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1. INTRODUCTION.

1.1. BARKHAUSEN NOISE

The macroscopic behaviour of a ferromagnetic mate-
rial in a magnetic field is represented graphically by the
hysteresis loop which is a plot of the magnetization I/)Jo
against field H. On a microscopic scale the reversal of
the magnetization takes place, however, by two different
effects namely the displacement of the magnetic domain
walls and by the rotation of the magnetization inside the
domains. It is partially an irreversible process so far
as 1t is caused by the irreversible displacement of the

‘“Po

it

/ » H
l HC
} -Laln,
Fig. 1.1. The hysteresis loop wifh Barkhausen jumps in the region of irreversible wall
displacement.

domain walls. So the magnetization is not a smooth func-
tion of the magnetic field but shows a structure composed
of many individual steps (fig. 1.1.). The first experi-

mental verification of this discontinuous process was
made by Barkhausen in 1919 [1.1] . To explain the Bark-



hausen effect we consider the movement of a plane domain
wall in a crystal. The one-dimensional irreﬁersible dis-
placement of a plane domain wall can be described with
the aid of a function Yw(x), which represents the sur-
face energy of the wall as a function of the position

of the wall [1.2], see fig. 1.2. The variation of Yy w
with x is due to the presence of magnetically active dis-
locations, inclusions and voids, of which some can pin
the domain walls (see sec. 5.2.1.). The function 'yw(x)
depends on the temperature via the magnetic material con-

stants (viz. spontaneous magnetization, anisotropy con-
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Fig. 1.2. (a) The displacement of a 180° domain wall, {b) the wall energy 7y, {x), {c) the

gradient of the wall energy, and (d) the sign of the second derivative of 7, (x), all as a
function of the position of the wall.

stants and saturation magnetostrietion) and also on the
distribution of the pinning centres in the sample.

Let us consider the displacement of a plane 180°
wall (the magnetization at both sides of the wall being



anti-parallel) in a non-uniform material. The energy per
unit of wall area is 'yw(x), see fig. 1.2(a) and (b). In
the absence of a magnetic field the wall is at rest at
some minimum X, (d'yw/dx=0 and d2\'w/dX2:>0), X being
indicated in fig. 1.2(c). If a slowly increasing magnetic
field H is applied so that the wall is reversibly dis-
pléced to a position x, the energy Yy per unit area of
wall supplied by the magnetic field is

A

Yu = ~2IgHIx-x4] t[JﬁQ] (1.1)
From the condition of minimizing the total energy Y o,
with Y =y +Yy»

dy/dx = dy,/dx-2I_H = 0 (1.2)

we find for an applied field H an equilibrium position x
at which

d'Yw/dX = ZISH (1.3)

In the region of reversible wall displacement (xo< x<:x1)
the restoring force of the wall (dvy /dx) counterbal-
ances the pressure 21 H of the field. The wall displaces
reversibly according to formula (1.3) if a2 Y w /dx% > 0.

In the position x, the gradient dyw(x)/dx ofzthe wall
energy yw(x) is at a maximum because d”y /dx~ becomes
negative; without increasing the field the wall then moves

irreversibly to x This irreversible wall displacement

is called a Barkhiusen jump. On slowly reducing the field
strength to zero after the Wall has reached x,, a revers-
ible wall motion from X, to x3 takes place. Then Xy, is
reached with an irreversible wall jump and the last wall
motion from X to X, is reversible again. On increasing
the field the wall moves from X5 to Xg and on decreasing
the field again, this wall is reversibly -displaced to X
The new equilibrium position Xy is then reached when the
field strength is zero.

To summarize: in the case of an increasing field H,
starting from an equilibrium position the domain wall dis-

placement is reversible for dzyw /dx® > 0, while the wall



begins to move irreversibly if d2y w/dx2

becomes negative
just beyond the equilibrium position (fig. 1.2(c) and (d)).
This model can be applied to all cases of wall motion in
which we may neglect the interaction between different
walls and the interaction between different wall segments

of one wall.

Many papers have been written about the Barkhausen
effect. Stierstadt { 1.3 ] wrote an excellent review of the
papers on this subject published until about 1965. The
more recent work has been reviewed by Rudyak [1.41,
especially the Russian literature, and by McClure and
Schrdder [ 1.5] . Lambeck [1.6] discussed the Barkhausen
effect in thin films. He reported the behaviour of evap-
orated thin films of Ni, Fe, Co, 80-20 Ni-Fe and 50-50
Ni-Fe. Using the magneto-optic Kerr-effect (sec. 2.7) and
the inductive method he investigated the Barkhausen effect,
particularly fhe magnetic after-effect as a function of
temperature. As to the Barkhausen effect he paid attention
to the size of the wall jumps as a function of temperature.
In the last few years some other brief papers concerning
the Barkhausen effect in thin films have been published
[1.7-1.12] . As far as we know, no systematic investiga-
tion has as yet been published carried out into the char-
acteristics of the Barkhausen effect in thin magnetic
films at a constant temperature. The present thesis con-
tains an analysis of the Barkhausen effect in 80-20 Ni-Fe
films at room temperature, covering a wide range of
thicknesses (400-2800 R), anisotropy fields (360-1760 A/m)
and coercive fields (44-280 A/m).

The investigations performed on the Barkhausen
effect ean be classified from two points of view. In
sec. 1.2 this is done according to the type of measure-
ment carried out, independent of the kind of sample used.
We will discuss the possibilities and restrictions of the
various methods and the information that can be obtained
from them. In sec. 1.3 we shall pay attention to the types



of sample used regardless of the type of measurement. The
different geometries of the samples will be discussed and
an outline will be given of the detailed knowledge avail-
able on their magnetization behaviour. The specific choice
of the samples and methods of investigation in the present
thesis are discussed in-sec. 1.4,

1.2. MEASURING TECHNIQUES

A large number of measurements have been performed
in different inveétigations, which‘only provide a super-
ficial insight into the behaviour of the Barkhausen effect
and the influence of some magnetic and non-magnetic quan-—
tities on this effect. This is due largely to the type of
samples used. The measuring technique itself allows for a
much better insight to be gained, as will be discussed
below.

