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Abstract

Consider a two-person intertemporal bargaining problem in which players
choose actions and o¤ers each period and collect payo¤s (as function of
that period�s actions) while bargaining proceeds. This can alternatively be
viewed as an in�nitely-repeated game wherein players can o¤er one another
enforceable contracts that govern play for the rest of the game. Theory is
silent regarding how the surplus is likely to be split, because a folk theorem
applies. Perturbing such a game with a rich set of behavioral types for each
player yields a speci�c asymptotic prediction for how the surplus will be
divided, as the perturbation probabilities approach zero. Behavioral types
may follow nonstationary strategies and respond to the opponent�s play. In
equilibrium, rational players initally choose a behavioral type to imitate,
and a war of attrition ensues. How much should a player try to get, and
how should she behave while waiting for the resolution of bargaining? In
both respects she should build her strategy around the advice given by
the �Nash bargaining with threats� (NBWT) theory developed for two-
stage games. In any perfect Bayesian equilibrium, she can guarantee herself
virtually her NBWT payo¤by imitating a behavioral type with the following
simple strategy: in every period, ask for (and accept nothing less than) that
player�s NBWT share and, while waiting for the other side to concede, take
the action Nash recommends as a threat in his two-stage game. The results
suggest that there are forces at work in some dynamic games that favor
certain payo¤s over all others. This is in stark contrast to the classic folk
theorems, to the further folk theorems established for repeated games with
two-sided reputational perturbations, and to the permissive results obtained
in the literature on bargaining with payo¤s-as-you-go.



1 Introduction

What kind of reputation should a bargainer try to establish? Should she
claim that her demand will never change, or that she will become more ag-
gressive over time? Should improvements in her opponent�s o¤er be punished
as signs of weakness or should she promise to reward them with a softening
of her own position? Is it useful to announce deadlines after which o¤ers
will be withdrawn? This paper addresses these questions in an essentially
full-information two-person bargaining model in which there is a small possi-
bility that each player might be one of a rich variety of behavioral types. For
example, to use the terminology of Myerson (1991), rather than optimizing
as a fully rational player would, the player might use an �r-insistent strat-
egy� that always demands the amount r and never accepts anything less.
But the player might instead employ a complex history-dependent strategy,
a possibility not considered by previous papers in the behavioral bargaining
literature.1

Now think about broader bargaining problems in which the players in-
teract in payo¤-signi�cant ways before an agreement is reached. Such con-
siderations were introduced by Fernandez and Glazer (1991) and Haller and
Holden (1990).2 For example, before two countries sign a treaty on trade
or pollution abatement, their unilateral policies a¤ect one another�s payo¤s.
Here, possibilities for strategic posturing are even more interesting. Does
each party maximize its immediate payo¤ before agreement, or is some de-
gree of cooperation possible during negotiations? As time passes without
agreement, do players treat one another more harshly? Is a player�s behavior
related to her demand, and to the opponent�s demand?

Since our framework will generalize the model of Abreu and Gul (2000)

1Adopting the idea of introducing behavioral perturbations from Kreps, Milgrom,
Roberts and Wilson (1982), Myerson (1991) studied a two-person bargaining game with
one-sided uncertainty, one-sided o¤ers and a single type. Abreu and Gul (2000) performed
a two-sided analysis with multiple types that we will summarize below, prompting Kambe
(1999) to do a limit analysis of a related model as the probabilities of perturbation proba-
bilities approach zero. Working with a model with a single behavioral type on either side,
Kornhauser, Rubinstein and Wolinsky (1989) take perturbation probabilities to zero to
select one equilibrium in a war of attrition game. Investigating the role of outside options
in a model which builds upon Abreu and Gul(2000), Compte and Jehiel (2002) also take
perturbation probabilities to zero.

2These papers show that even in an alternating-o¤ers bargaining game with symmetric
information, it is possible to have a multitude of subgame perfect equilibria, including
many with substantial delay to agreement. This class of models is now known as �bar-
gaining with payo¤s-as-you-go�, and has been studied in much greater generality by Busch
and Wen (1995).
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in two ways, we pause now to summarize their work. An exogenous protocol
speci�es the times at which each of two impatient bargainers can make o¤ers
about how a �xed surplus will be divided. When an o¤er is made, the other
party can accept (and the proposed division is implemented) or reject (and
the bargaining continues). Payo¤s of rational players are common knowl-
edge, but for each player i, there are exogenous initial probabilities �i(k) > 0
that player i is a k-insistent type who will never settle for any amount less
than k. At the start of play normal players mimic behavioral types. Fol-
lowing the initial choice of types, in the limit as one looks at bargaining
protocols allowing more and more frequent o¤ers, a war of attrition ensues
in which players either simply stick with their initial demands or concede to
their opponent�s. Equilibrium outcomes are essentially unique and do not
depend on the �ne details of the protocol. The way the surplus is divided,
and the delay to agreement, depend on the set of behavioral types available
for each player to imitate and their initial probabilities, and the discount
factors of the players. If initial probabilities that players are behavioral are
su¢ ciently low, there is usually almost no delay to agreement. In the limit
as the �i(k)�s approach zero, each player�s expected payo¤ coincides with
the payo¤ she would get if the Nash bargaining solution (Nash (1950)) were
used to divide the surplus (with disagreement point zero). Kambe (1999)
was the �rst to obtain this kind of Nash bargaining result, in his modi�cation
of the Abreu and Gul model.

Our paper considers two impatient players who are bargaining over the
surplus generated by the �component game�G that they play in each period.
After any history of play and of o¤ers that have been made, the players
have the option of entering into an enforceable Pareto-e¢ cient agreement
governing play of both parties from that time on. There is some chance that
either bargainer might be a behavioral player drawn from a rich �nite set of
behavioral types. Each of those types plays a particular dynamic strategy
in the bargaining game. Its actions and demands might vary over time, and
might respond in complicated ways to what the other side o¤ers and does.
Both the complexity of behaviors allowed in the sets of types and the fact
that a game is played while bargaining proceeds make this a much more
complicated model than that of Abreu and Gul.

We obtain strong characterizations of equilibria in the limit analysis as
the probabilities of behavioral types approach zero. In particular, the �Nash
bargaining with threats�concept (Nash (1953)) describes the equilibrium be-
havior and expected payo¤s in a manner analogous to how the simpler Nash
bargaining solution describes the asymptotic equilibria in Kambe (1999) and
Abreu and Gul (2000). Thus, perturbing the full-information, play-as-you-
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bargain game with the slight possibility of behavioral types replaces a vast
multiplicity of equilibria with a strong prediction about outcomes. This
strong prediction is more striking when one views the model as a repeated
game in which players can sign binding contracts.3 When those contracts are
unavailable, the problem of multiple sustainable expectations about future
play is so powerful that folk theorems persist even in the face of reputational
perturbations (see Chan (2000) and the discussion below). The contractual
option provides enough stability to allow reputational perturbations to re-
solve the issue of how surplus is divided.

Section 2 introduces the model. Section 3 establishes the result for the
special case of stationary postures. In Section 4 we provide the general
characterization result. Section 5 establishes existence of equilibrium and
Section 6 concludes.

Further Related Literature
The study of �reputation e¤ects� in repeated games originates in three

celebrated papers: Kreps, Milgrom, Roberts and Wilson (1982), Kreps and
Wilson (1982) and Milgrom and Roberts (1982). A decisive paper by Fu-
denberg and Levine (1989) showed that a su¢ ciently patient long-run player
facing a series of uninformed short-run players can achieve approximately
his Stackelberg payo¤ or better, for any prior distribution over types he
might be that puts positive weight on his Stackelberg type. Analogously,
we assume a positive probability that each of the players may be the �Nash
bargaining with threats�type.

When both players are in�nitely lived, even if player 1 is much more pa-
tient than 2, the lower bounds available for 1�s perfect equilibrium payo¤s are
much weaker than those provided by Fudenberg and Levine (see especially
Schmidt (1993) and Cripps, Schmidt and Thomas (1996)). One di¢ culty for
an informed player 1 is his lack of �transparency�: player 2 cannot tell what
type she is facing, and therefore may be unwilling to risk playing a myopic
best response to the informed player�s Stackelberg action, for fear that he is
a vindictive type who will then switch to an action that minimaxes her, for
example.4 Two papers get around this problem and obtain strong reputa-

3The ability to make o¤ers also a¤ords the players a communication channel. Therefore,
this paper is not a contribution to the literature started by Aumann and Sorin (1989) on
achieving coordination without communication.

4Another di¢ culty is that player 2 may avoid her �Stackelberg follower� action, for
fear that playing it would cause 1 to reveal rationality, and in the ensuing full information
subgame, they might play an equilibrium giving 2 an average discounted payo¤ that is less
than her Stackelberg follower payo¤. In our setting, the availability of binding contracts
resolves this dilemma (see the closing paragraph of this section).
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tion e¤ects by considering trembling-hand perfect equilibria (Aoyagi (1996))
or studying imperfect monitoring with a full-support assumption (Celentani,
Fudenberg, Levine and Pesendorfer (1996)). We avoid these complications
by assuming that whereas rational players may pretend to be behavioral, a
behavioral type announces that type and does not pretend to be some other
behavioral type. Thus rational player i always knows that j 6= i is either
rational, or the particular behavioral type corresponding to the posture that
j originally declared.

When players are equally patient, reputation e¤ects are much more likely
to be overwhelmed by the multiplicity of possible expectations regarding
continuation payo¤s. Chan (2000) proves a folk theorem for repeated games
with one informed and one uninformed player. In two exceptional cases,
covered respectively by Chan (2000) and Cripps, Dekel and Pesendorfer
(2005), reputational e¤ects prevail. The case covered by Chan generalizes
examples of Celentani et. al. (1996) and Cripps and Thomas (1997).

In our play-as-you-bargain model with enforceable contracts, some of the
multiplicity of rational expectations one sees in repeated games is absent
(although without reputational types, we show that a folk theorem for the
e¢ ciency frontier still applies).5 When i o¤ers j a contract, j knows exactly
what will happen if she accepts it. We demonstrate that this is enough to
produce essential determinacy of the division of surplus in the game. In
an in�nitely repeated game without contracts, ihas no way of guaranteeing
j a particular share of the future surplus. In a reputationally-perturbed
version of that in�nitely repeated game, if i reveals rationality and j does
the same, they are in a subgame identical to the unperturbed game, and
subject to the same vast multiplicity of equilibria. Abreu and Pearce (2002)
give exogenous restrictions on continuation beliefs that su¢ ce to pin down
a particular division, and again it coincides with the �Nash bargaining with
threats� allocations. We hope in future work to be able to dispense with
those exogenous restrictions in the standard repeated game setting without
contracts, by working with the renegotiation-proof equilibria proposed by
Pearce (1989).

5The alternating o¤ers protocol explored by Busch and Wen (1995) is less conducive
to equilibrium multiplicity and a folk theorem does not apply. Nonetheless they give
conditions under which multiple equilibria arise.
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2 The Model

In each round n = 0; 1; 2; : : : ;the actions chosen in a �nite game G =
(Si; Ui)

2
i=1 determine the �ow payo¤s of players 1 and 2. Thus, when

players use actions (s1; s2) 2 (S1; S2), player i�s payo¤ in that round is
Ui(s1; s2)

R 1
0 e

�rtdt where r > 0 is the common rate of interest. The overall
payo¤ from an in�nite stream is the present discounted value of the �ow
payo¤s. If at any time players agree on a payo¤ pair in �, the convex hull of
the set of feasible payo¤s of G, that �ow payo¤ is realized for the remainder
of the round and in all subsequent rounds: players sign an enforceable con-
tract and there are no further strategic decisions. At the beginning of any
round before agreement is reached, each player chooses a demand and ac-
tion pair (ui;mi) 2 (�i;Mi); where �i is the set of player i�s feasible payo¤s
(the ith coordinate projection of �) and Mi is the set of mixed strategies in
G. The players choose these pairs in some pre-speci�ed order, which might
be di¤erent in di¤erent periods (player 1 choosing �rst in odd periods, for
example). Changing this exogenous ordering does not a¤ect our results. We
do not analyze the case in which the (demand, action) pairs are changed
simultaneously.

While actions and demands can be changed only at integer times, one
player�s demands can be agreed to at any time t � 0 by the other player.6
A demand ui by player i can be interpreted as an o¤er to j 6= i of the best
payo¤ for j consistent with i receiving ui, which we denote by �j(ui).

7 Thus,
an o¤er made at integer time n is valid (�stands�) until it is replaced by
another o¤er (possibly the same) at n+1; a standing o¤er may be accepted
at any time. Bargaining terminates at the �rst instant that o¤ers made are
mutually compatible or that a standing o¤er is accepted. An accepted o¤er
is implemented instantaneously. If two standing o¤ers are accepted at the
same instant, the �nal agreement is taken to be either of the standing o¤ers
with equal probability. A similar tie-breaking rule applies when players make
mutually compatible o¤ers. Until agreement is reached, a player�s choice of
a (demand, action) pair at any n > 1 can depend on the entire past history
of (demand, action) pairs.

Each player is either �normal�(an optimizer) or with initial probability
zi;�behavioral�. A behavioral player i may be one of a �nite set of types

6This mixture of discrete and continuous time simpli�es the analysis of the �war of
attrition�that arises, without causing problems with the de�nition of strategies and out-
comes. We note that a more detailed variant of this hybrid model of time is introduced
and used in Section 4.

7Since the stage game G is �nite, this best payo¤ is clearly well-de�ned.
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i 2 �i: Each type is a strategy in the dynamic bargaining game. At the
start of play a behavioral player i announces (simultaneously with the other
player) her true type 
i 2 �i: We interpret this as an announcement of a
bargaining posture. Let �� be the set of strictly e¢ cient and individually
rational payo¤s in the convex hull of feasible payo¤s of the stage game, G and
��i be the i

th coordinate projection of ��: Each 
i 2 �i is a machine de�ned
by a �nite set of states Qi, an initial state q0i 2 Qi, an output function
�i : Qi ! (��i �Mi), and a transition function  i : Qi � ��j �Mj ! Qi.8

Denote by �i(
i) the (strictly positive) probability of posture/machine 
i;
conditional on player i being behavioral. The set of postures and these
conditional probabilities are held �xed throughout.

A normal player i also announces a machine in �i as play begins, but
of course she need not subsequently conform to her announcement. More
generally, we could allow her to announce something outside �i or to keep
quiet altogether. (This would not change our characterization results. See
footnote 17 in section 4. Nor would it a¤ect the existence result in Section
5, but it would necessitate some clumsy additions to the proof.) A normal
player can condition (ui(n);mi(n)), her choice of demand and mixed action
in the nth round, on both players� initial announcements (
1; 
2) and on
(ul(k);ml(k)); l = 1; 2 and k = 1; :::(n � 1) (the history of play in the pre-
ceding rounds) and on (uj(n);mj(n)) if j moves before i in period n: Notice
this assumes a player�s choice of mixed action is observable. One can inter-
pret this to mean that a player has access to randomizing devices that can be
veri�ed ex post, and behavioral types use these devices when randomizing.9

A rational player imitating a behavioral type 
i will use these devices also,
but in addition may (typically will, in equilibrium) conduct further, nonob-
servable randomization regarding whether or not to continue imitating 
i.
Players do not condition on the outcomes of the observable randomizing
devices; allowing this would be akin to adding public randomization, which
would have no impact on the result.

Interpreting the interval over which players can concede as the limit of
a sequence of increasingly �ne discrete divisions of time, we assume that if
players adopt a pair of mixed actions (m1;m2) in the nth round, as round
n progresses they experience the �ow payo¤s (U1(m1;m2)); (U2(m1;m2));

8The current state determines i0s behavior in round n; and hence there would be no
gain in generality if the machine conditioned behavior in round (n+1) upon its own past
behavior.

9We invoke this assumption to simplify the analysis of situations in which a player�s
Nash threat involves randomization. There is no need for it in the large class of games in
which both players�Nash threats are pure actions.
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rather than payo¤s associated with the realization of a particular pure strat-
egy pair. It is as if randomization were done not once at the beginning of
the round, but over and over again.

For all z = (z1; z2) 2 (0; 1)2, denote by G (z) the dynamic bargaining
game described above, with initial probabilities zi, i = 1; 2 that player i is
behavioral. Recall that conditional probabilities that i is a certain type,
given that she is behavioral, are held �xed.

3 Stationary Postures

This section studies the case where each behavioral type 
i 2 Mi; i =
1; 2; is stationary, that is, 
i demands the same amount in any period,
regardless of the history of play (and never accepts less), and plays the same
action in every period until settlement is reached. These are the natural
generalizations of the behavioral types of Myerson (1991) and Abreu and
Gul (2000), to settings in which bargainers make payo¤-relevant strategic
choices in each period before reaching agreement. Whereas Abreu and Gul
(2000) do a stationary perturbation of a bargaining game similar to that
of Rubinstein (1982), with many behavioral types on each side, this section
does the same sort of perturbation of the more complex bargaining problems
of the kind introduced by Fernandez and Glazer (1991) and Haller and
Holden (1990) and generalized by Busch and Wen (1995).

