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It is well known that completeness properties of sets of coherent states associated with lattices in 

the phase plane can be proved by using the Bargmann representation or by using the kq 

representation which was introduced by J. Zak. In this paper both methods are considered, in 

particular, in connection with expansions of generalized functions in what are called Gabor 

series. The setting consists of two spaces of generalized functions (tempered distributions and 

elements of the classs·) which appear in a natural way in the context of the Bargmann 

transform. Also, a thorough mathematical investigation of the Zak transform is given. This 

paper contains many comments and complements on existing literature; in particular, 

connections with the theory of interpolation of entire functions over the Gaussian integers are 

given. 

PACS numbers: 02.30.Mv, 02.30.Lt 

1. INTRODUCTION 

If xER, yER, then G (x,y) denotes the function 

(G (x,y))(t) = 2lexp(- 1T(t- x)2 + 21Tiyt- 1Tixy) (tER); 

G (x,y) is called a coherent state, 1'
2 or also a Gabor func­

tion. 3 .4 In the past ten years a number of papers 1•
2

•
4

-
7 ap­

peared about the completeness of the collection 

! G (na,m(3 )ln,m integers l where a> 0, (3 > 0. These papers 

deal with the following question: if /is a (generalized) func­

tion and (f,G (na,m(3 )) = Oforall integersn andm, then does 

it follow that f _o? As early as 1932, von NeumannH noticed 

(apparently without publishing a proof} that the answer is 

"yes" if fEL 2(R), a(3 = 1. Two proofs of this fact were given 

in 1970 by using the Bargmann transform, 9 and in 1975 a 

proof was given by using the kq representation. The most 

complete answer to the above question was probably given in 

1979. It is shown 7 that (f,G (na,m(3)) = 0 for all integers n 

and m implies f 0 for a very large class of generalized func­

tions /whenever a(3 < 1. Also, in case a(3 = 1, a character­

ization of all tempered distributions /with (J,G (na,m(3 )) 

= 0 for all nand misgiven. The main tools are a Phragmen­

Lindelof theorem and the Bargmann transform, although 

the latter is not explicitly mentioned. 

A related question concerns expansion of (generalized) 

functions fin series of the form ~n.m cnm G (na,m(3) with 

a(3 = 1 (Gabor series). In 1946 Gabor 10 suggested a simulta­

neous time-frequency analysis of signals based on these ex­

pansions. In 1979 existence and uniqueness theorems about 

Gabor series were given (cf. Ref. 6, where expressions for the 

coefficients cnm are given, and Ref. 4, where existence of 

Gabor's expansions for tempered distributions is proved; in 

both papers the kq representation, although not explicitly 

mentioned, plays an important role). 

We give a survey of the content of this paper. In Sec. 2 

we consider the spaces S of smooth functions and S • of gen­

eralized functions, and we show that, in connection with the 

Bargmann transform, these spaces arise in a natural way. In 

Sec. 3 the Zak transform T, which maps functions f of one 

real variable onto functions T /defined on the unit square, is 

introduced and studied in detail. A peculiar property of the 

Zak transform 11 is the following one: if fEL 
2
(R) and T f is 

continuous, then T fhas a zero in the unit square. In Sec. 4 a 

number of consequences of this property are given. One of 

the consequences is that one can improve the convergence of 

Gabor series (which, in general, converge not even in L 2 

sense for elements of S) by shifting the lattice over a distance 

(a,b) with suitably chosen numbers a and b. Also, the results 

about completeness after deleting one or more coherent 

states2
•
5

•
7 are completed and generalized, and a relation with 

classical results in interpolation theory is indicated. Al­

though almost all results deal with square lattices of unit 

area with axes parallel to the x andy axis in the phase plane, 

some indications are given how to handle general lattices. 

Finally, the paper shows existence of Gabor's expansion for 

elements of S •. 

2. THE SPACES SANDS • AND THE BARGMANN 

TRANSFORM 

In 1961 Bargmann 12 constructed a unitary mapping of 

L 2(R) onto the set F of all entire functions /of growth <(2,!) 

for which f (: I f(zWe- lzl' dz < oo. On the space F Fock's so­

lution 5 =a ;a'T/ of the commutation rule [S,rJ] = 1 is real­

ized. In 1967 Bargmann 13 described several spaces of test 

functions and generalized functions in terms of certain sub­

sets ofF and duals of these. In particular the spaces SandS' 

(Schwartz's space offunctions of rapid decrease and oftem­

pered distributions respectively) were considered. In this 

section we shall investigate the relation between Bargmann 

transform and the spaces SandS* (of smooth and general­

ized functions respectively) which were introduced in Ref. 

14 and studied extensively in Refs. 3, IS, and 16. 

2.1. The spaceS consists of all entire functions /for 

which there are M > 0, A> 0, B > 0 such that 

(*)1/(x + (Y)I<Mexp( -1TAx2 + 1TBy
2

) (xER,yER). 

s 

A sequence (f,, ), inS converges to zero inS sense(/., ---+0) if 

there are M > 0, A > 0, B > 0 such that ( *) holds for all /, and 

such that J,,---+0 pointwise. The spaceS* consists of all con­

tinuous antilinear functionals defined on S. The action of 

FES • on /ES is denoted by (F, f). A sequence (F, ), in S • 
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s· 
converges to zero inS· sense (F" ~) if(F" ,f)~ for all /ES. 

Note that G (x,y) ES for all xEIR, yEIR. 

2.2. For n = 0, 1,.··,¢" denotes the nth Hermite func­

tion. We choose our normalizations such that 17 

exp(1rx2
- 21T(X- w)2

) = f cnw"rf'n(x) (xEC, WEC), 
n=O 

where en = 2- 114(41T)"12/(n!) 112 for all n. We have rf'nES. 

There is a one-to-one correspondence between the 

spaceS and the spaceD of all complex sequences (an ln with 

an = O(e- "')for some € > 0; if JES, then ((/.rf'n ))nED, and if 

(an )nED, then '!.nan rfn converges inS sense to an element of 

S. There is a similar correspondence between the space S • 

and the spaceD· of all complex sequences (bn ln with 

bn = O(en<) for all € > 0. It follows 18 that SC Sand that 

S'cs·. 
2.3. A different way to describe the spaceS is the follow­

ing one: In Ref. 14 the spaceS fi (a > 0, (3 > 0) is defined as the 

set of all functions f IR-C for which there exist C > 0, A > 0, 

B > 0 such that 

(**)lxk Jlql(x)i <;CA kB qk kaqqf3, 

for all XEIR, k = 0, 1,···,q = 0, 1,-··· Our spaceS can be identi­

fied with S :~~ as follows: If JES, then the restriction of /to lR 

satisfies inequalities as in(**), and if we have an f IR-C 

satisfying inequalities as in(**), then jean be extended to an 

entire function satisfying an inequality as in 2.1(*). Also, the 

notions of convergence in 2.1 for Sand in Ref. 14 for S :~~ 

can be shown to be equivalent. 

We note some topological properties of the spaces Sand 

S •. If we considerS and S ·with the weak * topologies, i.e., 

with the linear topologies generated by all sets of the form 

[ JES I(F,J)EOj (where FES*,occ open) and [FES*I 

(F,/)EOJ (where JES, OCCopen), then thedualofSisS* and 

the dual of S • isS. The spaceS (S *) is complete in the sense 

that if In ES (F" ES *) and limn~= (F,f") [limn '"' (F" ,f)] ex­

ists for all FES *(JES ), then there is an /ES (FES *)such that 

(F,f) = limn--oo (F,fn) ((F,f) = limn~oo (F" ,J)] for all FES • 

(JES). More information can be found in Ref. 15. 

To indicate how big the spaceS • is, we observe that any 

measurable F:IR-C for which S': oo exp(- Et 2)IF(t ll dt 

< oo for all € > 0 can be regarded as an element of S • by 

putting (F,f): = S': oo F(t) f(t ). dt for fES. 

2.4. We give a list of operators of S: if fES,aEC, bEC, 

a>O, then 

(Ta /)(t) = f(t +a), (Rb f)(t) = e- 2rrtb'f(t ), 

(NaJ)(t) = (-.-
1
-)

112 

smha 

xJOO exp( .- 1T ((t 2 + z2)cosha- 2tz))f(z) dz, 
- oo smha 

(.7 f)(t) = f_"' = e- Zrrtrz f(z) dz, (Y* f)(t) = (Y /)( - t ), 

(P f)(t) = (l/21Ti)j'(t ), (Qf)(t) = tf(t ), 

for tEC. 
1
" These operators are continuous and have adjoints 

that mapS into S; they can therefore be extended to continu-
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ous linear operators of S •. 20 

2.5. Definition: For FES* the Bargmann transform BF 

ofF is defined by 

(BF)(z) = el",(TzF,g) (zEC). 

