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Bariatric surgery emphasizes biological sex
differences in rodent hepatic lipid handling
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Abstract

Background: Eighty percent of patients who receive bariatric surgery are women, yet the majority of preclinical

studies are in male rodents. Because sex differences drive hepatic gene expression and overall lipid metabolism, we

sought to determine whether sex differences were also apparent in these endpoints in response to bariatric surgery.

Methods: Two cohorts of age-matched virgin male and female Long-Evans rats were placed on a high fat diet for 3

weeks and then received either Sham or vertical sleeve gastrectomy (VSG), a surgery which resects 80% of the stomach

with no intestinal rearrangement.

Results: Each sex exhibited significantly decreased body weight due to a reduction in fat mass relative to

Sham controls (p < 0.05). Microarray and follow-up qPCR on liver revealed striking sex differences in gene expression

after VSG that reflected a down-regulation of hepatic lipid metabolism and an up-regulation of hepatic inflammatory

pathways in females vs. males after VSG. While the males had a significant reduction in hepatic lipids after VSG, there

was no reduction in females. Ad lib-fed and fasting circulating triglycerides, and postprandial chylomicron production

were significantly lower in VSG relative to Sham animals of both sexes (p < 0.01). However, hepatic VLDL production,

highest in sham-operated females, was significantly reduced by VSG in females but not males.

Conclusions: Taken together, although both males and females lose weight and improve plasma lipids, there are

large-scale sex differences in hepatic gene expression and consequently hepatic lipid metabolism after VSG.
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Background
To date, bariatric surgical procedures are the most

successful method to treat obesity and resolve metabolic

comorbidities. Vertical sleeve gastrectomy (VSG) is a

particular type of bariatric surgery which removes about

80% of the stomach along the greater curvature and

involves no intestinal rearrangement. VSG is rapidly

expanding in utilization due to the fact that it is highly

efficacious at causing weight loss (60–65%) [1, 2] and

improving type 2 diabetes and hyperlipidemia [3].

The mechanism(s) that underlie the efficacy of bariatric

surgery are unknown but our contention is that there are

key molecular events triggered by surgery that have

lasting effects on metabolic homeostasis. Many groups,

including our own, are focused on utilizing rodent

models of bariatric surgery in order to identify these

molecular events [4–7]. However, despite the fact that

women represent approximately 80% of the bariatric

surgery patient population, the vast majority of the

preclinical work, has been in male rodents (see [8–10] as

exceptions). Overall, this distinction may not seem

important; surgery is highly efficacious regardless of sex.

However, biological sex has potent effects on lipid metab-

olism that extends beyond region-specific fat distribution.

For example, in response to metabolic stress, such as

weight loss or exercise, fat is mobilized more readily in

women [11–14]. This is also evident from an evolutionary

perspective where transcriptional profiling of hepatic

genes revealed that 70% of 1249 genes were upregulated

in females and many of those genes were related to lipid

metabolism [15]. Thus, if we are to understand the

molecular changes underlying the success of surgery, we
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cannot ignore the potential influence of sex on the af-

fected pathways.

Our previous data have demonstrated a reduction in

circulating [16] and hepatic [17] triglycerides in male

rats following VSG. In contrast, female rats that had

VSG prior to pregnancy but were sacrificed several

months after pregnancy and lactation, demonstrated

elevated hepatic triglycerides [8]. It remains unknown

whether this would also be seen in female rats that had

never been pregnant. Thus, the purpose of the present

study was to directly compare hepatic lipid metabolism

in virgin male and female rats after VSG.

Methods

Animals

All procedures for animal use were approved by the

University of Cincinnati Institutional Animal Care and

Use Committee and follow the guidelines outlined in the

National Institutes of Health guide for the care and use of

laboratory animals (NIH Publications No. 8023, revised

1978). Two cohorts of age-matched (8 weeks) Long Evans

rats (male body weight 225–250 g, female body weight

175–200 g) (Harlan Laboratories, Indianapolis, IN) were

individually housed and maintained on a 12/12-h light/

dark cycle at 25 °C and 50–60% humidity. We chose to

match the animals by age because of the complications in-

volved in matching by body mass requiring either that the

males be severely food restricted or the females much

older than the males. Further, complicating matching by

body mass, male and female rats have different weight

gain trajectories in response to high-fat diet.