The equilibrium existence result of Section 5 applies immediately to this
setting; we do not duplicate it here. At the heart of our characterization
of equilibrium payo¤s is the idea of �Nash bargaining with threats� (Nash
(1953)), which is summarized below:

Recall the Nash (1950) bargaining solution for a convex non-empty bar-
gaining set � � R2, relative to a disagreement point d 2 R2: The Nash
bargaining solution, denoted uN (d), is the unique solution to the maximiza-
tion problem

max
u2�

(u1 � d1)(u2 � d2)

when there exists u 2 � s:t: u� d: If there does not, uN (d) is de�ned to be
the strongly e¢ cient point u 2 � which satis�es u � d.

In Nash (1953) the above solution is derived as the unique limit of solu-
tions to the non-cooperative Nash demand game when � is perturbed slightly
and the perturbations go to zero. Nash�s paper also endogenizes the choice
of threats, and consequently disagreement point, and this second contribu-
tion plays a central role here. Starting with a game G, the bargaining set �
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is taken to be the convex hull of feasible payo¤s of G. The threat point d is
determined as the non-cooperative (Nash) equilibrium of the following two
�stage�game:

Stage 1 The two players independently choose (possibly mixed) threats
mi, i = 1; 2. The expected payo¤ from (m1;m2) is the disagreement
payo¤, denoted d(m1;m2).

Stage 2 The player�s �nal payo¤s are given by the Nash bargaining solution
relative to the disagreement point determined in Stage 1.

Thus players choose threats to maximize their Stage 2 payo¤s given the
threats chosen by their opponent. Note that the set of player i�s pure strate-
gies in the threat game are her set of mixed strategies in the game G. Since
the Nash bargaining solution yields a strongly e¢ cient feasible payo¤ as a
function of the threat point, the Nash threat game is strictly competitive
in the space of pure strategies (of the threat game). Nash shows that the
threat game has an equilibrium in pure strategies (i.e., players do not mix
over mixed strategy threats), and consequently that all equilibria of the
threat game are equivalent and interchangeable. In particular the threat
game has a unique equilibrium payo¤ (u�1; u

�
2) where u

� = uN (d(m�
1;m

�
2))

and m�
i is an equilibrium threat for player i. To avoid distracting qual-

i�cations we assume henceforth that the stage game is non-degenerate in
the sense that u� > d(m�

1;m
�
2). Our solution essentially yields (u

�
1; u

�
2) as

the only equilibrium payo¤ which survives in the limit as the probability of
behavioral types goes to zero.

We assume that one of the behavioral types on each side plays the �Nash
bargaining with threats�(NBWT) strategy, demanding the Nash payo¤ and
playing the Nash threat action. There are no restrictions on the demands
and threats of all the other types that may be present; a clumsier assumption
that would have essentially the same e¤ect would be the requirement of
a rich set of types on each side. The earliest analog of Assumption 1 in
the reputational literature is the presence of a �Stackelberg leader�type in
Fudenberg and Levine (1989).

Assumption 1 (NBWT) : For each player i, there exists 
�i 2 �i such
that in each period 
�i demands u

�
i (and accepts nothing less) and takes

action m�
i .

For a given stationary posture 
i, let ui denote player i�s stationary de-
mand, and mi her stationary action. Recall that �j(ui) is the corresponding
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o¤er to player j (that is, (ui; �j(ui)) is an e¢ cient feasible payo¤ in the stage
game).

Assumption 2 : For all postures 
i 2 �i

�j(ui) > dj(m
0
j ;mi) 8m0

j 2Mj i 6= j; i; j = 1; 2:

Assumption 2 implies that postures penalize non-acceptance. That is, no
matter what a player does when facing a particular behavioral type, she can-
not get a �ow payo¤ that is higher than what she has been o¤ered. Lemma
1 will establish that being the �rst to reveal rationality is tantamount to
conceding to one�s opponent.10 This need not be true in the absence of
Assumption 2; if, after a certain history which has revealed i0s rationanlity
and left her fairly sure that j is behavioral, i might bene�t from not con-
ceding. No analogous assumption is required in the general non-stationary
environment of Section 4, where we develop a quite di¤erent line of attack.
But in Section 5, the proof of existence is facilitated by again assuming that
postures penalize non-acceptance (see Assumption 4).

Lemma 1 Invoke Assumptions 1 and 2 and for any perfect Bayesian
equilibrium �, consider the continuation game following the choice of a pair
of postures (
1; 
2), such that u1 > �1(u2). Suppose that neither player
has revealed rationality prior to time t and that revealing rationality at t
(conditional upon neither player having revealed rationality earlier) is in the
support of j�s equilibrium strategy. Then if player j reveals rationality at t
and i does not, the resultant equilibrium continuation payo¤ is (ui; �j(ui)):
Proof. See Appendix.

According to Lemma 2, once each side has adopted a posture, players
concede with constant hazard rates. At no time other than 0 does anyone
concede with strictly positive probability (as opposed to conditional density).
For notational convenience, when particular postures and their associated
mixed actions have been �xed, we write (d1; d2) for the corresponding threat
point.
10After revealing rationality and facing a possibly irrational opponent, a player is in

a situation similar to that of the uninformed bargainer in Myerson (1991) (see the In-
troduction), or a durable goods monopolist facing a distribution of buyers with di¤erent
valuations (see especially Coase (1972), Stokey (1981), Bulow (1982), Fudenberg, Levine
and Tirole (1985), Gul, Sonnenschein and Wilson (1986) and the discussion in Abreu and
Gul (2000), pp. 97-98 and 103-104).
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Let �i (
i) be the equilibrium probability with which player i adopts
the posture 
i, conditional on i being normal. Recall that zi is the prior
probability that i is behavioral, and �i (
i) is the probability that i is of
type 
i, conditional on being behavioral. Let �i (
i) denote the posterior
probability that a player i who chooses 
i is behavioral. Then, by Bayes
rule,

�i (
i) =
zi�i(
i)

zi�i(
i) + (1� zi)�i(
i)
When there is no danger of confusion, we will suppress the argument 
i

in �i (
i), �i (
i) ; and so on.
Lemma 2 Invoke Assumptions 1 and 2 and for any perfect Bayesian

equilibrium �, consider the continuation game following the choice of a pair
of postures (
1; 
2), such that u1 > �1(u2). This game has a unique perfect
Bayesian equilibrium. In that equilibrium, at most one player concedes with
positive probability at time zero. Thereafter, both players concede continu-

ously with hazard rates �i =
r(�j(ui)�dj)
uj��j(ui)

i 6= j, i; j = 1; 2 until some common

time T � <1 at which the posterior probability that each player i is behav-
ioral reaches 1. Furthermore the probability with which player j concedes to

player i at the beginning of the continuation game is max
�
0; 1� �j

(�i)
�j=�i

�
,

where �i denotes the posterior probability that a player i who chooses 
i is
behavioral.

The proof is omitted. It is similar to Theorem 1 of Abreu and Gul (2000)
and follows as a special case of the discussion in Section 4. We provide an
intuitive treatment below.

Fixing an equilibrium � and postures (
1; 
2); denote by Fi (t) the prob-
ability that player i (unconditional upon whether i is behavioral or normal)
will reveal rationality by time t, conditional upon j 6= i not revealing ratio-
nality prior to t. Since, by Lemma 1, the payo¤to i from revealing rationality
is just what j has o¤ered her, the game (following the choice of postures)
reduces to a war of attrition in which an opponent may be behavioral or
rational.

Let �1(t) =
f1(t)

1�F1(t) denote 1�s hazard rate of concession at t > 0. This is
calibrated to keep 2 indi¤erent between conceding at t or t+�. The cost to 2
of delaying concession is (�2(u1)�d2)� while the bene�t is

(u2��2(u1))
r �1(t)�

(ignoring terms of order �2 and higher). Equating costs and bene�ts yields

�1(t) =
r(�2(u1)� d2)
u2 � �2(u1)

� �1; a constant independent of t:
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Hence,
1� F2(t) = c2e

��2t

where c2 2 (0; 1] is a constant of integration to be determined by equilibrium
conditions. Observe that Fj(0) = 1� cj ; where Fj(0) is the probability with
which j concedes at t = 0: Clearly ci 2 [0; 1] and (1� c1) (1� c2) > 0:

Since behavioral types never concede, we require that

1� Fi(t) � �i all t � 0;

where �i is the posterior probability that player i who chooses posture

i is behavioral.

The above requirements pin down the equilibrium uniquely. It follows
from the latter condition that a normal player i must concede with proba-
bility 1 in �nite time, indeed, at the latest, by Ti where

e��iTi = �i and

Ti =
� log �i
�i

is the instant by which normal i would �nish conceding if ci = 1, or equiv-
alently if player i did not concede with positive probability at t = 0: In
equilibrium, normal types of both players must �nish conceding at the same
instant, and at most one player can concede with positive probability at
t = 0.

Let T � = minfT1; T2g. If Ti = T � then ci = 1 and cj 2 (0; 1] is deter-
mined by the requirement that

1� Fj(t) = cje
��iT � = �j

=) 1� cj = Fj (0) = 1�
�j

(�i)
�j=�i

More generally,

Fj(0) = maxf0; 1�
�j

(�i)
�j=�i

g

independently of whether Tj < Ti or Tj � Ti.
Let �i(t) denote the posterior probability that player i is behavioral,

absent concession until time t. Then �i(t) =
�i

1�Fi(t) =
1
ci
�ie

�it. That
is, �i is the rate of growth of player i�s reputation (for being behavioral).
If Ti > T �, then ci is less than 1, and is chosen to boost i�s reputation
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(conditional upon non-concession at t = 0) by just enough for both players�
reputations to reach 1 simultaneously at T �.

It follows that the player with the larger concession hazard rate, ceteris
paribus, is at an advantage in the war of attrition. Suppose for example that
in equilibrium, after adopting some particular pair of pro�les, players have
the same initial reputations, and �1 >�2. Suppose further (counterfactually,
as we shall see) that neither player concedes with positive probability at
time 0. Player 1�s reputation will reach 1 before 2�s reputation does, in
violation of Lemma 2. The only way to keep this from happening is for 2 to
concede with enough probability at time zero so that in the event that she is
observed not to have conceded, her reputation jumps just enough that the
two players�reputations will reach 1 together after all. If initial reputations
are tiny, even a small di¤erence in hazard rates must be compensated for by
concession at zero with probability close to 1. This follows from the formula
for Fj(0) given above.

Naive intuition might suggest that player i will tend to imitate the greed-
iest possible type. But the formula in Lemma 2 indicates that by moderating
the demand, i increases �i and decreases �j , which may serve i better in the
war of attrition. The formula further shows that i should choose an action
(while waiting) that hurts the opponent j without hurting i too much. Of
course that is also what a player has in mind when choosing a threat in the
Nash bargaining with threats (NBWT) game. The connection can be made
precise as follows.

Lemma 3 Suppose that player 1 adopts his NBWT posture. Then for
all postures 2 could adopt, except ones that give 1 at least as much as he is
asking for, �1 > �2.
Proof. This is most easily seen graphically. Let 1 adopt the NBWT position

�i = (u�i ;m

�
i ) and 2 adopt any posture 
2 = (u2;m2) with u2 > u�2. The

NBWT threat point and allocation are denoted d� and u�; respectively. Let
d � d(m�

1;m2) and u � (�1(u2); u2). See Figure 1.
By Assumption 2, d1 < �1(u2). Since (m

�
1;m

�
2) is an equilibrium of the

Nash threat game, d lies on or below the line through d�u� (if not, m2 would
be a strictly improving deviation for player 2 in the Nash threat game). By
Nash�s (1950) characterization of the Nash bargaining solution, the slope
of the line d�u� equals the absolute value of the slope of some supporting
hyperplane to the set � (the convex hull of the feasible set of G) at u�.
Hence slope de > slope du� � slope d�u� � jslope uu�j.

12



But

�1 =
r(u�2 � d2)
u2 � u�2

>
r(u1 � d1)
u�1 � �1 (u2)

= �2

if and only if
slope de > jslope uu�j:

u1

d*
d

u2

u*e

u

frontier of Π

Figure 1

If normal player 2 adopts a particular posture with extremely low proba-
bility in equilibrium, her reputation jumps dramatically when she is observed
to adopt the posture in question. This gives her a major advantage in the
ensuing war of attrition. But given any lower bound on this probability, and
any upper bound on the ratio of any two ex ante probabilities (of behavioral
types), the latter probabilities z1; z2 can be chosen small enough so that in
the continuation game following that choice of posture, 1�s expected payo¤
is close to (or greater than) his Nash bargaining with threats payo¤.

Lemma 4 Invoke Assumptions 1 and 2. For any � > 0, R 2 (0;1) and
� > 0 there exists � > 0 such that if zi � �; i = 1; 2 and max

n
z1
z2
; z2z1

o
� R,

then for any perfect Bayesian equilibrium � the payo¤ to a rational player
1 in the continuation game (
�1; 
2) is at least (u

�
1 � �=2) for any 
2 2 �2

which a rational player 2 adopts in equilibrium with probability �2(
2) � �.
Proof. Consider the continuation game with (
�1; 
2). By Lemma 3, either

2 entails u2 with �1(u2) � u�1, or �1 > �2. Suppose u�1 > �1(u2) and that
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rational 2 adopts 
2 with at least probability � > 0. Then

�1 � z1�1(
1)

(1� z1) � 1 + z1�1(
1)

�2 � z2�2(
2)

(1� z2) � �+ z2�2(
2)
� z2B

) �2
�1
� z2
z1
� �2(
2)
�1(
1)

� (1� z1) + z1�1(
1)
(1� z2) � �+ z2�2(
2)

� RC

for given R and some �nite constants B;C independent of (z1; z2). Recall
that the conditional probabilities �i(
i) are exogenous constants.

From Lemma 2,

F2(0) = 1�
�2
�1
(�1)

1��2
�1

if the latter term is non-negative. By the preceding inequalities,

F2(0) � 1�RC(z2B)
1��2

�1

� 1�R�1�
�2
�1

where R = RCB
1��2

�1 <1: Hence for � small enough, F2(0) is close to 1.
Player 1�s payo¤ is:

F2(0)u
�
1 + (1� F2(0))�1(u2)

� u�1 �
�

2

for � small enough and (consequently) F2(0) close enough to 1.
Suppose that player 1 adopts his NBWT posture. When he meets a

type that 2 chooses extremely rarely, Lemma 4 does not apply; but since
this happens so rarely, it has negligible in�uence on the weighted average
that determines 1�s expected payo¤. In all other cases, Lemma 4 guarantees
him virtually his NBWT payo¤. Theorem 1 and its proof make this precise.

Theorem 1 Invoke Assumptions 1 and 2. Then for any " > 0 and R 2
(0;1) there exists � > 0 such that if zi � �; i = 1; 2 and max

n
z1
z2
; z2z1

o
� R

then for any perfect Bayesian equilibrium � of G(z); jU(�)� u�j < ".

Proof. For any given perfect Bayesian equilibrium �; and � > 0; letb�2 = f
2 2 �2 j �2(
2) � �g : Then
P


22b�2 �2(
2) � jb�2j� � j�2j�: Hence
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P

22�2=b�2 �2(
2) = 1 �

P

22b�2 �2(
2) � 1 � j�2j�: Under the conditions of

Lemma 4, for any 
2 2 �2=b�2; the payo¤ to a rational player 1 in the con-
tinuation game (
�1; 
2) is at least (u

�
1 � �=2); and consequently the payo¤

to adopting 
�1 is at least

(1� j�2j�)(u�2 �
�

2
) + j�2j�wi

where wi is the lowest payo¤ to i in the (�nite) stage game G.
Clearly we can choose � > 0 such that j�2j� � 1 and

(1� j�2j�)(u�2 �
�

2
) + j�2j�wi � u�2 � �

For such a � > 0 Lemma 4 immediately implies that under the stated
conditions, the payo¤ to adopting 
�1 is at least u

�
1 � �, in any PBE �.

It follows that U1(�) � u�1 � �. This is true for both players and u� is a
(strongly) e¢ cient feasible payo¤ of the stage game.11Hence the Theorem
follows directly.

