Bargmann Invariant and the Geometry of the Giioy Effect
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We bring out the connection between Berry's geometric phase and a gauge invariant expression intro-
duced by Bargmann. We exploit this relationship to show that the Giioy effect, which refers to the phase
jump experienced by a focused beam as it crosses the caustic, is the geometric phase associated with the

underlying Lobachevskian hyperbolic geometry.

Berry's discovery [1] of the geometric phase has led to
much theoretical [2] and experimental [3-5] develop-
ment. It has been realized that many earlier studies can
be now viewed as forerunners of the Berry phase in spe-
cial situations. The purpose of this Letter is twofold:
First, to add to this list a gauge invariant phase intro-
duced by Bargmann [6] and bring out its precise connec-
tion to the geometric phase; and second, to exploit this
connection to unfold the geometry of the Giioy effect
[7.8]. We show that the Giioy phase is the geometric
phase associated with the metaplectic group.

The Giioy effect refers to the rapid phase change of
amount mr/2 suffered by a focused beam as it crosses the
caustic; the dimension s =\ for a focal line (cylindrical
beam) and m =2 for a focal point (spherical beam). For
convenience we consider Gaussian beams. They play a
basic role in laser resonator systems and in guided beam
optics [8]. In particular Giioy phases of Gaussian and
Hermite-Gaussian beams directly enter the expression
determining the resonant frequencies of laser modes [8].

There exists a fundamental similarity between the
Schradinger equation for a free particle of unit mass in
two dimensions and the wave equation for a paraxial
beam propagating along the z direction in free space:
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The ¢ evolution in quantum mechanics and the z evolu-
tion in optics are formally identical, with the role of A in
quantum mechanics played by & =a/2z (A is the wave-
length) in optics. In fact, wave optics can be obtained by
formal quantization [9] of ray optics in exactly the same
way as quantum mechanics from classical mechanics.
Thus, the z evolution of Gaussian laser beams and the 7
evolution of Gaussian quantum wave packets are identi-
cal and, in particular, both suffer similar Giioy efTects.
Our analysis applies to both situations, and so we speak
of s evolution, with s =z or ¢ as appropriate. Thus, given
w(x,y.s)the Giioy phase ¢;(s)is on the axis phase [8]
argw(0,0:5). We assume for brevity ft=X =1. Then in

both cases the unitary s evolution is generated by the con-
stant Hamiltonian (pZ+p?)/2,where p, = —id/0x and
py— — i9/8y.

In the course of his celebrated proof of Wigner's
theorem on symmetry operators Bargmann [6] noted that
given three states |wo), lwi), lwa), while quantum
mechanics allows a freedom in the choice of phase
(gauge) for each state, the expression
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is gauge invariant. This is transparent since g
=arg(trpopip2), where p; is the density operator for |w;).
It turns out that ¢g is simply related to the geometric
phase ; associated with the geodesic triangle C =ppp;p2
in ray space.

The importance of geodesies in the context of
geometric phase is evident from Pancharatnam's work
[10]. Noting that two states |y;), |wx) are in phase if the
inner product (w;|wy} is real positive, along a geodesic
arc we can choose states to be in phase with one another.
In other words being in phase is an equivalence relation
on a geodesic arc. Given a geodesic arc in the ray space
determined by two points Pjpk first choose states |w;),
|we) which project, respectively, onto pj,px, so that
(i) =cosd, with 0 <8< x/2. Then the continuous
family of states

lw(s)) =[sin(0—s)| y;)+ sins|yy)1/sin0 , 2)

for 0 =s =8, constitutes normalized states along this
geodesic, and these states are manifestly in phase with
one another.

Geodesies are important also from the point of view of
geometric phase experiments, for given a geodesic arc we
can always find a constant Hamiltonian which will trans-
port the state along the geodesic with zero-dynamical
phase at every instant. Thus, given an s-sided geodesic
polygon we can find a piecewise constant (n pieces) Ham-
iltonian which will transport the state along the polygon
in that manner. Inspection of some of the geometric
phase experiments [3-5] should convince the reader that



this fact has indeed played a crucial role in these experi-
ments.

Now we bring out the relationship between the Barg-
mann phase ¢g and Berry's geometric phase @g. Given
Po.p1.p2 consider the geodesic triangle C =pop1p2 in the
projective space ? of unit rays. The space of normalized
state vectors form a U(1) bundle AMoverP. We can lift
the closed circuit C in f to a (generally open) curve G in
N as follows. Choose any |we) in A atop (i.e., projecting
onto) po; then lwi),|wd), lwé), respectively, atop p1,p2,p0,
respectively, in phase with [wo), Ty, Tys). To complete
the lift G of C, construct geodesic arcs in N as in (2)
from |wo) to lwi), lwi) to lwd), and |wd to Jwd). Tt is
clear that G is a horizontal lift of C, and the dynamical
phase along G is zero. Hence the anholonomy arg{wo|wé)
necessarily equals the geometric phase ¢, associated with
the geodesic triangle C. Further, (wolwi), (wily3), and
(wilwo) are real positive by construction, and |wo) equals
| ] o). Using these facts, and the gauge freedom in
(1), we deduce

e =arg(wolwi)wilwiyilyo
Py (3)

We have thus shown that the gauge invariant Bargmann
phase wg is simply the negative of the geometric phase ¢,
associated with the geodesic triangle.