Following acclimatization to the facilities, animals

were given ad libitum access to water and a custom-

made palatable high-fat diet (high-fat diet) that we have

used previously [18] (D12451, Research Diets, New

Brunswick, NJ, 4.73 kcal/g, 45% butter fat; 19g of butter

oil and 1 g of soybean oil to provide essential fatty acids)

for 3 weeks prior to surgery and maintained on the diet

until the studies were terminated. Animals were assigned

to receive either Sham or VSG surgery in a counterba-

lanced fashion by body weight. Cohort 1 (male, n = 6;

female, n = 6 rats) was studied for hepatic microarray

gene expression after surgery while cohort 2 (male, n = 20

and female, n = 20 rats) was studied for the phenotypic

response to surgery.

Surgical procedures

Four days prior to surgery, body composition was

assessed using an EchoMRI analyzer (Houston, TX).

Animals were fed Osmolite OneCal liquid diet but no

solid-food for 48-h prior to surgery. VSG was performed

as previously described [19]. Briefly, it consisted of a

midline abdominal laparotomy with exteriorization of

the stomach. The lateral 80% of the stomach was excised

using an ETS 35-mm staple gun (Ethicon Endo-Surgery,

Cincinnati, OH), leaving a tubular gastric remnant in

continuity with the esophagus. This gastric sleeve was

then reintegrated into the abdominal cavity and the

abdominal wall was closed in layers. For the sham

surgery, an abdominal laparotomy was performed, light

manual pressure was applied with to the exteriorized

stomach, and then the abdomen was closed in layers.

For 3 days following surgery, all rats received twice-daily

subcutaneous injections of 5 mL saline and 0.20 mL

Buprenex® (0.05mg/kg), and animals were maintained on

Osmolite liquid diet which was replaced with high fat diet

on day 4.

Microarray studies

During post-operative week 9, animals were fasted for

24 h and then received either 2 mL (males) or 1.3 mL

(females) of olive oil. Blood was taken again at 2-h post-

gavage and then animals were killed by an injection of

Fatal Plus (1 mg/g body weight) and tissues were

collected to determine the impact of sex and surgery on

liver triglycerides and hepatic gene expression. The time

point was chosen based on previously published work

that demonstrates it reflects the time point of the initial

rise in both plasma and hepatic uptake of olive oil [20].

Olive oil was used as this is the type of fat we used in

previous studies [16]. Liver tissue was collected freshly

frozen in methyl butane and then stored in −80 °C until

further processing. Hepatic RNA was extracted using a

QIAGEN miniprep RNA kit (QIAGEN, Inc, Valencia,

CA). The microarrays were performed by the CCHMC

Genomics Core. The quality of the total RNA was

checked by a 2100 Agilent Bioanalyzer using the RNA

6000 Nano Assay. The GeneChip 3’ IVT Express Kit

(Affymetrix) was used to make double-stranded cDNA

from 0.3 μg of total RNA. An in vitro transcription reac-

tion creates biotin-labeled cRNA target. The cRNA

target is chemically fragmented and then hybridized to

an Affymetrix Genechip Array. Then, 15 μg of fragmented

cRNA was then hybridized to a Rat Genome 230 2.0 Array

(Affymetrix). Probe arrays were incubated at 45 °C for 16

h in the hybridization oven 640 (Affymetrix) rotating at 60

rpm. Probe arrays were washed and stained using the

Fluidics Station 450 (Affymetrix) utilizing the fluidics

protocol FS450-0001. The stain and Antibody solutions

are produced by Affymetrix and contained in the

Genechip Hybridization Wash and Stain Kit. GeneChips

were scanned using the Affymetrix GeneChip Scanner

3000 7G. The .cel and .chp files for the samples were cre-

ated using the Expression Console software (Affymetrix).