During the magnetization reversal one measures the
variation of the magnetization, i.e. the Barkhausen jumps,
as a function of the applied magnetic.field. The signal
to be analysed is shown in fig. 1.3. In principle the in-
vestigations can be carried out using three different
methods.

(1) The signal is analysed as a function of the applied
field, along the hysteresis loop. In doing so the
number of Barkhausen pulses (sometimes of different
size) is usually plotted as a function of the field
[1.3, 1.5, 1.11] . It is possible to determine the
temperature dependence [1.13, 1.14] and the structure
dependence [1.15] . Sometimes the effects of tempera-
ture [1.16] and stress [ 1.17 | are investigated along
one branch of the loop or at a constant field. In
chapter 4 the number of Barkhausen Jumps has been
determined of some of our films in terms of the field.
The number of pulses of various sizes as a function
of the pulse size has also been studied with the
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field as the parameter.

The second method concerns the Fourier analysis of
the Barkhausen signal (see sec. 2.4). One measures
the power, integrated over the time it takes to tra-
verse one hysteresis loop, the noise signal being
measured as a function of frequency. The experimental

noise spectra are approximately given by

ELf) » elf) [v2s2] (1.4)
1ol /7fg )"

in which fo is the cut-off frequency of the spectrum.
The level of the spectrum in the low frequency range
(f < fo) is given by e(f). In some samples e(f) is
constant while in other samples e(f) 1s a slowly de-
creasing function of frequency. The noise spectrum is
a decreasing function of freqguency with an £0 depend-
ence in the ‘higher frequency range (f > fo). The
value of n varies in most investigations between 1.5
and 2 [1.5, 1.18-1.20]. The measured slope in the

(t) Im-z. y
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Fig. 1.3. The Barkhausen signat during a small part of the reversal time.

higher frequency range (f > fo) gives information
about any relationship between the parameters of a
single pulse, such as the amplitude, time duration

and time preceding or following the pulse [1.21 , 1.37]
However, all phase information contained in the signal



is lost in this measuring method.

(3) The third method is a statistical analysis of the be-
haviour in the time domain concerning all frequency-
density functions (one- and more-dimensional) of the
parameters of the signal such as form, amplitude,
duration and the time preceding or following a pulse
(see chapter 3). Considering the signal as generated
by a statistically determined process, one can cal-
culate the energy spectrum of the noise [1.21] , using
the frequency-density functions of the pulse parame-
ters. So one can check the statistical measurements
by using both methods (2) and (3). Only a very small
number of paperé that deal with this third method
have been published [1.21]). However, a large amount
of papers has been written about the pulse-size distri-
bution and the pulse-duration distribution of differ-
ent samples [1.5]. Method (3) enables the relations
between the parameters of a pulse to be examined
(secs. 3.6 and 3.7). Furthermore, if we use the avail-
able possibilities for affecting the behaviour of
the wall jumps in a well-known way, we can obtain -
information about the parameters that determine the
frequency spectrum. Thus we gain an insight into the
effect of the physical process on the noise spectrum.

1.3. SAMPLES

The type of samples on which the Barkhausen effect
has been investigated can be divided into four groups.

(1) Most of the sampleé used are macroscopic ones, for
example strips, cores, (laminated) toroids and espe-
cially wires [1.19-1.24]., Therefore they exhibit a
three-dimensional magnetic domain structure. The
Barkhausen effect 1s generated by microscopic magnet-
ization changes. It is not possible to establish a
relation between the Barkhausen effect and the micro-



(2)

scopic magnetization behaviour in macroscopic samples,
because of the poor knowledge available on the micro-
scopic magnetization behaviour in these samples. Macro-
scopic influences on the Barkhausen effect, however,
such as demagnetization, stress and temperature can be
investigated very well [1.13-1.17, 1.22, 1.24-1.28];
on the other hand it is very difficult to assess the
influence of these effects separately. Magnetization
changes in all three dimensions occur very often in
these samples. Only one measurement has been performed
in three dimensions by Griindl et al. [1.29]. In the
experiments one measures in general only the varia-
tions of the magnetization along a single axis. Most
investigators are using samples having a small demag-
netizing factor owing to a large ratio between length
and cross-sectional area. An additional advantage is
that usually the resulting large shape anisotropy also
causes the magnetization changes to be dominant along
the longitudinal axis of the samples.

The large number of wall jumps in bulk samples
also presents a difficulty: it is highly probable that
physically independent wall jumps generated in differ-
ent sections of the sample occur at the same time,
which give the same signal as that obtained from
physically dependent wall jumps. This probability of
pulse overlapping can be diminished by applying a very
slowly increasing magnetic field and by reducing the
size of the sample.

The second group of samples consists of picture frame
single crystals. Here no demagnetizing effects occcur.
The crystals, if cut and polished very accurately,
exhibit a two-dimensional domain structure. The num-
ber of domain walls during the reversal of the magnet-
ization is small and their magnetization behaviour
is very simple [ 1.30, 1.31] .

By using a measuring equipment with d4I/dt = constant
during the reversal, 'yw(x) in these samples can be

measured. A disadvantage, however, is that these crys-



(3)

tals are not easily accessible for inductive measure-
ments of the wall jumps. Optical measurements of the
wall motion are often disturbed by the presence of
closure domain structures at the surface of the crys-
tal. Only a small number of investigations into the
Barkhausen noise have been performed on picture frame
crystals. The results concern properties of yw(x)
instead of properties of the Barkhausen effect itself
[1.32-1.34 ] and must not be compared directly with
Barkhausen noise measurements on other samples. When
measuring the Barkhausen noise of these samples by
the conventional method (see secs. 2.4 and 2.5), the
reversal takes place in a few large, mostly reproduc-
ible wall jumps. Therefore a statistical study of
the'general features ofAthe Barkhausen effect cannot
be deduced from measurements on picture frame crys-
tals.