Here g(t) = 2114exp( - 1Tt 
2

) for tEC. 

2.6. The following formula (for FES ') is due to Barg­

mann 12
; for the sake of completeness we give a proof. 

Theorem: Let FES •. Then 
00 (F,rf'n) 

(BF)(z) = "" --(1r112z)" (zEC). 
n~o (n!) 112 

Proof Put hzlt) = 2 114 exp(~1Tr- 1r(t- z)2
) for zEC, 

tEC. Since (BF)(z) = if,h.) and 

hz(t) = 2114exp(1Tt 2
- 21T(t- ~zl) = f rPn(t) (1T 112

2 )n 
- n ~ 0 (n!)1 12 

' 

with convergence inS sense for every zEC, we have 

(BF)(z) = (Fh-) = _f (F,¢n)(1Tll22 )n. 
' z n ~ 0 (n!) 1/2 

2. 7. Let 3" be the space of all entire functions of growth 

<(2,1T/2), and let 11 be the measure on C defined by 

dJ1(z) = e- rrlzl' dz. If JY' = 3"nL 2(C,J1), then JY' is a Hilbert 

space for which (~"z" lv n!)n is a complete orthonormal sys­

tem, and B maps L 2(R) isometrically onto JY'. 12 Also, 13 

B(S) = [ /EWI/(z)exp(- !1Tizi
2

) 

=0((1 + izi)-N) forallN>OJ, 

B(S) = [/EWI/(z)exp(- !1Tizi
2

) 

=0((1 + izi)N) forsomeN>OJ. 

Theorem: (i) B (S) = [jEW I growth off< (2,1T/2 J, (ii) 

B(S*)=3". 

Proof Let FES. There is an € > 0 such that 

(F,¢") = 0 (e- "'). Hence, by Stirling's formula 

[(F,rf'n J/(n!) 1/2 ]1Tn/2 = 0 (n- I/4(1T/n)"l2e- nl<+ ll). 

It follows from Ref. 21, Theorem 2.2.2 that B /has growth 

< (2,1T/2). Conversely, let jE3", growth off< (2,1T/2). Writ­

ing f(z) = '!.nanz" we know from Ref. 21, 2.2.10 that lim sup 

n ian 121
" < 1Te. Hence bn: =an 1T"12(n!) 112 = 0 (e- nE) for some 

€>0. SoifweputF= '!.nbnrf'n, thenFESandBF= f 
The proof of (ii) is similar. 

Remarks: ( 1) There are similar characterizations for the 

elements of B ( 'G') and B (A') ( 'G' is the convolution class and 

(A') is the multiplication class; cf. Ref. 16). It may be shown 

that 

B('G')= [/E3"1V'P>l3q<l[f(x+iy) 

= 0 (exp(1rqx2 + 1rpy2))] J, 

B (M) = [ /E3" J IV'P> J3q<l (f(x + 1}1) 

= 0 ( exp( 1rqy2 + 1rpx2
))] J . 

(2) Theorem 2.7 shows that Theorem 2.8 in Ref. 7 is in 

some sense the best possible result that can be obtained by 

using the Bargmann transform. 

2.8. In the list below we have FES ·, aEC, bEC, a> 0, 

zEC. 
(1) (BTaF)(z) = e- Jrra'- rraz(BF)(z +a), 

(2) (BR
6
F)(z) = e- Jrrb'- ,-tbz(BF)(z- ib ), 

A. J. E. M. Janssen 721 
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(3) (BNaF)(z) = e -la(BF)(e- az), 

(4) (B.YF)(z) = (BF)(iz), 

(5) (BPF)(z) = !iz(BF)(z) + (1/21Ti)(BF)'(z), 

(6) (BQF)(z) = ¥(BF)(z) + (l/21T)(BF)'(z), 

(7) (B(Q- iP)F)(z) =z(BF)(z), 

(8) (B(Q + iP)F)(z) = (l/1r)(BF)'(z), 

(9) (B(Q 2 + P 2)F)(z) = (1!21T)(BF)(z) + (z/1r)(BF)'(z). 

The proofs of these formulas are straightforward; compare 

also Ref. 12 where B U is calculated with U a canonical oper­

ator associated with a symplectic transformation of the 

phase plane, and Ref. 3, Sec. 27.3. 

The obvious advantage of the spaceS· over Y' is that 

we can consider in ( 1) and (2) complex values of a and b. The 

obvious disadvantage is the fact that S • is described in terms 

of entire functions so that its elements are hard to localize. 

Nevertheless, it appears that one can say at least something22 

about the carriers of the elements of S • with the aid of the 

Bargmann transform and the theory of analytic functionals. 

Some other useful formulas are 

(BG (x,y))(z) = exp( - ~1T(x 2 + y2) + 1r(x + iy)z) (zEC), 

(Bo~ 1 )(z) = (- 1)k(k !) 112(21T)k 12¢dz/v2) (zEC) 

fork= 0,1,. ... For FES·, fES, aER, bER, 

(F,G (a,b)) = exp(- !1T(a2 + b 2 ))(BF)(a- ib ), 

(F,f) = Le- 7Tizi'(BF)(z) (B/)(z) dz, 

so that (integration over R2) 

(F,f) = J f(F,G (a,b ))(G (a,b ),/) da db, 

which agrees with the formula 27 .12.1. 5 in Ref. 3. 

3. THE ZAK TRANSFORM 

In this section we study the Zak transform which was 

introduced in 1967 by Zak to construct a quantum mechani­

cal representation (kq representation) for the description of 

the motion of a Bloch electron in the presence of a magnetic 

or electric field. 23-25 This representation can also be used for 

the quantum mechanical description of angle and phase. 
26 

The Zak transform T maps functions f defined on R onto 

functions T f of two variables as follows: 

(T f)(z,w) = I f(z- n)e- Z1Tinw. 
n = - oo 

Zak denotes the first variable (quasiposition variable) by q 

and the second variable (quasimomentum variable) by k. We 

consider here T as a mapping of L 2(R) into L 2([0, 1 ]2), and 

also as a mapping of S • into S 2. [and of 5' into (52)']. Al­

though the Zak transform looks, at first sight, less interest­

ing from the mathematical point of view than does the Barg­

mann transform, it pays (as we shall see in the next section) to 

investigate its properties systematically. A striking property 

is that T /has a zero in [0, 1f, provided that T /is continu-

ous. We further give a formula for the product T F· T f (in 

case this makes sense) which is very convenient when prov-

722 J. Math. Phys., Vol. 23, No. 5, May 1982 

ing completeness properties, and we determine T (S ), T (S ·), 

T(5), and T(5'). 

3.1. Definition: Let FES ·.We define 

TF: = ! Ti~nR ~ 1 (F®H), 
n = - oc 

where H = 1 [for the definition of the tensor product, cf. Ref. 

15, Appendix 1, 1.17; we have (F1 ®F2 , / 1 ® / 2) 

= (F1,/1)(F2,/2 ) for F;ES·, J;ES(i = 1,2)]. This definition 

makes sense, for if FES·, / 1ES, / 2ES, then 

! (T 1 ~ nR ~ 1 (F®H), /1 ® /2) 
n = - oo 

n = - oo 

converges absolutely by Ref. 16, Theorem 5.5. By Ref. 15, 

Appendix 1, Theorem 3.7, the series };n T 1 ~ nR ~ 1 (F®H) 

converges unconditionally inS 2. sense. It also follows from 

Ref. 15, Appendix 1, 4.14 that Tis a continuous linear map­

ping from S • into S 2., and we have F = 0 if TF = 0. Similar 

things hold if we consider T as a mapping from 5' into (5
2
)'. 

In the case /E5, T f can be identified with the function 

I e-l1Tinwf(z-n) [(z,w)ER2
]. 

n-=- - oo 

3.2. Part of the following theorem is taken from Ref. 4; 

for the sake of completeness we include a proof. We also note 

that part (i) occurs in a more abstract version in the proof of 

Ref.27, Chap. 1, Sec. 5, Lemma 4. 