Relative hepatic gene expression from male and female

(Sham and VSG treatments) rats was obtained using the

Affymetrix Gene Chip Rat 230 2.0. Data was normalized

using the RMA algorithm to the median of the control
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samples (sex-specific Sham). We further filtered the

data, requiring a signal intensity of 75 in at least one of

the four experimental conditions. In order to generate

gene-sets of differentially regulated significant and rele-

vant genes, we formed pairwise comparisons between

select conditions with a fold-change cut-off of 1.5 and

accepted significance at p < 0.05. Additionally, we per-

formed a ranking procedure to select the 500 top- and

bottom-expressed genes for each condition. All expres-

sion analysis was performed in GeneSpring 12.5. Gene

sets were submitted to ToppGene for ontological ana-

lysis, which uses unbiased methods to determine gene

set enrichment for pathways, biological processes, and

molecular functions.

Body weight, composition, and food intake

In a second cohort of VSG and sham animals, food

intake and body weights were measured daily for the

first week following surgery. Body composition (fat and

lean mass) was determined as described above before

high fat diet (3 weeks prior to surgery), 4 d prior to

surgery, and then 4 and 16 weeks following surgery. Dur-

ing the postoperative period, several physiological studies

were performed to determine the impact of biological sex

on physiological responses to bariatric surgery, in particu-

lar, aspects of lipid metabolism were evaluated.

Glucose tolerance and baseline measurements

During postoperative week 5, animals were fasted for ~6

h following the onset of the light. Baseline blood glucose

was measured using an AccuChek glucometer. Rats were

administered 50% dextrose by oral gavage at a flat dose

equivalent to 1.5 g of glucose per the average body mass

of the respective sex. Thus, all males received 1.5mL and

all females received 0.9mL of 50% dextrose. Blood glu-

cose was then measured at 15, 30, 45, 60, and 120 min

following dextrose administration. In addition, plasma

from the 0 time point was also used to determine fasting

levels of circulating triglyceride and cholesterol.

Lipid homeostasis

Physiologic disappearance of triglycerides

During post-operative week 6, animals were allowed ad

libitum access to high fat diet for 24 h prior the experi-

ment. Hoppers were then removed at lights on and tail

vein blood sample taken at time 0, 4, 8, and 24 h follow-

ing hopper removal to assess plasma triglycerides.

Lipid absorption through fecal analysis

During post-operative week 8, 24 h fasted rats received a

gavage of a lipid emulsion containing 20% soybean oil,

1.2% egg phospholipid, 2.5% glycerin, 2.5% sucrose

polybehenate at a volume of 5 mL/kg. Fecal samples

were collected 24 and 48 h later. Fecal lipid content was

assayed by gas chromatography of fatty acid methyl es-

ters by the UC Mouse Metabolic Phenotyping Core

(MMPC). Dietary lipid absorption was estimated using a

ratio of total fecal fatty acids to sucrose polybehenate.

Post-prandial lipid distribution

During post-operative week 23, animals were fasted

for 24h, baseline blood was sampled for subsequent

analysis of plasma triglyceride, and then the animals

each received a gavage of radioloabeled [9, 10(N)-3H]

glycerol trioleate (100 μCi; #NET431L005MC, Perkin

Elmer) mixed with 5.0 mL/kg of olive oil. Blood was

taken again 2h after the gavage and then animals

were sacrificed in a counter-balanced fashion (by sex)

by an injection of Fatal Plus (1 mg/g body weight).

Tissues were collected to determine the impact of sex

and surgery on postprandial lipid distribution, liver

triglycerides, and gene expression.

Postprandial chylomicron production

During post-operative week 7, animals were fasted for

24 h and then within 1 h of lights received an intraperi-

toneal injection of 1 g/kg poloxamer 407 (P-407; Sigma-

Aldrich, St Louis, MO), a lipoprotein lipase inhibitor.

Then 15 min later, a baseline blood sample from the tail

vein was collected (t = 0) and an intragastric gavage of

0.5 mL/kg olive oil was delivered (average dose: males

240μl and females 130μl olive oil). Tail vein blood was

then collected at 2 and 6 h following gavage.

Hepatic VLDL production

During the 18th postoperative week, rats were fasted for

24 h, baseline blood samples were collected, and then

rats received an intraperitoneal injection of 1 g/kg

poloxamer 407 (P-407; Sigma-Aldrich, St Louis, MO).

Blood was sampled again at 2, 4, and 6 h after injection.

