∪  L s−1  
since for these players  v  k  *  ≥ 1 −  x s−1  > 1/2, and we need  v  j  *  > 1/2.

Therefore, any j ∈   L _   s  only has  g  *  links to players in   M _   s  . By Proposition 2 and 
Lemma 1, any player j ∈   L _   s  must have limit equilibrium payoff  v  j  *  = 1 −   _ x   s  .

Hence   L _   s  is  g  * -independent and  L  g  *  (  _ L   s ) ⊂   M _   s  ,19 so it follows from Theorem 3 
that

   _ x   s  =   max    
i∈ L g* (  _ L   s )

   v  i  *  ≥   
|   _ L   s  | __  

|  L  g  *  (  _ L   s ) | + |   _ L   s  |
   ≥   

|   _ L   s  | _  |  _ M   s  | + |   _ L   s  |
   .

Recall that    _ L   s  =  L  g s  (  _ M   s ). We can rewrite the inequality above as

(5)   
  _ x   s  _ 

1 −   _ x   s 
   ≥   

|  L  g s  (  _ M   s ) | _ |   _ M   s  |
   .

Yet by the definition of  r  s  and  x s  ,

(6)   
|  L  g s  (  _ M   s ) | _ |   _ M   s  |

   ≥  r  s  =   
 x s  _ 

1 −  x s 
   ,

and the last two inequalities imply that   x _   s  ≥  x s .
Claims 4.1 and 4.2 establish that   _ x   s  =  x s . Hence,  v  i  *  =  x s  , ∀i ∈   _ M   s  and  v  j  *  = 1 −  x s  , 

∀j ∈   _ L   s . Moreover, we need to have equalities in the weak inequalities (5) and (6), 
so |   _ L   s  |/|   _ M   s  | =  r  s  .

CLAIM 4.3:   M _   s  ⊂  M  s 

Since  M  s  is the union of all g-independent M ⊂  n s  with |  L  g s  (M) |/| M | =  r  s  and  
|  L  g s  (  M _   s ) |/|   M _  s  | =  r  s  , it follows that   _ M   s  ⊂  M  s  . (  _ M   s  is g-independent by Proposition 2, 
as the limit equilibrium payoff of each player in   _ M   s  is  x s  < 1/2.)

CLAIM 4.4:   _ M   s  =  M  s 

We show that    _ M   s  =  M  s  by contradiction. Fix i ∈  M  s \  _ M   s  . Since i ∈  M  s  and  
 L  g s  ( M  s ) =  L s  , i has no g links to players in  n s \ L s  . By Lemma 4, i has no g links to  
M 1  ⋃   M 2   ⋃ … ⋃  M s−1  .

By Proposition 2, i has no  g  *  links to players j ∈  L 1  ⋃  L  2  ⋃ … ⋃  L s−1  ⋃   _ L   s  as for 
such players  v  j  *  ≥ 1 − x s  , and  v  i  *  >   _ x   s  =  x s  by the definition of   _ M   s  .

It follows that i may only have  g  *  links to players in  L s \  _ L   s . Therefore,   
L  g  *  ( M  s \  _ M   s ) ⊂  L s \  _ L   s  , implying that |  L  g  *  ( M  s \  _ M   s ) | ≤ |  L s \   _ L   s | = |  L s  | − |   _ L   s  |.

19 It can be easily argued that the inclusion holds with equality.
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Note that

   
|  L s  | _ |  M  s  |

   =  r  s  &   
|   L _   s  | _ |   M _   s  |

   =  r  s  ⇒   
|  L s  | − |   L _   s  |  _  |  M  s  | − |   M _   s  |

   =  r  s  .

Then by Theorem 3,

   min    
i∈  M  s \   _ M   s 

   v  i  *  ≤   
|  L  g  *  ( M  s \  _ M   s ) |  __   

| M  s \  _ M   s  | + |  L  g  *  ( M  s \  _ M   s ) |
   

 ≤   
|  L s  | − |   _ L   s  |  ___   | M  s  | − |   _ M   s  | + |  L s  | − |   _ L   s  |

   =   
 r  s  _ 

1 +  r  s 
   =  x s  ,

a contradiction with   v  i  *  >  x s  for all i ∈  n s \  _ M   s  .
Therefore,   _ M   s  =  M  s  ,   _ L   s  =  L s  , and  v  i  *  =  x s  , ∀i ∈  M  s  , and  v  j  *  = 1 −  x s  , ∀j ∈  L s  , com-

pleting the proof of the induction step for s <  
_
 s .

REMARK 4: The limit equilibrium payoffs are independent of the relative prob-
abilities of links being selected for bargaining ( p ij  > 0 ) ij∈g .

An important implication of Theorem 4 is that submarkets endogenously emerge 
in equilibrium. An economy described by a connected network which cannot be 
decomposed into nonoverlapping submarkets may induce a disconnected limit equi-
librium agreement network where agents are partitioned into oligopoly subnetworks. 
In the equilibrium limit, each oligopoly subnetwork describes a separate submarket 
since no transactions occur across distinct oligopoly subnetworks. The limit equi-
librium prices are uniform within every submarket. Each agent self-selects into the 
most favorable submarket to which he has access. Although no equilibrium trades 
occur across different submarkets, the submarkets should not be analyzed indepen-
dently since the market partition is determined by the underlying network structure.

Example 2 below shows that the limit equilibrium agreement network does not 
necessarily contain all the links from players in  M  s  to players in  L s  . Although all 
players in  M  s  ( L s ) have identical limit equilibrium payoffs, their relative bargain-
ing strengths may vary, and the rates of convergence to the common limit are not 
identical across  M  s  ( L s ). Moreover, it is possible that the players in  M  s  ⋃  L s  induce a 
connected subnetwork in g, but a disconnected one in  g  * .

Example 2: Consider the bargaining game on the nine-player network  g 3  illustrated 
in Figure 3, with the uniform matching technology.20 The algorithm ( g 3 ) termi-
nates in one step, with  r 1  = 1/2,  M 1  = {4, 5, 6, 7, 8, 9}, and  L 1  = {1, 2, 3}. Therefore, 
the limit equilibrium payoffs are 1/3 for all players in  M 1  and 2/3 for all players in  

20 See the legend in footnote 2.
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L 1  . However, it is not the case that the limit equilibrium agreement network contains 
all the links from players in  M 1  to players in  L 1  (that is, all the links of  g 3 ).

Indeed, the limit equilibrium agreement network  g  3  *  excludes the links (1, 8) and 
(1, 9). The intuition is that, although  v  1  *  =  v  2  *  =  v  3  *  = 2/3 and  v  4  *  =  v  5  *  =  v  6  *  =  v  7  *  = 
 v  8  *  =  v  9  *  = 1/3, player 1 is relatively stronger than players 2 and 3 as he is con-
nected to all players that 2 and 3 are connected to, and players 8 and 9 are relatively 
stronger than players 4, 5, 6, and 7 as they are connected to all players with whom 
4, 5, 6, and 7 are connected. For similar reasons, player 3 is relatively weaker than 
players 1 and 2, augmenting the relative strength of 8 and 9 over 4, 5, 6, and 7; and 
players 4 and 5 are relatively weaker than players 6, 7, 8, 9, augmenting the rela-
tive strength of 1 over 2 and 3. For high δ, the equilibrium payoffs of player 1, and 
also of players 8 and 9, will be sufficiently high so that 1 does not reach agreement 
with either 8 or 9.