Theorem: (i) TmapsL 2(R)isometricallyontoL 2([0, 1]2). 

(ii) Let 1 <p < 2. Then T maps L P(R) into L P([O, 1f), and the 

operator norm < 1; Tis injective but not surjective. 

Proof (i) Let fEL 2(R). Since the functions 

f(z- n)e- 2"inw are orthogonal over [0, if we see that 

.C.C I(Tf)(z,wW dzdw 

n~~ oo.c.cl/(z- n)e- 27Tinwl2 dz dw 

= f~"' I /(zW dz. 

Hence Tis well defined as a mapping of L 2(R) into L 
2
([0, 1 )

2
), 

and it is norm-prt-""·-·;ing. 

Now let gEL 2([0, 1 JZ), and let 

cnm: = ililg(z,w)e21Timz + 21Tinw dz dw 

for integers n and m. Putting /(z - n ): = };m c nm e- 21Tinz for 

O<;z < 1 and integer n, we easily see that /EL 2(R), and that 

Tf=g. 

(ii) Let /EL 1(R). Then 

.C.CI(T/)(z,w)l dzdw 

<.C.C};n 1/(z- n)l dzdw = f~ "'1/(z)l dz. 

Hence T fEL 1([0, if) and II T /11 1 <II /11 1-It follows from con­

vexity theory that T maps L P(R) into L P([O, 1j2), and that 

A. J. E. M. Janssen 722 
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IITJIIP<Il!IIP for fELP(JR), l<;p<.2. 

Toshowinjectivity, let /EL P(JR),j #0. Let/, EL 
2
(lR) be 

such that 1/, 1<1/, + 1 1 and fn-J, Tfn-T f a.e. By Fa­

tau's lemma and part (i), 

ff1(T/)(z,w)l
2 

dzdw 

>li~~s~p ff I(Tf")(z,wW dzdw = li~~s~pllfn II~> o. 

It is trivial that Tis not surjective if I <p < 2; otherwise 

we would have T(L P(JR)):J T(L 2(lR)), whence£ P(JR):JL 
2
(lR). 

Remarks: (I) There is no way to define Tas a mapping of 

L P(JR) into any L '((O,lf) ifp > 2 (cf. Ref. 28, Chap. XII, 2, 

p. I02). (2) As a mapping of L P(JR) into L P([O, 1]
2

) with 

1 <.p < 2, Tis not bounded below. To see this, put fc 
: = ~nenXJn,n+ 11 fore= (en)nE[P. IfTwerebounded below 

there would be an m > 0 such that 

liT fc ll>mllfc liP= m~n len IP)IIp for eE/P. As 

(T fc)(z,w) = ~nene- Zrrinw for eEIP, this implies that 

[ ~nene- ZrrinwleEfP] = L P([O, 1]). Contradiction. 

3.3. In the list below we have FE.S ·, aEC, bEC, a> 0, 

(1) T(TaF) = T~ 11 (TF), 

(2) T(RbF) = R ~ 11 T~ 1 (TF), 

(3) T\1'(TF) = R \21(TF), 

(4) n21(TF) = TF, 

(5) T(NaF) 

=N(II( ~ e-rrn'coshasinha(R .. T F)""H) 
a ~ msmha - ncosha '01 ' 

n = - oo 

(6) TYF=e-lrrizwUTF, 

(7) T(PF) = P( 0 TF, 

(8) T(QF) = (Q( 11 + P(2))TF. 

Here U is (the extension of) the mapping that takes f(z,w)E.S 2 

into f(w, - z). All formulas except (6) follow directly from a 

computation. To prove (6) we first take an JE.S. We have by 

definition 

(T.Y j)(z,w) = I (.7 j)(z- n)e- 2rrinw. 
n=- -:n 

Observing that (.7 f)(z - n )e- Zrrinw 

= e - Zrrizw( . .7 Rz Tw f)(- n), we get by the Poisson summa­

tion formula 

(T.Y j)(z,w) = e- 27Tizw I e2rrinzf(w- n) 
n-=-oo 

= e- zrrizw(T f)(w,- z). 

For the general case take a sequence ( fn ), inS that converges 

inS· sense to F, and use continuity ofT (cf. 3.1 ). 

Remarks: (1) Formula (6) and Theorem 3.2 (i) give a 

quick proof of Plancherel's theorem since U maps L 2([0, 1 fl 
unitarily ontoL 2((0,1] X [- 1,0]). It is of course the Poisson 

summation formula that does the trick here. (2) If T fis suffi­

ciently well behaved we can recover f and Y fby integra­

tion. We have 

723 J. Math. Phys., Vol. 23, No. 5, May 1982 

j(z) = ((Tf)(z,w) dw, (.'7 f)(- w) 
Jo 

= L ( T f)(z,w)e 2
1TIZI'' dz, 

for zElR, WER 

3.4. We calculate TG (x,y) and Tl(;, for xElR, yElR, 

n = 0, J, .... We have by the formulas of 3.3 

(TG(x,y))(z,w) = (T(e- rrixyR YT xg))(z,w) 

= e rrixy t 2rriyz(Tg)(z _ X,W _ y), 

so that we need Tg. In general, we have by the generating 

function of the Hermite functions (cf. 2.2), 

edTth){z,w) 

= c,, [ e1TZ2
- 2rr(z- t)'~e -1Tn 2 + 2rrin(w+ iz- lit)] 

= C,, [ e3(w + iz- lit )/~Oe,t 'if;,(x) ]· 

Here t93(z) = ~,exp(- 1rn
2 + 21rinz) is the 3rd theta func­

tion [in the notation of Ref. 29 we have t93(z) = 1J (1rz,e- 1T)]. 

By the Taylor expansion of 83 around the point w + iz we get 

(Tl(;k)(z,w) =,to l(;~;:z) e) 11

\ -1T- 112 i) 1 8~ 1 (w + iz). 

In particular, 

(TG (x,y))(z,w) = (G (x,y))(z)83(w + iz- y- ix), 

and in case n and m are integers we get by 3.3, 

(TG (n,m))(z,w) = (- l)"me2mmz-+- 2rrinwe- rrz'e,(w + iz). 

As another example, let e" (t ): = e- Zrriar whereaElR. We 

have 

00 

T(ea) = L ea ®D,_·a' 

Hence, if a is an integer, T(ea) = ea ® ~,8,, and if JE.S ·is 

periodic with period one, then T f= /® L,D,. Similarily, if 

fis a function of the form f = ~,e,t5,, then T f = e- Zmzt" 

(~,8,) ® . .7 f 
3.5. It is easy to see that T fhas a zero in [O,lf if T fis 

continuous and fis real-valued, or even, or odd, or a Gabor 

function. The following theorem shows this is general. 

Theorem: Let fEL 2(lR) be such that T fis continuous. 

Then T fhas a zero in [0,1f. 

ProoP0
: Assuming (T f)(z,w)#O for (z,w)E[O,lf we can 

write 

(T j)(z,w) = elr.-i<p(z,wl, 

where tp:lR2 -c is continuous. Indeed, this follows at once 

from Ref. 31, Part VI, Sec. 1, Lemma 7. 

We have by 3.3 

(Tf)(z + 1,w) = e21TI"'(Tf)(z,w), 

(T f)(z,w + 1) = (T f)(z,w), 

for (z,w)E[O,lf, Hence, for some integers k and I 

tp (z + 1,w) = tp (z,w) + w + k, 

tp (z,w + 1) = tp (z,w) + l, 
for (z,w)E[O,lf. Calculating q:>(l, 1) in two different ways, we 

A. J. E. M. Janssen 723 



Downloaded 14 Dec 2005 to 131.215.225.9. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp

get IP(O,O) + k +I= IP (1,1) = IP (0,0) + k +I+ 1. 

Contradiction. 

Remark: Iff= x1o, 1 1, then I(T f)(z,w)l = 1 for all 

(z,w)eR2
• 

3.6. In the remainder of this section we determine 

T(S ),T(s·), T(S), and T(S'). We first give a formula which 

will also be used in Sec. 4 to answer questions about com­

pleteness (also cf. Ref. 6). 

Theorem: Let (1) FeS ·, geS or (2) FeS', geS or (3) 

FeL 2(R), geL 2(R). Then 

I (F,R - m T- n g)e21Tiriw + 21Timz = TF· Tg' 
n,m 

where the identity is to be interpreted inS 2• for case ( 1) and 

in (82
)' sense for case (2). For case (3) the identity must be 

interpreted in the sense that the (mn)th Fourier coefficient of 

TF· Tg equals (F,R _ m T _"g). 