Analyses

RNA processing and real-time PCR

In order to confirm the findings of the array data per-

formed in cohort 1, liver tissue from the second cohort

of animals was collected and hepatic RNA was extracted

as described above. cDNA was transcribed using an

iScript kit (Bio-Rad Laboratories, Hercules, CA). QPCR

was performed using a TaqMan 7900 Sequence Detec-

tion System with TaqMan Universal PCR Master Mix

and TaqMan Gene Expression Assays (all from Applied

Biosystems, Foster City, CA; Primers listed in Table 1).

Tissue and Plasma Analytes

Liver triglycerides were measured using an enzymatic

assay (#T7532-120, Pointe Scientific, Canton MI).

Plasma was stored at -80 °C until further processing.

Plasma was diluted 1:20 in saline in order to measure
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triglycerides (#TR22421, Infinity Triglyceride Reagent,

Thermo Scientific, Waltham, MA). Cholesterol (Infinity

Cholesterol, #TR13421, Thermo Scientific, Waltham, MS),

total bile acids (#BQ 092A-EALD, BQkits Diagnostics,

San Diego, CA), β-hydroxybutyrate (#SBHR-100, Fisher

Scientific, Waltham, MA), and non-esterified fatty acids

(Wako Diagnostics, Richmond, VA) were measured using

enzymatic assays. TGFβ measurements were made using a

standard ELISA (#MB100B, R&D Systems, Minneapolis,

MN). Estradiol and progesterone assays were performed

by the Vanderbilt Hormone Assay and Analytical Services

Core (Vanderbilt University, Nashville, TN).

Statistical analyses

Except for the microarray data which was analyzed as

described above, all statistical analyses were performed

using GraphPad Prism version 4.0 (GraphPad Software,

San Diego, California, USA). To observe time-wise

differences, two-way ANOVA (variables: surgery/sex and

time) with a Bonferroni post hoc test was used. When

time was not a variable, a two-way ANOVA for sex and

surgery with a Bonferroni post hoc test was used. All

results are given as means ± SEM. Results were consid-

ered statistically significant when p < 0.05.

Results

Previous literature suggests that VSG reduces hepatic

triglycerides in male mice [17, 21] but not in previously

pregnant female rats [8]. Thus, we generated a small

cohort of virgin male and female rats in order to do a

side by side comparison of the hepatic lipid response to

Sham vs. VSG surgery. We found that Sham males had

greater hepatic triglycerides than Sham females (Fig. 1a)

and after VSG, males had a significant reduction in hep-

atic triglycerides (student’s t test, p < 0.001). Conversely,

females had no surgery-induced improvements in

hepatic triglycerides (Fig. 1a). This phenomenon was

recapitulated in a second cohort of animals (Fig. 1a).

Table 1 Real-time QPCR validation of genes using hepatic samples in cohort 1

Gene Name Catalog # Female Male Statistics (two-way
ANOVA)

Sham VSG Sham VSG

Lipid metabolism

ACOX1 Rn01460628_m1 100 ± 7a 75 ± 5b 91 ± 3 94 ± 7 p (surgery × sex) < 0.05

CD36 Rn01442639_m1 100 ± 10a 49 ± 6b 2 ± 1c 4 ± 1c p (surgery × sex) < 0.001

CPT1A Rn00580702_m1 100 ± 9 72 ± 11 90 ± 6 79 ± 12 NS

DGAT2 Rn00584870_m1 100 ± 6a 73 ± 6b 54 ± 4b 53.1 ± 4b p (surgery × sex) < 0.05

FASN Rn00569117_m1 100 ± 12 70 ± 11 17 ± 5 14 ± 2 p (sex) < 0.001

LDLR Rn00598442_m1 100 ± 8a 64 ± 5c 29 ± 3b 31 ± 3b p (surgery × sex) < 0.01;

MGAT Rn00585985_s1 100 ± 4 82 ± 6 68 ± 5 67 ± 6 p (sex) < 0.001

PGC1 Rn00590984_m1 100 ± 12 104 ± 12 35 ± 3 68 ± 7 p (sex) < 0.001

PPARα Rn00566193_m1 100 ± 9 59 ± 8 106 ± 10 102 ± 11 p (sex) < 0.05, p (surgery)
< 0.05,