By the proof of Theorem 1, to check that  g  3  *  is the limit equilibrium agreement net-
work, we need to show only that  v δ, g  3  *   is the fixed point of the corresponding  f  δ  for δ 
sufficiently large.21 The payoff vector  v δ, g  3  *   solves the 9 × 9 system of linear equations

  v i  =   
2e −  e i  _ 

2e
   δ v i  +   1 _ 

2e
      ∑ 

{ j|ij∈  g  3  * }
  

 

   (1 − δ v j ) , ∀ i =  
_

 1, 9 , 

where e denotes the total number of links in  g 3  and  e i  the number of links player i 
has in  g  3  * . A closed-form solution is immediately obtained, but is omitted for expo-
sitional brevity. For example,

  v  1  
δ, g  3  *   =   

2(576 − 1068δ + 493 δ  2 )    ___    
3(2304 − 6048δ + 5264 δ  2  − 1519 δ  3 )

   ,

and the other components of  v δ, g  3  *   have similar rational function expressions.

21 Recall definitions (2) and (3).

Figure 3. Network  g 3 
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Simple calculus shows that for all δ >  _ δ  ≔ 6/251(45 −  √ 
_

 17  ) ≈ 0.977, the  
following is true for all ij ∈  g 3 : δ( v  i  

δ, g  3  *   +  v  j  
δ, g  3  *  ) ≤ 1 ⇔ ij ∈  g  3  *  . Hence  v δ, g  3  *   is a fixed 

point of  f  δ  and  g  3  *δ  =  g  3  *  . Therefore,  g  3  *  is the limit equilibrium agreement network. 
For δ <  _ δ  , the equilibrium agreement network is the entire  g 3  , while for δ >  _ δ  it is  
g  3  *  . The set of equilibria admits a characterization similar to that for the network  g  2  
in Example 1.

An example where the players in  M  s  ⋃  L s  induce a connected subnetwork in g, 
but a disconnected subnetwork in  g  * , is provided by the game on the network  g 4  
from Figure 4, with the uniform matching technology.22  g 4  essentially consists of 
two copies of  g 3  , with two additional links, (8, 10) and (9, 10). The limit equilib-
rium agreement network  g  4  *   excludes the links (1, 8), (1, 9), (8, 10), (9, 10), (10, 17), 
(10, 18) (by a logic analogous to the one suggesting that  g  3  *  excludes the links (1, 8) 
and (1, 9)).23

REMARK 5: The results are not sensitive to the assumption that only one pair of 
players is matched to bargain every period. Consider the following more general 
matching technology. Suppose that every period nature matches a set (possibly 
varying in cardinality) of disjoint pairs of linked players. All pairs matched in a 
given period bargain simultaneously. We assume that the distribution over match-
ings is stationary and that each link is selected with positive probability. The pre-
liminary results on essential equilibrium uniqueness and convergence as players 
become patient extend to this setting. Moreover, the limit equilibrium payoffs in the 
bargaining game with the general matching technology are identical to those from 
the benchmark model. Relatedly, Section Viii discusses a model with a continuum 
of players at each node in which bargaining proceeds simultaneously across mul-
tiple links.

VI. Equitable Networks

We call a network equitable if the limit equilibrium payoffs of all players are 
identical. By Proposition 2, the common limit payoffs must be equal to 1/2. Hence, 
a network is equitable if a player’s position does not affect his bargaining power in 

22 See the legend in footnote 2.
23 The bipartite nature of  g 3  and  g 4  is not critical to the asymptotic results. For instance, the limit equilibrium 

payoffs and agreement networks for  g 3  and  g 4  remain unchanged if the link (2, 3) is added to either network.

Figure 4. Network  g 4 
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the limit as δ goes to 1. Note that the concept of an equitable network is well defined 
because the limit payoffs in the bargaining game depend on the network structure, 
but not on the matching technology. We are interested in characterizing the class of 
equitable networks. By Theorem 4, a network g is equitable if and only if  r 1  ≥ 1, 
so that the algorithm (g) stops at the first step. Intuitively, this means that no oli-
gopoly emerges in equilibrium. Thus g is equitable if and only if |  L g (M) | ≥ | M | 
for every g-independent set M. Networks satisfying the latter property have been 
studied in graph theory. The following definitions are useful.

A graph is an odd cycle if its vertex set has odd cardinality and can be relabeled 
1, 2, …, k such that the set of edges is {(1, 2), (2, 3), … , (k − 1, k), (k, 1)}. A graph 
is a matching if its vertex set has even cardinality and can be relabeled 1, 2, …, k 
such that the set of edges is {(1, 2), (3, 4), … , (k − 1, k)}. A graph is a matching 
and odd cycles disjoint union if it is the union of a matching and a number of odd 
cycles that are pairwise vertex-disjoint. An edge cover of a graph is a subset of its 
edges such that every vertex of the graph belongs to at least one edge in the set. A 
graph is regular if each vertex has the same number of edges.

A graph H is quasi-regularizable (Claude Berge 1981) if there exists d > 0 and 
nonnegative integer weights  ω ij  associated with each edge ij ∈ H such that the sum 
of the weights of the edges incident to any vertex  i is d,

  ∑ 
{ j | ij∈H}

  
 

    ω ij   = d.

Examples of quasi-regularizable graphs include regular graphs (set all the weights 
equal to 1) and matching and odd cycles disjoint unions (set the weights of the 
edges along the odd cycles equal to 1 and in the matching to 2). If a network is 
quasi-regularizable then so is any network for which it constitutes an edge cover. 
Berge (1981) shows that g satisfies |  L g (M) | ≥ | M | for every g-independent set M 
if and only if g is quasi-regularizable; another equivalent condition is that g has an 
edge cover which forms a matching and odd cycles disjoint union. Figure 5 depicts 
a network that can be covered by a matching and odd cycles disjoint union. Berge’s 
alternative characterizations, along with the discussion opening the section, estab-
lish the following result.

Figure 5. The Dashed Links Constitute an Edge Cover  
which Is a Matching and Odd Cycles Disjoint Union
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THEOREM 5: The following three conditions are equivalent:

 (i) g is equitable

 (ii) g is quasi-regularizable

 (iii) g has an edge cover formed by the disjoint union of a matching and odd 
cycles.

One important corollary is that regular networks, as well as networks that can be 
edge covered by regular networks, are equitable.

Example 3: Consider the bargaining game on the six-player network  g 5  drawn in 
Figure 6, with the uniform matching technology.24 By Theorem 5,  g 5  is equitable 
since it has the edge cover {(1, 4), (2, 5), (3, 6)}, which is a matching.25 As the intro-
duction hinted, limit equilibrium payoffs depend on the network structure in a more 
complex fashion than simply by way of the relative number of bargaining partners. 
In  g 5  players may have 1, 2, or 3 links, but they all receive limit equilibrium payoffs 
of 1/2. Therefore, while regular networks are equitable, regularity is far from being 
a necessary condition for equitability. Quasi-regularizability is a necessary and suf-
ficient condition.

Example 4: Suppose that g is the complete network, i.e., ij ∈ g, ∀i ≠ j ∈ n, and 
that   p ij  =  π i   π j  , ∀ij ∈ g, for some vector π describing relative matching frequencies 
( π i  > 0, ∀i ∈ n). In this setting, Theorem 5 implies that the limit equilibrium pay-
off of each player is 1/2, independently of π. While players with higher matching 
frequencies obtain larger equilibrium payoffs for any δ < 1, all equilibrium payoffs 

24 See the legend in footnote 2.
25 By methods similar to those of Example 2, we can show that the limit equilibrium agreement network excludes 

the link (1, 6).
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Figure 6. Network  g 5 
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converge to 1/2 as δ goes to 1. The intuition is that patient players can postpone 
agreement until matched to bargain with players who have low matching frequency 
(each match occurs with positive probability every period, so every player is eventu-
ally matched to a weak partner).