Proof First take FeS, geS. Noting that 

(F,R_mT-ng)e21Tirnz= CrTz(F· T __ "g))(m) 

for all n and m we get by the Poisson summation formula 

(applied to the summation over m) 

I (F,R _ m T _ n g)e21Tinw + 21Timz 
n,m 

= IF(m +z) g(- n + m +z) e21Tinw. 
n,m 

Now the formula easily follows by first summing over nand 

then over m. 
For the general case (i.e., FeS ·)take a sequence (Fk )k in 

S which converges to FinS· sense. It follows as in the proof 

of Ref. 16, Lemma 5.2 that for every£> 0 there are positive 

numbers M and f3 such that 

I (Fk ,R- m T -"g) I <,M IIN(JFk llzexp(1T£(n
2 + m2)), 

for all n,m, and k (note that NfJFk eS for f3 > 0). Since 

IINfJFk 11 2 is bounded ink for every f3 > 0 it is not hard to 

complete the proof of the theorem for case ( 1 ). 

The proof for case (2) is similar to that for case (1). For 

the proof of case (3) we take Fk and gk inS with 

Fk----o.F, gk-g in L 2(R) sense. Now we note that 
- -

TFk· Tgk -TF· Tg in L 1([0,1f) and use the result already 

proved with Fk and gk in the role of FeS, geS. Hence, the 

(mn)th Fourier coefficient of TF· Tg is given by 

(F,R -m T _"g). 

3.7. Theorem: T(S) equals the set of all entire functions 

IP of two variables such that IP(z + 1 ,w) = e- l1TiwiP (z,w), 

IP (z,w + 1) = IP (z,w) for all (z,w)e(:Z, and such that there are 

M > 0, A > 0, B > 0 with 

I<P (x + iy,u + iv)l <,Mexp(21TXV + 1rAy2 + 1rBv2). 

Furthermore, T (S) equals the set of all q?EC =(R2) such that 

<P (z + 1 ,w) = e- 21T;"'IP(z,w), <P (z,w + 1) = <P (z,w) for all 

(z,w)eC2
• Finally, 

T(S•) = !FeS 2.IT\' 1F= R \21F,T\21F= F l, and 

T(S') = I FE(S2)'1 T\llp = R 1121p, T\21p = F ]. 

Proof LetfeS. It is clear that Tfis an entire function of 

two variables. Take K > 0, C > 0, and D > 0 such that 

I f(x + iy) I <,Kexp( - 1rCx2 + 1rDy2
) (xeR, yElR). 
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Then for real x,y,u,v, 

I~, f(x + iy- n)e- 21Tin(u-+ i"'l 

<,K ~"exp( -1TC(x- n)2 + 1rDy2 + 21Tnv) 

= Kexp(21TXV + 1rv2/C + 1rDy 2 )~, 

Xexp(- 1rC(x +viC- n)2
), 

whence T (S) is contained in the set mentioned in the theo­

rem. Conversely, let IP be an entire function of two variables 

such that IP (z + 1,w) = e- ZmwiP (z,w),IP (z,w + 1) = <P (z,w) 

for all (z,w)EC2
, and assume that M > 0, A > 0, B > 0 are such 

that 

liP (x + iy, u + iv)l <,Mexp(21Txv + 1rAy
2 + 1rBv

2
). 

Put f/!(z) = fbiP (z,w) dw for zeC. Then tP is an entire function 

for which lf/!(x + z:V)I <,M exp(1rAy2
). Also, 

LIP (x,w) dw =LIP (x- [x],w)e- Z1Ti[xJw dw. 

Let te[O, 1 ], ne'l. We have by analyticity and periodicity of IP 

in its second variable and by the estimates on IP 

I LIP (t,w)e- 21Tinw dw I 

= I {' + iy IP(t,w)e- 21Tinw dw I 
Jo+ •Y 

<,M exp(21Tty + 1rBf + 21rny) 

for all real y. Minimizing with respect to y gives 

I LIP (t,w)e21Tinw dw I <,M exp(- 1TB - 1(t + nf). 

Hence f/!(x) = 0 (exp(- 1rB -•x2
)) (xeR). It follows easily 

from the Phragmen-Lindelof theorem that IPeS. It is trivial 

that T¢ = IP· 

The proof for the S case is similar and will be omitted. 

To prove the assertion about T(S ·)let FeS z• satisfy 

T\
1
'F = R \

2'F, T\2'F =F. For any f/!eS, T¢ is a multiplica­

tor of S z· and it is easy to see that F· T¢ is an element of S z· 

which is periodic in its both variables. Hence F· T¢ has a 

Fourier series ~n.m c,m (¢)e21Timz + 21Tinw (cf. Ref. 3, 27.24.3). 

Define G by (G,f/1): = c00{¢). Then GeS ·,and by Theorem 

3.6, the (nm)th Fourier coefficient of TG· T¢ equals 

(G,R _ m T _, ¢) = c,m (¢).Hence (F- TG )· T¢ = 0 for all 

f/!eS. To show that this implies F 1: = F- TG = 0, let f/!eS, 
f/!;:j:-0. We see from the formula 

T(R _ b T _a¢)= e2"ibz(T¢)(z- a,w- b) 

tha.t~--------
p1. (Tf/!)(z- a,w- b) exp( -1r(z- a)2

- 1r(w- b f)= 0 

for all a and b. Putting f(z,w) = exp(- 1TZ2
- 1TW

2
) 

( Tf/!)(z,W), we have feS 2
, F 1 ·T~

11 T~ 1 f = 0 for all aelR, hER. 

So, if heS 2
, then (cf. Ref. 16, Sec. S) 

0 = (F 1 ·T~ 11 T~ 1 f,h) = (R 1 ~aR ~~by f, .Y(h·f';)) 

= f~ ,J~ = e21Tiaz + 2rribw 

X(Y f)(z,w) (Y(h·f';))(z,w) dz dw 

for all real a and b. As f ;:f-0, this implies that Y(h·F';) = 0. 
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We conclude that F1 = 0. 

3.8. Example: Let (a,b )eR2
, k = 0, 1,-··, I= 0, 1, .... It will 

be of some interest to know which FeS' satisfies 

TF = l:n,m T~'IR ~~T~l (8~k I® 8~1). 

[note that the right-hand side is indeed in T (S')]. For conve­

niencetake(a,b )e(O,lf,andlettpeShavesupportin(n,n + 1) 

wheren is an integer. Then(Ttp )(z,w) = tp (z- n)e- 2"inw, and 

TF· Tt/J is the periodic distribution of two variables for 

which the restriction to [0, !f equals T _ n tp -8~k 1 ® R _ n 8~ I. 

The OOth Fourier coefficient of this function is given by 

(8~kl, T -niP)·(- 21Tin)'e-21Tinb 

= (8~k~ n•IP )(- 21Tin)'e- 21Tinb. 

This suggests that F = l:;:' = _ oo ( - 21Tin)1e- 2 "inb8~k ~ n, and 

indeed, it can be verified directly that this is the F we are 

looking for. 

4. BARGMANN TRANSFORM, ZAK TRANSFORM, AND 

COMPLETENESS 

This section contains material that completes and eluci­

dates the results of Refs. 1-7 about completeness of coherent 

states and expansions of the Gabor type. The Zak transform 

gives rise to more general results than the Bargmann trans­

form does in the sense that with the former completeness 

properties for other functions than Gauss functions can be 

proved. On the other hand, the Zak transform is only useful 

when lattices of which the cells have unit area are 

considered. 

We start this section by drawing some conclusions from 

Theorems 3.5 and 3.6. In particular, L 2 convergence of cer­

tain expansions of the Gabor type for well-behaved functions 

is proved. We consider, of course, the case in which Gabor 

functions are taken as basic functions in detail. The results of 

Refs. 2 and 7 about completeness if one or more coherent 

states are deleted are improved. Also, a connection with a 

result of J. M. Whittaker about interpolation over the lattice 

points in the complex plane is made. We finally indicate how 

the results can be extended to the cases with general lattices 

with cell area equal to one in the phase plane, and we show 

existence of expansions of the Gabor type for elements of S •. 