PPARγ Rn00440945_m1 100 ± 13 67 ± 10 85 ± 13 75 ± 11 p(surgery) < 0.05

SREBP Rn01495769_m1 100 ± 6 68 ± 7 70 ± 10 58 ± 5 p (surgery) < 0.05, p (sex)
< 0.01

Cholesterol Metabolism

ACAT2 Rn01759928_g1 100 ± 11a 66 ± 7b 20 ± 1c 21 ± 3c p (surgery × sex) < 0.05;

CYP7a1 Rn00564065_m1 100 ± 24 85 ± 11 40 ± 7 44 ± 15 p (sex) < 0.001

MTTP Rn01522970_m1 100 ± 7a 64 ± 5b 35 ± 2c 37 ± 3c p (surgery × sex) < 0.001

LRH1 Rn00572649_m1 100 ± 15a 57 ± 5b 91 ± 7a 92 ± 6a p (surgery × sex) < 0.001

Receptors

Erα Rn00433142_m1 100 ± 6a 75 ± 5b 81 ± 4b 76 ± 5b p (surgery × sex) < 0.05

FGFR1 Rn00577234_m1 100 ± 10 106 ± 6 88 ± 5 116 ± 8 p (surgery) < 0.05

FXR Rn00572658_m1 100 ± 7a 59 ± 8b 74 ± 6b 64 ± 5b p (surgery × sex) < 0.05

Gluconeogenesis

G6PC Rn01529640_g1 100 ± 4 80 ± 4 106 ± 6 93 ± 7 P(surgery) < 0.01

PCK1 Rn01529009_g1 100 ± 8 92 ± 12 158 ± 13 185 ± 16 P(sex) < 0.001

Data are presented as mean ± SEM. Groups with different superscript letters are significantly different via Tukey post hoc analysis
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We also utilized a gene array analysis to determine if

patterns of hepatic gene expression changes after VSG

would explain this sex difference. Previous work using

mRNA-seq analysis of male livers after VSG has found

increased expression of genes related to bile acid

metabolism, and fatty acid oxidation, and decreased

expression of genes related to lipogenic pathways

[17]. However, in our females we found that VSG

downregulated lipid, glucose, and bile acid metabolic

pathway genes (Additional file 1: Figure S1). While Fig. 1b

shows many similarities in gene expression between obese

Sham males and females, in response to VSG, males and

females demonstrated directly opposing gene-related

changes as clearly visualized in the heat map (Fig. 1b).

Specifically, genes that regulated lipid metabolism (choles-

terol biosynthesis, lipid metabolism, the hepatic biliary

system, nuclear receptors in lipid metabolism) were all

down-regulated by VSG in females (Fig. 2a, b). Other

VSG-induced gene changes in females were increases in

genes related to immune activation (i.e., leukocyte activa-

tion, lymphocyte activation, hematopoietic number, T cell

proliferation, innate immune response, adaptive immune

response, regulation of inflammatory response) (Fig. 2a, b).

These latter findings will be probed in future studies.

We then performed qPCR on liver tissue in order to

validate the striking microarray findings. Similar to the

array and consistent with our in vivo findings, genes that

regulate or are involved in cholesterol synthesis and

VLDL production (MTTP, DGAT2, ACAT2, CD36,

LDLR, LRH1) and lipid metabolism (ACOX1, SREBP,

ERα) were down-regulated by VSG in females (Table 1).

Because of the clear differences in both hepatic triglyc-

erides and gene expression, we generated a second

cohort of animals in order determine differences in the

physiological regulation of lipid metabolism. We found

that both male and female rats lost a significant amount

of body weight in the first 31 days after VSG and

remained at a reduced body weight until they were ter-

minated at the end of the study (main effect of surgery,

p < 0.001 and time p < 0.001) (Fig. 3a, b). Following VSG,

males exhibited a transient reduction in lean body mass

at 4 weeks postoperatively (student’s t test, p < 0.01)

(Fig. 3c) that was no longer significant at week 16. For

females, there was no significant difference in lean body

mass at any time point between surgical groups (Fig. 3d).