As a generalization of the three-vertex Bargmann in-
variant ¢g(3) in (1), we can consider the n-vertex gauge
invariant expression
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We can associate with ¢g{n) an n-sided polygon in the
ray space, and it is clear that our construction leading to
(3) simply generalizes to this case to prove that ¢g(n)
equals the negative of the geometric phase ¥, associated
with this n-sided polygon.

It can be shown that the role of geodesies in the above
can also be played by geodesies on suitable submanifolds
in the ray space, even though these are not described by
(2). The cases analyzed hereafter are of this more gen-
eral kind. As an elementary illustration, consider the os-
cillator coherent states labeled by the usual complex pa-
rameter a. Without loss of generality one of the three
states can be chosen to be |0)=|vac). Let the other two
states be |a;),|az). Noting that, with the usual choice of
phase, every coherent state is in phase with |0) and that
arg{a;|ay = Im(afax), we have

wg =arg(0]a Xa)|ax{a2|0) =Im(afa;) .

Geodesies in the a plane are straight lines, and we see
that ¢p equals twice the area of the geodesic triangle in
the a plane. In view of the known result [11] for ¢, for
coherent states, this is consistent with ¢g — — .

For the purpose of understanding the geometry of the
Giioy effect we now turn to one-dimensional Gaussian

states with zero mean value for the annihilation operator
a=(g+ip)/v2. Such states are characterized by a com-
plex width parameter & in the lower half complex plane,
with normalized wave function w(g;&) =(g|&)given by

wig:&) =n "4 (Im& ~ ") explig/2¢8) . (4)

It is the normalizability of w(g;&) that restricts &=¢
+1i&; to the half plane &; <0. Clearly, the ground state
|vae) now corresponds to §=—1i, and all other states
are squeezed Gaussian states. Since |&) is annihilated
by the unique squeezed boson operator (g—¢&p)/
[2Im(—&)] ~, the unitary operators exp[ — ir(gp+ pg)/
4] and exp[ — isp */2ltake |&), respectively, to |Eexp(r)),
[&+5). Thus, |&)and | —1) are related as follows, modu-
lo a phase which can be fixed by geometric considera-
tions:

[&) =exp(—i&p2/2)expl—iln(= &) gp+pg)/al| —i) .
(5)

Given a closed circuit dZ, enclosing a region £ in the
half plane, the associated geometric phase is [1]

e=if, 1(&!%1¢>d¢.+<¢l—a—‘z—zlg>d¢z

Making use of (5) we see that the second term in the in-
tegrand is zero, being the expectation value of
(&) " (gp+pg)/4 in the vacuum state | —#), while the
first is the vacuum expectation value of (—&) " 'p?/2.
Thus we have
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This formula exposes the Lobachevskian hyperbolic
metric [12] df?=(d&¢ d€3)/£3 underlying the manifold
of Gaussian states, and we see that the geometric phase is
the negative of one-fourth the Lobachevskian area of X,
counted positive for anticlockwise traversal of the circuit.

Now consider a generic situation where the phase of
any state |w) is measured by projecting it onto a fixed
reference state |wg). That is, we measure arg{wge|w), the
phase difference in the Pancharatnam sense between | )
and |wg). And consider s evolution under a constant
Hermitian Hamiltonian H. Let |wg)be an eigenstate of
H with eigenvalue zero (arranged by adding, if necessary,
a real constant to H). Let a state |y} evolve from [w(s;)}
to lw(sa)). Let ¢(s;) =arglyr|w(s;Pe the phases of
these states. Consider the four-vertex Bargmann invari-
ant

Ve =

ep(4) =arg{yr|w(s| N\ we ) (welwls) X ywls) lye) .
Now H\yg)=0implies
(yelw(s))) =(pe|wisa)).

Hence,



ep(d)=—lplsy) —els)].

Combining this result with our earlier result ¥g— —,
we arrive at the following.

Theorem: If a state evolves as |w(s)under a constant
Hamiltonian A, and if its phase at any s is measured with
reference to a fixed state |wg), the phase change between
S=s,; and s=s, equals the geometric phase associated
with the geodesic quadrangle prp(s()pep(s2),where PE
corresponds to |wg) with H|wg)=0.