4.1. Theorem 3.6 is useful for analyzing the mapping 

/-+((f,R _ m T _ nglln,m, where g is some fixed function. If, 

e.g., Tg is continuous and 1 <p<.2, then 

((f,R _ m T _ nglln,m e/ q for /eL P(R) (q conjugate exponent), 

but the mapping is not bounded below (as a mapping from 

L P(R) into I q) by Theorem 3.5. 

This has an interesting signal-theoretic consequence. 

The function sg I given by (Sg /)(x,y): = (f,R - y T- xgl is 

sometimes called a spectrogram of f Hence, if we sample 

Sg f over a lattice of which the cells have area one, then it 

may happen that the double sequence of sample values have 

small q norm while both f and T /have large p norm. 

In case f = g we have 

(f,R _ Y T _ x f) = e- 1Tixy Amb(x,y;/), 

where Amb(·.-;/) is the so-called ambiguity function32 off, 

defined by 
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Amb(x,y;/) = J: oo e- 2"iyt f(t + !X) f(t- !X) dt. 

. w~ de~ve from Theorems 3.5 and 3.6 the following 

mequahty: tf feL 2(R), T f continuous, then 

Amb(O,O;/)<.l:1n,m)#(O,o) JAmb(n,m;/)J, which is an inequal­

ity expressing the uncertainty principle. 32
•
33 

Note, however, that the assumption "T /continuous" is 

essential, for if/= x 10,11 , then Amb(O,O;/) = 1, 

Amb(n,m;/) = 0 [(n,m);C(O,O)]. 

Taking g = f_, where f_(t) = f(- t ), we get 

(f,R -yT -x f_) = !r 1Tixy W(! x,!y;f,f), 

where W(·,·;/) is the Wigner distribution of/defined by 

W(x,y;() = J: oo e- 2
";Y'f(x + !t) f(x - ~t) dt. 

Hence the Fourier coefficients of T f T f _ equal 

!( -l)nmW(!n,!m;f). As (Tf_)(z,w) = (Tf)( -z,- w) we 

see that it may well happen that W(!n,!m;/) = 0 for an' inte­

gers nand m. This is seen from the Fig. This can happen even 

if /eS, but not if feS (cf. Theorem 3. 7). 

4.2. IfwetakeageL 2(R)forwhich thesetofzerosofTg 

has measure zero, we get the completeness results obtained 

in Ref. 5: the set (R _ m T _ ngln,m is complete in L 2(R). If, in 

addition, TgeL q([O, !]2), where q>2, then (R _ m T _ ngln m is 

complete in L P(R), where p = ql(q - 1 ). This can be pr~ved 
by using Theorem 3.2 and generalizing Theorem 3.6 proper­

ly. And if Tg is, e.g., continuously differentiable [which im-

plies by Theorem 3.5 that 1/ Tgt. L 2([0, !f), then 

(R- m T- ngl(n,m)#(O,O) is still complete in£ 
2
(R) [and probably 

also in L P(R) for 1 <p<.2]. Finally, if feL 2(R), geL 2(R) and 

the set of zeros of Tg has positive measure, then either 

(f,R _ m T _ ng) = 0 for all nand m or (f,R _ m T _"g) ,CO for 

infinitely many n and m. 

Remark: LetgeS. We can use Theorem 3.6 for describ­

ingthesetofall jeS' such that(f,R _ m T _ ng) = Oincase Tg 

has a finite number of zeros (a 1,b1), ... ,(ak,bk) in the unit 

square. By Theorem 3.6 T /is concentrated in 

(a,,b,), ... ,(ak,bd, and the translates of these points over dis­

tances (n,m) with integer nand m. Using Ref. 34, Chap. 24, 

Theorem 2.4.6 (the restriction to the unit square ot) we see 

that T /has the form 
k p, q, 

I I I c,ij8~~ ® 8~;. 
I~ 1 i=Oj=O 

~IG. I-E" the ~upport ofT fis in the IIIII region, then the support ofT f_ is 
m the = regton. 
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Now Example 3.8 can be applied, and we see in particular 

that fis concentrated in the set (a; + n li = l, ... ,k;n 

integerj. 
4.3. In Ref. 4 it was shown that for any FES' there exists 

a (not unique) expansion in a Gabor series, with convergence 

inS' sense. If FES, say, then it may still be the case that the 

convergence of the series is not inL 2 sense. The next applica­

tion of Theorems 3.5 and 3.6 deals with improving conver­

gence of series of the Gabor type. Take fEL 2(R), gEL 2(R) and 

assume that TgEL 00 ([0, If). Let (a,b )E[O, If. We have for in­

tegers n and m 

T(R ~ m ~ b T ~" ~ ag) = e21Tibz(Tg)(z- a,w- b )e21Timz+ 21Tinw. 

Hence, if(cnmln,mE/
2

, then/= ~n,mcnmR ~m~bT ~n~ag 

(in L 2(R) sense) if and only if 

( T f)(z,w) = e21Tibz( Tg)(z - a,w - b ) I c nm e21Timz + 21Tinw 
n,m 

[in L 2([0, If) sense]. Now, if T fand Tg are continuous, then 

it is in general advisable to take a and b such that 

(T f)(z,w) = 0 whenever (Tg)(z- a,w- b)= 0. By Theorem 

3.5 this is always possible if Tg has only one zero in [0, If. If a 

and bare such that T f IT(R ~ b T ~ ag)EL 2([0, 1]2
), then one 

can take for cnm the (m,n)th Fourier coefficient of 

T f IT(R ~ b T ~ ag). We see in particular (cf. 3.4) that a con­

siderable class of functions /have an expansion 

f= ~n.mcnmG(n + a,m + b )inanL 
2
(R)convergentGabor 

series for suitable values of a and b (this class contains all 

functions /for which T fis Holder continuous). 

Note: We can use the Zak transform to prove existence 

of Gabor type expansions for tempered distributions in gen­

eral. Let gES, g =I= 0 be such that Tg is real analytic and has no 

zeros on the edges of the unit squares (the latter assumption 

is probably superfluous, but convenient). According to Loja­

siewicz's theorem35 there exists a distribution</> of two varia­

bles such that <J>. Tg = T f This </>is, in general, not periodic, 

but by our assumption on g we may assume it is. Hence</> has 

a Fourier series expansion ~n.mcnm e21Tinz + 21Timw, and it fol­

lows that f = ~nmcnmR ~" T ~mg. This generalizes Ref. 4, 

Theorem 4. 7 where the Gabor case was considered [howev­

er, in the proof of the theorem quoted a method is given to 

determine the double sequence (cnm ln.m]. 

4.4. We now turn to the Gabor case in detail. We know 

from Ref. 7, 2.14 that any regular tempered distribution f 
with (f,G (n,m)) = 0 for all integers nand m, (n,m) =/=(0,0) is a 

multiple of the function / 0 given by 

/
0
(t) = 2 ~ 114 exp(1Tt 2

) I ( - 1 )" exp( - 1T(n - !)2
). 

n- r>t 

This function which can also b~ found in Ref. 6, is an inter-

esting one as we shall see. We let g(t) = 2114 exp( - 1Tt 2
). 

Theorem: For every p, 1 <.p < oo we have 

/ 0EL ao(R)\.LP(R). The Bargmann transforms (BJ;>)(z) of J;> 

equa)S - e.(z)e\1Tz'I21TZ, Where e1 iS the firSt theta functiOn 

[in the notation of Ref. 29 we have e 1(z) = t? 1(1Tz,e ~ 1T)]. We 

further have 5" J;> = };1, and T J;> = d I Tg where 

d = - !t? ; (O,e ~ 1T). 

Proof It was already observed in the proof of Ref. 7, 

Theorem 2.14 that / 0 is bounded. Now let 1 <.p < oo . We 

have for t;;.O 
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l.t;>(t )I= 2 ~ 
114 

exp(m 
2

- 1TCfJ 2(t )) + O(exp(- 2m)), 

where cp (t) = [t + !] - !· If n = 1,2,.··, then 

f +~; exp(1Tpt 2 
- 1Tpcp 2(t )) dt 

= f~+' 
1 

exp(1Tpt 
2 

- 1Tp(n + !f) dt 

;;.exp(- p1T)[(n + !) - ((n + !)2- 1)1/2] 

;;.exp( - p1T)/(2n + 1 ). 

It follows that /of! L P(R). 