Magnetic films constitute another group of samples
with a two-dimensional domain structure. The number
of Barkhausen investigations has been small so far,
as discussed in sec. 1.1, see also [1.35]. A diffi- -
culty of these measurements on thin films is due to
the poor signal-to-noise ratio caused by the small
rotation of the polarization direction of the 1light,
when using the magneto-optic Kerr effect (see sec.
2.7). When using the inductive method (see sec. 2.3).
the amount of magnetic material is so small (of the
order of 10”11

ments.

m3) that it complicates the measure-

In this thesis we shall confine our investigations
to thin metallic films in which the magnetization di-
rection lies in the plane of the film. The micromagnet-
i¢ behaviour has been the subject of many investiga-
tions and is a matter of common knowledge. A review of
the properties of these films is given in sec. 2.2.
Apart from an extensive knowledge of the behaviour of
their domains and walls the use of magnetic films
offers other advantages. When the films are thin



(dm < 5000 %) no eddy currents will affect the wall
moticn, sc that this is determined by spin relaxation
effects only. In the thickness range dm<1 2000 R} the
demagnetizing effects are negligible (see sec. 2.2).
In uniaxial thin films the magnetization changes occur
almost entirely along the easy axis. With a pick-up
coil all the magnetization changes can be measured.
(4) Some papers have been published reporting results ob-

tained from powders of small particles [1.35, 1.36].

1.4, SCOPE OF THIS THESIS

In bulk éamples the macroscopic magnetic behaviour
can be deduced from the hysteresis curve, whereas a de-
tailed knowledge about the microscopic magnetic behaviour
is mostly absent. The Barkhausen signal is a measure of
the changes of the magnetization on a microscopic scale,
which are not reproducible. The signal consists of pulses
generated by the domain wall jumps. During the reversal
of the magnetization the number of pulses is very large.
Therefore only statistical methods can be used for an
analysis of this signal. If we are able to relate the re-
sults of this statistical analysis to the microscopic mag-
netization behaviour of the domains and domain walls,
then the Barkhausen effect can indeed be used as a method
to obtain information about the microscopic behaviour.

Up to now a systematical study of these connections has
not been reported; the present thesis does cover such a
study. Any relationship between the behaviour of jumping
domain walls and the results of a statistical analysis

of the Barkhausen effect can only be found from certain
types of samples. The microscopic magnetization behaviour
must then be known and the number of Barkhausen Jjumps
during one reversal must be so large that statistical
methods are applicable. For that reason we choose for
this investigation thin uniaxial Ni-Fe films, as will

10



be briefly explained in the following.

The Barkhausen effect is caused by the interaction
between magnetic domain walls and pinning centres in the
material (see sec. 1.1). Some other effects also affect
the domain wall motion to disturb the measurehent of the
Barkhausen effect. These disturbing effects are for
example the demagnetizing field, eddy currents, magnet-
ization changes in more than one dimension, overlapping
pulses, and the interaction between different domain walls
and between different wall segments of one wall. We can
avoid most of these effects by the use of thin uniaxial
magnetic films with the easy axis of the magnetization in
the plane of the film (see sec. 1.3(a)). In many investi-
gations the microscopic magnetization behaviour of these
films was studied thoroughly. To relate the results of
measurements of the Barkhausen effect to the structure
and dynamical behaviour of the domain walls a simple do-
main structure with a small number of non-interacting
walls must be avallable. However, the number of detect-
able jumps must be large enough to allow statistical
methods of analysis to be used. If the magnetization
behaviour can be easily influenced in a well-known way
the potentialities of the investigation will increase
substantially. Nearly all these aims can be achieved in
the thin films we used in our investigation.

We have used all three.measuring methods (sec. 1.,2).
The noise spectrum has been measured with analog measur-
ing equipment. Furthermore the noise signal has been
digitized and the shape of the signal recorded on a disc
memory. All sorts of measurements described earlier can
now be performed very easily. The one- and two-dimensional
frequency-density functions have been plotted. The varia-
tion of the signal along the hysteresis loop has been
measured. The noise spectra can also be calculated from the
recorded time series, but for most samples these. results
are less accurate than those obtained using the analog

11



experimental equipment. Therefore, the calculation has
only been applied to check the two methods using some
appropriate samples. The complete experimental program
has been applied to 52 specimens of 23 different films.
Since we can affect the Barkhausen effect by applying
different fields and filmswith different thicknesses, the
influence of the physical parameters on the density-
functions and on the noise spectrum can be determined.

In this way a more detailed model for the Barkhausen

effect can be developed.

Lieneweg [1.21 ] performed measurements of the energy
spectra and determined the frequency-density functions of
the same samples. His measurements show a relationship
between the pulse area (= pulse size) and the duration of
a jump. He used Heiden's theory [1.37] on the influence
on the noise spectrum of a relation between the pulse
parameters. Thus he was able to explain the noise spectra
he measured, but it was not possible for him to relate
his results to the micromagnetic properties of his bulk
samples, consisting of 81-19 Ni-Fe wires. From our meas-
urements, however, it becomes evident that there is a re-
lationship between the results of the statistical analy-
sis of the Barkhausen effect and the micromagnetic behav-

iour as shown in chapters 3 and 5.