In summary, when a repeated game with contracts is perturbed slightly
by the addition of stationary behavioral types on each side, the continuum
of perfect Bayesian equilibria in the unperturbed game is replaced by a
precise prediction about how surplus is shared. The prediction is virtually
independent of the ex-ante distribution over behavioral types, as long as
the NBWT type is included on each side. With probability close to 1, the
demands made by each side, and the actions taken while waiting, are those
suggested by Nash (1953) in a much simpler context. Interestingly, Theorem
1 does not require r, the rate of interest, to be close to zero. If r is relatively
high, concession hazard rates �1 and �2 will be correspondingly high, to
make the players indi¤erent between waiting or conceding.

4 Nonstationary Postures

Following Fernandez and Glazer (1991) and Haller and Holden (1990), Busch
and Wen (1995) have provided a general analysis for repeated games with
complete information where a long-run enforceable contract can be signed.

11That is, there does not exist feasible u0 s.t. u0i > u
�
i and u

0
j � u�j .
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In conformity with their results, in many games there is a signi�cant mul-
tiplicity of equilibrium outcomes.12 Our goal is to be able to say that any
rich perturbation of such a game leads to an essentially unique outcome,
and that the outcome is not sensitive to the small ex-ante probabilities of
the respective behavioral types. That is true if perturbations are restricted
to stationary strategies, as Section 3 has shown. Which of the results there
survive the introduction of nonstationary strategies?

We revert now to the general model speci�ed in Section 2. Behavioral
types are �nite automata that announce and follow repeated game strate-
gies that may have complicated intertemporal features and can respond to
the opponent�s play. Suppose one asks how well player 1�s stationary Nash
bargaining with threats (NBWT) strategy would do against any nonstation-
ary posture 2 might adopt. How di¤erent from Section 3 would the analysis
look, and does 1 do himself harm by not taking advantage of the opportunity
to use a dynamic closed-loop strategy himself?

We formulate a new hybrid discrete/continuous model of time that sim-
pli�es the war of attrition calculations without introducing any of the logical
di¢ culties associated with games played in continuous time. It would ap-
pear that a natural way to accomplish this is to restrict players to changing
their o¤ers and actions at discrete intervals (say, at integer times), while
allowing them to accept the opponent�s o¤er at any moment (in continuous
time). It is necessary to elaborate this model slightly, to avoid "openness"
problems. In the event that player j responds to player i�s o¤er at time 5
with an o¤er that i considers attractive, i may want to accept j�s o¤er "as
soon as possible", at the �rst moment following 5, as it were. Similarly, if i�s
o¤er to j decreases at 5, it is natural to provide a last time for j to accept
the more generous o¤er. To accommodate this formally, we split the integer
time 5 into four �dates�which we call (5;�2) ; (5;�1) ; (5; 1) and (5; 2). The
date (5;�2) is the last time at which players can accept o¤ers made at time
4. If i is the player speci�ed to make her o¤er �rst at time 5, she does
so at date (5;�1): Player j 6= i then makes his o¤er at (5; 1); and players
get their �rst opportunities to accept the new o¤ers at (5; 2): While these
four dates are sequential from a logical point of view, they are considered
to occur at calendar time 5, so no discounting occurs between them.13 This

12 In our formulation there is no discounting between the o¤ers of 1 and 2; and o¤ers
which are on the table can be accepted simultaneously by both players. This makes it
easy to establish a folk theorem result (see Section 5).
13To interpret this model, think of a setting in which players accept o¤ers in continuous

time, except in the �time-out�pauses (open intervals) during which new actions and o¤ers
are chosen. Then let the duration of each time-out approach zero.
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device simply ensures that the set of times at which a player can accept an
o¤er on the table, is compact.

We now introduce the notation regarding time that is used in the ar-
gument to follow. Our primitive notion of time is a �date�. The set of
dates is T . A date � 2 T has two dimensions; � = (t; k). For � 2 T let
t (�) denote the �rst dimension and k(�) the second. The �rst dimension
t (�) speci�es the calendar time at which date � occurs. The second di-
mension allows us to order di¤erent events that occur at the same calendar
time, as explained in the preceding paragraph. Only for integer time is
the "splitting" discussed above needed. Hence, for n 2 N � f0; 1; 2; :::g,
f(n;�2); (n;�1); (n;+1); (n;+2)g � T . For t =2 N ; (t; k) 2 T if and only
if t > 0 and k = 0: At dates (n;�1) and (n;+1), n 2 N , players can make
new (o¤er, action) choices in an arbitrary pre-speci�ed order. The new o¤er
can be accepted at dates (n;+1); ((n + 1);�1) and all dates in between.
Thus the end of a round and the beginning of the next round are distinct.
Discounting depends only on the pure time component of a date. The or-
dering on T is lexicographic: for any � ; � 0 2 T , � 0 � (t0; k0) � (t; k) � � if
t0 > t or if t0 = t and k0 > k. A player�s choices at date (n;+1); say, can
be conditioned on observed choices at dates (n;�1); (n;�2) and, of course,
all preceding dates. For i = 1; 2 and n 2 N we de�ne kni to equal �1 or +1
depending upon whether i has the move at (n;�1) or (n;+1):

For later reference, we de�ne the in�mum of a set of dates 
 � T .
Denote ! � inf 
. Let 
t = ft(!) j ! 2 
g and t � inf 
t: If t 62 N , then
! � (t; 0): If t 2 N , de�ne 
(t) = f! 2 
 j t(!) = tg: If 
(t) 6= ; then
! � f! 2 
(t) j k(!) � k(!0) all !0 2 
(t)g: If 
(t) = ; then ! � (t;+2):
The supremum is de�ned analogously. These are the natural extensions of
the usual de�nitions.

With 1�s strategy �xed at the stationary NBWT action and demand,
player 2�s situation is similar in some ways to what she faced in Section 3.
Whenever 2 reveals rationality, one can show that she does so by, in e¤ect,
accepting 1�s o¤er. This is the one-sided analog of Lemma 1 in Section
3. But the same is not true for player 1, who faces a nonstationary type.
Suppose that 1 is o¤ered 5 until some date � , and 10 thereafter. Rather than
wait to get 10 at � , at an earlier time � 0 he might o¤er a Pareto-superior
contract: give me 9 right now. Player 2 might accept this (as long as she
doesn�t expect to do better in the subgame in which she instead reveals
rationality without accepting 1�s o¤er). Thus, the o¤er from 2�s machine 
2
at � 0 is just a lower bound on 1�s equilibrium expectation of the payo¤s he
would receive if � 0 arrives without either player having revealed rationality.

The reader may wonder why 1 would wait until � 0 to make this sugges-
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tion, and for that matter, why 1 doesn�t ask for an even greater amount.
The answer lies in the full-information subgames after 1 and 2 have both
revealed rationality. These typically have a continuum of subgame perfect
equilibria, and in the construction of a solution of the full game, the selec-
tion from this set can depend on arbitrary details of the history of play. For
example, if 1 demands 9 at � 00 prior to � 0 instead of at � 0, or 9:3 at � , say, 2
could believe that she would fare extremely well, and 1 badly, if she revealed
rationality instead of accepting 1�s o¤er.

The above example might leave the impression that 1�s expected payo¤
at � 0 could exceed 2�s o¤er there only because 
2 later makes a more generous
o¤er in response to 1�s constant play of his NBWT position. This is not true.
For example, because 2�s behavioral type may make o¤ers that depend on
1�s past o¤er or actions, 1 may be able to induce more generous o¤ers from
2 by departing from his NBWT posture. At � , for example, if 1 reveals
rationality without accepting the o¤er of 10, he may be able to manipulate

2 into o¤ering him 15. His expected payo¤ at � could therefore easily
exceed 10.

To summarize, when 1�s static NBWT strategy faces more complex
strategies of 2, 1�s expected payo¤ in a particular continuation game is no
longer given by what 2 o¤ers him, and may vary greatly across di¤erent
equilibria of that continuation game. A normal player 1 may want to re-
veal rationality (by abandoning the NBWT posture at some point) but not
accept 2�s o¤er. Further we shall see that nonstationarity in 2�s posture
induces discontinuities in the war of attrition, with one or more players
conceding away from time zero with strictly positive probability.

All of the above makes it impossible to replicate the line of attack of
Section 3. Perhaps surprisingly, the main result concerning players�payo¤s
is essentially unchanged, along with the power of the static NBWT posture.
The proofs, however, are quite di¤erent, and much more elaborate. This
Section states and proves our main result, Theorem 2.

Let ui (� j
1; 
2) denote player i�s demand at time � , and di (� j
1; 
2)
denote the �ow payo¤ to i at � , given that both players conform with
(
1; 
2) until � . So far for integer n we have not introduced a date (n; 0). It
will be convenient later to de�ne di((n; 0)j
1; 
2): We set di((n; 0)j
1; 
2) �
di((n;+2)j
1; 
2): When there is no danger of confusion, we will drop the
arguments 
1; 
2.

For the pro�le of postures (
�1; 
2); take as given all elements of 
2 except
the mapping from the �nite set of states to demands. If the latter demands
are chosen randomly, ties between demands and �ow payo¤s will occur with
probability zero. When demands exactly equal �ow payo¤s, potential inde-
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terminacies in 1�s response create a profusion of cases to be treated. We
avoid this by making the following genericity assumption.

Assumption 3 (Generic Types) For all 
2 2 �2 consider the continua-
tion game de�ned by (
�1; 
2). For all n, �1 (u2 ((n;+2) j
�1; 
2)) 6= d1 ((n;+2) j
�1; 
2).
A corresponding assumption applies to types 
1 2 �1.

Theorem 2 Invoke Assumptions 1 and 3. Then for any " > 0 and R 2
(0;1) there exists � > 0 such that if zi � �; i = 1; 2 and max

n
z1
z2
; z2z1

o
� R;

then for any perfect Bayesian equilibrium � of G(z); jU(�)� u�j < ".

Theorem 2 says that no matter how high you allow the bound on the
relative probabilities that the respective players are behavioral to be, and no
matter how close to u�1 you want 1�s expected utility to be, this is achieved
uniformly across all perfect Bayesian equilibria, when behavioral players
have su¢ ciently low prior probabilities.

Before providing the proof, we give a quick account of the main ideas.
Given the unavoidable fact that a typical continuation game (following the
choice of postures) su¤ers from a vast multiplicity of perfect Bayesian equi-
libria, our strategy is as follows. Any particular equilibrium of the full game
o¤ers player 1 expected payo¤s at each date in each continuation game, fol-
lowing the realization of 2�s choice of posture 
2. Just as one can graph the
o¤ers 
2 makes to 1 over time, one can graph the payo¤s 1 would get by
�rst revealing rationality at any date (n; kn1 ), by departing from the (o¤er,
action) pair as given by the initial posture 
1 (in the case under consider-
ation 
�1, of course) in interaction with the opponent�s posture 
2: It is the
maximum of these two values that drives the war of attrition. In analyzing
that war of attrition, one can treat the stream of these maxima as exogenous
variation, just as one accepts the possibility of arbitrary strategies 
2. Once
the characterization result is established for all possible streams, it holds a
fortiori for all graphs that could actually arise in equilibrium.14

Recall from Section 3 that the more player i demands, the slower i�s
rate of concession must be, and the slower i�s reputation will grow. If i�s

14More precisely, Lemma 11 will establish a uniform upper bound on the maxima in
question, for the interval of dates relevant for our arguments. Our characterization result
holds for any stream satisfying the upper bound, so it is not necessary to �gure out exactly
which streams could actually arise in equilibrium.
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demand is su¢ ciently greedy, this will require i to concede at time 0 with
high probability. The same basic force is at work here. If 2 is asking for
more than her NBWT payo¤, she has to concede slower than 1 (if he chooses
his NBWT posture). The rate changes as her demands change, and one has
to integrate these rates and add them to discrete probability concessions.15

It is necessary to make cross-player comparisons of payo¤ discontinuities
of di¤erent sizes and with qualitatively di¤erent e¤ects. This is the most
delicate part of the argument. But the same picture ultimately emerges: over
all, 2�s reputation grows more slowly than 1�s and this becomes decisive when
prior behavioral probabilities are low.

Non-stationarities in player 2�s posture typically induce discrete conces-
sion episodes by both players. The simplest case, which we call a �downward
jump�, involves a decrease in the value of 2�s o¤er to 1. Suppose that at date
(n; kn2 ) before �

�, player 2�s o¤er falls from a to b < a. If 1 ever accepts the
o¤er of b in equilibrium immediately after (n;+2), he must be compensated
at (n;+2) for letting the o¤er fall from a to b, by a probabilistic conces-
sion from 2. The probability P2 of 2�s conceding at (n;+2) that makes 1
indi¤erent between accepting the o¤er of a or waiting satis�es:16

a = P2u
�
1 + (1� P2)b

�Upward jumps�have more interesting repercussions. Assume for sim-
plicity that 2�s action choice is constant and that at some date � 2 (0; ��],
2�s o¤er jumps up from b to a > b (or alternatively, that at � , the equilib-
rium implicitly o¤ers 1 the payo¤ a for revealing rationality at � without
accepting 2�s o¤er). For some time interval of length � before � , 1 would
rather wait until � to get a, than to concede immediately and get b (see
Figure 2). Since 1 experiences �ow payo¤s while waiting, � solves:

b

r
=

Z t1

t1��
d1 ((s; 0)) e

�r(s�(t1��))ds+ e�r�
a

r

where t1 � t(�) and d1((s; 0)) is player 1�s �ow payo¤ (given (
�1; 
2)) at

15The paragraphs below explain how increases in 2�s o¤er at (n; kn2 ) induce discrete
concessions by 1 at time n and decreases in 2�s o¤er induce discrete concessions by 2.
16As noted earlier, player 1�s expected payo¤ at some date may exceed what 2 o¤ers

him there. A fall in this expected value will induce a compensating discrete concession
by 2, even in the absence of any change in 2�s o¤er. The initial higher value could be 1�s
payo¤ to revealing rationality at (n; kn1 ). And the lower value might itself exceed 2�s o¤er,
because it might be 1�s present discounted value from waiting for a superior o¤er 2 will
make later (see the discussion of �shadows�three paragraphs below).

20



date (s; 0):

a

b

u1

time∆−)(τt )(τt

∆

Figure 2

Notice that 2 will not concede in the � interval before t(�) either: since
1 never concedes in that interval, 2 is strictly better o¤ conceding at the
start of the interval than at any point in its interior. For 2 to be just
compensated for waiting through the barren interval �, 1 must concede at
t(�) with (conditional) probability P1 solving:

u�2
r
=

Z t1

t0

d2 ((s; 0)) e
�r(s�t0)ds+ e�r(t1�t0)

�
P1
v22(�)

r
+ (1� P1)

u�2
r

�
(1)

where t0 � t1�� and v22(�) is normal player 2�s payo¤when player 1 reveals
rationality at � .

We say that the jump at � �casts a shadow�of length � over the time
period preceding � . What if no P1 � 1 solves the equation? Then 2 cannot
be induced to wait, and normal 2 should concede with probability 1 weakly
before the shadow begins (contradicting our assumption that � 2 (0; ��]).
This expression makes it clear that changes in �ow payo¤s d1 ((s; 0)) can
also contribute to or even cause �shadows�. For instance even if b = a; if
there are changes in 2�s action choices so that initially player 1�s �ow payo¤s
d1 ((s; 0)) are less than a and later d1 ((s; 0)) exceeds a, so thatZ t1

t1��
d1 ((s; 0)) e

�r(s�(t1��)ds = a

Z t1

t1��
e�r(s�(t1��)ds
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then we have a shadow of length � generated exclusively by changes in �ow
payo¤s.

Interestingly, there can be an upward jump at � , followed by a downward
jump �at the same instant�. Suppose that 2�s posture 
2 is as illustrated
in Figure 2 above, but that the equilibrium o¤ers c > a at � � (n; k),
k 2 f�1;+1g (and nowhere else, for simplicity). Clearly 1�s option of get-
ting c at (n; k) casts a shadow (a longer one than that cast by a) over an
interval in which neither 1 nor 2 will concede. Player 1 reveals rationality
probabilistically at (n; k) (without accepting 2�s o¤er), to compensate 2 for
waiting through the barren period. In the event that he does not concede,
he faces an immediate drop in expected payo¤ from c to a. To make 1
indi¤erent between revealing rationality and waiting, 2 must concede with
probability

P2 =
c� a
u�1 � a

conditional on 1�s not revealing rationality at (n; k).

Proof of Theorem 2.
Theorem 2, the analog of Theorem 1, follows from Lemma 5 below in the

same way as Theorem 1 follows from Lemma 4 (see the proof of Theorem
1). Lemma 5 establishes the e¤ectiveness of player 1�s NBWT posture 
�1
against any relevant posture of player 2. The following notation will be used
in the proof.

Fix z = (z1; z2) and an equilibrium of the overall game, and consider the
continuation game following the choice of (arbitrary) postures (
1; 
2). The
dependence of various functions and terms introduced below on z, on the
equilibrium in question, and on (
1; 
2) is not made explicit in the notation
but should be understood in what follows.