To show that (Bfo)(z) = - e1(z)e\1TZ'I21TZ, we observe 

that 

P(g·J;>) = 
11--=--- X 

Taking Fourier transforms and using that .7 P = Q.7, we 

gee6 

_ 2m'z(.'7(g· J;>))(z) = I ( _ 1 )"e ~ rrin · ;)' · 2mln .. \lz 

The right-hand side is equal to it? 1 (1Tz,e~ 1T). Also 

(.7(g· J;>))(z) = (Rz / 0 , g)= e ~ 1Tz'(T ~ iz J;>, g). 

Now using Jacobi's identity t? 1(1Tz,e ·· 1T) 

= i exp( - 1Tz2 )t? 1(m'z,e ~ 1T) (Ref. 29, 21.51) we get 

-21Tize· r.z'(T iz.J;>,g)=e~1Tz't? 1 (1Tiz,e~7T). 

It follows from the oddness oft? 1 that 

(Tz };>,g)= - t? 1(1TZ,e ~ 1T)/21TZ. 

Now use the definition of B. 

We next show that T fo = d I Tg. As it stands, this rela­

tion must be considered in distributional sense since 

/
0
ELP(R) for l..;p..;2. We have (f0,G (n,m)) = 0 for all inte­

gers nand m with (n,m)=/=(0,0), and according to what we 

have found above, 

- 21Tz(Rz / 0 ,g) = t? 1(1Tz,e ~ 17
), 

so that (cf. Ref. 29, 21.41) 

-1 d 
Uo,g) = --[t?1(1Tz,e~1T)]iz~o 

21T dz 

= - ~t? ; (O,e ~ 1T) 

= - !t? 
2
(0,e ~ 1T)t? 

3
(0,e ~ 1T)t? 4(0,e ~ 1T) =I= 0. 

Applying Theorem 3.6 we get 

T / 0 • Tg = - ~t? ; (O,e ~ 1T) = d. 

Since T };>E(S2
)' and Tg has a zero in(!.!) and nowhere else in 

[O,lf, there is a cpE(S') concentrated in the points (n + !· 

m + !) with integers nand m such that T / 0 = d I Tg + cp [by 

Theorem 3.7 we see that d I Tg]ET(S'). It follows from 

the remark in Sec. 4.2 that cp = T / 1, where / 1 is concentrat­

ed i~he points n +!·with nan integer. However, 

d 1Tg1 = Tk , where k is the regular distribution given by 

k(z) = f ddw 

(Tgt)(z,w) 

Here we use that if ¢:R2-C is absolutely integrable over 
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[0,1]" and satisfies T\11¢ = R \211/J,T\211/J = 1/J, then 1/J = T¢
0

, 

where !/J0(z) = fb 1/J(z,w) dw (this follows from Theorem 3.6). 

Now the fact that fo and k are regular and / 1 is concentrated 

in the points n + ! with integer n leads to a contradiction, 

unless <p=O. This shows that T fo = d I Tg. 

We finally show that .'Y / 0 = fo. We therefore observe 

that T/0 = d I Tg = d I TY* g = de2
"izwl( Tg)(w,- z) by 

3.3,(6). Hence (TY ft
1
)(z,w) = e- ln-izw(T ft

1
)(z,w) 

= d I( Tg)(z,w) = (T fo)(z,w), and the result follows from 3.1 

Remarks: (1) It is easy to see that L, f
0
(z- nje ·· 

2
1Tin«· 

converges uniformly and absolutely (to 1/ Tg on any com­

pact set not containing points (z,w) for which z- ~is an inte­

ger. In case z = 0 we thus find the Fourier series -for 1/83 : 

(, ! 'lC e - 1TII, t 27Til!«') - I = d - I" ~ ~ .t;,(n je2rnnw 

(compare Ref. 29, Chap. 21, Miscellaneous Examples, 14). 

Note also that d - 1 f 0(r - s) for integers rands is the limit of 

the (rs)th element of the inverse of the matrix 

( e - TT1k -
1 1') k,t = _ ,, ... ,, if n--+ oo ; these matrices occur in the 

study of the inverses of discrete Gauss transforms. 
37 (2) As a 

consequence of Theorem 4.4 we have that the set 

(G (n,m ))1,,m1,., 10.01 is complete in L P(JR.) if 1..;p < oo, and not 

complete in L "'(JR.). This generalizes the result in Ref. 2 

where the case p = 2 was treated. (3) Let/EL 1(JR.) so that for 

every integer m 

c,,": = ( - 1 )"md- 1(/.R _ m T _ , .t;,)----+0 

if n----+ oo. Since for all integers k and I 

d -IL,,m(- 1)"m(G(n,m),G(k,l ))R _ m T _ 
11 

h1 = G(k,/), 

where the series converges boundedly, we have 

2:c,, 11 (G(n,m),G(k,l)) = (j.G(k,l)). 
n.1n 

It follows from Ref. 4, Theorem 4.1 and 4.1, Remark 1 that 

!= L,_,c,.,G(n,m) with convergence inS' sense. 

4.5. In Ref. 2 it is shown that the set G (n,m) with 

(n,m)#(O,O), (n,m)#(k0,/0) is not complete in L 2(JR.) if 

(k0,/0)#(0,0). We generalize this result fo L P(JR.) as follows. If 

k and I are integers and FES', then R 1 ~ 1 kR 1 ~ 1TF 

= T(R 1. T _ 1F) by 3.3. So, if P (z,w) = Lk,tc
1
ke

2
1Tikz + 21rilwis 

a trigonometric polynomial, then 

T(Lk,1c1kR _ k T _ 1 fa)= PI Tg. 

Taking P such that P (!.1) = 0, we get PI TgEL ""([0, 1]2
). 

Since Tmaps L 2(JR) onto L 2([0, 1]2) -:JL ""([0, 1f), we see that 

there is an /EL 2(JR.) such that T f =PI Tg, i.e., an JEL 2(R) 

with (f,G (k,l )) = (- W'ckt· Taking c00 = I, 

ck,i, = (- W" + 
1
" + 

1h 1 = 0 otherwise, we get an JEL 2
(R) 

with (f,G (n,m)) = Ofor (n,m)#{O,O), (n,m)#(k0 ,/al· This /is 

given by 

f = / 0 + ( - 1 (" + 
1
" + 

1 R _ k,, T _ 1, fo, 

and it can be shown that fEL P(JR.) for all p with 1 <p< oo. 

Hence, the collection G (n,m) with (n,m)#(km10 ) is not com­

plete in L P(JR.) for 1 <,p..; oo. In case Ia = 0 we can even show 

that f(x) = ((- l)k.,+ 1e2
1Tik.,x + l).t;1(x) = O(lllxl)(lxl----+oo) 
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and that fis continuous. The discontinuities of .t;, (which 

occur at the points x for which x - ~is an integer) are annihi­

lated by the factor { - 1 )'" + 
1e1

"ik,,x + 1 in this case. And if 

k0 = 0 we get an /for which (.7 f)(x) = 0 (1/lxl)(lxl----+oo) 

and .7 fis continuous. One can carry this process further, 

and it is easy to see that deletion of more coherent states gives 

rise to the existence of smoother functions perpendicular to 

all coherent states but the deleted ones. We note that the 

latter assertion is, to some extent, also true if one takes more 

general functions g than the Gauss function. 

4.6. We now discuss an expansion which is in some 

sense dual to Gabor's expansion. Let A be a finite set of lat­

tice points, and letFES' satisfy (F,G (n,m)) = Ofor(n,m)iA. It 

is clear that F is of the form 

F= G + d -I I (- l)'""(F,G(n,mj)R m T ".t;,, 
(11.m)10A 

where ( G,G (n,m )) = 0 for all nand m [this is a consequence of 

the formula (R _ m T _" fa,G (k,l )) = (- l)"mdo,kom1.] In 

caseFES' is regular and satisfies Ln,m I(F,G (n,m))l < oo, then 

we can take for A all of Z X Z and G =0: 

(*)F = d Ln,m (- l)"m(F,G (n,m))R _ m T _ n fo· 

For the proof we use that either function in(*) is regular (cf 

Theorem 4.4) and Ref. 4, Theorem 4.1. Of course, (*)is false 

in general if FeS' is not regular. 