Both males and females had a significantly lower body

fat mass at 4 and 16 weeks after VSG vs. sham surgeries

(p < 0.001) (Fig. 3e, f ). The absolute change in body fat

mass was less in females as compared to males likely

due to the comparatively smaller pre-surgical fat mass.

During postoperative week 5, both male and female VSG

animals had significantly reduced fasting blood glucose

(main effect of surgery, p < 0.01) (Fig. 3g) and females

overall had reduced glucose levels in comparison to

males (main effect of sex, p < 0.001) (Fig. 3g). After VSG,

males had significantly reduced glucose levels 45 and 60

min after glucose gavage compared to Sham animals (sur-

gery × time, p < 0.001) (Fig. 3h). Glucose response to the
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oral glucose gavage was not significantly different between

sham and VSG surgeries at any time point in the females.

We measured baseline characteristics of several

plasma metabolites and hormones and these reflected

the expected sex and surgery-induced differences

(Table 2). Specifically, males had significantly greater

non-esterified fatty acids (NEFA; p < 0.001) but lower

cholesterol (p < 0.001), bile acids, and estradiol levels

Fig. 2 a Hepatic gene changes in males vs. females following VSG. Gray bars designate categories that were down-regulated in VSG females vs.

VSG males. Black bars designate genes that were up-regulated in VSG females vs. VSG males. b Gene lists for categories of gene changes exhibited in

panel a (n = 3/group)
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compared to females (p < 0.001). In both sexes, surgery

reduced plasma triglycerides (p < 0.05), plasma NEFA

(p < 0.01), fat absorption (p < 0.01), plasma estradiol levels

(p < 0.01), and significantly increased total plasma bile acid

levels (p < 0.05).

We next performed a series of studies to examine if

organ-specific lipid handling was differentiated by bio-

logical sex and could explain the lack of reduction in

hepatic triglycerides. We found that both male and

female VSG animals had significantly reduced plasma

triglycerides in an ad lib fed state and at 4, and 8 h of

fasting, compared to the Sham animals (surgery × time

interaction, p < 0.0001) (Fig. 4a, b). By 24-h of fasting, all

groups had similar levels of triglycerides.

We then examined whether postprandial lipids were

preferentially trafficked to the liver in VSG females com-

pared to males. Basal levels of plasma triglycerides were

greatest in sham surgery males compared to all other

groups (Fig. 4c; p < 0.01) and following the gavage of a

radiolabeled lipid emulsion lead to there were similar

increases in plasma triglycerides (Fig. 4c) in the in males

and females regardless of surgery. In the liver, and inde-

pendent of surgery, females had significantly greater 3H

uptake than males (main effect of sex, p < 0.001; Fig. 4e).

However, surgery did not alter the amount of 3H-gly-

cerol trioleate uptake into the liver, gastrocnemius, or

gonadal fat (epididymal for male and peri-ovarian for

females) tissues but did cause a significant increase of
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gastrectomy (VSG) and Sham-VSG (Sham) surgeries. a Body mass was significantly lower from postoperative day 6 to day 165 b. Body mass was

significantly lower from postoperative day 6 to day 165 c. Male lean body mass was significantly lower 4 wks but not at 16 wks postoperatively in
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area under the curver during the OGTT in H. *p< 0.05, **p < 0.01, ***p < 0.001. Data are presented as mean ± SEM
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3H-glycerol trioleate in subcutaneous fat of VSG com-

pared to Sham males (p < 0.05) (Fig. 4e).

To determine if surgery impacted intestinal chylo-

micron production in a sex-dependent manner, we

administered poloxamer 407, a drug that prevents

plasma triglyceride hydrolysis, to fed animals. Under

these conditions, the increase in plasma triglycerides is a

surrogate measure for chylomicron production. We no

impact of sex, per se, but found that male and female

VSG animals had similarly increased triglyceride levels

and thus reduced rates of triglyceride appearance

compared to sham surgery animals (main effect of

surgery; Fig. 5a, b). Thus, postprandial chylomicron pro-

duction was reduced after VSG in both males and females.

We next determined whether hepatic VLDL produc-

tion, which is the predominant source of triglycerides

under fasting conditions, was altered by biological sex.