The probability of pulse overlapping caused by the
appearance of two physically independent jumps at the same
instant increases with decreasing reversal time (i.e.
time necessary to reverse the magnetization of the sam-
ple) and increases with increasing sample size. In bulk
materials pulse overlapping produced in this way occurs
very often, while in thin films this is scarcely present
at the same magnetizing frequency. In our films only a
small number (about 500) of fast wall jumps occurs dur-
ing the reversal of the magnetization (the sum of the
time durations of the jump ranges between 0.1 and 1% of
the reversal time). In thin films each detected pulse is

12



caused by one complicated jump of one domain wall

(fig. 1.4). Mostly this pulse can be regarded as a col-
lection of physically strongly coupled single wall jumps:
if a domain wall section jumps away from a pinning centre
and begins to move, this moving wall section causes a

: — I/ , — 1m0
——0—‘/\/ r‘——‘—;—‘\/
. ° . ° ° o . L4
°
. ¢ o . L4 o . L4
°
Ispo +— Is/pp <—
(0) —>H0=0 (b) —’H'g
— Is/ng — Is /Mo
° ° ° °
,o\o__o_/.\ e o LI
° ° . ° M
. ¢ . . N * . L4
° °
Ig/pg +— Is/pg «—
(c) —» H, (d) — Hj
1/, 1 dr
T Mo dt
P4
1.1 | I | R Ty )
H'l HZ H; H - Hi Hy Hi H—»

(e} (f)

Fig. 1.4. (a) - {d) Wall motion in a non-uniform sample; (e) the magnetization and {f} the
Barkausen jump (1/ug)dl/dt as a function of the increasing field H.

neighbouring wall section to start moving too, and so on
(fig. 1.4). These single wall jumps are physically :
strongly coupled. They generate one pulsejin the measur-
ing equipment and, therefore,fwill‘bé feéardedﬁin-ﬁhis

t3



thesis as a single wall jump.

In chapter 2 the properties of our samples and the
experimental methods are described. In chapter 3 the accu-
racy of the measurement of the Barkhausen effect in the
time domain is considered. The form and accuracy of the
one- and two-dimensional frequency-density functions of
the parameters of the Barkhausen pulses are discussed.
The general features of the Barkhausen effect are dis-
cussed in chapter 4, where the reversal of the magnetiza-
tion as a function of the applied field is dealt with.
Measurements of the number and size of the Barkhausen
Jumps and the statistics of the pulse parameters are
presented. In chapter 5 the theoretical relation be-
tween the pulse size and pulse duration is derived and
a comparison with the measurements is given. On the basis
of the measured frequency-density functions we can calcu-
late the Barkhausen noise spectra. This is done in
chapter 6, where also a comparison is made between the
calculated and measured noise spectra.
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- 2. SAMPLES AND EXPERIMENTAL METHODS.

2.1. INTRODUCTION

In sec. 2.2 of this chapter we consider the general
properties of the samples measured during this'investiga—i
tion. In sec. 2.2.1 the macroscopic data of the samples
are givén. In chapters 4, 5 and 6. we sometimes.refer to
features of the wall structure and of the magnetization
behaviour .during a reversal, etc. All what can be said
about this behaviour is available in the literature and
is described in secs. 2.2.2 and 2.2.3, as far as this is
used in the present thesis.

Furthermore, in this chapter, the measuring equip-
ment is described. The Barkhausen signal is measured in
this investigation using the inductive method. In sec.
2.3 the pick-up coil circuits are described with which
the Barkhausen jumps during the reversai are measured.
The Barkhausen effect of the thin films has been inves-
tigated both by measuring the noise spectrum. of the in-
duced voltage (sec. 2.4) and by recording.the noise sig-
nal as function of time (sec. 2.5). The magnetization /
behaviour of these films can be observed on a macroscopic
scale by tracing the hysteresis loop (sec. 2.6) and on a
microscopic scale by observing the domain structure

through a microscope (sec. 2.7).

16



2.2. THE SAMPLES

The properties of our thin films will be described
only briefly because there is a large number of papers
concerning these films, The general behaviour of thin
films is described in many papers and books [ 2.1-2.6] .

2.2.1. Macroscopic data of the samples

For our measurements of the Barkhausen e€ffect thin
magnetic polycrystalline Ni-Fe films have been used.
Prof. S. Middelhoek of the Delft University of Technology
has kindly supplied the samples. The films had been evap-
orated on a glass substrate with a thickness of 1 mm.
The Ni-Fe samples possess a pronounced shape anisotropy.
Therefore, without external fields, the magnetization is
in the plane of the film. When the films are evaporated
in a homogeneous magnetic field, the easy axis for the
magnetization in the whole film coincides with the direc-
tion of the applied field: the thin films exhibit uniaxial
anisotropy [2.1] . Our films satisfy these conditions,

The thickness and the composition of the Ni-Fe alloy
are known from measurements by Middelhoek. The thickness
d, of the films, which were available for our measure-
ments, ranged between 400 and 2800 f. As a result of the
thinness of the films, walls with their planes parallel to
the surface cannot exist. The domain configuration at the
surface 1s representative for the whole film; it has a
two-dimensional structure [2.1-2.3 ] . The Ni-Fe films have
a composition of about 74 to 83% nickel. In this range the
curves for the crystal anistropy constant K1 and the magne-
tostriction coefficient A pass through zero. At a composi-
tion of T4-26 Ni—Fe»K1 is zero while A is zero at a compo-
sition of about 83-17 Ni-Fe [2.7, 2.8 | . The Ni-Fe films
exhibit small local anisotropy variations. Some of the
films contain an additional amount of 10 per cent Co to
obtain.a high value of the anisotropy constant [ 2.9] .
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When a field is applied along the easy direction
the observed hysteresis loop can be considered to be a
rectangular loop (fig. 2.1a) [2.3] . In this case the
magnetization in the film reverses by wall motion,
showing Barkhausen jumps (fig. 2.1b). The expected form

dl

dt

e

T
/ . /H

(a) (b)

Fig. 2.1. Schematic view of the reversal of the magnetization along the easy axis:
{a) hysteresis loop, {b) Barkhausen jumps. '

of the hysteresis loop in the hard direction is shown in
fig. 2.2. If the magnetization is reversed by uniform
rotation the hysteresis loop is a straight line. Experi-
mentally, however, open loops are obtained, which means
that irreversible processes also occur during the: reversal

in the hard direction. The irreversible processes are due

e
Ho 4
Is

Fig. 2.2. The hysteresis loop along the hard axis.
to the splitting up of the film into an equal number of

clockwise and anti-clockwise rotating domains [ 2.4]1 . In
our investigation of the Barkhausen effect the applied
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magnetic field H is -always parallel to the easy axis of
the film.