VII. Buyer and Seller Networks

Suppose that n = B ⋃ S, where B and S denote the sets of buyers and sellers, 
respectively. Each seller owns one unit of a homogeneous indivisible good. Each 
buyer demands one unit of the good. The utilities of buyers and sellers for the good 
are normalized to 1 and 0, respectively. In a buyer-seller network, links connect 
buyers to sellers, i.e., for every link ij, i ∈ B ⇔ j ∈ S. Fix a buyer-seller network g. 
Only buyer-seller pairs connected in g can engage in exchange. With this interpreta-
tion, pairs of agents connected in g can generate a unit surplus, as in the benchmark 
model. Buyers and sellers have a common discount factor δ and play the bargaining 
game  Γ δ  on the network g. Since buyer-seller networks form a special class of net-
works, all previous results apply, and some refinements are possible.

The bipartite nature of buyer-seller networks permits a more straightforward 
description of the bounds and of the accompanying procedure for computing limit 
equilibrium payoffs. The restatements of Theorems 3 and 4 specialized to buyer-
seller networks are based on the following observations. Fix a buyer-seller network H 
and a subset of players M = B′ ∪ S′ (B′ ⊂ B, S′ ⊂ S). Then  L H (M) =  L H (B′ ) ⋃  L H (S′ ) 
with  L H (B′ ) ⊂ S and  L H (S′ ) ⊂ B. The set M is H-independent if there exists no H-link 
between buyers in B′ and sellers in S′, or  L H (B′ ) ∩ S′ = ∅ (or  L H (S′ ) ∩ B′ = ∅). Also, 
B′ and S′ are H-independent.

THEOREM  3 BS : For every nonempty set of buyers M, the following bounds on limit 
equilibrium payoffs hold:

  min   
i∈M

    v  i  *  ≤   
|  L  g  *  (M) |  __  

| M | + |  L  g  *  (M) |
  

   max    
j∈ L  g  *  (M)

   v  j  *  ≥   
| M | __  

| M | + |  L  g  *  (M) |
   .

If we restrict attention to sets of buyers M that minimize |  L H (M) |/| M |, Lemma 3 
can be extended to show that the set of such minimizers is closed with respect to 
unions—without the assumption that the attained minimum is strictly less than 1.26

LEMMA  3 BS : Let H be a buyer-seller network. Suppose that

 M′, M″ ∈   argmin    
M⊂B, M≠∅

     |  L H (M) | _ | M |   .

26 The only addition to the proof of Lemma 3 necessary to adapt it to Lemma  3 BS  is that  A 4  =  A  5  = ∅ for 
M′, M" ⊂ B. Then the weak inequality (21), (r − 1)( a 4  +  a 5 ) ≥ 0, holds with equality.
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 Then

 M′ ⋃ M″ ∈   arg min    
M⊂B, M≠∅

    |  L H (M) | _ | M |   .

In view of Theorem  3 BS  and Lemma  3 BS , the algorithm for computing limit equi-
librium payoffs does not have to treat  r  s  ≥ 1 as a stopping condition at step s if we 
focus on sets of buyers M that minimize |  L  g s  (M) |/| M |. While the algorithm (g) 
is effective for buyer-seller networks, the adapted version   BS (g) offers a simplified 
procedure.

DEFINITION 2: (Algorithm   BS (g) = ( r  s  ,  x s  ,  B s  ,  S s  ,  n s  ,  g s  ) s=1, 2, … ,  
_
 s  ) Define the 

sequence ( r  s  ,  x s  ,  B s  ,  S s  ,  n s  ,  g s  ) s  recursively as follows. Set  n 1  = n and  g 1  = g. For 
s ≥ 1, let

(7)  r  s  =   min    
M⊂ n s  ∩B, M≠∅

    |  L  g s  (M) | _ | M |   .

Set  x s  =  r  s /(1 +  r  s ). Let  B s  be the union of all minimizers M in (7).27 Denote  S s  =  
L  g s  ( B s ). If  n s  =  B s  ⋃  S s  then stop. Otherwise, set  n  s+1  =  n s \( B s  ⋃  S s ), and let  g s+1  
be the subnetwork of g induced by the players in  n  s+1 . Denote by  

_
 s  the finite step at 

which the algorithm stops.

PROPOSITION  3 BS : The sequences ( r  s  )  s  and ( x s  ) s  defined by   BS (g) are strictly 
increasing.

Note that the sets  B 1  ,  S 1  , … ,  B  _ s   ,  S  _ s   partition n.

THEOREM  4 BS : Let ( r  s  ,  x s  ,  B s  ,  S s  ,  n s  ,  g s  ) s=1, 2, … ,  
_
 s   be the outcome of the algorithm   

 BS (g) for the buyer-seller network g. The limit equilibrium payoffs for  Γ δ  as δ → 1 
are given by

  v  i  *  =  x s  , ∀i ∈  B s  , ∀s ≤  
_
 s 

  v  j  *  = 1 −  x s  , ∀j ∈  S s  , ∀s ≤   
_
 s .

Similarly to the study of equitable networks for the general model, we inter-
est ourselves with characterizing the class of nondiscriminatory networks in the 
bipartite case. A buyer-seller network is nondiscriminatory if the limit equilib-
rium payoffs of all buyers are identical. By Proposition  3 BS  and Theorem  4 BS , g is  
nondiscriminatory if and only if the algorithm   BS (g) stops at the first step; hence,  
B 1  = B,  S 1  = S,  r 1  = | S |/| B |. Let β denote the buyer-seller ratio, β = | B |/| S |. In a 
nondiscriminatory network, the common limit payoffs of all sellers—and the limit 
equilibrium price—are β/(β + 1).

27 By Lemma  3 BS ,  B s  is also a minimizer in (7).
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Suppose that β is an integer. A β-buyer-seller cluster is a network formed by a seller 
connected to β buyers. A β-buyer-seller cluster disjoint union is a network arising 
from the union of vertex-disjoint β-buyer-seller clusters. Set B = {4, 5, 6, 7, 8, 9} and 
S = {1, 2, 3} for the network  g 3  from Example 2. The buyer-seller ratio is 2, and the 
network has an edge cover formed by the disjoint union of three 2-buyer-seller clus-
ters, {(1, 4), (1, 5)} ⋃ {(2, 6), (2, 7)} ⋃ {(3, 8), (3, 9)}. The network  g 3  is nondiscrimi-
natory, with a limit equilibrium price of 2/3. The intuition is that each seller enjoys 
a distinct 2-buyer base, so there is no differentiation in bargaining power across 
patient sellers. This observation can be generalized. The proof is in the Appendix.

THEOREM 6: Suppose that the buyer-seller ratio β is an integer. A buyer-seller 
network is nondiscriminatory if and only if it has an edge cover which is a β-buyer-
seller cluster disjoint union.

COROLLARY 2: A buyer-seller network is equitable if and only if it has a perfect 
matching.28

REMARK 6: Corollary 2 also follows from Theorem 5 since bipartite networks con-
tain no odd cycles, so any matching and odd cycle disjoint union that covers such a 
network must be a perfect matching.