We shall now give a connection with Whittaker's re­

sult38 about interpolation over the Gaussian integers. There­

fore, let FeS' be regular and assume that 

Ln,m I(F,G (n,m))l < oo so that the expansion in(*) holds for 

F. Applying the Bargmann transform to both sides and using 

that 

(Bfa)(z) = - 81{z)el=' 121TZ, 

B (R - m T- n fa)(z) = ( - 1 )"me- lTT1n' + m') + 17jn + im)z 

X(Bfa)(z + im- n), 

8
1
(z + im- n)el'* + im- " 1' 

= (- 1)" + m + nme.(z)el7Tz' e -J1T(n' + m 2
) -TTjn + im)z, 

(F,G (n,m )) = e -JTT1n' + m'1(BF )(n - im ), 

we get 

( l)n+m+ I() () j7Tz' 
B (R - m T- n fa)(z) = - . I z e , 

21T(z +1m- n) 

so that 

(BF)(z) = - d8
1
(z)el7Tz'L(- 1)" + m + nm 

n,m 

X (BF)(n- im) -lTT1n'+m'J 

z-n +im 

This is a slight generalization of the result of Ref. 38, because 

there only functions f = BF are admitted that have growth 

< (2,1T/2), while we admit certain functions with 

growth= (2,1TI2) (cf. 2.7). 

The expansion discussed here can be used to generalize 

a result of Iyer and Pfluger39 about entire functions of 

growt,h < (2,1TI2) which are bounded at the lattice points. 

Let rp = B /.where fES, and assume that rp is bounded at the 

lattice points. We shall show that rp is constant, and to that 
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end we suppose that q; has type rr/2. Since 

zkq; (z) = (B (Q - iP )k f)(z)EB (S), we see that 

zkq; (zl = - de.(z)el,.z'I(- ll" + m + nm 
n,m 

X (n + im)kq; (n + im) -lni•' + m'l 

z- n- im 

for all k = 0, 1,-··. Since q;EB (S) we know that 

1:: = o Ia. llzl" = 0 (exp(~rrlzl 2 )(1 + lzl)- K) for all K> 0 

[here we write q; (z) = 1:: = 0 a.z"]. It follows easily that 

q; 2(z) = f akzkq; (z) 
k~o 

= -dO (z)el1Tz21: (- 1)" + m + nm q; 2(n + im) 
1 n.m . 

z-n -zm 

xe-lni•'+m'l. 

Now the right-hand side has growth ..;(2,rr/2), while the left­

hand side has growth = (2,rr).40 We conclude that q; has type 

< rr/2, whence q; is constant by the result of Iyer and 

Pfluger. 

A trivial extension of this theorem is: If q;EB (S) satisfies 

q; (n + im) = 0 ((n + im)K) for some K = 0, 1,. .. , then q; is a 

polynomial of degree ..;K. As a consequence we have: If [ES 

and (f,G (n,m)) = 0 ((n2 + m2)K 12exp( - !1T(n2 + m2)), then 

/is of the form l:f = 0 ak t/Jk. We observe (cf. 4.5) that the 

assumption "/ES" cannot be weakened to a condition in 

which boundedness of only finitely many of the functions 

Q k P 1 f is required. 

With methods similar to the ones used above it can be 

shown that if [ES, O..;E0 < 1, 

(f,G (n,m)) = 0 [exp(- !rrE(n2 + m2
))] for all E, 0 < E < E0, 

then fEN a (S "), where a = -!log( 1 - E0 ). 

4. 7. Translating Ref. 4, Theorem 4. 7 by using the Barg­

mann transform, we get the following theorem: 

Theorem: Let fEB (S'), i.e., let /be an entire function 

such that 

f(z)exp(- ~rrlzl
2

) = 0((1 + lzltl 

for some N > 0. There exists a double sequence (c.m lnm satis­

fying c nm = 0 (( 1 + n2 + m 2t) for some K > 0 such that 

f(z) = l:.,mcnmexp(- ~rr(n 2 + m 2))e* + im)z. 

The convergence of the series is such that 

I /(z) - n' +J;'<Lcnm exp( - ~rr(n 2 
+ m

2
)) 

xeni· + im)z I exp(- !rrlzl2) -a 
(1 + lzi)M 

uniformly in zEC(L-+oo) for some M > 0. Write 

f(z) = el1Tizl'q; (z). If q;EL 2(C) and 

Ll zq;~z~ I dz-0 (lwl-+oo), 

then there exists a unique sequence (c.m l.m with 

c.m-o (n2 + m2-+oo) such that the above expansion holds; 

these cnm 's are given by 

- (- 1)" + m + nmd -llelni)z)'- i") el(Z)q;(z) dz. 
c 2rr(z- n- im) 
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Proof Take hES' such that f = Bh. This h has a Gabor 

expansion h = l:n,mcnm G (n,m) which converges inS' sense. 

Now apply B to both sides and use 2.7 and 2.8. The conver­

gence is in the sense indicated by Ref. 13, Sec. 4. 1. 

Assume in addition that q;EL 2(C) and that 

ll q;(z) I dz-o (lwl-+oo), 
c z-w 

where q; is as in the theorem. Put fa = BNah for a> 0 (cf. 

2.4).AsNahES fora>OwehaveNah = l:n.mcnm(a)G(n,m), 

where 

Cnm(a) = (- l)"md -l(Nah,R _ n T _ m fo) 

by 4.4, Remark 3. By 4.6 and 2.8 we can write this as 

cnm(a) 

= - (- 1)" +m+ nmd -l e- 1Tizl'fa(z) I z ~ dz. l 
e ( l 1T?n 

c 2rr(z + zm - n) 

Since (BNah )(z) = exp(- !a+ ~rrlze- al 2)q; (ze- a) by 2.8(3) 

and 8 1(z) = 0 (exp(rr(Imzf)), we get 

limc.m(a) 
a!O 

= - (- 1)" + m + nmd -•le!niZ' -lzl'l el(Z)q; (z) dz 
c 2rr(z- n - im) 

boundedly in (n,m) as fc lq; (z)lflz- wl dz is bounded in w. 

We also have c.m-o and 

f(z) = l:n,mcnmexp(- ; (n2 + m 2 ))eni• + •mlz. 

Uniqueness follows from Ref. 4, Theorem 4.1, for it follows 

from the assumptions about q; and 2. 7 that hEL 2(R). 

4.8. We give an explicit formula for the unique coeffi­

cients c.m(x,y) in the Gabor expansion l:n,mcnm (x,y)G (n,m) 

ofG(x,y), with c.m(x,y)-<l(n2 + m 2-+oo ). Using the 

formulas 

c.m(x,y) = - ( -1)"md - 1(G(x,y),R -mT -n/0 ), 

(TaRb G (x,y),/0 ) = exp(rri(ay- xb ))(G (x- a,y- b ),[0 ), 

(G (x- a,y- b),};)) 

= exp( - !rr(x - a)
2 

- !rr(y - b )2) (B [ 0 )(x -a - i(y -b)), 

(B/0)(z) = - d81(z)e
11Tz> /2rrz, 81(z) = 81(Z), 

we get 

(G (x,y),R _ b T _a fo) 

= - dexp( - rr(y - b )2 
- rri(xy + ab )) 

xel(x- a+ i(y- b ))/2rr(x- a+ i(y- b)). 

Hence, 

c.m(x,y) = exp( -tr(y- mf- rrixy) 

xel(x- n + i(y- m))/2rr(x- n + i(y- m)) 

for all real x andy and all integers nand m. 

If we denote for /ESby c.m (f) the unique Gabor coeffi­

cients in the expansion f = l:.,mcnm (f)G (n,m), then we see 

from Ref. 3, 27.12.1.5 that 

c.m(f) = f fu;G(x,y))cnm(x,y) dx dy. 
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In particular, 

I f(G {a,b ),G (x,y))cnm (x,y) dx dy = c nm (a,b) 

which shows that c nm is an "eigenfunction" of the kernel 

operator with kernel (G (a,b ),G (x,y)). . 
4.9. We next consider the completeness problem With 

general lattices in phase plane whe~e the cell_s have area equal 

to one. Such a lattice can be descnbed by stx real numbers 

a 1 1, a 12, a 13 , a21 , a22, a25, with a,, a22 - a,z Ozt = l, by 

putting 

rx y )=(a 1n+apm+a 13,a21 n+a22 m+a2,) 
' n,m t n,m I -

for integers nand m. We have according to Ref. 3, 27.12.2.1, 

for all lattice points ~a,b) = (xn,m 'Yn.m) 

(rl!l.v•l f,R b T- aW(.1.•Mg)_.) 