Since the films with a surface area of about 1 cm2
are thin, the demagnetizing factor in the plane of the
film is negligible. The square film is often approxi-
mated by an oblate ellipsoid [2.10) , so that the demag-
netizing factor Ny of the film is given by [2.8]

T dp . (2.1a)

where a is the length of the side of the film. For the
completely saturated film the demagnetizing field HDS
then becomes

H = Ny lsoe =T 9m s [ve]  (2.1p)
Ko 4 a Ko

where Is/f% ( ~ 1/}%) Am_l) is the saturation magnetiza-
tion. An 80-20 Ni-Fe film with d_ = 1000 R and a = 1 cm

has the following values of N, and HD

D s*
- ~6 1
Np = 8x10 and Hpg (

This approximation is not valid at the edges of the satu-

= -6 Am ~ 0.075 Oe).

rated film, where the demagnetization increases, thus
producing small reversed domains (spikes). Owing to the
presence of the spike domains the demagnetizing field at
the film edges is strongly reduced [2.9].

During most of the magﬁetization reversal the hys~-
teresis loop in the easy direction has a differenﬁial sus-
ceptibility.

X = 1 dl - constant (2.2)
diff Ko dt :
which ranges between 7x103 and 7x10,4 for our films. The
reversible sgsceptibility, X pey? is much smaller., As
described by Heiden and Storm [2.12)the size of a Bark-
hausen jump as measured in the pick-up - coil must be cor-
rected for the influence of the demagnetizing field. The
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correction factor is given by [2.12] as:

1

S S (2.3)
1’NDxref

Since Ny X pey << 1 in our samples this effect had no

influence on our measurements.

A table containing data of all our measured films is
shown in appendix 1. Some macroscopic properties of the
films, for example the coercive field HC, the anisotropy
field HK and the film thickness dm are given there.

2.2.2. The magnetization process

We will now outline the domain growth and domain
structure during the reversal. We observed this growth
with the Kerr-effect (sec. 2.7) in our samples. It was
found to be approximately the same for all samples.

In the measurements the samples were placed in an
external field, which varied linearly with time (see
sec. 2.U4). This field was always parallel to the easy
axis of the films. The value of dH/dt was chosen so
small that during a wall jump the applied field could be
considered constant. By tracing the major hysteresis loop
in this way we measured the quasi-static remagnetization

behaviour of the samples.

Owing to the shape of the samples, the demagnetizing
field at the edges (normal to the easy axié) of the film
was very strong When the film was éompletely saturated.
Therefore, up to very lérge fields, very small reversed
domains were present at the fiim edges. The saturation
along the easy axis of the film occurred just at a field
Hy,4 Of the order of 0.1 Is/ Fo ( :106/4Tc Am_l)

. Upon a
small reduction of the applied field from Hs the very

at
small reversed spike domains appeared again. This strongly
reduced the demagnetizing field at the edges. The spikes

were nucleated at a field H,, at inhomogeneities at the

N
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edges of the film (fig. 2.3a). The volume of the reversed
spike domains formed a negligible part of the total volume
of the film, Upon reducing the applied field to zero and
reversing the field-direction, then, at a field Hc,min’
i.e. the minimum coercive field for wall motion in the
film, the reversal of the magnetization started. On in-

creasing the applied field from H some spikes grew

c,min
slowly, while the area of most of them remained constant.
Upon further increasing the magnetic field suddenly, a
fast growth of one or more spikes was observed, which

resulted in reversed domains extending from one side of

Y_Y V_YVY v | Direction of growth ®2reversed area

of spikes CJ non reversed
ared
la)
Direction of motion
of the walls
{b)

Easy axis for the
magnetization
Hard axis for

the magnetization

Fig. 2.3, Remagnetlzatlon behaviour of the films: (a) spike domains at the edges of the
film and (b) long reversed domains.

the film to the other Subsequently the reversed area of
the film increased rapldly by lateral wall motion

(fig. 2.3b). In the reversed domains at the edges of the
£ilm small splkes w1th the original magnetization direc-
tion were present. A new domaln could grow in the non-
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reversed area from a spike at one of the edges of the

film as long as the film was not completely reversed.

If a non-reversed domain is completely reversed by the
movement of the adjacent walls then'these walls ‘disappear.
So with increase of the reversed area of the film the num-
ber of domain walls decreases. The domains grew continu-
ously until almost the whole film was reversed At Hc,max’
i.e. the maximum coercive fleld for wall motlon in the
film, the domain growth was virtually completed: only very

small spikes remained. These spikes did not disappear
until the value of the applied field had become very hlgh
This occurs at the saturatlon f1e1d H sat® The flelds_1

Hc ,min and H ,max varied between about 20 and 500 Am ~.
All the domaln walls were practically parallel to the
easy axis of the film (fig. 2.3).

The total length of the domain walls varied strongly
during the reversal, as will be clear from the previous
description of the reversal process, During the steep
portion of the hysteresls loop the total wall length
mostly varied within about 50% in a single sample. For
the different samples the total wall length at H = c
varied between 2 and 7 tlmes the length of the film side
along the easy axis.