REMARK 7: Analogous results obtain if we interchange the roles of buyers and 
sellers in Theorems  4 BS  and 6.

REMARK 8: Theorem  4 BS  extends to a setting with the following bargaining 
protocol. Suppose that in every match the seller is q ≥ 0 times more likely than 
the buyer to be the proposer. note that the benchmark model presumes q = 1. 
Consider the sequence ( r  s  ,  x s  ,  B s  ,  S s  ,  n s  ,  g s  ) s  generated by the algorithm   BS (g), 
with the variable  x s  redefined as  r  s /(q +  r  s ) for all s and all other variables left 
intact. The sequence delivers the limit equilibrium payoffs for the new game as 
detailed in Theorem  4 BS .

VIII. Steady States with a Continuum of Players

The results translate to an alternative specification of the model in the spirit of 
Gale (1987). We fix g and δ throughout this section. Suppose there is a contin-
uum of players in the market every period. We refer to the players at node i ∈ g 
as players of type i or simply players i. A measure  μ i  of players of type i partic-
ipate in the game every period. The vector μ = ( μ i  ) i∈g  defines a (static) market. 
The matching technology is such that, for each link ij ∈ g, a measure  β ij (μ) 
of players i are matched to bargain with one of the players j. It is assumed that  
β ij (μ) =  β ji (μ) > 0 and  μ i  >  ∑ { j | ij∈g}  

 
    β ij (μ) . All players of the same type are 

treated symmetrically, so the probability that a player i meets some player j is  
β ij (μ)/ μ i . For each matched pair, bargaining proceeds through random  selection 

28 A perfect matching of a network is a matching that constitutes an edge cover.
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of the proposer. To maintain the bilateral feature of the model, we require that 
no player be involved in more than one match at the same time.

For a concrete example of a matching technology, assume that every player i 
meets another player with a fixed probability p, and the conditional probability of 
i meeting a type j is proportional to the measure of players j in the market. In our 
network setting, a meeting between i and j results in a feasible match only if ij ∈ g. 
The corresponding matching technology is described by  β ij (μ) = p  μ i   μ j / ∑ k∈g  

 
    μ k    

if ij ∈ g and  β ij (μ) = 0 otherwise (cf. Gale 1987).
To preserve the stationarity of the game, we have to assume that the set of players 

of each type who reach agreements is immediately replaced by an equal measure of 
new players of the same type.29 Hence the distribution of players in the network at 
the beginning of each period is given by μ. The steady state analysis of the previous 
sections extends here without difficulty.

In particular, the game Γ(μ), corresponding to the stationary market μ, yields a 
unique equilibrium payoff  v i (μ) to all players present at node i at the beginning of 
any round. The analog of Theorem 1 is that for every μ ∈ (0, ∞ ) n , v(μ) is the unique 
fixed point of the contraction f : [ 0, 1 ] n  → [ 0, 1 ] n  defined by

  f i (v) = (1 −   ∑ 
{ j | ij∈g}

  
 

     
 β ij (μ)
 _ 

2 μ i 
   )δ v i  +  ∑ 

{ j | ij∈g}
  

 

     
 β ij (μ)
 _ 

2 μ i 
    max(1 − δ v j  , δ v i ).

Furthermore, the results of Theorems 3 and 4 regarding limit equilibrium payoffs as 
δ → 1 carry over to the current setting if the shortage ratio of a mutually estranged 
set M with partner set L is evaluated using the formula

   
 ∑ j∈L  

 
    μ j  
 _ 

 ∑ i∈M  
 
    μ i  

   .

While we are able to provide a detailed characterization of the equilibrium pay-
offs and agreements in any stationary market, we have yet to address the issue of 
determining a steady state in a setting where the set of potential market entrants is 
exogenous. Specifically, suppose that every period a measure  λ i  > 0 of players of 
type i may choose to enter the game. Manea (2010) points out that even without any 
equilibrium restriction on the set of agreements, regardless of the matching technol-
ogy β, it may be that no feasible mass of pairwise departures from the market per-
fectly balances the inflows λ. This motivates the introduction of small entry costs to 
restrict the equilibrium inflows and stabilize the market.

In addition to g and δ, the other primitives of the model are the inflows 
λ = ( λ i  > 0 ) i∈g  and the (population specific) entry costs c = ( c i  ) i∈g . An economy 
is defined by the quadruple (g, δ, λ, c). When does a distribution μ of players across 
g constitute a steady state market for the economy (g, δ, λ, c)? It must be that every 
player of type i enters the game Γ(μ) if  v i (μ) >  c i  and does not if  v i (μ) <  c i . Hence 
the measure of new entrants in population i is  λ i  if  v i (μ) >  c i  , 0 if  v i (μ) <  c i  , and 
any number in the interval [ 0,  λ i  ] if  v i (μ) =  c i . The measure of players i trading with 

29 Manea (2010) discusses technical restrictions on strategies that guarantee the measurability of the set of play-
ers who trade.
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players j in any period is  β ij (μ), 0, or any number in [ 0,  β ij (μ)] depending on whether 
the sum of continuation payoffs δ( v i (μ) +  v j (μ)) is less than, greater than, or equal 
to the unit surplus, respectively. The steady state condition requires that the measure 
of players i entering the game in any period must be identical to the total measure of 
players i who reach agreement that period. A formal definition of steady states can 
be found in Manea (2010).

The latter paper provides an example in which steady states do not exist for a wide 
range of vectors of small entry costs. The next result, which we prove in the general 
setting of that paper, asserts that if the matching technology is continuous then for 
any given inflows λ there exist small entry costs c such that the economy (g, δ, λ, c) 
admits a steady state.

THEOREM 7: Fix the network g, the discount factor δ, a matching technology 
β with  β ij  continuous on (0, ∞ ) n  for all ij ∈ g, and constant inflows λ. Then for 
every k > 0, there exist entry costs c with  c i  < k for all i ∈ g such that the economy 
(g, δ, λ, c) has a steady state μ ∈ (0, ∞ ) n .

IX. Related Literature

Rubinstein and Wolinsky (1985) provided a major contribution to the analysis of 
decentralized trade in stationary markets.30 Apart from some insignificant differences, 
their model is embedded in our setting as the special case of a buyer-seller network 
in which every buyer is connected to every seller. Rubinstein and Wolinsky found 
that, as players become patient, the surplus is divided between buyers and sellers 
according to the ratio of sellers to buyers. Our results develop the idea that, in station-
ary environments with complex patterns of transactions, the shortage ratio of every 
mutually estranged set describes the collective bargaining power of its members.

In Dilip Abreu and Manea (2009a, b), we drop the stationarity assumption and ana-
lyze the situation in which players who reach agreements are removed from the net-
work without replacement. The matching technology and the bargaining protocol are 
identical to those of the present paper. In that setting, there are networks where no 
Markov perfect equilibrium is asymptotically efficient as players become patient. An 
important result is that for every network asymptotic efficiency is attainable in a sub-
game perfect equilibrium. We also investigate properties of Markov perfect equilibria.

The two settings differ in strategic complexity. In the present model bargain-
ing opportunities are stationary over time. A player’s decisions consist solely in 
determining who his most favorable bargaining partners are. In effect, each player 
solves a search problem with prizes endogenously and simultaneously determined 
by the network structure. In the setting without replacement, a player’s decisions 
additionally entail anticipating that passing up bargaining opportunities may lead 
to agreements involving other players which undermine or enhance his position in 
the network in future bargaining encounters. Technically, this means that we need 
to compute equilibrium payoffs for every subnetwork that may arise following a 
series of agreements. Clearly, the selection between the two models depends on the 

30 Important follow-up studies of bargaining in markets include Gale (1987), Binmore and Herrero (1988a), and 
Rubinstein and Wolinsky (1990).
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environment under investigation. In some markets trading opportunities are station-
ary, while in others trade volume declines over time.