= ie- mab w (~a.~b; r(!l,l/•1 J,r(.1,1/J)g) 

= ~e -rriabW(!n,~m; J,g) = (- Itme- ,-iab(f,R- m T- ng_) 

for fES, gES (cf. 4.1 for the definition of W). Here F 1A,.PI is ~he 

special transform introduced in Ref. 3, 27.3.8 and 9 assoctat­

ed with the matrix 

[ ~:~ ~ ::" ~ :,~21 
The above formula can easily be generalized to the case 

that fES •, gES or /ES', gES or /EL 2(R), gEL 2(JR). Hence, 

characterizing the set of all /ES' for which 

(f,R _ b T _a g)= 0 for all lattice points (a,~)= (xn,m •Yn,m) 

amounts to characterizing all FES' for whtch 

(F,R _,., T _ "G _) = 0 for all integers n and m, where 

G = r 1 ;~ 1 g. 
As ~n example take g(t) = 2 114exp( - 1Tt 2) and 

a 13 = a23 = 0. We have 

(F1;.J1g)(z) = 21
/
4
a 22 -

112
exp( -1Tz2(1 + iaz,adla~zl 

if a 12 = 0, and 

if a ....t. 0 (the choice of the square root is determined by t/J; cf. 
12r 2 h 

Ref. 3, 27.3). Now if Rer> 0, gr(t) = exp(- 1ryt ), t en a 

calculation shows that 

(Tgr)(z,w) = exp(- 1TYZ2)t?3(1T(w + iyz);r ""r). 

It follows that Tg has zeros at the points (n + !,m + i) with 

integers n and m ~nd nowhere else. Now the remark ~n ~ec. 
4.2 gives an indication of the general form of all FES Wtth 

(F,R _ m T _ ngrJ = 0 for all nand m. In this case, however, 

we can do better by using the Bargmann transform. Let 

r=IO. We want to characterize all FES'.with . 

(F,G (n + ym,m)) = 0 for all integers nand m. That ts, we 

must find all FES' such that (BF) (n + ym - im) = 0 for all 

integers nand m. Note that the function tJ,(1TZ,e- rriy- ")has 

zeros at the points n + ym - im, that there is an M > 0 such 

that 
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\-81(1TZ",e- mr- "')\ <.Mexp(1T(lmz)2) (zEC), 

and that there is a K > 0 such that 

\t't 1(1rz,e- ,.,r- ,.)\ ;;;>Kexp(1rt?), 

where z = - rv + iv +a -1 with v real and a an even inte­

ger(compareRef. 7, 2.6). Nowwecanproceedasin the proof 

of Ref. 7, 2.11 to conclude that (BF )(z) 

= el"..,tJ?f17z,e- "''r- ''')P(z), where Pis a polynomial. The 

only difference from the proof quoted is that we need a theo­

rem of Phragmen-Lindelof type for regions of the form 

(tp = arctany): 

With the aid of the Schwarz-Christoffei formula one can 

construct a conformal mapping r (continuous at the bound­

aries) that maps the second region onto the first one such that 

r( - a + ~~ = - a + !· -r(a - ~) = a - !· 
r(i oo) = ( - r + i)· oo, and such that jr(x + iw)lw) tends to a 

finite limit -=fO uniformly inx, jxj<.a-! if w-oo. Hence, 

the Phragmen-Lindelof theorem for the rectangular region 

can be modified in such a way that we get the required 

bounds one -l".,(BF)(z)/cJ1(1Tz,e- rrir- '").From this we can 

derive a similar characterization as in Ref. 7, 2.12. We note 

that the more general problem of characterizing all FES' 

with (F,G (na + ym,ma- 1
)) = 0 for all integers nand m can 

be handled similarly (a > 0). Finally, if we have a general 

lattice (a,b) = an(cosBpsinB.) + /3m(cosBz,sinB
2

) with 

a{Jsin(B2 - 0.) = 1, and (F,G (a,b )) = 0, then we can use that 

(BF)(z) = c(BNe. '"·F)(e;8 'z) (zEC) 

for somec, lei = 1 (cf. 2.8 and the references given there). We 

then get (F,G (a,b )) = 0 at the lattice points if and only if 

(N •.•. F,G (na +/3m cos(82 - 8 1), ma- 1)) = 0 for all inte­

gers nand m. 

4.1 0. We finally show that every FES • can be expanded 

in an S • convergent Gabor series. Our proof consists of a 

suitable variation of the argument used in the proof of Ref 4, 

Theorem 4. 7, where the S' -case was considered. 

We start with the observation that any FES • which can 

be written in the form 

{*)F=! an(Q+iPtFn, 
n=O 

where F,., EL 
2
(!R), 1/Fn H < 1, a,. = 0 (exp( - ~n logn - Bn )) 

for all B > 0 has a Gabor representation. Indeed, as 

FnEL 
2
(R) we can find (c~/k 1 such that 

Fn = "lk,lc~')G \k,l) 

(convergence in S' sense). Here we may assume in addition 

that 

jc~'} j <;;;C((logjk j)' 12 + (logjl\) 112
) 
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for some C> 0 independent of n (cf. Ref. 4, Theorem 4.6). 

Hence, since (Q + iP )G (x,y) = (x + iy)G (x,y), 

F = I an (~k,lc~)(k + i/ )nG (k,/) ). 
n=O 

Now we note that 

I lanc~)(k + ilti<C I an lk + illn + 
1 

= /(lk +ill), 
n=O n=O 

where f(z): = ~nanzn + 
1. It follows from the assumptions on 

(an ln and Ref. 21, Theorem 2.2.10 that /has growth .;;;;(2,0). 

Hence 

I lanc~n)(k + il tl = 0 (exp(E(k 
2 

+ /
2

))) 
n=O 

for all E > 0. We conclude that 

F= ~k.{~ 0 anc~)(k + ilt)G(k,/), 

with convergence inS· sense [this follows from the fact that 

for every fES there is an E > 0 such that (f,G (k,/)) 

= 0 (exp(- Ek 
2 

+ /
2
))]. 

Our next aim is to show that any FES • can be written in 

the form(*) with FnEL 2(R), IIFn 11<1, an 

= 0 (exp( - !n logn - Bn)) for all B > 0. So, let 

F= ~'k=ockthES·, whereck = O(ekE) for all E>O. Let k0 , 

k 1, k2, ... be a sequence of integers with 0 = k0 .;;;;k,.;;;;k2 .;;;; ... , 

and let 

ek.l = trl1cd(k +I )!lk !)-
112 

fork= k1,k1 + l,.··,k1+ 1 - 1, I= 0,1,.··. The definition of 

the ek,/s is such that 

We have to choose the k/s such that for all B > 0, 

(

kl+ 1- I )1/2 
= k ~k, lek,1 1

2 
= 0 (exp(- !flog/- Bl )). 

Equivalently, we want the k 1 's such that for all B > 0, 

k,+,-1 k!lckl2 
A1: = L = O(exp( -/log/- B/)). 

k=k, (k + /)! 
Denote for I= 0, 1, ... by f(/) the integer with the proper­

ty that lck I <e1(k = 0,1,. .. ,[(/)- l),lc111) I> e1 
[we may as­

sume that /(I ) exists, otherwise (c k ) k is bounded and so FeS ']. 
Now f(/ )1/~oo, for otherwise we could find an M>O and 

integers /1, /2,. .. with /k~oo such that f(/k).;;;;M/k, 

lc filkll > exp(/k) for all k, contradicting c1 = 0 (exp(/E)) if 

E< 1/M. Nowputk1+ 1: = min(/ 2,/,(/))for/ = 0,1,2,. ... We 

have 

k! 

(k + /)!, 

and it follows easily from Stirling's formula that there is an 

M > 0 such that 

k !l(k +I )!.;;;;Mexp(/-/log/- llog(l + k111 )), 
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for I= O,l,.··,k = k1, ... ,k1+ 1 - 1. Hence, 

A1 .;;;;Me31 (k1+ 1 - k1)exp( -/log/-/log(l + k111)). 

Since k 1 1l~oo ,k1 + 1 - k1 = 0 (/ 2
), it follows that 

A1 = 0 (exp( - /log/- Bl )) for all B > 0, and this completes 

the proof. 

We mention a consequence: It follows as in 4. 7 that for 

every entire f of growth .;;;; (2, 1r 12) there exists a double se­

quence (cnm lnm with cnm = 0 [ exp(E(n2 + m 2
))] for all E > 0 

such that 
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