In a few samples the growth of domains from the
spikes was very difficult. In that case the spike growth
only began at a large value of the applied field (=Hc,min)'
The minimum driving field for wall motion in the remaining
part of the sample is much smaller. Thus, when the spike
growth had begun, the jumps at the beginning of the rever-

dyw 4

dx
"Hc,min2

~H

c,mini

Fig. 2.4. Influence of the minimum coercive field He min on the size of the first Bark-
hausen jump.
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sal process were very large. This can be explalned by using
the potential energy model of sec. 1.1. In fig. 2.M this is
shown for two values of H

with Hc,min2 > Hc,minl'
positions of the wall are denoted by (see eq. (1.3)) X4 and

¢,min? namely Hc,mini and Hc,min2

The corresponding equilibrium

X5, respectively. This situation occurs in samples in
which the macroscopic magnetization behaviour is not uni-
form throughout the entire sample: different parts of the
sample have different hysﬁeresis loops.AIn this thesis we
refer to such a eample as a macroscopically inhomogeneous
one.

For the field H at which the proper reversal begins
we do not take the value of the applled fleld H at which
the splkes begin to grow, but the value of H at which the
fast growth of the splkes beglns. The same procedure has
been followed for the determination of the field H at
which the proper reversal is flnlshed ThlS is shown sche-
matically in fig. 2.5.

I\l F|—
z

[l
VA

Fig. 2.5. Definition {schematic} of Hrg, and HRE.

Mostly the domain growth and structure is in every
reversal reproducible in outline, but the process is not
reproducible in detail. In our measurlng equlpment we are
not able to 1dent1fy an inductively measured pulse (see
sec. 2.3), representing a wall dlsplacement, with the:
actual wall (seetion) that has been moved.

2.2.3. The domain walls
In this section we shall describe the different wall

types which -occur in thin films. All this information is
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available from the literature [2.1-2.5 ]. Except for the
presentation of the different types of wall, we shall
also discuss the cause of their origin. Our intention is
to show that only the value of the film thickness dm
determines which type of wall will be present.

In thin Ni-Fe films different types of wall, such
as Bloch, Néel and cross-tie walls occur at different
film thicknesses [2.1, 2.5, 2.11] . Fig. 2.6a shows the
Bloch wall: the magnetization turns around an axis per-
pendicular to the plane of the wall. At the intersection
of the wall with the surface of the specimen, free poles
occur, which lead to stray fields. In bulk specimens the

positive and negative poles are very far apart in compar-

o
(1) R

- 6w
-« 5, —»
Bloch wall Neel wall
{a) (b)

Fig. 2.6. (a) Cross-section of the Bloch wall; (b) cross-section of the Néel wall.

ison to the wall width, 80 that the stray field energy

is relatively small and can usually be neglected. In thin
films, however, the situation is quite different, the
poles are at a distance equal to the film thickness and
high stray fields occur. The result is that the wall
energy in thin 80-20 Ni-Fe films consists mainly of the
energy resulting from these stray fields and the exchange
energy. Therefore the anisotropy energy can be neglected.
-Starting with thick films, the stray field energy contri-
bution due to the surface charges of the Block wall in-
creases for decreasing film thickness. At a certaﬁn thick-
ness this stray field energy reaches such a high value
that another type of wall, the so-called Né&el wall, be-
comes more favourable. This Néel wall (fig. 2.6b) occurs
in very thin films (dm-< 400 8), and is characterized by
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the fact that the magnetization in the wall turns around an
axis perpendicular to the plane of the film, in contrast
to the Bloch wall. Just as in the case of Bloch walls the
Néel wall energy consists mainly. of the energy resulting
from the stray fields and the exchange energy (except for
extremely) thin films (dm <50 ®)). Unlike the Bloch wall
energy the Néel wall energy decreases with decreasing
thickness. This occurs until in extremely thin films the
stray field energy contribution disappears. The resulting
wall energy and wall width for Néel walls in very thin
films corresponds to the values calculated for a Bloch
wall in the same material, but in bulk form. From many
observations on domain walls it appears that still an-
other type of wall occurs in thin Ni-Fe films, namely the
so-called cross-tie wall. This type of wall consists of a
chain of crosses, the legs of which are Néel walls (see
fig. 2.7). The cross-tie wall does not represent the

Née!l -wall

bloch line cross - tie

I
magnetization
direction

Fig. 2.7. Magnetization distribution round a cross-tie wall,

transition between Bloch and Néel walls, but is rather a
lower energy mode of the Néel wall for all thicknesses.
The cross-tie density of this wall is strongly dependent
on the anisotropy field HK of the film |2.5] : it is pro-
portional to Hy. At d_ = 900 R the cross-tie wall and- the
Bloch wall have the same energy, and therefore at this
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thickness a transition between Bloch and cross-tie walls
will occur. In fig. 2.8 the surface energies Y of the
Bloch, the Néel and the cross-tie walls are plotted as
functions of the thickness dm' In the cross-tie wall,

the energy of the Bloch lines which separate the posi-
tive and negative Néel wall ségments have been neglected.
The influence of the Bloch line energy for very thin
films is shown by the dashed line in fig. 2.8.

10

Neel wall
Y, (107 3/m)
T Cross-tie wall -

5 -
Bloch wall

0 | L |

0 £00 1000 1500

dplA) —s

Fig. 2.8. Energy per unit area of a Bloch wall, a Néel wall and a cross-tie wall (solid line:
without considering the energy of the Bloch lines; dashed line: including the energy of a
small number of Bloch lines) as a function of the film thickness d.,, {after [2.11]).

From the previous discussion it is evident that the
transition of one wall type to the other at decreasing
thickness is due to the facts that the contributions to
the domain wall energy of the exchange energy, the stray
field energy and the anisotropy energy vary with Ifilm
thickness in a different way. Thus at a certain film

thickness the domain wall structure with a minimum energy

2.50
M

Im2A' s

T 1.25 Z

O 1 | 1 i | 1
0 1000 . 2000

dy [A] —>

Fig. 2.9. Band containing the wall mobitity u of abotit 50 films as a function of the film-
thickness d,,, (modified from [2.13]).
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is determined only by the value of the film thickness
(and the anisotropy constant).