Manea (2010) considers general models of bargaining in markets with multiple 
populations and exogenous—possibly nonstationary—inflows into each popula-
tion. The surplus generated from trade is heterogenous across population pairs. We 
explore several properties of equilibria, including existence, multiplicity, and effi-
ciency. We also provide an analysis of steady state economies.

Arnold Polanski (2007) introduced a model related to Abreu and Manea 
(2009a, b). The difference lies in the matching technology, as Polanski assumes that 
a maximum number of pairs of linked players are selected to bargain every period. 
Margarida Corominas-Bosch (2004) considered a game in which buyers and sellers 
alternate in making public offers. Each player can accept offers from any of the pro-
posers connected to him. When there are multiple possibilities to clear the market, 
the maximum number of transactions takes place. The efficient matching technolo-
gies of Corominas-Bosch and Polanski are fundamentally centralized. The market 
forces that would organize the matchings to maximize total surplus are not explicitly 
modeled by way of self-interested strategic behavior.

Centralized trading mechanisms may be employed to implement efficient match-
ing outcomes. In the framework of Rachel E. Kranton and Deborah F. Minehart 
(2001), buyers have heterogeneous valuations, and sellers are nonstrategic. Prices 
are determined by the simultaneous ascending-bid auction mechanism introduced 
by Vincent P. Crawford and Elsie Marie Knoer (1981). The unique equilibrium in 
weakly undominated strategies leads to an efficient allocation of the goods.

X. Conclusion

Networks are important in many economic and social interactions. In our setting 
networks represent patterns of trading opportunities. The network structure affects 
the set of feasible agreements, the division of surplus, and the relative bargain-
ing strengths. Previous studies of surplus division in networks mainly considered 
ad hoc allocation rules or cooperative solution concepts. Some papers discussed 
in the literature review analyze noncooperative division of surplus under central-
ized mechanisms. Yet only a few papers have explored the strategic issues that arise 
in bargaining in networks with random matching. The models of noncooperative 
decentralized bargaining in networks of the present paper and Abreu and Manea 
(2009a, b) constitute initial endeavors in that exploration.

The model introduced here is well behaved in that equilibria are essentially unique 
and converge as players become patient. The main result of the paper is the character-
ization of the limit equilibrium payoffs by iterative use of the following findings. Limit 
payoffs are lowest for the players in the largest mutually estranged set that minimizes 
the shortage ratio, and highest for the corresponding partners. In equilibrium, for high 
discount factors, the partners act as an oligopoly for the estranged players. In the limit, 
surplus within the induced oligopoly subnetwork is divided according to the shortage 
ratio. The ideas of mutually estranged sets and minimal shortage ratios, along with 
induced oligopoly subnetworks, provide insights into the relative strengths of the 
positions in a network. The limit equilibrium payoffs deliver an index of bargaining 
power in stationary networks.
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Appendix

LEMMA 5: For all  w 1  ,  w 2  ,  w 3  ,  w  4  ∈ 핉,

 | max( w 1  ,  w 2 ) − max( w 3  ,  w  4 ) | ≤ max(|  w 1  −  w 3  |, |  w 2  −  w  4  |).

PROOF OF LEMMA 5:
Suppose  w 1  = max( w 1  ,  w 2  ,  w 3  ,  w 4 ). Then

 | max( w 1  , w 2 ) − max( w 3  , w  4 ) |  =  w 1  − max( w 3  , w  4 ) 

 ≤  w 1  −  w 3  ≤ max(|  w 1  −  w 3  |, |  w 2  −  w  4  |).

The proof is similar for the cases when  w 2  ,  w 3  , or  w  4  is equal to max( w 1  ,  w 2  ,  w 3  ,  w 4 ).

LEMMA 6: The function  f  δ  : [ 0, 1 ] n  → [ 0, 1 ] n  defined by (2) is a contraction with 
respect to the sup norm on  핉 n .

PROOF OF LEMMA 6:
Recall that the sup norm ∥·∥ on  핉 n  is defined by ∥ z ∥ = ma x  i= 

_
 1, n   

 
   |  z i  |. We argue that

 ∥  f  δ (v) −  f  δ (u) ∥ ≤ δ∥ v − u∥, ∀v, u ∈ [ 0, 1 ] n .

We need to prove that for each i, |  f  i  δ (v) −  f  i  
δ (u) | ≤ δǁ v − u ǁ. By  f  δ ’s definition,

 |  f  i  δ (v) −  f  i  
δ (u)| ≤  (1 −  ∑ 

{ j|ij∈g}
  

 

       
 p ij 

 _ 
2
  )δ|  v i  −  u i  |  

   +  ∑ 
{ j|ij∈g}

  
 

       
 p ij 

 _ 
2
   |   

 
 

 max       (1 − δ v j  , δ v i ) −   
 
 
 

 max       (1 − δ u j  ,δ u i )|

  ≤  (1 −  ∑ 
{ j|ij∈g}

  
 

       
 p ij 

 _ 
2
  )δ|  v i  −  u i  | 

   +  ∑ 
{ j|ij∈g}

  
 

       
 p ij 

 _ 
2
     

 
 
 

 max       (| 1 − δ v j  − (1 − δ u j ) |, | δ v i  − δ u i  |)

  =  (1 −  ∑ 
{ j|ij∈g}

  
 

       
 p ij 

 _ 
2
  )δ|  v i  −  u i  | 

   +  ∑ 
{ j|ij∈g}

  
 

       
 p ij 

 _ 
2
   δ   

 
 
 

 max       (|  v j  −  u j  |, |  v i  −  u i  |)

  ≤  (1 −  ∑ 
{ j|ij∈g}

  
 

       
 p ij 

 _ 
2
  )δ∥ v − u ∥ +  ∑ 

{ j|ij∈g}
  

 

       
 p ij 

 _ 
2
   δ∥ v − u ∥

  = δ∥ v − u ∥,
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where the second inequality follows from Lemma 5, and the others from algebraic 
manipulation and the definition of the sup norm.

PROOF OF PROPOSITION 1:
By definition, ij ∈  g *δ  ⇔ ij ∈ g & max(1 − δ v  j  *δ , δ v  i  *δ ) = 1 − δ v  j  *δ . Since  v *δ  is a 

fixed point of  f  δ ,  v *δ  solves the n × n system of linear equations

  v i  = (1 −  ∑ 
{ j | ij∈ g* δ  }

  
 

      
 p ij 

 _ 
2
   )δ v i  +   ∑ 

{ j | ij∈ g* δ  }
  

 

      
 p ij 

 _ 
2
    (1 − δ v j ), ∀i =  

_
 1, n .

For every δ ∈ (0, 1) and every nonempty subnetwork H of g, consider more gen-
erally the n × n linear system (3). We argue below that the system has a unique 
solution  v δ,H , and the solution belongs to [ 0, 1 ] n . In particular, the system (3) is non-
singular and  v *δ  =  v δ, g  *δ  .