Associated with the continuation game are �distribution functions�Fi(�),
i = 1; 2 where Fi(�) is the probability that player i reveals rationality by
� conditional upon player j not revealing rationality prior to � . Note that
the distribution functions and the terms de�ned below are speci�c to the
equilibrium in question.

The proof proceeds by demonstrating the e¤ectiveness of player 1�s NBWT
posture 
�1 against any relevant posture of player 2. This is formalized in
Lemma 5.

Lemma 5 Invoke Assumption 1. For any � > 0, R 2 (0;1) and � > 0
there exists � > 0 such that if zi � �, i = 1; 2 and max

n
z1
z2
; z2z1

o
� R, then

for any perfect Bayesian equilibrium � the payo¤ to a rational player 1 in
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the continuation game (
�1; 
2) is at least (u
�
1 � �=2) for any 
2 2 �2 which

a rational player 2 adopts in equilibrium with probability �2(
2) � �.

The proof of Lemma 5 is presented in nine steps.

Step 1. Implications of Stationarity of 
�1
Fix a PBE � and a posture 
2 for 2, and consider the continuation game

starting from date (0;�1) after 1 has adopted his NBWT posture and 2
has adopted 
2. The pro�le � induces an equilibrium on that continuation
game. Recall that �i =

zi�i(
i)
zi�i(
i)+(1�zi)�i(
i)

is the posterior probability that
player i who chooses 
i, is behavioral.

Because of the stationarity of 1�s o¤er and the nature of the Nash threat,
a rational type of player 2 must concede with probability 1 in �nite time (see
Lemma 6 in the Appendix). Moreover a rational player 2 reveals rationality
by, in e¤ect, accepting 1�s o¤er (see Lemma 7 in the Appendix).17 These
�Coasean�results are closely related to Lemma 1 of Section 3, and do not
hold for arbitrary non-stationary 
1:

De�nition 1 �� � inff� ju�1 � �1( u2(�)) or 1�F1(�) = �1 or 1�F2(�) =
�2g

Thus �� is the �rst date by which (1) a rational type of either player 1
or 2 reveals rationality (i.e. does not follow 
i) with probability 1, or (2) the
demands generated by the pair of postures (
�1; 
2) are mutually compatible.

Step 2. Concession Distribution Functions
Concession behavior strictly within rounds is driven by the familiar logic

of the war of attrition, with parameters given by the constant o¤ers and �ow
payo¤s corresponding to the round in question. Speci�cally, suppose that
� 0; � 00 are dates within round n 2 N with �� � � 00 � � 0, and (n + 1) >
t(� 00) > t(� 0) > n , and that Fi(� 00) > Fi(�

0) for some i = 1; 2:
We �rst argue that �i( uj(�)) > di(�) for all � 2 ((n;+2); � 00) and i =

1; 2: For i = 2 this follows from the de�nition of the NBWT posture 
�1
(and our regularity assumption which excludes the exceptional case u�2 =
d2(m

�
1;m

�
2)). Recall also Assumption 3: for all 
2; the pair (


�
1; 
2) generates

o¤ers and �ow payo¤s such that �1( u2(�)) 6= d1(�): Finally suppose that

17Suppose that we had allowed rational players to announce something outside the set
of their behavioral types, or to stay silent. For the same reasons as in Lemmas 1 and 7, a
player 2 who made one of those alternative announcements would accept 1�s NBWT o¤er
immediately, having revealed rationality.

23



�1 (u2(�) < d1(�)) : We show that this contradicts our initial assumption
that Fi(� 00) > Fi(�

0) for some i = 1; 2: The inequality �1 (u2(�)) < d1(�)
implies that player 1 is strictly better o¤ conceding at the end of the round
than at any date within the round, independently of 2�s concession behavior.
Hence F1(� 00) = F1((n;+2)): Since u�2 > d2(�) it follows that 2 is strictly
better o¤ conceding at (n;+2) than at � 00 or at any date in between. Hence
F2(�

00) = F2(�
0) also, a contradiction.

For all n 2 N let

��(n) = inff� j Fi(�) = Fi((n+ 1;�2))g:

By the preceding argument, �i(uj(t(�))) > di(t(�)) for all � 2 ((n;+2); ��(n))
and i = 1; 2: Consequently, the analysis within the time interval (n; t(��(n)))
is as in the usual war of attrition, with equilibrium behavior governed by the
basic principle that a normal player delays conceding only in the expectation
that the other player might concede in the interim. Thus we have the familiar
result that the players concede with constant hazard rates �i(s) for s 2
(n; t(�� (n))); where

�i(s) = r � �i (uj ((n;+2)))� di ((n;+2))
ui ((n;+2))� �i (uj ((n;+2)))

Integrating this expression yields:

(1� Fi(�)) = e��i(s)(t(�)�n)(1� Fi((n;+2)))

This discussion is summarized in Lemma 8 below, where �� (n) is de�ned as
above.

Lemma 8 For all � 0; � 00 and n 2 N with �� � � 00 � � 0, and (n+ 1) >
t(� 00) > t(� 0) > n , if Fi(� 00) > Fi(�

0) for some i = 1; 2 then for k = 1; 2

(1� Fk(�)) = e��k(n)(t(�)�n)(1� Fk((n;+2))) for all � 2 ((n;+2); �� (n)):

Note for later use that �1 (s) > �2 (s) for s 2 (n; t(�� (n))), where we
de�ne

�i(s) =

(
r � �i(uj((n;+1)))�di((n;+1))ui((n;+1))��i(uj((n;+1)))

for s 2 (n; t(�� (n)))
0 otherwise.
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The argument is exactly the same as in Lemma 3 of Section 3.
Let �i(�) denote the probability with which i reveals rationality at � ;

conditional upon not having revealed rationality prior to � :
De�ne Pi(n) by

(1� Pi(n)) =
Y

k2f�2;�1;+1;+2g
(1� �i((n; k)))

Thus, Pi (n) is the probability of player i�s conceding sometime within the
range (n;�2) ; (n;�1) ; (n; 1) and (n; 2), conditional on not having conceded
before then.

An implication of Lemma 8 is that positive probability concessions can
only occur at the end, between or at the beginning of rounds, but not strictly
within rounds. Thus the only dates at which player imight reveal rationality
with strictly positive probability are those � for which t(�) 2 N .

Hence,

1� Fi(�) = e�
R t(�)
0 �i(s)ds

Y
���
(1� �i(�))

and for � for which t(�) =2 N ;

(1� Fi(�)) = e�
R t(�)
0 �i(s)ds

Y
n2N
n�t(�)

(1� Pi(n))

Step 3. Discrete Concessions by Player 2
We seek to show that after time 0, player 1 reveals rationality faster than

2. This is the case in regions of continuous concession, for the same reasons
as in Section 3. It will also be necessary to compare discrete concession
probabilities by 1 and 2.

Each discrete concession by 2 is tightly linked to a contemporaneous
reduction in what 1 can extract from 2, that is, to a �down jump�(see the
preamble to the proof of Theorem 2). Lemma 9 provides an upper bound
on the concession probability by 2 that can be provoked by a down jump
from value a to b < a:

Some key de�nitions follow. De�ne vji (�) as the supremum over possible
(given player j�s strategy) payo¤s to i, conditional upon revealing rational-
ity at � (given that i and j have not revealed rationality prior to �). Recall
that if t(�) =2 N , the only way to reveal rationality at � is to accept the
opponent�s o¤er. It follows that, as long as player j does not accept i�s o¤er
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at � with strictly positive probability, vji (�) = �i(uj(�)). Let v
j
j (�) denote

normal player j�s expected equilibrium payo¤ conditional upon player i re-
vealing rationality at � : It is notationally cumbersome to keep track of which
player has the move at (n;�1) and (n;+1) respectively. In this context, ex-
tending the domain of de�nition of vji (:) to include the dummy date (n; 0)
is helpful. Thus we de�ne vji ((n; 0)) � vji (�) where � 2 f(n;�1); (n;+1)g
is the date at which player i may change her (o¤er, action) pair between
the round ending at (n;�2) and the round beginning at (n;+2): We de�ne
vjj ((n; 0)) analogously (that is, normal player j�s expected equilibrium payo¤
conditional upon player i revealing rationality at � 2 f(n;�1); (n;+1)g):

Let w1(�) be the expected equilibrium payo¤ to 1 (discounted to �)
conditional upon neither player revealing rationality prior to and including
� .

The total size of the down jump at round n is denoted Jd(n) and :

Jd(n) = max
�
0;maxfv21 ((n;�2)) ; v21 ((n; 0))g � w1 ((n;+2))

	
Lemma 9 Suppose u�1 > w1 ((n;+2)). Then

P2(n) �
Jd(n)

u�1 � w1((n;+2))

Proof: Suppose by way of contradiction that P2(n) >
Jd(n)

u�1�w1((n;+2))
:

Then

P2(n)u
�
1 + (1� P2(n))w1((n;+2)) = P2(n)(u

�
1 � w1((n;+2)) + w1((n;+2))

> maxfv21((n;�2)); v21((n; 0); w1 ((n;+2)))g

Let k 2 f�2;�1; 1; 2g satisfy �2(
�
n; k

�
) > 0 and �2((n; k)) = 0 for all

k = k + 1; :::+ 2: Since P2(n) > 0 such a k exists. The preceding inequality
implies that 1�s payo¤ from conceding at (n;+2) or immediately after if
k = 2; strictly exceeds 1�s payo¤ from conceding at (n; k) or just prior to
(n; k) . Hence F1(

�
n; k

�
) = F1(�) for some � �

�
n; k

�
with t(�) < n. It

follows that 2�s payo¤s from conceding at � 0 2
�
� ;
�
n; k

��
strictly exceed 2�s

payo¤s from conceding at (n; k) which contradicts �2(
�
n; k

�
) > 0: �

Note that Lemmas 11-13 will establish that the maintained hypothesis
of Lemma 9 is indeed true for an initial range of n�s which su¢ ces for our
proof.
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Step 4. Subdivision of Downward Jumps
The nonstationarity of some postures 
2 may induce frequent �uctua-

tions in 1�s continuation values. The discrete concessions by 2 associated
with the numerous down jumps could give 2 an insurmountable advantage
in the war of attrition, unless the �uctuations induce concessions by 1 of
similar or greater magnitude. Comparing the e¤ects of up and down jumps
of di¤erent sizes is di¢ cult. It is helpful to think of subdividing down jumps,
and associating with each of the smaller jumps the compensating conditional
concession probability by 2 (given by the formula P2 = a�b

u�1�b
). Fortunately

the overall probability of concession by 2 so obtained satis�es the bound of
Lemma 9, as the following paragraph demonstrates.

Let P2 > 0 be associated with a down jump from
u1 � maxfv21 ((n;�2)) ; v21 ((n; 0))g to w1 � w1 ((n;+2)) (and suppose that
u�1 > w1 ((n;+2))). By Lemma 9, 1 � P2 � u�1�u1

u�1�w1
. Consider the strictly

decreasing sequence ul1; l = 0; 1; : : : ; L such that u
0
1 = u1 and uL1 = w1, and

de�ne P l2 �
ul�11 �ul1
u�1�ul1

. Then 1� P l2 =
u�1�u

l�1
1

u�1�ul1
. Consequently

(1� P 12 )(1� P 22 ) � � � (1� PL2 ) =
u�1 � u1
u�1 � w1

� 1� P2

Thus a down jump may be broken up into a sequence of smaller down jumps
which span the same range, and yield an overall probability of concession
by 2 which weakly overestimates the actual probability of concession by 2.

Step 5. Paired Up and Down Jumps
In general, it is possible to have multiple up and down jumps in 1�s

continuation value, all in a single interval of non-concession by player 2.
Comparison of the respective concession probabilities of players 1 and 2 can
be extremely involved, and this is relegated to the Appendix. To provide a
more accessible treatment, we limit attention here to a simple case involving
two perfectly complementary jumps. Readers interested in the Appendix
may �nd it useful to get a motivating overview by looking at Steps 5 - 7
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here before turning to the material in the Appendix concerning Section 4.

a

b

u1

timet1t0

Figure 3

Figure 3 illustrates a scenario in which 1�s continuation value is initially
a < u�1, then falls to b < a, and later returns to a. We assume for simplicity
that these continuation values coincide with what 2�s posture 
2 o¤ers 1
(there are no endogenous rewards to 1 that augment what 
2 o¤ers). One
can solve for the concession probability P1 induced by the increase in value,
and the concession probability P2 induced by the earlier fall in value. By
Lemma 9,

P2 �
a� b
u�1 � b

(2)

As noted earlier (in the preamble to the proof)

b

r
=

Z t1

t0

d1 ((s; 0)) e
�r(s�t0)ds+ e�r(t1�t0)

a

r

or equivalently,
(b� d1) = e�r(t1�t0)(a� d1) (3)

where � � (t1 � t0), di (1�e
�r�)
r �

R t1
t0
di ((s; 0)) e

�r(s�t0)ds. (Note that di is
the average discounted �ow payo¤ over the interval (t0; t1)).

Equation (1) may be rewritten as:

(u�2 � d2)(1� e�r�) = e�r�P1(�2(a)� u�2) (4)
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where we have replaced v22(�) (the payo¤ to a normal player 2) with �2(a).
This substitution is valid if 1 obtains a by accepting an improved o¤er from
2 (see the last paragraph of this step).

Combining (3) and (4) yields

P1 =
u�2 � d2

�2 (a)� u�2
� a� b
b� d1

Hence P1 > P2 if
u�2 � d2
b� d1

>
�2 (a)� u�2
u�1 � b

To see that this inequality does hold, note that:
1. (d1; d2) must be on or below the line joining d(m�

1;m
�
2) and u

�

2. the slope of the latter line equals the (absolute value) of the slope of
some supporting hyperplane to the set of feasible payo¤s, at u�

3. the frontier of the feasible set is concave, and b < a < u�1.
See Figure 4.

d*
d

u2

u1

u*
*
22 )( uau − {

b a

Figure 4

Thus, although the decline in 1�s value from a to b appears to give 2 an
advantage in the war of attrition (by inducing a discrete concession by 2),
this advantage is outweighed by the larger discrete concession by 1 induced
by the return from b to a. Player 1�s overall advantage is even greater if
there are many of these paired discrete concessions, rather than the single
pair illustrated here.
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What if there are more (or bigger) decreases in value than increases? For
example, if value decreases from a to b, and then stays there forever, 2 has
a discrete concession not matched by a concession from 1. This turns out to
have an e¤ect similar to 2�s having a moderate reputational advantage over
1. It is swamped by other e¤ects as the zi�s approach 0. The argument in
the Appendix shows that as long as all repeated down jumps are matched by
(or �covered by��see the Appendix) up jumps, 1�s asymptotic advantage
will be decisive. But repeated down jumps are indeed matched by up jumps:
if value falls from 6 to 4, say, it can�t fall through that range again until it
has �rst risen through that range. Among the di¢ culties dealt with in the
Appendix is the fact that where 1 has multiple concession episodes in the
same interval of non-concession by 2, the respective concession probabilities
often are not uniquely de�ned.

We are implicitly assuming that 1 obtains the payo¤ a by accepting
an improved o¤er from 2; it might also be that 1 obtains a by revealing
rationality but not accepting 2�s o¤er. In this case the resultant equilibrium
payo¤ to a normal 2 may be di¤erent from �2(a). This subtlety and related
issues are dealt with in the Appendix.

Step 6. Bounds on Equilibrium Distribution Functions.
By Lemma 10 in the Appendix, when t(��) = 0; the conclusion of Lemma

5 follows straightforwardly. Now suppose t(��) > 0: Recall that �2 (�) is the
posterior probability that 2 is behavioral conditional upon 2 not revealing
rationality up until and including date � : Let e� > 0 be as de�ned in Lemma
12 in the Appendix. By Lemma 13 (in the Appendix) there exists � � ��

such that �2 (�) � e�: Let e� = inff� j �2 (�) � e�g. For some motivating
discussion of Lemmas 11-13 see the discussion preceding the statement of
the Lemmas in the Appendix. Let �i denote the posterior probability (at
the start of the continuation game) that a player who adopts the posture 
i
is behavioral. Then

�2 (e�) = �2
1� F2(e�) � e�:

Furthermore,
�1 (e�) = �1

1� F1(e�) � 1:
The goal is to establish that for small zi�s, the only way for the above

inequalities to be satis�ed is for P2(0) to be close to 1. However the true
distribution functions are di¢ cult to work with. Instead we de�ne modi�ed
functions bFi(�) for which bPi(0)=Pi(0) but which otherwise (weakly) under-
estimate 1�s probability of concession and overestimate 2�s. Combined with
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the earlier inequalities, this yields

�2 � e� (1� F2(e�)) � e�(1� bF2(e�))
and �1 � 1� F1(e�) � (1� bF1(e�)

We show below that for small zi�s the above inequalities imply that bP2(0)
is close to 1. That is, 2 concedes �too slowly� relative to 1 even when we
overestimate 2�s rate of concession and underestimate 1�s.