The domain wall mobility P [2.13] is also substan-
tially dependent on the film thickness dm. Fig. 2.9 shows
}1 as a function of dm. In the thickness range where the
cross-tie wall occurs a strong variation of the wall mo-
bility is measured.

The thickness range of our films lies between 400 and
2800 8. It thus covers the total thickness range in which
cross-tie walls are present, and the thickness range of
about 900 to 2800 g, where Bloch walls are stable. Films
with Néel walls (dm < 400 R) were not available.

2.3. PICK-UP COIL CIRCUIT

For thin magnetic films (thickness 400-2800 %) it is
not possible to locate the pick-up coil so close to the
sample as is necessary for measuring the total flux of
the sample only. Because of the presence of the substrate
(thickness 1 mm) the total flux measured is the sum of
the film flux and the much larger air flux. A calculation
of the air flux gIair and the film flux O £51m OF the pick-
up coils gives the following values for a 80-20 Ni-Fe film
with a thickness of 1000 &:

intm / Qafr = 5 %‘ ©o(2.4)

The air flux can be compensated by a proper coil arrange-
ment [ 2.14] . Therefore a second coil is mounted, which
is connécted to ﬁhe pick-up coil in such a way that the
voltage due to the air flux is compensated. It is diffi-
cult to match the coils exactly and therefore a small
coil is added, which can be rotated through 180°. Another
disturbance is attributed to variously distributed capac-
itances of the coils. This signal can be compensated by
an adjustable aluminium sheet close to one of the coils,

which induces a voltage in the coils which sign is oppo-
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site to that of the signal due to the capacitances (see
fig. 2.10).

In all our measurements the pick-up coil was oriented
so that it measured the changes of the magnetization di-
rected along the easy axis of the films. A consequence of
the large size of the pick-up éoil with respect to that
of the samples is that the flux of the thin film is not
linked entirely with the pick;up coil because part of the
flux lines close within the pick-up coil cross-section
[2.15] . This effect has also to be taken into acccunt in
the calibration of the equipment. The "transfer" factor of
the pick~up coil was determined by comparing the measured
and calculated values of the change of the magnetic moment
at a complete reversal of the magnetization. In our pick-
up coil about 75% of the flux of the magnetic film is
picked-up.

—+—aluminum sheet

air flux

correction . .
compensation coil

coil

substrate with

sample colil magnetic film

Fig. 2.10. Cross-section of the pick-up coit circuit.

The difference in the measured air flux of the pick~
up coil (1375 turns) and the air flux compensation coil
is very small. The coils can be connected in series as
well as in parallel and their circuit diagrams are shown
in fig. 2.11. The impedance of the cable and the first
amplifier are designated as CA and Ry while RP ig used
to obtain a critically damped system. Because CA > CS,
where CS is the capacitance of the coil, the resonance
frequency fo of the undamped system in the series: and
parallel circuits satisfies (fo)p & 2(fo)s. In the low
frequency range it is the series circuit that has the most

1
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favourable signal-to-noise ratio, whereas in the higher
frequency range (below (fo)p) the parallel.circuit is the
most favourable one. The frequency at which the signal-
to-noise ratio of both coil circuits are edual depends on
the first amplifier. The higher frequency range is the
most difficult region for measurements of the Barkhausen
noise. Furthermore the series resonance frequency just

Ls Rs
e |
[ :
Ls L :
Gs K
Re —=Cs G []RA i Re
)
Vinalt] i
i
]
(a)
T
1
Ls; i
Ls i
R[] ==cs =¢ G [|r R
Vindlt) Rs i
1
;
-———-

{b).

Fig. 2.11. Circuit diagram of (a) the serial pick-up coil circuit and (b) the parallel pick-up
coil circuit.

lies within the measuring range. Therefore we used the
parallel pick-up coil circuit in all our measurements.

The consequence of the use of the parallel pick-up coil
circuit is that the flux of the magnetic film to be picked-
up is reduced by a factor of two: the pick-up coil cir-
cuit has a "transfer-factor" of about 0,.5x0.75=0.38.

In our measurements we used two different pick-up
coil circuits, which can be specified by their capacitance
Cs>

inductance LS and resistance RS. The noise spectra
(sec. 2.4) were measured in the frequency range 10 Hz to
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100 kHz. For the measurement of the noise spectrum the
pick=-up coil ecircuit P.U.I can be characterized by

Lg ~ 5 mH, C, ~ 40 pF, R, » 100Q, Cgapie ~ 100 DF and
(fo)p x~ 200 kHz. For the analysis of the Barkhausen noise
signal in the time domain (sec. 2.5) we recorded the digi-
tized signal as a function of time on a disc memory.

In the latter measurements we used a damped pick-up
circuit P.U.II with a fast response, so that the meas-

' uring coil has hardly any influence on the shape of the
induced voltage pulses [2.16] . P.U.II has the following
specifications: Ls % 5.5 mH, CS = 3 pF, Ry = 123 Q ,
Ccable ~ 10 pF and Rp ~ 4.4 k2 . The resonance frequen-
cy of the undamped system is (fo)p ~ 510 kHz. The low
value of the coil capacitance is realized by dividing the
space available for the turns into six parts and by plac-
ing an insulating foil between each pair of two layers
of turns [2.17].