The simplest path to show uniqueness of the solution to (3) is analytical rather 
than linear algebraic, by proving that the function  h δ,H  :  핉 n  →  핉 n  defined by

  h  i  
δ,H (v) = (1 −  ∑ 

{ j | ij∈H}
  

 

     
 p ij 

 _ 
2
   )δ v i  +   ∑ 

{ j | ij∈H}
  

 

     
 p ij 

 _ 
2
   (1 − δ v j ), ∀i =  

_
 1, n 

is a contraction with respect to the sup norm on  핉 n . The proof is omitted as it is 
similar (but simpler, since it does not involve Lemma 5) to that of Lemma 6. The 
unique fixed point belongs to [0, 1 ] n  since  h δ,H  ([0, 1 ] n ) ⊂ [0, 1 ] n .

All entries in the augmented matrix of the linear system (3) are linear functions of 
δ. Then for each i ∈ n the solution  v  i  

δ,H  is given by Cramer’s rule, as the ratio of two 
determinants that are polynomials in δ of degree at most n,

(8)   v  i  
δ,H  =  P  i  

H (δ)/ Q  i  
H (δ).

Note that  Q  i  
H (δ) ≠ 0 for all δ ∈ (0, 1) and all nonempty subnetworks H of g as the 

corresponding system (3) is nonsingular.
Let  

_
 Δ  be the set of δ for which there exist i, j, H with δ( v  i  

δ,H  +  v  j  
δ,H ) = 1. Fix i, j, H. 

The equation δ( v  i  
δ,H  +  v  j  

δ,H ) = 1 is equivalent to

 1 = δ( v  i  
δ,H  +  v  j  

δ,H  ) = δ( P  i  
H (δ)/ Q  i  

H (δ) +  P  j  
H (δ)/ Q  j  

H (δ)).

If the equation above has an infinite number of solutions δ, it follows that

 δ( P  i  
H (δ) Q  j  

H (δ) +  P  j  
H (δ) Q  i  

H (δ)) =  Q  i  
H (δ) Q  j  

H (δ)

is a polynomial identity, i.e., it holds for all δ. In particular, equality needs to hold in 
the two display equations above for δ = 1/3, implying that 1/3( v  i  

1/3, H  +  v  j  
1/3, H  ) = 1. 

Hence  v  i  
1/3, H  +  v  j  

1/3, H  = 3, which is a contradiction with  v 1/3, H  ∈ [ 0, 1 ] n .
Since for every triple (i, j, H ) the equation δ( v  i  

δ,H  +  v  j  
δ,H  ) = 1 has a finite number 

of solutions δ, and the number of such triples is finite, it follows that the set  
_

 Δ  is 
finite. The equality  v *δ  =  v δ, g  *δ   implies that the set of δ for which there exist i, j s.t.  
δ( v  i  *δ  +  v  j  *δ ) = 1 is included in  

_
 Δ .
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PROOF THEOREM 2:
To establish the first part, recall that the proof of Proposition 1 shows that 

the set  
_

 Δ  of δ for which there exist a link ij ∈ g and a subnetwork H of g such  
that δ( v  i  

δ,H  +  v  j  
δ,H ) = 1 is finite. Fix  δ 0  > max  

_
 Δ  ≕  _ δ . Let  g  *  =  g  * δ 0  . We show that  

g  *δ  =  g  *  for all δ >  δ _ .
Fix ij ∈ g. The function 1 − δ( v  i  

δ, g  *   +  v  j  
δ, g  *  ) is continuous in δ for δ ∈ (0, 1) as 

it is a rational function (ratio of two polynomials) by (8),31 and it has no roots δ 
outside   

_
 Δ . Then the sign  ε  ij  

δ   of 1 − δ( v  i  
δ, g  *   +  v   j   

δ, g  *  ) is strict and constant for all δ >  
_ δ . In particular,  ε  ij  

δ   =  ε  ij  
 δ 0   for δ >  _ δ .

Since  δ 0  >  _ δ  and  g  *  =  g  * δ 0  , the following conditions hold (1)  ε  ij  
 δ 0   = 1 ⇔ ij ∈   g  *  

and (2)  ε  ij  
 δ 0   = −1 ⇔ ij ∉  g  * . For all δ >  _ δ  we have  ε  ij  

δ   =  ε  ij  
 δ 0  ; hence, the following 

conditions must also be true: (1)  ε  ij  
δ   = 1 ⇔ ij ∈  g  *  and (2)  ε  ij  

δ   = −1 ⇔ ij ∉  g  * . For 
δ >  _ δ  , it follows that  v δ, g  *   is a fixed point of  f  δ  ( defined by (2)), hence  v *δ  =  v δ, g  *   
and  g *δ  =  g  * .

To establish the second part, fix i ∈ n. From the first part,  v  i  *δ  =  P  i  
 g  *  (δ)/ Q  i  

 g  *  (δ) for 
δ >  _ δ . Rewrite  P  i  

 g  *  / Q  i  
 g  *   =    

_
 P   i   g  *   /    

_
 Q   i   g  *  , with    

_
 P   i   g  *   and    

_
 Q   i   g  *   relatively prime polynomi-

als. Since  v  i  *δ  ∈ [ 0, 1] for all δ ∈ ( _ δ , 1), it must be that   
_

 Q   i   g  *  (1) ≠ 0. For, if   
_

 Q   i   g  *  (1) =  0 
then    

_
 P   i   g  *  (1) ≠ 0 (as   

_
 P   i   g  *   and   

_
 Q   i   g  *   are relatively prime) and |   

_
 P   i   g  *  (δ)/  

_
 Q   i   g  *  (δ) | diverges 

to infinity as δ → 1. Consequently,   
_
 P   i   g  *  (δ)/  

_
 Q   i   g  *  (δ) converges to   

_
 P   i   g  *  (1)/  

_
 Q   i   g  *  (1) as δ 

tends to 1. Therefore,  v  i  *δ  =   
_
 P   i   g  *  (δ)/  

_
 Q   i   g  *  (δ) has a finite limit,  v  i  *  ≔   

_
 P   i   g  *  (1)/  

_
 Q   i   g  *  (1), 

at δ = 1.
To show that the rate of convergence of  v *δ  to  v *  is o(1 − δ), write

  v  i  *δ  −  v  i  *  =   
  
_
 P   i   g  *  (δ) _ 

  
_

 Q   i   g  *  (δ)
   −   

  
_
 P   i   g  *  (1) _ 

  
_

 Q   i   g  *  (1)
   =   

  
_

 Q   i   g  *  (1)   
_
 P   i   g  *  (δ) −   

_
 P   i   g  *  (1)   

_
 Q   i   g  *  (δ)   ___   

  
_

 Q   i   g  *  (1)   
_

 Q   i   g  *  (δ)
   .

The latter rational function has a vanishing numerator and a nonvanishing denomi-
nator at δ = 1; hence, it can be rewritten as (1 − δ) R  i  

 g  *  (δ), where  R  i  
 g  *   is a rational 

function with a finite limit at δ = 1.

PROOF OF PROPOSITION 2:
Let ij ∈ g. If ij ∈ g\ g  * , then for all δ >  δ _  ,

(9) δ( v  i  *δ  +  v  j  *δ ) > 1.

If ij ∈  g  * , then for all δ >  _ δ  ,

(10)  v  i  *δ  = (1 −  ∑ 
{k | ik∈ g * }

  
 

     
 p ik  _ 
2
   )δ v  i  *δ  +  ∑ 

{k | ik∈ g * }
  

 

     
 p ik  _ 
2
    (1 − δ v  k  *δ ) 

 ≥ (1 −    
 p ij 

 _ 
2
  )δ v  i  *δ  +   

 p ij 
 _ 

2
   (1 − δ v  j  *δ ),

since 1 − δ v  k  *δ  ≥ δ v  i  *δ  for all k ≠ j such that ik ∈  g  * . Taking the limit as δ goes to 1 
in either (9) or (10) we obtain that  v  i  *  +  v  j  *  ≥ 1.