Step 7. Modi�ed Distribution Functions.
Recall from Step 2 that

1� Fi (e�) = e�
R t(e�)
0 �i(s)ds(1� P 0i )(1� P 1i ):::(1� PLii )

where l = 0; 1; :::; Li indexes positive probability concessions by player i until
date e� :

For Player 2, any positive probability concession must be associated with
a down jump (Lemma 9). Let the lth down jump occur at date �(l) (assumed
to be increasing in l) and entail a drop in payo¤ to player 1 from a(l) to b(l):
For any l such that a(l + 1) > b(l); Lemma 14 in the Appendix establishes
the intuitively plausible result that between dates �(l) and �(l + 1) there
must exist a consecutive sequence of �shadows�corresponding to up jumps
in 1�s payo¤s from a payo¤ b � b(l) to a � a(l+1): Down jumps over payo¤
drops which have also occurred at an earlier date are o¤set by up-jumps
covering (at least) the same range (see Lemmas 15 and 16). By Steps 4 and
5, we can match such �repeated� down jumps with up jumps which span
the same range. Thus one can construct new functions bFi; i = 1; 2 for which
up jumps and down jumps are matched as follows:

1� bF1 (e�) = (1� bP 01 )(1� bP 11 ) : : : (1� bPK1 )e� R t(e�)0 �1(s)ds

1� bF2 (e�) = (1� bP 02 )(1� bP 12 ) : : : (1� bPK2 )(1� bPK+12 )e�
R t(e�)
0 �2(s)ds

where for k = 1; : : : ;K; bP k2 corresponds to a �down jump" from some uk1
to uk1 � � and bP k1 corresponds to a matched up-jump from uk1 � � to uk1
between times tk and �tk respectively. We set bP 0i = P 0i : The latter is the
probability of revealing rationality at the very start of the game and is the
same for the original and modi�ed distributions. The unmatched term bPK+12

accounts for the possibility of �non-repeating�down jumps . The modi�ed
distribution function bF1 neglects some concession episodes, since

1. it is possible that some P l1 > 0 are not associated with up jumps (see
the remarks preceding the proof of Theorem 2), and
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2. some up jumps might not simply be �o¤setting�repeated down jumps.
Of course this is consistent with underestimating 1�s distribution func-

tion, and as desired we have:

(1� bF1(e�)) � (1� F1(e�)).
By setting bPK+12 �generously�we can furthermore guarantee that (1 �bF2(e�)) � (1� F2(e�)): By Lemmas 11-13 there exists " > 0 such that u�1 � "

is an upper bound on player 1�s expected equilibrium payo¤ at any � � e�
for e� as de�ned in Step 6. The highest possible bPK+12 is associated with an
o¤er that drops from u�1 � " to u1, the smallest payo¤ to 1 in the e¢ ciency
frontier of the stage game. Thus a generous speci�cation of bPK+12 is

(1� bPK+12 ) =
"

u�1 � u1
� a2 > 0:

By the analysis of Step 4, all non-repeating down jumps are covered by
the term bPK+12 as de�ned above.

Step 8. Player 1 Concedes Faster than 2.
As noted following Lemma 8,

�1 (s) > �2 (s) for s 2 (n; t(�� (n)))
�1 (s) = �2 (s) = 0 otherwise.

Can we compare P̂ k1 corresponding to an up jump from wk1 to �w
k
1 between

times tk and �t
k to P̂ k2 corresponding to a down jump from �wk1 to w

k
1? Let

P̂ k2 =
wk1�wk1
u�1�wk1

as usual. As de�ned in the Appendix (see proof of Lemma 15),

P̂ k1 solves

u�2
r
=

Z �tk

tk

d2 ((s; 0)) e
�r(s�tk)ds+ e�r(

�tk�tk)

"e�2 �wk1�
r

P̂ k1 +
u�2
r

�
1� P̂ k1

�#

where wk1 2 (wk1; wk1]; e�2 (:) � �2 (:)+� and � is as given in Lemma 12. This
yields

P̂ k1 =
u�2 � d2e�2 �wk1�� u�2 � w

k
1 � wk1
wk1 � d1

The formulas for P̂ k1 correspond to those in Step 5 with a replaced by
wk1 and b by w

k
1. In addition �2

�
wk1
�
is replaced by e�2 �wk1� for some wk1 2
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(wk1; w
k
1]. As in Step 5 it follows that P̂

k
1 > P̂ k2 if

u�2 � d2
wk1 � d1

>
e�2 �wk1�� u�2
u�1 � wk1

:

If we had �2
�
wk1
�
on the RHS the inequality would follow by the same

reasoning (as in Step 5). However if � > 0 (recall that e�2 (:) = �2 (:) + �) is
chosen small enough the inequality is preserved, indeed uniformly as clari�ed
in the next paragraph.

By Lemmas 11-13 there exists " > 0 such that for all � � e� , w+1 (�) �
u�1 � " uniformly across (z1; z2) 2 (0; 1)2 and possible equilibria. Hence
u1 ((n;+1)) � u�1 � " and �wk1 � u�1 � ". It follows that there exists �0 > 1
such that

�1 (s) � �0�2 (s) for all s.

Fixing " > 0 we may choose � > 0; small enough so that for some � 2 (1; �0)
we also have �

1� P̂ k1
�
�
�
1� P̂ k2

��
for all k = 1; :::;K

uniformly across z1, z2 and possible equilibria.

Step 9. P2 (0) �= 1 for z1; z2 �= 0:
To complete the proof we show that when the perturbation probabilities

z1; z2 are small, 2 must concede with probability close to 1 at time zero,
which, as noted earlier, establishes the desired lower bound on 1�s expected
payo¤.

Recall that

�1 � 1� bF1(e�) = (1� P 01 )A1
�2e� � 1� bF2(e�) = (1� P 02 )A2(1� bPK+12 )

where Ai = e�
R t(e�)
0 �i(s)ds(1� bPi(1)):::(1� bPi(K)), and Pi(0) = bPi(0) is the

initial probability with which player i concedes.
It follows that

�1 � (1� P1(0))A�2
�2e�(1� P2 (0))(1�cP2(K + 1))

� [
�1

(1� P1 (0))
]1=�

�2
�1
� ���12 � (1� P2 (0))�

(1� P1 (0))
� a�2 (5)
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where a2 � e� �1� P̂2 (K + 1)
�
> 0 and � > 1 is as de�ned in Step 8.

This analysis applies to any z1; z2. Suppose z2
z1
� R and �2(
2; z2) � �.

Then, as shown in the proof of Lemma 4 of Section 3,

�2
�1
� RC

for a given R 2 (0;1) and some �nite constants B;C independent of (z1; z2).
Returning to (5) we obtain

RC(z2B)
��1 � (1� P 02 )�

(1� P 01 )
� a�2

Hence P 02 � 1 � (RC)
1
�
�
1� P 01

� 1
� 1
� (z2B)

��1
� , which is close to 1 for

� > 0 small enough and z2 � �. Normal player 1�s payo¤ is at least P2 (0)u�1+
(1� P2 (0)) d1; which in turn is at least u�1 �

�
2 for � small enough and

(consequently for) P2 (0) close enough to 1. (Recall that d1 is the lowest
possible payo¤to 1 in the stage game G): This completes the proof of Lemma
5, from which Theorem 2 follows, as noted earlier.

5 Existence of Equilibrium

This Section establishes the existence of perfect Bayesian equilibrium (PBE)
for a wide class of perturbed bargaining games. For any such game G(z) (de-
�ned in Section 2), we de�ne in turn three more games, each more tractable
than the last. The �rst simpli�cation involves replacing G(z) with a conces-
sion game. From this is de�ned a concession game in discrete time, which
is then truncated to yield one that is equivalent to a discrete, �nite-horizon
game. Standard arguments (Nash 1950b) guarantee that this last game has
a Nash equilibrium.

It then remains to show that this equilibrium can be extended to Nash
equilibrium in the games from which the simplest game was derived, and
�nally to a PBE of G(z): Moving back to continuous time requires some
analysis of sequences of discrete-time games. Going from the concession
game back to G(z), the game of interest, is a greater challenge. As pointed
out in the preceding Section, players might, in equilibrium, reveal rational-
ity but not accept the opponent�s current o¤er. This leads to potentially
intractably complex equilibrium behavior, and to continuation payo¤s that
may depend on player i�s reputation at the time when j reveals rational-
ity. Nonetheless, we are able to use the relatively simple (albeit possibly
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highly nonstationary) equilibrium proved to exist in C(z) to construct a
PBE of G(z) in which payo¤s when i reveals rationality depend on the date
at which this occurs and on the initial postures (but not on reputations at
that date).

Given a bargaining game G(z); the concession game C(z) associated with
G(z) is identical with G(z) except that after the choice of any pair of postures
(
1; 
2), in the subsequent game a player�s only options are to stick to her
initial posture or to concede. We do not allow her to adjust her demand
even at integer times, with one exception: if at some date (n;�1) player i
moves �rst and according to the initial postures (
1; 
2); player j�s demand
at (n; 1) would be more than compatible with i�s demand, then i is allowed
to increase her demand to make it exactly compatible. In this situation if
i does not increase her demand su¢ ciently then j is allowed to increase his
demand to the point of exact compatibility. In C(z); revealing rationality
ends the game; it is free of the complications alluded to in the preceding
paragraph.

We will consider discrete time versions of the concession game which we
index by � 2 (0; 1) and which di¤er from the original (concession) game
only in that players move discretely within rounds. That is, in round n,
player 1 moves singly at times (n+�) ; (n+ 3�); : : : and so on, and player
2 moves singly at (n+ 2�); (n+ 4�); : : : and so on, the alternating pattern
continuing until (n+W�) where W satis�es

W� < 1 � (W + 1)�

(The dates corresponding to these times are (n+�; 0) ; (n + 2�; 0) and so
on.) Denote such a game C (z;�).

We now de�ne truncated concession games. In a �� -truncated concession
game, if play reaches date �� , both players must conform to their initial
postures thereafter. Denote such a game C(z;�; ��): We denote by C(z; ��)
the continuous time game derived by truncating C(z) at �� .

Notice that C(z;�) is a standard extensive form game in which:

� at an initial date, Nature chooses types of both players simultaneously

� next, players announce their postures

� subsequently, they play the concession game de�ned by their initial
choice of postures (
1; 
2)

A behavioral type 
i can only announce 
i and play according to 
i. A
normal type of player i can announce any 
i 2 �i and moreover, may subse-
quently deviate from the announced 
i by accepting the opponent�s current
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o¤er. Note �nally, that when t (��) <1, the truncated game C(z;�; ��) can
be expressed as a �nite extensive form game: since after �� even normal play-
ers can only conform with their initial postures, we can make all the nodes
at date �� terminal nodes, with the appropriate speci�cation of payo¤s.

Several lemmas culminating in Lemma 23 are stated and proved in the
Appendix.

Lemma 23 The concession game C (z) has a Nash equilibrium.

We now turn to G (z) ; the actual game of interest. First consider G (0),
the bargaining game of complete information (that is, z = 0).

Recall that

ui = minfuij(u1; u2) 2 ��g
ui = maxfuij(u1; u2) 2 ��g

where �� is the set of strictly e¢ cient and individually rational payo¤s in
the convex hull of feasible payo¤s of the (�nite) stage game, G.

Lemma 24 The set of perfect Bayesian equilibrium payo¤s of G (0) is
a superset of ��:
Proof. Let mi be a strategy for i which minimaxes player j. The following
pair of strategies de�nes a PBE for any a 2 [u1; u1]

Player 1 plays (a;m1) initially

Player 2 plays (�2(a);m2) initially

If 2 deviates to a more aggressive demand, player 1 plays (u1;m1) and
player 2 plays (�2(u1);m2) when it is next their turn to make o¤ers. Con-
versely for player 1. Moreover, following any deviation to an incompatible
demand by a single player at the beginning of a round, the deviator imme-
diately accepts the opponent�s equilibrium o¤er while the player who did
not deviate waits for her o¤er to be accepted. Subsequent single-player de-
viations which yield incompatible demands are responded to in the same
manner. Suppose at the beginning of round n both players deviate from
the prescribed (demand, action) pairs as given by the rules above. Let i be
the player who moves at (n;�1) and j the player who moves at (n;+1): If
j�s �ow payo¤ in round n does not exceed i�s o¤er to j then j�s prescribed
strategy is to accept i�s o¤er at (n;+2) (and at all subsequent dates in that
round conditional upon the game not having terminated prior to that date)
and i�s strategy is to wait for her o¤er to be accepted. If this condition
does not hold for j but does for i then the prescription is as above with
the roles of i and j reversed. If both players��ow payo¤s strictly exceed
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what they have been o¤ered, let b be player i�s round n �ow payo¤. Then
neither player concedes in round n and at the beginning of the next round
prescribed behavior from that point on is as described at the beginning of
the proof, with b replacing a and player i replacing player 1: This completes
the recursive description of the strategy pro�le.

It may be veri�ed that this pair of strategies de�nes a PBE. By an
analogous argument, (�1 (u2) ; u2) is a PBE payo¤ of G(0) for any u2 2
[u2; u2] :

Lemma 24 yields an elementary �perfect folk theorem�for the e¢ ciency
frontier for this class of complete information bargaining games. (Compare
to Busch and Wen (1995); see footnote 2.)

To construct from any NE of C(z) a PBE of G(z), we employ an as-
sumption not needed for our characterization results in Sections 3 and 4.

De�nition 2 A posture 
i 2 �i is non-manipulable if after any history and
at the beginning of any round, player j is strictly better o¤ accepting player
i�s current o¤er than adopting a strategy of waiting for a future o¤er under
the hypothesis that player i will conform with 
i forever after.

Assumption 4 (Non-Manipulability) All postures 
i 2 �i i = 1; 2 are
non-manipulable.

After any history, a posture 
i explicitly o¤ers the opponent j a contract
with a certain present discounted value for j. Assumption 4 rules out absurd
postures that give rational j an incentive to refuse the o¤er even when j is
sure i is the behavioral type 
i.

Theorem 3 (Existence) Let G(z) be a bargaining game which satis�es As-
sumption 4. Then G(z) has a perfect Bayesian equilibrium.

Theorem 3 follows directly from Lemma 25 below and our existence
result for C (z) :

Lemma 25 Given Assumption 4, if C(z) has a Nash equilibrium, then
G(z) has a perfect Bayesian equilibrium.
Proof. Fix a Nash equilibrium � of C(z):Consider a strategy pro�le in G(z)
such that a normal player i mimics postures in �i with the same probability
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with which normal i mimics postures in the equilibrium � of C(z); and for
any pair of postures (
1; 
2) :

(i) at dates (n;�1) and (n;+1); n 2 N , prior to which neither player has
revealed rationality, players conform with their postures 
i. They reveal
rationality only at other dates (that is, by accepting an opponent�s standing
o¤er at that date). The only exception is in the event that the postures
would lead to more than compatible demands at some �rst date (n;+1):
In this case normal player i who has the move at (n;�1) makes the just
compatible demand �i (uj((n;+1))) and chooses the action mi, where mi is
a strategy for i which minimaxes j. If i chooses some ui < �i (uj((n;+1)))
then normal j chooses (�j(ui);mj). This follows the treatment of the more
than compatible case in the concession game.

(ii) each player�s distribution over concession times is the same as in �:
(iii) after a deviation from property (i) by player j alone, a normal i

plays the (demand, threat) pair (ui;mi) when it is next player i�s turn
to make a demand. Thereafter i adopts the same strategy which yields
the PBE payo¤ pair

�
ui; �j(ui)

�
in the full information game G(0). Normal

player i never accepts j�s o¤er, and j always accepts i�s o¤er. If player i
is behavioral, by the non-manipulability assumption it is optimal for j to
accept i�s o¤er at the beginning of the round following the revelation of
rationality by j. In the out-of-equilibrium event that j does not accept and
the next round is reached, if rational player i�s o¤er reveals that i is rational
then in the ensuing full information game it is again optimal for j to accept
i�s equilibrium o¤er right away. On the other hand, if i�s o¤er does not reveal
rationality player j should also accept, since acceptance is a best response to
i�s strategy, whether i is behavioral (by the non-manipulability assumption)
or normal.

(iv) if both players deviate from property (i) and their o¤ers are not
compatible, let (ui;mi) denote player i�s (o¤er, action) pair in the round in
question.