To do this, we administered poloxamer 407 to 16h

fasted animals. Sham females had significantly greater

VLDL production compared to all other groups and im-

portantly, VSG lowered this to the level of males at 4

and 6 h (Fig. 5c). Likewise, the rate of triglyceride
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c Plasma triglycerides in males and females following the 3H glycerol trioleate + olive oil gavage. d Plasma 3H in male rats following a 100μCi + 5ml/kg
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Table 2 Plasma metabolite measurements *p < 0.05, **p < 0.01, ***p < 0.001. Data are presented as mean ± SEM

Metabolite Female Male 2-Way ANOVA Statistics

Sham VSG Sham VSG

Triglycerides (mg/dl) 339 ± 44 107 ± 21 439 ± 55 153 ± 27 p (surgery) < 0.05

Cholesterol (mg/dl) 91 ± 4 87 ± 3 71 ± 4 62 ± 5 p (sex) < 0.001

β-Hydroxybutyrate (ng/ml) 1.5 ± 0.1 1.5 ± 0.1 1.9 ± 0.1 1.7 ± 0.2 NS

NEFA (mEq/L) 1.8 ± 0.1 1.6 ± 0.1 2.3 ± 0.1 1.9 ± 0.1 p (sex) < 0.001; p (surgery) < 0.01

Total bile acids (μM/L) 23 ± 3 93 ± 19 13 ± 5 45 ± 9 p (sex) < 0.001; p (surgery) < 0.05

Fat absorption (%) 93 ± 2 82 ± 5 90 ± 4 82 ± 3 p (surgery) < 0.01

Estradiol (pg/ml) 70 ± 11 39 ± 4 28 ± 2 20 ± 3 p (sex) < 0.001; p (surgery) < 0.01

Progesterone (ng/ml) 6.4 ± 1.5 4.9 ± 0.6 ND ND NS
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appearance over time (slope of the data in Fig. 5d) was

significantly reduced by VSG in females but not males

(sex × surgery interaction, p < 0.001). These data sug-

gest that hepatic triglyceride export is slowed by VSG

in females.

Discussion
Men and women have distinct regulation of lipid me-

tabolism. These differences go beyond region-specific

fat distribution. For example, at the same level of

obesity, women have a lower risk for type 2 diabetes

mellitus (T2DM) and cardiovascular disease [22], in

response to metabolic stress, such as weight loss or

exercise, fat is mobilized more readily in women [11–14],

and lastly genome-wide association studies have iden-

tified multiple sex-dependent loci in medically-

relevant traits [23]. Here, we find that bariatric

surgery emphasizes sex differences specifically in hep-

atic lipid handling such that genes that regulate lipid

metabolism are down-regulated by VSG resulting in

lower VLDL export and maintenance of sham-level

hepatic triglycerides. This is in contrast to the

surgery-induced reduction in hepatic triglycerides by

VSG in males which is not explained by changes in

lipid uptake or export and likely is reflected by intra-

hepatic changes in metabolism [21].

Similar to clinical reports, VSG was a successful strat-

egy in causing weight loss and improving plasma glucose

and lipid levels in both male and female rats [24–26]. It

is only to this extent of physiology that most clinical

studies have probed and they report similar responses to

surgery between men and women. While some studies

have observed similar clinical responses to bariatric

surgery between men and women [27], exploration of

the bariatric outcomes longitudinal database (BOLD) did

find that sex contributed to the variability of surgical

outcome [28]. However, a true physiological comparison

of the responses to surgery in men vs. women is limited

by the small number of male patients in addition to the

need for the appropriate resources for these studies. For

example, hormone status likely influences the surgical

outcome; however, the large- and even small-scale

studies that included sex as a variable in models to

evaluate surgical success were unable to actually

measure hormone status [9, 28].

Both clinical and preclinical data clearly reflect sexual

dimorphisms in lipoprotein profiles and indicate that

females rely more on lipid flux during times of metabolic
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stress [13, 14, 29]. Importantly, our rodent model

results present here also have parallels to clinical

work. As we observed with our rats, women have

greater VLDL production than men [30] and this has

been found to be due specifically to greater levels of

estradiol in women [31]. Lastly, in a group of eight

women and one man, VLDL production was found to

be reduced by RYGB [31]. Whether this would influ-

ence hepatic triglyceride stores in patients remains to

be determined. Retrospective studies suggest an im-

provement in hepatic lipids after RYGB [31–34].