It can be seen that the Gu'oy effect belongs precisely to
this situation. Let us first consider the one-dimensional
case. Calling x =g and p, =p= —id/dq, the s evolution
is generated by the constant Hamiltonian p2/2. The limit
of | £=0+i&2) in (4) as £&2— — oo is a real Gaussian with
arbitrarily large width (i.e., a constant function in ¢); this
acts as |wge). Similarly, the limit of |&£=0+ i&) as fa—'0
(from below) is a real Gaussian with arbitrarily small
width and hence is a real multiple of the Dirac function
8(g). This acts as |wg). Finally, the Gu'oy phase ¢g(s)
of the state [£(s)} with wave function w(g;E(s)) is
indeed measured by projecting |&(s)} onto this |wg):

0o ls) =argy(0;6(s)) =arglyr|E(s)) .

As already noted, under the constant Hamiltonian p?/2
an initial Gaussian state |&g) evolves as |E(s)) = | &g+ 57,
up to a phase. This motion of £(s) is parallel to the real
axis in the half plane, with a constant imaginary part so
there exists a value of s for which &(s)} is purely imagi-
nary and the width of the wave function is a minimum
(waist). We can thus choose without loss of generality
(i.e., by shifting the origin of s) the initial &g to be imagi-
nary. That is we take &= —iw? where wis the waist
size.

We show in Fig. 1 (a) the half plane constituting our
manifold of Gaussian states, and also the states pr, pzis,)
PE, and pgs,). To draw the geodesic quadrangle through
these states note that geodesies of the Lobachevskian
geometry are circles centered on the real axis, and
straight lines normal to this axis [12]. Thus our quadran-
gle consists of the circular arcs RE(s)) and &(s2) R, and
the straight lines &(sy)Eand E£(s;). Also in this hyper-
bolic geometry the area of a quadrangle equals the angle
deficiency given by 2x minus the sum of the interior an-
gles [12]. The angles at E and R are zero. For the other
two angles ai,a@s, note that a; =2(x/2—6;). Thus, the
angle deficiency equals 2€@, + 82 and hence from (6) the
geometric phase ¢, equals — (N\ + 82)/2. From Fig. 1 (a)
we have tan@;=[s;|/w? Thus in view of our main
theorem, and noting that ¢(s) in the generic case of the
theorem becomes the Giioy phase w;(s) in the present
case, we have our final result

ve =06 (52) —wgls))
= — 3 [arctan(s»/w?) —arctan(s,;/w?)] .
We have thus derived the well-known result [8] ¢¢(s)
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FIG. 1. (a) Showing the Lobachevskian geometry of the
Gu'oy effect determined by the geodesic quadrangle

RE(s()EE(s2). The arcs RE(s1),E(s2) R are centered, respec-
tively, at €21,@3. (b) The s evolution of the Gu'oy phase; A, B,
and C correspond to w=35, 1, and 0.1, respectively.

= — 5 arctan(s/w?) based entirely on Berry-Bargmann
geometric phase considerations. In Fig. 1 (b) we show
wa (s )for various values of the waist size w. The magni-
tude of the Gu'oy phase jump is 7/2 precisely because the
area of geodesic quadrangles in the Lobachevskian
geometry is bounded by 2, and that the Giioy phase
change becomes abrubt as w-— 0 (i.e., as &p approaches
the real axis) because the area is concentrated near the
real axis.

For the Hermite-Gaussian beam of order », the role of
|vac) is played by the nth eigenstate |n). Thus (p°) lead-
ing to (6), and hence the Gu'oy phase, get scaled by
(2n+ 1). For two-dimensional beams, the x and y Giioy
phases add.

Bargmann originally introduced his gauge invariant vz
for the express purpose of distinguishing between unitary
and antiunitary symmetry operators through the behavior
of s under them. In a recent experiment Tompkin et al.
[13] studied the behavior of geometric phase in the pres-
ence of a (antiunitary) phase conjugate mirror. It is in-
teresting to note that their experiment fully verifies
Bargmann's original ideas, even if these authors were ap-
parently unaware of his work.

The geometric phases associated with the rotation
group SO(3) and its double cover SU(2) have been stud-
ied in several experiments [3-5]. These equal, respective-
ly, the solid angle and half the solid angle on the unit



sphere §°. The geometric phase associated with the
Lorentz group SO(2,1) and its double cover Sp(2,R)
— SU(I1,1) has also been studied [14]. Our unitary evo-
lutions generated by Hamiltonians quadratic in g,p con-
stitute not Sp(2, R) ~SU(1,1) but the metaplectic group
[15] Mp(2), which is a double cover of Sp(2,R), and
henceforth cover of SO(2,1). And this explains the 7
factor in the geometric phase formula (6). We can thus
summarize by saying that the century-old Giioy phase,
given by one-fourth Lobachevskian area, and encountered
in routine laser optics, is the Berry phase associated with
the metaplectic group.

The Giioy effect for squeezed light [16] is also
governed by our formalism. Since "free" evolution in this
case is generated by (g’+p?)/2, the role of |wg) is
played by | —i).

One of us (R.S.) would like to thank M. V. Berry for a
discussion on these matters.
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