(a) If for player j, �j (ui) weakly exceeds j�s �ow payo¤ in that round
(and if the symmetric statement is not true for player i), then from the next
round onward players play a PBE of the continuation game which gives j a
payo¤ �j (ui) and i a payo¤ ui. Within the round, j�s strategy is to concede
immediately at all dates, and i does not concede at any date. If instead
both players have received o¤ers weakly exceeding their �ow payo¤, follow
the instruction in (iii) above with j set to 1.

(b) If both players��ow payo¤s strictly exceed what they have been
o¤ered, respectively, let a be 1�s current-round �ow payo¤. Assign to the
next round the PBE giving 1 the payo¤ a and 2 the payo¤ �2 (a). In the
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current round neither player ever concedes.
It is easy to verify that the strategy pro�le de�ned above is a perfect

Bayesian equilibrium of G(z)

6 Conclusion

In�nitely repeated games have an extreme multiplicity of equilibria. This
remains true when players can o¤er one another long-term contracts. We
show that if a two-player repeated game with contracts is perturbed slightly
by the introduction of behavioral types on each side, the players�expected
discounted payo¤s vary only negligibly across all perfect Bayesian equilibria.
Those predicted payo¤s are almost independent of the exogenous distribu-
tion of behavioral types, as long as the �Nash bargaining with threats�type
is one of the behavioral types on each side.

More concisely, the folk theorem is replaced by a speci�c prediction. A
player will do well by following the advice of Nash (1953) regarding her
demand, and her action while waiting. A player gains essentially nothing
by imitating a dynamic behavioral type rather than the static NBWT type.
Establishing this requires arguments quite di¤erent from those in the exist-
ing literature. We introduce a hybrid discrete/continuous time model that
facilitates the analysis of the war of attrition.

One would like to know how behavior in a repeated game depends on
the properties of the one-shot game. How much advantage is attached to
the ability to hurt an opponent? Is it important whether price or quantity,
for example, is the strategic variable? Do �xed costs a¤ect the division of
surplus? Our results allow the application of �Nash bargaining with threats�
to give questions of this kind a relatively simple treatment.
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Appendix

Section 3: Stationary Postures

Proof of Lemma 1. Fix a PBE � and postures (
1; 
2). Suppose w.l.o.g.
that i = 1 and j = 2. Between rounds the only way for 2 to reveal rationality
is to accept 1�s standing o¤er in that round. Hence if t is not an integer the
result follows trivially. Now suppose that t is an integer and furthermore
that 2�s turn to change his (demand, action) pair at t comes after 1�s : Then:

Step 1 There exists eT <1 such that 2 accepts 1�s demand with prob-
ability 1 by t+ eT if 
1 continues to be played until t+ eT .

Since (1) �2(u1) > max
m0
2

d2(m
0
2;m1) (2) player 2 is impatient (3) 2�s payo¤s

in G are bounded above (G is �nite), it follows that there exist � > 0 and
T < 1 such that player 2 will accept 1�s o¤er right away unless 2 believes
that 1 will reveal rationality with probability at least �, between t and t+T .

(To see this, let � satisfy

�u2 + (1� �)max
m0
2

d2(m
0
2;m1) < �2(u1)

and T <1 satisfy

�u2 + (1� �)
�
(1� e�rT )max

m0
2

d2(m
0
2;m1) + e

�rTu2

�
< �2(u1):)

Conditional upon player 2 not accepting 1�s o¤er and upon 1 continuing
to conform with 
1 until t + T , a similar conclusion follows between t + T
and t + 2T , and so on. Since �1(
1) > 0; the posterior probability �1 that
1 is behavioral at t is strictly positive, and conditional upon conformity by
1 and non-acceptance by 2 the posterior probability that 1 is behavioral
at t + nT is �1

(1��)n . Since it is also necessary that
�1

(1��)n � 1, this leads

to contradiction for large n. It follows that there exists T < 1 such that
player 2 accepts 1�s demand u1 by T with probability 1, conditional upon
1 continuing to conform with 
1 between t and t+ T . Suppose T is chosen
such that the preceding statement is false for any eT < T .

Step 2 T = 0
Suppose not. Then eu2; 2�s demand immediately prior to t+ T ; exceeds

�2(u1); and there exists " > 0 such that 1 strictly prefers u1e
�" to �1(eu2). It

follows that conditional upon sticking with 
1 until t+ T �", 1 will continue
to stick with 
1 with probability 1 until t+ T . Therefore 2 should accept
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1�s demand u1 with probability 1 strictly prior to t+ T , contradicting the
de�nition of T .

This completes the proof for the case under consideration. Finally sup-
pose that 2 moves before 1 at integer t: The preceding argument implies that
if 1 sticks with 
1 then 2 accepts 1�s o¤er immediately. Hence 1�s payo¤ is
at least u1. On the other hand, by sticking with 
2; player 2 can guarantee
herself at least �2 (u1) : (If 1 reveals rationality at t, then the preceding two-
step argument with the roles of players 1 and 2 reversed, implies that 2�s
payo¤ is u2 > �2 (u1) : If 1 sticks with 
1; player 2 may accept 1�s o¤er at
the beginning of round t:) Hence 2�s payo¤ from the equilibrium revelation
of rationality at t is at least �2 (u1) : Since (u1; �2 (u1)) is an e¢ cient payo¤
pair, the conclusion follows for this case also.

Section 4: Nonstationary Postures

Lemma 6 There exists � with t(�) <1 such that 1� F2(�) = �2.
Proof. By our regularity assumption, max

m0
2

d2(m
�
1;m

0
2) < u�2. The rest of the

argument is virtually identical to Step 1 of the proof of Lemma 1.
Lemma 7 Consider equilibrium in the continuation game following

the choice of postures (
�1; 
2). Suppose that neither player has revealed
rationality prior to date � , and that 2 reveals rationality at � and 1 does
not. Then the resultant equilibrium continuation payo¤ to normal player 1
is at least u�1:
Proof. The lemma follows directly from the proofs of Lemma 1 and Lemma
6. Note that if � = (n;�1) for some integer n; then player 1 may stick with

�1 at (n; 1) and the two-step argument of Lemma 1 implies that 2 will accept
1�s o¤er immediately at (n; 2); yielding the payo¤ pair (u�1; u

�
2). However,

depending on the equilibrium, it is possible that normal 1 reveals rationality
at (n; 1) also, and in the continuation game which follows obtains more than
u�1:

Recall that di is the lowest possible payo¤ to player i in G; and that
ui and ui are respectively the minimum and maximum payo¤s to i on the
(strictly) Pareto e¢ cient frontier of G:

Lemma 10 If t(��) = 0 then a rational player 1�s payo¤ is at least
(1� �2)u�1 + �2d1:
Proof. Recall from Step 1 of the proof of Lemma 5 in the text that �� =
inff� ju�1 � �1( u2(�)) or 1 � F1(�) = �1 or 1 � F2(�) = �2g: We argue
that if t(��) = 0 the strategy �always conform with 
�1� yields a rational
player 1 a payo¤ which is at least (1��2)u�1+�2d1. If u�1 � �1(u2(�

�)) then
the conclusion follows directly. If (1 � F2(�

�)) = �2 then normal 2 reveals
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rationality for sure by ��: If 1 conforms with 
�1 the result now follows from
Lemma 7. Finally, if (1 � F1(�

�)) = �1 then, in the event of player 1
not revealing rationality at ��, a rational player 2 should reveal rationality
immediately thereafter. The conclusion again follows directly.

The faster rate of concession by 1 (both continuous and lumpy) is driven
by the GAP between what 1 can extract from 2 by revealing rationality
(or by conceding to 2�s current demand) and 1�s �reasonable�demand u�1.
If the gap goes to zero then the di¤erence in the rates goes to zero also
and 1 no longer �wins� the �race� by an overwhelming margin and the
argument that 2 needs to give in at the start with probability close to 1
breaks down. The next lemma establishes that this gap (which is date-
dependent) is uniformly bounded above zero, until 2�s posterior probability
of being behavioral reaches a threshold ~�.

Let w+1 (�) be the expected equilibrium payo¤ to normal 1 at � condi-
tional upon neither player revealing rationality strictly prior to � .

Lemma 11 For all 
2 2 �, there exist { 2 (0; 1) and " > 0 such
that {d1 + (1� {)u�1 > u�1 � " and such that for all (z1; z2) 2 (0; 1)2 and
for any perfect Bayesian equilibrium of G (z1; z2) it is the case that in
the continuation game following the choice of postures (
�1; 
2), either (1)
t(��) = 0 or (2) for all � � �� if �2 (�) � { then w+1 (�) � u�1 � ":
Proof. Suppose t(��) > 0. Since 
�1 and 
2 have a �nite number of states,
there exists "1 > 0 such that �1 (u2 (�)) < u�1 � "1 for all � such that
u2 (�) > u�2 (equivalently �1 (u2 (�)) < u�1). Clearly there exist 0 < "2 < "1
and � > 0 such that u�1 � "1 < e�r� (u�1 � "2) +

�
1� e�r�

�
d1; where d1 is

the lowest possible payo¤ to 1 in G: (The r.h.s. of the preceding inequality
is the payo¤ to 1 if 1 waits for time � to receive (u�1 � "2) while receiving
the lowest possible �ow payo¤ in the interim.) It follows that if at some � ,
w+1 (�) � u�1 � "2 for the �rst time, then player 1 will reveal rationality with
probability zero for an interval of time � > 0 prior to � . (Note that we can
choose � > 0 such that � < t(�):)

For normal 2 not to concede with probability 1 for � units of time
prior to � , it must be the case that u�2 � e�r�u2 +

�
1� e�r�

�
d2, where

u2 is normal 2�s expected equilibrium payo¤ at � and d2 is 2�s (discounted
average) �ow payo¤ in the interim. By the de�nition of 
�1 and m�

1, 2�s
payo¤ in any round must be less than or equal to u�2; and by our regularity
assumption must, in fact, be strictly less. Since each posture has a �nite
number of states there exists a > 0 such that d2 < u�2 � a: Hence u2 �
u�2 + b for some b > 0. It follows that if w+1 (�) � u�1 � "2; then conditional
upon 2 being normal, 1�s expected payo¤ at � is at most u�1 � "3 for some
"3 > 0. Consequently w+1 (�) � �2 (�)u1 + (1� �2 (�)) (u�1 � "3). Let " =
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min
�
"2;

"3
2

	
: Clearly there exists { 2 (0; 1) such that {d1 + (1� {)u�1 >

u�1 � " and �2 (�)u1 + (1� �2 (�)) (u�1 � "3) < u�1 � " for all �2 (�) � {.
(Set { = 1

2 min
n

"
u�1�u1

; "
u1�u�1+2"

o
): The result now follows for " and { so

de�ned.

The argument comparing the rates of concession by 1 and 2 respectively
also requires a tight connection between the payo¤ from revealing rationality
to player 1 and the corresponding payo¤ to a normal player 2. When the
posterior probabilty of a behavioral player 2 is "large" (above ~� ) it is possible
both that normal 1 can obtain a payo¤ v21 (�) in excess of u

�
1 and that normal

2 obtain a payo¤ in excess of �2
�
v21 (�)

�
:

Lemma 12 Let { be de�ned as in Lemma 11. For any � > 0 there
exists ~� 2 (0;{) such that for all (z1; z2) 2 (0; 1)2 and for any perfect
Bayesian equilibrium of G (z1; z2) it is the case, in the continuation game
following the choice of (
�1; 
2), that for all � � �� if �2 (�) � ~� then v22 (�) �
�2
�
v21 (�)

�
+ �.

Proof. Proof. Let X be 1�s expected payo¤ if player 2 is behavioral
and x be 1�s expected payo¤ if player 2 is normal. By de�nition, v21 (�) =
�2 (�)X + (1� �2 (�))x. Then v21 (�) � �2 (�)u1 + (1� �2 (�))x. Hence

x � v21 (�)� �2 (�)u1
1� �2 (�)

:

Consequently v22 (�) � �2 (x) � �2

�
v21(�)��2(�)u1

1��2(�)

�
:

It follows that for any � > 0, there exists ~� strictly positive and small
enough such that if �2 (�) � ~�, then v22 (�) � �2

�
v21 (�)

�
+ �; as required.

De�nition 3 e�2 (:) � �2 (:) + �:

The function e�2(:) appears in Step 8 of the proof of Lemma 5 in the text
and in Lemma 15 below.

Lemma 13 For any equilibrium consider the continuation game follow-
ing the choice of (
�1; 
2). Let ~� be de�ned as in Lemma 12. Then either
t (��) = 0 or �2 (�

�) � ~�.
Proof. Suppose t (��) > 0 and �2 (�

�) < ~�. Then 1 � F2 (�
�) > �2. (If

1� F2 (��) = �2 then �2 (�
�) = 1 > ~�): Also, by Lemma 11, w+1 (�) < u�1 � "

for all � � �� (since �2 (�) � �2 (�
�) � ~� for all � � ��). From the de�nition

of �� it therefore follows that 1�F1 (��) = �1. Consequently normal player
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2 must reveal rationality/concede immediately after ��. Hence, w+1 (�
�) �

~�u1 + (1� ~�)u�1 > u�1 � ", which contradicts Lemma 11.
The discussion below elaborates elements of Steps 5 and 7 in the text, in

particular the discussion of repeated down jumps. As in the text, consider
the lth down jump and suppose that player 1�s payo¤ b(l) after the lth down
jump is strictly less than 1�s payo¤ a(l + 1) at the �start� of the (l + 1)th

down jump. Between these down jumps we wish to argue that there are
o¤setting up jumps.

Recall from Step 5 of the proof of Theorem 2 that there is a formula for
the conditional concession probability by player 1 that is needed to compen-
sate player 2 for waiting while player 1 waits for an upward jump of a given
size in 1�s value. Call this the canonical formula. There are complicated
cases in which this formula does not apply directly. For example, suppose
that an increase in value from b to a at some time �2 casts a shadow over the
interval [�0; �2]. There might be some date �3 2 (�0; �2) at which the con-
tinuation equilibrium rewards 1 for revealing rationality (but not conceding)
just enough so that he is indi¤erent between doing so or waiting until �2.
His indi¤erence means that there are many combinations of concession prob-
abilities at �1 and �2 by 1 that are compatible with maximizing his utility,
and which exactly compensate 2 for her wait from �0 to �2. In such cases
one cannot use the canonical formula to associate with the jumps at �2, a
particular concession probability by 1. Various other possible complications
must also be addressed, as will become evident in the proof of Lemma 15.

Because of the indeterminacy just described, it is important to look at
the interval [�0; �2] as a whole, rather than at the concession episodes at �1
and �2 separately (and hence the introduction of De�nition 4).

De�nition 4 The interval I is an interval of zero concession by player 2 if
for all � 0; � 00 2 I; F2(� 0) = F2(�

00). Such an interval is a maximal interval of
zero concession by player 2, if for all I+ � I; I+ 6= I there exist � 0; � 00 2 I+
such that F2(� 00) > F2(�

0):

Lemma 14 asserts that between any two episodes in which 1�s value falls
over a certain range, say from 20 to 14, there must be a sequence (called
a �spanning sequence� - see De�nition 5 following Lemma 14) of (weakly
overlapping) up jumps whose union covers the interval [14; 20]. For example,
if the value falls from 22 to 13, it might later fall from 20 to 14, but before
doing so it would have to somehow rise to at least 20. Associated with these
up jumps are corresponding intervals of zero concession by 2.

Lemma 14 Suppose for some n0; n00 2 N such that n0 < n00;
(i) P2(n) = 0 for all n 2 N ; n0 < n < n00
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(ii) P2(n0); P2(n00) > 0 and
(iii) w1 ((n0;+2)) < maxfv21((n00;�2)); v21((n00; 0))g.
Then there exists a sequence of maximal intervals of zero concession by 2,
I(q); q = 1; : : : ; Q; with associated left and right end-points �(q) � inf I(q)
and �(q) � sup I(q) respectively, such that

w1(�(1)) � w1((n
0;+2)), w1(�(Q)) � maxfv21((n00;�2)); v21((n00; 0))g

w1(�(q + 1)) � w1(�(q)) q = 1; : : : ; Q� 1 and (6)

w1(�(q)) < w1(�(q)) q = 1; : : : ; Q (7)

(n0;+2) 4 �(1) � �(Q) 4 (n00;+2); �(q) � �(q + 1); q = 1; : : : ; Q (8)

Proof. Since w1 ((n0;+2)) < maxfv21((n00;�2)); v21((n00; 0))g, there must
exist a �rst date b� � (n0;+2) at which v21(b�) > w1 ((n

0;+2)). It follows
that player 1 does not concede in an interval immediately prior to b� . Hence
neither does 2 in an interval prior to b� . We now argue that �2 (b�) = 0 (recall
that �2 (b�) is the conditional probability with which 2 concedes at date b�).
Clearly b� = (n; k) for integer n and k 2 f�1;+1;+2g : Unless k = 2 the
result follows by de�nition. Now suppose k = 2 and �2 (b�) > 0. Then for
the usual reasons �1 (b�) = 0 (if not, both players would strictly prefer to
delay conceding momentarily). Given that �1 (b�) = 0 and that 1 does not
concede in an interval immediately prior to b� ; player 2 should strictly prefer
to concede prior to b� ; a contradiction. It follows that there exists a maximal
interval I (of zero concession by 2) with associated left and right end-points
� and � respectively, containing b� ; such that w1(�) � w1 ((n

0;+2)). It is,
however, possible that w1(�) < w1 ((n

0;+2)). In this case, t(�) < n00 and we
can repeat the preceding argument replacing the starting date (n0;+2) for
the preceding argument, with � . (That is, we look for the �rst date b� � �
at which v21(b�) > w1 (�) ;and so on.) Proceeding in this manner we obtain
a �rst maximal interval (�(1); �(1)) for which w1(�(1)) � w1 ((n

0;+2)) and
w1(�(1)) < w1(�(1)). If w1(�(1)) < maxfv21((n00;�2)); v21((n00; 0))g, �(1)
now plays the role of (n0;+2) in the initial argument. And so on, until the
required sequence is obtained. Since P2(n00) > 0, t (�(q)) � n00 for all q.