However, a few studies report either a lack of im-

provement or even increased steatosis after RYGB

[35, 36]. The bottom line is that even though there is

an average improvement of liver fat, this does not

happen in all of patients after RYGB suggesting that

there is individual variation in response to the

surgery. In addition, postoperative timing of hepatic

lipid measures [37], type of surgery [34] and tech-

nique used to assess hepatic lipids could all influ-

ence conclusions about the impact of surgery on

hepatic lipids.

The present data support previous findings that

hepatic lipid flux is quite different in males and females;

differences which typically protect the female from

hepatic lipid accumulation. However, VSG changes this

metabolic profile preventing further reductions in

hepatic triglycerides in female rodents. It is possible that

the lack of an effect of VSG on hepatic triglycerides in

females is due to a floor effect; i.e., the Sham-operated

females already had lower hepatic triglyceride levels

compared to males. Our previous research demonstrated

that high fat vs. chow-fed female rats have increased

hepatic triglycerides [8]. Thus, in our current study we

should have enough of an experimental signal to detect

a surgery-induced reduction in hepatic triglycerides if

one existed. It is important to note that this level of hep-

atic triglycerides is still lower than Sham males, and ex-

plains why glucose tolerance was lower in Sham and

VSG females vs. Sham males. Interestingly, our previous

research has shown that VSG prior to pregnancy leads

to a long-term increase in hepatic triglycerides but these

animals maintained a surgery-induced improvement in

glucose tolerance [8]. Women, and female zucker

diabetic fatty rats, ob/ob and db/db mice all display pro-

tection from diabetes or hyperglycemia, respectively

compared to men/males [22, 38–41]. While we

hypothesize that VSG is yet another model whereby

females are able to protect hepatic glucose metabolism

in the face of higher liver triglycerides, we also admit

that the short length of time on HFD, as well as the fact

that the animals are maintained on HFD post-opera-

tively, may limit the translation of this work to

humans with longer-standing obesity and post-

operative changes in feeding behavior that are meta-

bolically favorable.

An interaction between reproductive hormones and

surgery likely drives changes in lipid metabolism in

females. Estradiol has been demonstrated to be a pri-

mary mechanism driving sex differences in lipid metab-

olism [13, 42]. In an elegant series of studies, Zhu et al.

[42] found that hepatic estrogen receptor alpha (ER α)

signaling plays a crucial role in regulating lipid flux

across the liver. Namely, hepatic ER α signaling limited

liver fat synthesis but maintained triglyceride export in

the setting of hyperinsulinemia with the net result of

reduced hepatic triglycerides. Thus, our finding that

hepatic triglycerides failed to reduce after VSG may be

explained by the reduced hepatic ERα expression

(Table 1) also observed in the females after VSG. Inter-

estingly, reduced hepatic ER α has been found in

patients with non-alcoholic steatohepatitis [43] demon-

strating clinical relevance of hepatic estrogen signaling.

Conclusions

In conclusion, our results indicate that male and female

rodents have similar qualitative responses to VSG. How-

ever, there are large-scale changes in the genes regulat-

ing lipid metabolism in female but not male rodents in

response to VSG. In addition, VSG causes less export of

triglycerides in a fasting state in females while lipid

uptake and export are not changed by VSG in males. As

a result, while males have a significant reduction females

retain high-fat levels hepatic triglycerides. In our efforts

to understand the molecular underpinnings of bariatric

surgery, research has mostly neglected the contribution

of sex to outcomes. The current results demonstrate that

studying female rodents is necessary to advance our

understanding of the molecular mechanisms of bariatric

surgery for the greater than 80% of bariatric surgery

patients that are female.

Additional file

Additional file 1: Figure S1. Hepatic gene changes in females

following VSG and sham surgeries. Gray bars designate categories that

were down-regulated in VSG. Black bars designate genes that were

up-regulated in VSG. B. Gene lists for categories of gene changes

exhibited in panel A (n = 3/group). (PDF 112 kb)
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