31 For all δ ∈ (0, 1),  Q  i  
 g  *  (δ) ≠ 0 because the system (3) is nonsingular.
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In conclusion,  v  i  *  +  v  j  *  ≥ 1, ∀ij ∈ g. The other claims follow similarly.

PROOF OF LEMMA 1:
Fix δ >  _ δ . If i had no link in  g  * , then  v  i  *δ  = 0. By footnote 5, there exists j such 

that ij ∈ g. Then δ( v  i  *δ  +  v  j  *δ ) < 1, which means that ij ∈  g  * , a contradiction.

PROOF OF THEOREM 3:
Let M be a mutually estranged set with partner set L. Fix δ >  _ δ  , with  δ _  specified 

as in Theorem 2. Then in every equilibrium of  Γ δ , a pair of players connected in g 
reach agreement when matched to bargain if and only if they are connected in  g  * .

By Lemma 2, for all i in M,

(11)   v  i  *δ  =   1 _ 
1 − δ     ∑ 

{ j | ij∈g}
  

 

     
 p ij 

 _ 
2
    max(1 − δ v  i  *δ  − δ v  j  *δ , 0)

 =   1 _ 
1 − δ      ∑ 

{ j | ij∈g, j∈L}
  

 

     
 p ij 

 _ 
2
    max(1 − δ v  i  *δ  − δ v  j  *δ , 0),

since i has  g  *  links only to players in L, so max(1 − δ v  i  *δ  − δ v  j  *δ , 0) = 0 if ij ∈ g, 
j ∉ L.

By Lemma 2, for all j in L,

(12)  v  j  *δ  =   1 _ 
1 − δ 

     ∑ 
{ i | ij∈g}

  
 

     
 p ij 

 _ 
2
    max(1 − δ v  i  *δ  − δ v  j  *δ , 0)

 ≥   1 _ 
1 − δ      ∑ 

{ i | ij∈g, i∈M}
  

 

     
 p ij 

 _ 
2
    max(1 − δ v  i  *δ  − δ v  j  *δ , 0).

Adding up the equalities (11) across all i ∈ M and the inequalities (12) across all  
j ∈ L we obtain

  ∑ 
i∈M

  
 

    v  i  *δ   =   1 _ 
1 − δ       ∑ 

{(i, j) | ij∈g, i∈M, j∈L}
  

 

     
 p ij 

 _ 
2
    max(1 − δ v  i  *δ  − δ v  j  *δ , 0)

   ∑ 
j∈L

   
 

    v  j  *δ   ≥    1 _ 
1 − δ 

       ∑ 
{(i, j) | ij∈g, i∈M, j∈L}

  
 

     
 p ij 

 _ 
2
    max(1 − δ v  i  *δ  − δ v  j  *δ , 0).

Therefore,

  ∑ 
j∈L

   
 

    v  j  *δ   ≥  ∑ 
i∈M

  
 

    v  i  *δ  ,

which after taking the limit δ → 1 becomes

  ∑ 
j∈L

   
 

    v  j  *   ≥  ∑ 
i∈M

  
 

    v  i  *   .
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We can manipulate the latter inequality to obtain that

 | L |  max   
j∈L

    v  j  *  ≥ | M |  min   
i∈M

    v  i  * .

Player  _ i  ∈ arg  min i∈M   v  i  *  is connected in  g  *  to a player   ̃  j   ∈ L (Lemma 1); hence, by 
Proposition 2,  v   _ i   

*  +  v    ̃  j    *  = 1. Thus  min i∈M   v  i  *  = 1 −  v    ̃  j    *  ≥ 1 −  max j∈L   v  j  * .
Also, any  

_
 j  ∈ arg  max j∈L   v  j  *  is connected in  g  *  to a player   ̃  i   ∈ M, and  v    ̃  i    *  +  v   _ j   *  = 1 

by Proposition 2. Hence,  max j∈L   v  j  *  = 1 −  v    ̃  i    *  ≤ 1 −  min i∈M   v  i  * .
We proved that  min i∈M    v  i  * = 1 −  max j∈L   v  j  * . It follows that

 | L |  max   
j∈L

    v  j  *  ≥ | M | (1 −  max   
j∈L

    v  j  * ),

which is equivalent to

  max   
j∈L

    v  j  *  ≥   
| M | _  | M | + | L |   .

Moreover,

  min   
i∈M

    v  i  *  = 1 −  max   
j∈L

    v  j  *  ≤1 −   
| M | _  | M | + | L |   =   

| L | _  | M | + | L |   .

PROOF OF LEMMA 3:
Suppose that r ≔  min  M∈(H)  |  L H (M) |/| M | < 1, and let M′, M″ be two H-independent 

sets achieving the minimum. Decompose the set M′ as the union of the sets 
 A 2  = M′ ∩ M″,  A 1  = (M′\M″) \  L H  (M″) (the set of players in M'\M″ who do 
not have any H links to M″), and  A 4  = (M′\M″) ∩  L H  (M″) (the set of players in 
M'\M″ who have H links to M″). Similarly, decompose the set M″ as the union of 
 A 2  ,   A 3  = (M″\M′ )\ L H  (M′ ), and  A  5  = (M″\M′ ) ∩  L H  (M′ ). Let  B 2  =  L H ( A 2 ),  B 1  = 
 L H ( A 1 )\ B 2  ,  B 3  =  L H ( A 3 )\ B 2 . Denote |  A i  | =  a i  , |  B j  | =  b j  for i =  

_
 1, 5 , j =  

_
 1, 3 .

Since M″ is H-independent, there are no H links between  A 5  and  A 2 . Also, there 
are no H links between  A  5  and  A 1  because  A 1  ∩  L H (M″) = ∅. Then, as  L H (M′ ) ⊃  
A  5  , it must be that  L H ( A 4 ) ⊃  A  5 . Similarly,  L H ( A 5 ) ⊃  A 4 . Therefore,32

  L H ( A 1  ⋃  A 2  ⋃  A 3 ) =  B 1  ⋃  B 2  ⋃  B 3 

  L H (M′ ) =  L H ( A 1  ⋃  A 2  ⋃  A 4 ) ⊃  B 1  ⋃  B 2  ⋃  A  5 

  L H (M″) =  L H ( A 2  ⋃  A 3  ⋃  A  5 ) ⊃  B 2  ⋃  B 3  ⋃  A 4 

  L H ( A 2 ) =  B 2 .

32 The middle two expressions can be strict inclusions as players in  A 4  ( A  5 ) may have H links to players outside  
B 1  ⋃  B 2  ⋃  A  5  ( B 2  ∪  B 3  ∪  A 4 ).
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Since there are no H links between  A 1  ⋃  A 2  and M″, it follows that ( B 1  ⋃  B 2 ) ∩ 
 A  5  ⊂ ( B 1  ⋃  B 2 ) ∩ M″ = ∅. Analogously, ( B 2  ⋃  B 3 ) ∩  A 4  = ∅. By definition,  B 1  ∩  
B 2  = ∅ and  B 2  ∩  B 3  = ∅. It follows that the triples ( B 1  ,  B 2  ,  A 5 ) and ( B 2  ,  B 3  ,  A 4 ) consist 
of pairwise disjoint sets; hence, |  B 1  ⋃  B 2  ⋃  A  5  | =  b 1  +  b 2  +  a 5  and |  B 2  ⋃  B 3  ⋃  A 4  | = 
 b 2  +  b 3  +  a 4 . The intersection of  B 1  and  B 3  may be nonempty; hence, |  B 1  ⋃  B 2  ⋃  B 3  | ≤ 
 b 1  +  b 2  +  b 3  .