De�nition 5 A sequence as speci�ed in Lemma 14 is said to span [b; a],
where b = w1 ((n

0;+2)) and a = maxfv21((n00;�2)); v21((n00; 0))g:

By our regularity assumption regarding generic type sets (Assumption
3), �1 (u2 (�)) 6= d1 (�) for all � 4 ��. It follows that, if within a round
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n there is zero concession by player 2, conceding at (n;+2) strictly dom-
inates conceding at any subsequent date within round n for player 1 if
�1 (u2 (�)) > d1 (�), while if the opposite strict inequality is satis�ed, con-
ceding at ((n+ 1);�2) strictly dominates conceding at a prior date within
the round. Hence within an interval such as I(q), player 1 reveals rational-
ity or concedes only at the beginning, in between, or at the end of rounds
contained within I(q).

For a sequence of maximal intervals as in Lemma 14 and De�nition 5, let
x = 1; : : : ; X index the �nite set of instances at which 1 concedes at a date
in I(q) for some q 2 f1; : : : ; Qg or at �(Q): (It is possible that �(Q) =2 I(Q);
however if 1 concedes with positive probabilty at �(Q) our proof requires
that we keep track of this.) Let P x1 denote the corresponding conditional
probability of concession by 1.

Lemma 15 translates the probabilities P x1 just de�ned, into modi�ed
probabilities P̂ 11 ; : : : ; P̂

Y
1 such that (i) the overall probability of concession

by 1 is weakly lower according to the modi�ed probabilities than the true
probabilities, and (ii) the modi�ed probabilities are less than or equal to
the numbers one would obtain by applying the canonical formula (see Step
5 in the text) to the respective up jumps in 1�s value that occur in the
maximal interval in question. Property (ii) is useful because if a probability
P1 is obtained by applying the canonical formula to an up jump, it can be
compared easily (see Step 5) to the concession probability by 2 associated
with a down jump over the same interval. Both (i) and (ii) are consistent
with our need to underestimate 1�s concession probabilities (see Step 6).

Lemma 15 Consider a sequence of maximal intervals of zero concession
by 2 which span [b; a] and suppose that �2(�(Q)) � e�, where e� is as de�ned
in Lemma 12 and �(Q) is as de�ned in Lemma 14. Let P 11 ; :::; P

X
1 be a

sequence of (conditional) probabilities as speci�ed above. Then there exist a
sequence of probabilities P̂ 11 ; : : : ; P̂

Y
1 and a corresponding sequence of values

and dates wy1; w
y
1; w

y
1 2 (w

y
1; w

y
1] ; ty and, ty, y = 1; : : : ; Y , such that:

wy1 < wy1

wy1 < wy+11 � wy1

wy1 < wy+11

ty � �ty

w11 � b; wY1 � a
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where the P̂ y 01 s solve the �canonical� equation

u�2
r
=

Z �ty

ty

e�r(s�ty)d2 ((s; 0)) ds+ e
�r(�ty�ty)

"
~�2 (w

y
1)

r
P̂ y1 +

u�2
r

�
1� P̂ y1

�#

and �
1� P 11

�
: : :
�
1� PX1

�
�
�
1� P̂ 11

�
: : :
�
1� P̂ Y1

�

Proof. Let I be a maximal interval as de�ned above and let � and � ,
respectively be the left and right end points of the interval. Let �1; : : : ; �L
be the �nite set of dates (in ascending order) at which 1 reveals rationality
within I[ f�g with corresponding conditional probabilities P l1; l = 1; : : : ; L:
De�ne

�0 �
�
(t(�);+2) if t(�) 2 N

� otherwise

tl � t(� l):

Let wl2 be normal player 2�s expected (average discounted) payo¤ at
date � l, conditional upon player 1 not having revealed rationality until � l
(inclusive). Then

wl2
r
=

�Z tl+1

tl

d2 ((s; 0)) e
�r(s�tl)ds

�
+e�r(tl+1�tl)

"
v22(� l)

r
P l+11 +

wl+12

r
(1� P l+11 )

#
(9)

where v22(�) denotes the expected equilibrium payo¤ to normal player 2,
conditional upon 1 revealing rationality at � .

We will de�ne a new sequence �̂0; : : : ; �̂K and corresponding sequence of
probabilities P̂ 11 ; : : : ; P̂

K
1 such that

(1� P 11 ) � � � (1� PL1 ) � (1� P̂ 11 ) � � � (1� P̂K1 )

where P̂ k1 corresponds to an up-jump from wk1 to w
k
1 which can be matched

with a down-jump from wk1 to w
k
1. Furthermore, w

1
1 � w11; w

k
1 < wk+11 � wk1;

and wK1 = wL1 .
The argument proceeds by modifying the original P l1�s in successive steps

such that the modi�ed P l1�s (denote those in generic step s
0 by P l1 (s

0)) yield
a product (1 � P 11 (s

0)) � � � (1 � PL1 (s
0)) which is weakly higher than the

corresponding product from the preceding step.
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Within any maximal interval of zero concession (by 2), we wish to assign
concession probabilities by 1 in the most conservative way, so that our mod-
i�ed concession distribution function bF1, will underestimate 1�s probability
of conceding by any date, as desired. The following procedure achieves this,
using basic properties of the incentive constraints of both players. Begin by
de�ning a sequence

q(0) = 0; and for k = 1; : : : ;K

q(k) = max

�
l

���� v21(� l) � v21(�);
� = � q(k�1)+1; : : : ; � l:

�
The new sequence terminates at K such that q(K) = L. Observe that
v21(� q(k)) < v21(�) for all � � � q(k): Consequently v21(� q(k)) is strictly increas-
ing in k.

De�ne
k�(l) = minf� q(k) j q(k) � lg

Let

P l1(0) = P l1 l = 1; : : : ; L

and wl2(0) = wl2 l = 0; 1; : : : ; L

We seek to de�ne P l2(1) and w
l
2(1) inductively, starting with l = L and

moving backwards to l = 0 (or 1 as the case may be). Recall that s0 in
P l2 (s

0) refers to the s0-th step in modifying the initial P l1�s. Each step itself
involves an inductive de�nition starting with l = L and moving backwards
to l = 1.

We �rst argue that wL2 (0) � u�2: This argument involves considering a
number of di¤erent cases.

a. Suppose t (��) =2 N . Then by standard arguments �1 (��) = �2 (��) = 0.
By de�nition of �� , conceding immediately after �� is in the support
of normal 2�s equilibrium strategy (F2 (�) > F2 (��) for all � � ��).
It follows that wL2 � u�2 with strict inequality if �L � �� (recall that
against 
�1, 2�s �ow payo¤ is always strictly less than u

�
2).

When t (��) = n 2 N there are many sub-cases to consider.

b. �� = (n;+2). For the usual reasons if �i((n;+2)) > 0 then �j((n;+2)) =
0. Clearly if �2 (��) > 0 then �L � �� and the result follows. If, on
the other hand, �1 (��) > 0 then �L = �� and the rest of the argument
is as in a. (Conceding immediately after �� is in the support of 2�s
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equilibrium strategy). Finally, if �1 (��) = �2 (��) = 0 the argument is
as in a.

c. �� = (n;�1). By our de�nition of maximal intervals and �� , �2((n;�1)) >
0 when 2 has the move at (n;�1) and conversely �2((n;+1)) > 0 when
2 has the move at (n;+1). In the former case �L � (n;�1), and in the
latter �L � (n;+1). Now Lemma 7 yields the desired conclusion.

d. �� = (n;�1). Now we must have �2((n;+2)) > 0 when 2 has the
move at (n;�1) and either �2((n;+1)) > 0 or �2((n;+1)) = 0 and
�2((n;+2))) > 0 when 2 has the move at (n;+1). The case �2((n;+1)) >
0 is dealt with in c above and �2((n;+2)) > 0 in b above.

e. �� = (n;�2). Now we must have �2((n;�2)) > 0 unless 2 has the
move at (n;�1). In this case it is possible that �2((n;�2)) = 0
and �2((n;�1)) > 0, when the conclusion follows as in c above. If
�2((n;�2)) > 0 and �1((n;�2)) = 0 then the result follows from
Lemma 7 (and �L � ��).

Finally we are left with the case �2((n;�2)) > 0 and �1((n;�2)) > 0.
The payo¤s to player 2 at (n;�2) are summarized in the table below,
where C stands for concede, NC for not concede and u2((n;�2)) is 2�s
standing demand at (n;�2).

*
2u a

( )( )
2
2, *

22 unu +− ( )( )2,2 −nuC

NC

C NC

1

2

Since u2((n;�2)) > u�2, 2�s indi¤erence condition requires that a < u�2.
Hence wL2 , player 2�s expected payo¤ at �L = (n;�2) conditional upon
1 not conceding and upon 2�s equilibrium randomization, is strictly less
than u�2.

Hence wL2 � u�2: We set w
L
2 (1) = u�2 � wL2 (0) � wL2 :
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At each stage, P l+11 (1) solves the trivial minimization problem:

minx

subject to

wl2(0) � r

Z tl+1

tl

d2 ((s; 0)) e
�r(s�ti)ds+e�r(tl+1�tl)

h
wl+12 (1) + x(~�2(v

2
1(k

�(l)))� wl+12 (1)
i

(10)
and

x � 0 (11)

The de�nition of P l+11 (1) also leads to the de�nition of wl2(1) as follows:

wl2(1) = r

Z tl+1

tl

d2 ((s; 0)) e
�r(s�tl)ds+e�r(tl+1�tl)

h
wl+12 (1) + P l+11 (1)(~�2(v

2
1(k

�(l)))� wl+12 (1)
i

Lemmas 11-13 and the assumption �2(�(Q)) � e� imply v22(�L) � ~�2(v21(k�(L))):
Furthermore we have set wL2 (1) = u�2 � wL2 (0): Comparing equations (9) and
(10) and using the preceding inequalities, it may be directly veri�ed that:

PL1 (1) � PL1 (0) and w
L�1
2 (1) � wL�12 (0):

Analogously, since

v22(� l+1) � ~�2(v21(k�(l + 1))), wl+12 (1) � wl+12 (0)

it follows that at stage (l + 1) of the inductive de�nition,

P l+11 (1) � P l+11 (0) and wl2(1) � wl2(0):

The next step in the argument relies on the result that wl2 (1) � u�2,
l = 0; 1; :::; L � 1. To demonstrate these inequalities we �rst establish the
following useful fact for l = 1; :::L � 1: If wl2(0) < u�2 then k(� l) = �2,
� l+1 = (t(� l); k) (where k = �1 or +1 depending upon when player 1
has the move) and v22(� l+1) < u�2. To see this note that strictly within a
round, player 1 can only reveal rationality by conceding to player 2�s current
demand, which prior to �� must exceed u�2. Furthermore, strictly within a
round player 2 can always obtain u�2 by conceding to player 1. The only
possibility of payo¤s below u�2 arises due to 1 revealing rationality between
rounds in a manner which yields normal 2 less than u�2. Player 2 accepts
this eventuality precisely because of the possibility of positive probability
concession by player 1 a moment earlier at the end of the preceding round
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(� l = (t(� l);�2)) which yields player 2 u2(� l) > u�2 (where u2(� l) is her
standing demand in the preceding round).

These considerations, and the de�nition of �0 directly imply that w02 �
u�2 also. Now we argue that wL�12 (1) � u�2. Recall that w

L
2 (1) = u�2 �

wL2 (0) � wL2 . Suppose, by way of contradiction, that w
L�1
2 (1) < u�2. Since

wL�12 (1) � wL�12 (0); wL�12 (0) < u�2 also. By the preceding discussion this
is only possible if k(�L�1) = �2, t(�L) = t(�L�1) and v22(�L) < u�2. By
Lemma 11 v21(�L) < u�1; hence e�2(v21(�L)) > u�2: Then the de�nition of P

L
1

yields:

PL1 (1) = 0

and wL�12 (1) = 0 + e�r0wL2 (1) = u�2

which contradicts the initial supposition that wL�12 (1) < u�2:
Continue to suppose that the lemma is false and let

l = maxfm � L� 1 j wm2 (1) < u�2g:

Now we can repeat the preceding argument with l replacing L� 1 to obtain
the same contradiction as before.

This demonstrates that wl2(1) � u�2; l = 0; 1; :::; L� 1, as required.
De�ne

wL2 (2) � wL2 (1) = u�2
wl2(2) � u�2; l = 1; : : : ; L� 1
w02(2) � w02(1)

The P l1(2)�s are uniquely de�ned by the equations:

wl�12 (2) = dl�12

�
1� e�r(tl�tl�1)

�
+

+e�r(tL�tL�1)
h
wl2(2) + P

l
1(2)

�e�2(k�(l))� wl2(2)�i
where dl�12 is the average discounted �ow payo¤ to 2 between tl�1 and tl.
Since dl�12 < u�2 (see proof of Lemma 11), the P

l
1(2) so de�ned exist, and are

strictly positive and unique.
Furthermore, we show that

(1� P 11 (1))(1� P 21 (1)) � � � (1� PL1 (1))
� (1� P 11 (2))(1� P 21 (2)) � � � (1� PL1 (2))
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as required. The P 21 (2)�s di¤er from the P 21 (1)�s in that the former are ob-
tained by reducing the continuation payo¤s to u�2 while keeping the initial
value w02(2) unaltered. Much of the rest of the proof is devoted to es-
tablishing that the iterative reduction of continuation payo¤s increases the
compound probability that player 1 does not concede by the end of the L
concession episodes.

Consider

w2 = d̂1
�
1� e�r�1

�
+ e�r�1

�
wa2 + x(&

1 � wa2)
�

wb2 = d̂2
�
1� e�r�2

�
+ e�r�2

�
w2 + y(&

2 � w2)
�

where wa2 ; w
b
2; &

1; &2; d̂1 and d̂2 are �xed, and we think of the probabilities
x and y as functions of w2. (Here wa2 is the continuation value after w2 and
wb2 is the continuation value before w2:)

Di¤erentiating these equations with respect to w2 yields

1 = e�r�1(&1 � wa2)
dx

dw2

0 =
�
&2 � w2

� dy

dw2
+ (1� y)

It follows that

d (1� x(w2)) (1� y(w2))
dw2

= �(1� y) dx
dw2

� (1� x) dy
dw2

< 0

, er�1
�
&2 � w2

�
> (1� x)(&1 � wa2)

, &2 � w2 > e�r�1&1 � e�r�1wa2 � e�r�1x
�
&1 � wa2

�
, &2 � e�r�1&1 > d̂1

�
1� e�r�1

�
Consequently if d̂1 < u�2 and &

2 � &1 > u�2, then indeed

d (1� x(w2)) (1� y(w2))
dw2

< 0 (12)
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Now, if we set

wa2 = wL2 (2); �1 = tL � tL�1

d̂1
�
1� e�r�1

�
= r

Z tL

tL�1

d2(s)e
�r(s�tL�1)ds

&1 = e�2 �v21 (k� (L))�
&2 = e�2 �v21 (k� (L� 1))�
wb2 = wL�22 (1), �2 = tL�1 � tL�2

d̂2
�
1� e�r�2

�
= r

Z tL�1

tL�2

d2(s)e
�r(s�tL�2)ds

then the latter inequalities indeed hold. Observe that w2 represents wL�12 ,
the (L� 1)th continuation value. Hence (12) implies

(1� x (u�2;L)) (1� y (u�2;L))

�
�
1� PL1 (1)

� �
1� PL�11 (1)

�
since

PL1 (1) = x
�
wL�12 (1)

�
PL�11 (1) = y

�
wL�12 (1)

�
and wL�12 (1) � u�2. (The argument L in x (u

�
2;L) indexes the values chosen

for wa2 ; w
b
2; &

1; &2; d̂1; d̂2 and the time arguments in the integral.)
This step yields (only) PL1 (2) = x (u�2;L). Proceeding inductively in

this manner we next obtain PL�11 (2) = x (u�2;L� 1) ; then PL�21 (2) =
x (u�2;L� 2) ; and so on. For instance, the second step would entail wa2 =
wL�12 (2), �1 = tL�1 � tL�2, wb2 = wL�32 (1), &1 = e�2 �v21 (k� (L� 1))�,
&2 = e�2 �v21 (k� (L� 1))� and w2 would represent wL�22 . It follows that

(1� P 11 (1))(1� P 21 (1)) � � � (1� PL1 (1))
� (1� P 11 (1))(1� P 21 (1)) � � � (1� PL�31 (1)) (1� y (u�2;L)) (1� PL1 (2))
� (1� P 11 (1))(1� P 21 (1)) � � � (1� y (u�2;L� 1)) (1� PL�11 (2))(1� PL1 (2))

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

� (1� P 11 (2))(1� P 21 (2)) � � � (1� PL1 (2))
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Finally, we set

P̂ k1 = P
q(k)+1
1 (2)

wk1 = v21(� q(k))

wk1 = v21(� q(k)+1)

tk = t
�
� q(k)

�
�tk = t

�
� q(k)+1

�
to obtain the desired result for a single interval. The extension to the col-
lection of intervals is straightforward.