The definitions of r, M′, M″, and the arguments above imply33

(13)   
 b 1  +  b 2  +  b 3   __   a 1  +  a 2  +  a 3 

   ≥   
|  L H ( A 1  ⋃  A 2  ⋃  A 3 ) |  __  | A 1  ⋃  A 2  ⋃  A 3  |

   ≥ r

(14) r =   
|  L H (M′ ) | _ | M′ |   ≥   

 b 1  +  b 2  +  a 5   __   a 1  +  a 2  +  a 4 
  

(15) r =   
|  L H (M″) | _ | M″ |   ≥   

 b 2  +  b 3  +  a 4   __   a 2  +  a 3  +  a 5 
  

(16)   
 b 2  _  a 2    =   

 | L H ( A 2 ) | _ |  A 2  |
   ≥ r,

which can be rewritten as

(17)  b 1  +  b 2  +  b 3  ≥  r a 1  + r a 2  + r a 3 

(18) r a 1  + r a 2  + r a 4  ≥  b 1  +  b 2  +  a 5 

(19) r a 2  + r a 3  + r a 5  ≥  b 2  +   b 3  +  a 4 

(20)  b 2  ≥ r a 2  .

Adding up all the inequalities above and canceling terms we obtain that

(21) (r − 1)( a 4  +  a 5 ) ≥ 0.

Since r < 1, it follows that  a 4  +  a 5  = 0; hence, there are no H links between M′ 
and M″, so the set M′ ⋃ M″ is H-independent. Moreover,  A 4  =  A  5  = ∅, and thus 
M′ ⋃ M″ =  A 1  ⋃  A 2  ⋃  A 3 .

33 The case  a 1  +  a 2  +  a 3  = 0 is not possible, as it would lead to  L H (M′ ) ⊃ M″ and  L H (M″) ⊃ M′, which can hold 
simultaneously only if r ≥ 1. If  a 2  = 0, the bottom inequality becomes irrelevant for the proof.
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As the sum of all weak inequalities (17)–(20) leads to an equality, it follows that 
(13)–(20) hold with equality. In particular,

   
 b 1  +  b 2  +  b 3   __   a 1  +  a 2  +  a 3 

   =   
|  L H ( A 1  ⋃  A 2  ⋃  A 3 ) |  __  |  A 1  ⋃  A 2  ⋃  A 3  |

   = r.

Therefore,

   
|  L H (M′ ∪ M″) |  __  | M′ ∪ M″ |   = r,

which finishes the proof.

PROOF OF PROPOSITION 3:
It is sufficient to show that ( r  s  ) s  is strictly increasing. We proceed by contradiction. 

Suppose that  r  s  ≤  r s−1 . Then it must be that 1 < s <  
_
 s .

By Lemma 4,  L  g s−1  ( M s−1  ∪  M  s ) =  L s−1  ∪  L s  and  M s−1  ⋃  M  s  is a g-independent 
set. Since

   
|  L s−1  | _ |  M s−1  |

   =  r s−1  and   
|  L s  | _ |  M  s  |

   =  r  s  ≤  r s−1  ,

it follows that

   
|  L  g s−1  ( M s−1  ⋃  M  s )|  __  |  M s−1  ⋃  M  s  |

   =   
|  L s−1  | + |  L s  |  __  |  M s−1  | + |  M  s  |

   ≤  r s−1  .

Therefore,

  M s−1  ⋃  M  s  ∈   arg min      
M⊂ n s−1  , M∈(g)

     |  L  g s−1  (M) | _ | M |   ,

a contradiction with  M s−1  being the union of all the minimizers of the expression 
above.

PROOF OF THEOREM 4, CASE s =  
_
 s :

This case is relevant only when  n  _ s   ≠ 0, which is assumed in the claims below. 
Note that  r   _ s   ≥ 1.

CLAIM 4.5:  v  k  *  ≥ 1/2, ∀k ∈  n  _ s  

Again, let   _ x    _ s   =  min  i∈ n  _ s     v  i  *  ,   _ M    _ s   = arg  min i∈ n  _ s     v  i  *  and   L _   _ s   =  L  g   _ s   (  M _    _ s  ). We show 
that   _ x    _ s   ≥ 1/2 by contradiction. Suppose that   _ x    _ s   < 1/2.

By arguments parallel to those in Claim 4.2, under the assumption that   _ x    _ s   < 1/2,  
L  g  *  (  L _    _ s  ) ⊂   M _    _ s   and   _ L    _ s   is  g  * -independent. Theorem 3 implies that

   _ x    _ s   =   max    
i∈  L  g  *  (  _ L    _ s  )

   v  i  *  ≥   
|   _ L    _ s   | _  |   _ M    _ s   | + |   _ L    _ s   |

   .
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Since   x _    _ s   < 1/2 and   _ L    _ s   =  L  g  _ s   (  _ M    _ s  ), we obtain that

 1 >   
|  L  g   _ s   (  _ M    _ s  ) | _ |   _ M    _ s   |

   ,

which is a contradiction with  r   _ s   ≥ 1.

CLAIM 4.6:  v  k  *  ≤ 1/2, ∀k ∈  n   _ s  

Fix k ∈  n  _ s  . By Claim 4.5,  v  k  *  ≥ 1/2. One consequence of Lemma 4 is that k has 
no g links to players in  M 1  ⋃  M 2  ⋃ … ⋃  M  _ s −1  . By Proposition 2, as  v  k  *  ≥ 1/2, there 
are no  g  *  links from k to players j ∈  L 1  ⋃  L  2  ⋃ … ⋃  L  _ s −1  , since for these players  
v  j  *  ≥ 1 −  x  _ s −1  > 1/2. Therefore, k may only have  g  *  links to players in  n  _ s  . But 
Claim 4.5 showed that the limit equilibrium payoff of every player in  n  _ s   is at least 
1/2. Then Proposition 2 and Lemma 1 imply that  v  k  *  ≤ 1/2.

Claims 4.5 and 4.6 show that  v  k  *  = 1/2 for all k ∈  n  _ s   .

PROOF OF THEOREM 6:
Let g be a buyer-seller network. By Proposition  3 BS  and Theorem  4 BS , g is non-

discriminatory if and only if  B 1  = B,  S 1  = S,  r 1  = 1/β if and only if |  L g (M) |/| M | ≥  
1/β for all M ⊂ B. Let H be the graph obtained from g by replacing each vertex cor-
responding to a seller with β identical copies (each copy is connected to all buyers 
whom the corresponding seller was connected to). Note that |  L g (M) |/| M | ≥ 1/β, 
∀M ⊂ B is equivalent to |  L H (M) |/| M | ≥ 1, ∀M ⊂ B. Since the numbers of buyers 
and sellers in H are equal, P. Hall (1935)’s theorem implies that the latter condi-
tion is equivalent to H having a perfect matching. By construction, H has a perfect 
matching if and only if g has an edge cover that is a disjoint union of β-buyer-seller 
clusters, which completes the proof.
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