Lemma 16 uses the collection of up-jump intervals constructed in Lemma
15 to de�ne modi�ed conditional concession probabilities for 2, to be used
in the modi�ed distribution functions of Step 7 in the text. It applies the
formula for P2 from Step 5 to those constructed intervals to get the modi�ed
probabilities for 2; this overestimates (as desired) 2�s probability of conces-
sion (away from 0) because, as Lemma 16 shows, there is a partition of the
actual down-jump range whose elements are subsets of the constructed in-
tervals in question (and by the subdivision result of Step 4, every partition
of that range has an aggregate implication for concession probability which
weakly overestimates the actual probability of concession by 2). Lemma
15 guarantees that the modi�ed concession probabilities it assigns to player
1 yield lower overall concession probability than the true value for 1 (as
desired). Step 8 adapts the analysis for perfectly paired jumps in Step 5
to ensure that the modi�ed up-jump probabilities (uniformly) outweigh the
modi�ed down-jump probabilities.

Lemma 16 Consider the sequence of values wy, wy, y = 1; :::; Y from
the previous lemma. De�ne

P̂ y2 =
wy1 � w

y
1

u�1 � w
y
1

y = 1; :::; Y

and

P2 =
a� b
u�1 � b

:

Then
(1� P2) �

�
1� P̂ 12

�
:::
�
1� P̂ Y2

�
Proof. Consider the sequence of values as de�ned in Lemma 15, and con-
struct the following new sequences vy1; �v

y
1 , y = 1; : : : ; Y where vy1 = �wy�1;

�vy1 = min fa; �wyg, and we de�ne �w0 = b:
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The intervals [vy1; �v
y
1 ] partition [b; a]. Down jumps over the range [b; a]

may be subdivided (see Step 4) into Y down jumps from vy1 to �v
y
1 , y =

1; : : : ; Y respectively. Let ~P y2 denote the positive probability of concession

by 2 associated with a down jump from vy1 to �v
y
1 . Then

�
1� ~P y2

�
� u�1��v

y
1

u�1�v
y
1

by Lemma 9. Let P̂ y2 be de�ned by
�
1� P̂ y2

�
=

u�1� �w
y
1

u�1�w
y
1
, that is, correspond

to a down jump from �wy1 to w
y
1. Then clearly

�
1� ~P y2

�
�
�
1� P̂ y2

�
. Con-

sequently, (1� P2) =
�
1� ~P 12

�
:::
�
1� ~P Y2

�
�
�
1� P̂ 12

�
:::
�
1� P̂ Y2

�
Section 5: Existence

In the notation de�ned in Section 5, let C(z;�k; ��), k = 1; 2; : : : be a
sequence of �� -truncated, discrete-time concession games such that �k 2
(0; 1) decreases monotonically to zero and t (��) <1:

An equilibrium of C(z;�k; ��) is speci�ed by the behavior of the normal
types of both players (�ki ;H

k
i (�j
); 
 2 �)i=1;2 , where �ki (
i) is the proba-

bility with which a normal type of player i mimics 
i 2 �i and Hk
i (� j
1; 
2)

is the probability with which normal i concedes to j by date � (inclusive) in
the game following the choice of types (
1; 
2) 2 �1 � �2.

Let hki (� j
) denote the ex-ante probability that a normal player i con-
cedes/reveals rationality at � , given 
1, 
2. Then

Hk
i (� j
) =

X
� 04�

hki
�
� 0j


�
Since C(z;�k; ��) is a �nite extensive form game, an equilibrium exists.

Let �T = t (��) and de�ne ~Hk
i : [�1; �T ]! [0; 1] as

~Hk
i (s) =

8<:
0 if s 2 [�1; 0)

Hk
i ((s; 0)) if s > 0; s =2 N

Hk
i ((s;+2)) if s 2 N

and ~hki :
�
�1; �T

�
! [0; 1] as

~hki (s) =
X

� : t(�)=s

hki (�)

Lemma 17 There exists � with t(�) < 1 such that for all � 2 [0; 1]
(where � = 0 corresponds to the continuous time concession game) and in
any perfect Bayesian equilibrium of C(z;�), and after any choice of postures
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(
1; 
2), normal player i concedes to player j with probability 1 by date �� ,
conditional upon the game not having terminated prior to �� .
Proof. If the postures (
1; 
2) lead to more than compatible demands at
some �rst date (n;+1); the result follows trivially. If not, the argument is
essentially the same as in Step 1 of the proof of Lemma 1.

Henceforth we take �� to be such that Lemma 17 applies. Consequently
a normal player must, in equilibrium, concede with probability 1 by date �� .
Hence, ~Hk

i is a distribution function (if H
k
i corresponds to an equilibrium).

Note that we have de�ned the ~Hk
i �s over the domain

�
�1; �T

�
(as opposed

to simply
�
0; �T

�
) to clarify that the "tightness" condition referred to below

is satis�ed.
Let N+(��) = f� jt(�) 2 N and � 4 ��g. Since the set of dates in N+(��)

and the set of types for each i are �nite, there exists a subsub...subsequence
(which, abusing notation we also denote by k) for which �ki (
i) and H

k
i (� j
)

converge for all 
i 2 �i, � 2 N+(��) and i = 1; 2.
We now obtain convergence for all � strictly within rounds, that is,

� 2 ((n;+1) ; (n+ 1;�1))

First note that by Helly�s theorem (Theorem 25.9) and Theorem 25.10
(the tightness condition of the latter applies trivially), both from Billings-
ley(1986), there exists a subsub...subsequence (which again we index by k)
such that 8i; 8
 2 � there exists a distribution function ~Hi (�j
) :

�
�1; �T

�
!

[0; 1] such that ~Hk
i (�j
) :

�
�1; �T

�
! [0; 1] converges to ~Hi (�j
) at every

continuity point of ~Hi (�j
).
Lemma 18 Consider C(z;�k; ��) and an associated equilibrium

(�ki ;H
k
i )i=1;2. Fix 
 2 � and consider t 2 (n; n + 1) such that player 1

moves at time t and t � n+3�k. If ~hk1(tj
) > 0 then ~hk2(t��kj
), ~hk1(t�
2�kj
); : : : ; ~hk2(n+2�kj
) are all strictly positive. Similarly if ~hk2(tj
) > 0,
for t � n + 4�k, then ~hk1(t ��kj
), ~hk2(t � 2�kj
); : : : ; ~hk2(n + 3�kj
) are
all strictly positive.
Proof. This follows from the standard war of attrition logic (that is, the only
reason for a player to delay conceding is the possibility that the opponent will
concede in the interim) applied to the discrete-time alternating-move case.
When t = n+2�k, it is possible that ~hk1 (n+�kj
) = 0; since n+2�k is the
�rst date after (n;+1) at which 2 has an opportunity to move, and 2 might
delay conceding because ~hk1 (nj
) > 0 (speci�cally, hk1 ((n;+1) j
) > 0).

Lemma 19 ~Hi(tj
) is continuous at all t =2 N :
Proof. Suppose not and that for some n with t 2 (n; n+1), ~Hi(tj
) has an
upward jump at t of size 2a > 0. For any "0 > 0 there exists " 2 [0; "0] such
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that t� " and t+ " are continuity points of ~Hi. Hence, by Helly�s theorem,
limk"1[ ~H

k
i (t+ "j
)� ~Hk

i (t� "j
)] � 2a.
Hence, there exists k <1 such that for all k � k, ~Hk

i (t+ "j
)� ~Hk
i (t�

"j
) � a. Consequently for small enough "0 > 0, player j should not concede
between (t�2") and (t�") (that is, immediately prior to (t�")), generating
a contradiction with Lemma 18 for k � k such that �k < (t� n� 2") =4.

It follows from Lemma 19 and the cited theorems from Billingsley(1986),
that Hk

i (� j
) converges for all � such that t (�) =2 N . We have chosen a
subsequence such that Hk

i (� j
) (and �ki (
i)) converges for i 2 f1; 2g ; all

 2 � and � 2 N+ (��). Hence limkHk

i (� j
) exists for all � 4 �� :
LetHi (� j
) � limkHk

i (� j
). De�ne hi (� j
) � Hi (� j
)�lim� 0"� Hi (� 0j
).
Let �i (
i) � limk �ki (
i). We will argue that (�i;Hi)i=1;2 is an equilib-

rium of C(z; ��).
We say that � is a point of increase of Hi (:j
) if hi (� j
) > 0 or if for all

� 0; � 00 such that � 0 � � � � 00, Hi(� 0j
) < Hi(� j
) < Hi(�
00j
). If � 2 N+ and

� is a point of increase of Hi (:j
), then it must be the case that hi (� j
) > 0.
Applying the above de�nition to Hk

i (:j
) ; observe that � is a point of
increase of Hk

i (:j
) if and only if hki (� j
) > 0.
Let Ui

�
� j
i; 
j

�
be the expected payo¤ to player i of conceding/revealing

rationality at � given (�l;Hl)l=1;2 and conditional upon
�

i; 
j

�
being chosen

at the start of play. A pure strategy for player i is a choice of some 
i 2 �i
and a set of dates

n
�
j j
j 2 �j

o
such that i concedes at �
j if j chooses 
j

at the start of play. It follows that the tuple (�i;Hi)i=1;2 is an equilibrium
of (C;�; ��) if for all 
i 2 �i such that �i(
i) > 0, and for any set of datesn
�
j j
j 2 �j

o
such that for each 
j , �
j is a point of increase of Hi(�j
i; 
j),X

j

Ui

�
�
j j
i; 
j

� �
zj�i(
j) + (1� zj)�i(
j)

�
�
X

j

Ui

�
� 0
j j


0
i; 
j

� �
zj�i(
j) + (1� zj)�i(
j)

�
(13)

for all 
0i 2 �i and
n
� 0
j j
j 2 �j

o
:

This corresponds to the usual de�nition, according to which pure strate-
gies used in equilibrium must yield at least as high a payo¤ as any other
pure strategies.

Let T ki be the set of dates at which player i moves in the concession
game C (z;�k; ��) and de�ne

�ki (�) = min
n
� 0 2 T ki j � 0 < �

o
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Lemma 20 If � is a point of increase of Hi (:j
) then there exists �k
such that hki

�
�ki (�) j


�
> 0 for k � �k.

Proof. If � 2 N+ (��), then since � is a point of increase of Hi (:j
),
hi (� j
) > 0 and �ki (�) = � . We have chosen a sequence such that hki (� j
)!
hi (� j
) for all � 2 N+ (��). The conclusion now follows directly in this case.
Now suppose � =2 N+. Then t (�) 2 (n; n+ 1) for some n and Lemma 18 ap-
plies. Let ��k = max

�
� 0jt (� 0) 2 (n; n+ 1) and hki (� 0j
) > 0

	
. Then ��k � �

for k large enough. If not, there exists a subsequence (kl) with ��kl � � along
the subsequence. It follows from Lemma 18 that Hkl

i (�
00j
) = Hkl

i (� j
) for
all � 00 � � such that t (� 00) < (n+ 1) :

Consequently Hi (� 00j
) = liml!1Hkl
i (�

00j
) = liml!1Hkl
i (� j
) =

Hi (� j
) ; contradicting the initial assumption that � is a point of increase
of Hi (:j
) :

It follows from the preceding lemma thatX

j

Uki

�
�ki (�
j )j
i; 
j

� h
zj�j(
j) + (1� zj)�kj (
j)

i
�

X

j

Uki

�
�ki

�
� 0
j

�
j
0i; 
j

� h
zj�j(
j) + (1� zj)�kj (
j)

i
(14)

for all 
0i 2 �i and
n
� 0
j j
j 2 �j

o
.

Lemma 21 For i = 1; 2 and all (
1; 
2) 2 �1 � �2 and � 4 �� ;

Uki

�
�ki (�)j
1; 
2

�
! Ui (� j
1; 
2)

Proof. Fix (
1; 
2) and i, and for notational simplicity suppress the ar-
guments (
1; 
2) in the various functions below. Let Vi (�) be the realized
payo¤ to i if player j concedes at � and i does not concede at or before � .
Then

Vi (�) =

Z t(�)

0
di ((s; 0)) e

�rsds+ e�rt(�)ui (�) :

Let

Ĥk
j (s) =

(
~Hk
j (s) for s =2 N

~Hk
j (n)� hkj ((n;+2)) for n 2 N

and

V̂i (s) =

�
Vi ((s; 0)) for s =2 N
Vi ((n;�2)) for n 2 N
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For x 2 R let bxc denote the largest integer less than or equal to x. Then

Uki

�
�ki (�) j
1; 
2

�
=

bt(�)cX
n=0

hkj ((n;+2))Vi ((n;+2)) +

+

bt(�)c�1X
n=0

Z minfn+1;t(�ki (�))g

n
V̂i (s) dĤ

k
j (s)� hkj

�
�ki (�)

�
Vi (�) +

+hkj

�
�ki (�)

�"Z t(�ki (�))

0
di ((s; 0)) e

�rsds+

+e�rt(�
k
i (�)) 1

2

h
ui

�
�ki (�)

�
+ �i

�
uj

�
�ki (�)

��i�
+

+
�
1�Hk

j

�
�ki (�)

��"Z t(�ki (�))

0
di ((s; 0)) e

�rsds +

+e�rt(�)�i

�
uj

�
�ki (�)

��i
The term Ui (� j
1; 
2) has the same form except that the k superscripts are
missing. In the expression above, because of the alternating move structure,
hkj
�
�ki (�)

�
= 0 unless � 2 N+. In this case, of course, �ki (�) = � : For

� 2 N+ it follows by the construction of our initial sub...subsequence that
hkj
�
�ki (�)

�
! hj

�
�ki (�)

�
.

We complete the proof by establishing thatZ m

n
V̂i (s) dĤ

k
j (s)!

Z m

n
V̂i (s) dĤj (s)

where m = min
�
n+ 1; t

�
�ki (�)

�	
.

Integrating by parts yields:Z m

n
V̂i (s) dĤ

k
j (s) = V̂i (s) Ĥ

k
j (s)

im
n
�
Z m

n
Ĥk
j (s) dV̂i (s)

The �rst term on the right hand side clearly converges to V̂i (s) Ĥj (s)
im
n
.

Now consider the second term:Z m

n
Ĥk
j (s) dV̂i (s) =

Z m

n
Ĥk
j (s) [di ((n;+2))� rui ((n;+2))] e�rsds

since V̂ 0i (s) = [di ((n;+2))� rui ((n;+2))].
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Furthermore Ĥk
j (s)! ~Hj (s) for all s =2 N . The desired conclusion now

follows directly from the Lebesgue Convergence Theorem (see Theorem 15,
Chapter 4, Royden(1968)).

Lemma 22 For all � 2 [0; 1] ; a Nash equilibrium of C(z;�; ��) is also
a Nash equilibrium of C(z;�).
Proof. By Lemma 17, following the choice of 
i by a normal player i, there
is no strategy of player j for which it is a best response for normal i to
concede after date �� (conditional upon player j not having conceded to i
prior to that time). The result follows directly.

Lemma 23 The concession game C (z) has a Nash equilibrium.
Proof. To establish the lemma, take limits w.r.t. k in (14). By Lemma 21,
taking limits yields (13), establishing that (�i;Hi)i=1;2 de�nes an equilibrium
of C (z; ��). By Lemma 17, this is also a Nash equilibrium of C (z) :
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