2.4, THE MEASUREMENTS OF THE NOISE SPECTRUM

For the measurement of the Barkhausen effect the
pick-up coil ecircuit containing the magnetic film was
placed in a magnetic field generated with the aid of a
Helmholtz coil pair (see fig. 2.12). In Helmholtz coils
the field is highly uniform. The field generatéd by a

compensating sheet

Helmholtz-pair

A s
‘ Ll |
> L > Squa'rer_'"t‘ﬁgr“'T
: i
f ‘ recorder

A WA compensating
. coils

Fig. 2.12. Schematic diagram of the equipment for the measurement of the noise spectrum.
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Wavetek function generator (model 142) was swept linearly
in time along the hysteresis loop at a magnetizing fre-
PIELD = ( TFIELD)fl of 5x10_2 Hz or lower. The
maximum field value of 560 A/m was 50 high that the films
were nearly saturated., This field was directed parallel
to the easy axis of the film. A second Helmholtz pair

was placed perpendicular to the first pair. With these

quency f

coils, which are omitted in fig. 2.12, it was possible
to apply a field in the hard direction of the film. The
driving magnetic field generated as just described is
also used in the analysis of the Barkhausen noise in the
time domain (sec. 2.5) and in the domain observations
(sec. 2.7). In the latter, however, the magnetizing fre-
quency was lower by a factor of about 10.

Spectra of the Barkhausen noise were obtained by the

usual methods as shown in fig. 2.12. The Barkhausen noise
signal measured in the pick-up coil circuit P.U,I (see
sec, 2.3) was supplied to the first amplifier. This is
either a Brookdeal 9431 (20 kR , 25 pF) nanovolt amplifier
with an equivalent input noise resistance Re of about

Lo @ (above 1 kHz) or a Brookdeal 9453 (100 MQ, 20 pF)
low noise amplifier with Re =~ 1 kQ (above 300 Hz). A
selective amplifier PAR 189 (or PAR 210 A) with a rela-
tive bandwidth Af around the central frequency f with

A f/f';; 0.01 was mostly used as'bandpass filter. A Tele-
dyne Philbrick 4353 squaring element (in combination with
two operational amplifiers 1027 of Philbrick) was used for
the determination of the power of the induced voltage. The
noise spectral density integrated over several hysteresis
loops was measured with an integrating circuit, using a
Philbrick operational amplifier 142603, In the figures
(see chapter 6) we have plotted the ensemble average E(f)
over L0 to 60 hysteresis loops of this integrated noise

spectral density, converted to a film thickness of 1000 R:
: e

Tfield

. 2 .
E(f) = 1 (Jm) j {v. d(t)}zdt [vZs2] (2.5
At dm /¢ o ,
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with Af = mw/2 (£f/Q) the noise bandwidth,

Q the quality féctor of the selective amplifier,

d. (in 8) the film thickness,

e denotes the ensemble average,

vind(t) the voltage induced in the pick-up coil

circuit.

The Nyquist and 1/f noise of the measuring eduipment has
been integrated too. In every measurement the dc-offset of
the integrator was adjusted so that the integrated back-
ground noise was just counterbalanced by the integrated
dc-offset voltage of the integrator. With this noise elim-
ination, method it is even possible to measure a sample,
which only produces a Barkhausen noise power equal to
about one per cent of the background noise power.

The experimental results of these measurements are
shown and discussed in chapter 6.

2.5, THE MEASUREMENT IN THE TIME DOMAIN

By measuring noise spectra, one obtains information
only about the energy of the induced voltage as a function.
of frequency. All phase information of the noise signal is
lost. We obtain a good approximation of the real situation
if we regard the noise signai as a stationary sequence of
independent pulses (see sec. 4.3) with for a single pulse
a relation between the pulse parameters: amplitude, dura-
tion and the time period preceding or following the pulse.
The relationship between theé pulse parameters is described
by the joint frequency-density function of all pulse para-
meters, The measured frequency-density functions of the
pulse parameters enable us under.a few assumptions to cal-
culate the noise spectrum [ 2.18 | (see chapter 6). By com-
paring the calculated and the measured noise spectra the
assumptions made will be checked. Furthermore thefrequen—
cy-density functions give information about the origin of
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any relationship between the parameters of the physical
process of the Barkhausen noise.

In fig. 2.13 thé magnetizing field H and the Bark-
hausen Jjumps i/}l (dI/dt) are plotted as functions. of
time. The same figure shows the I/}l -H loop of a thin
film. The rectangular hysteresis loop which is character-
istic for thin 80-20 Ni-Fe films, results in a small
reversal time of the magnetization. At a magnetizing fre-
quency of 5){10_2 Hz (see sec. 2.4) the reversdl time var-
ies between 0.1 sec. and 1 sec. Owing to the large value
of the wall mobility pa the wall jumps will be very fast.
With our fast pick-up coil P.U.II (see sec. 2.3) we can
measure pulse time durations which exceed about one mi-
crosecond., Therefore for the investigation in the time
domain we have chosen for a digital analysis of the Bark-
hausen noise with a sampling frequency of 1 MHz. In gen--
eral the content of the Barkhausen noise spectrum for

(a) (b)

Fig. 2 13. The magnetizing field H (a) and the Barkhausen noise {b) as a function of time;
{c) the I/ug - H loop of a thin film. .
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f >1 fsampling is smaller than 5% of the total content

of the spectrum. Thus according to the sampling theorem,
information up to 0.5 MHz can be obtained with this equip=-
ment.

Using as the first.amplifier a Brookdeal 9453 low
noise amplifier (bandwidth 1 MHz) and after further am-
plification, the induced voltage is applied to a combina-
tion of a 8 bits Analog- to- Digital Convertor (Datel ADC
G 8B 3C) and a Sample- and- Hold circuit (Teledyne Phil-
brick 4855), sampling the noise signal at a frequency of
1 MHz. This means that during one reversal of the magnet-
ization 10° to 106 data are needed to record the infor-
mation contained in the signal. To investigate the statis-
tical nature of the Barkhausen noise the number of hyster-
esis loops needed ranges between 10 and 30 implying an
énalysis of a number of data varying between 2x10° and
2X107
send on-line an 8 bits signal of 1 MHz over a distance

. This presents two practical problems:1) how to

of 500 m to a computer and(2) how to store such a number
of data in view of the long processing time of the com-
puter.

The two problems were sol&ed simultaneously by making
use of the special shape of the signal during the rever-
sal. A characteristic Barkhausen noise signal is ‘shown in
fig. 1.3. Only during a small part of the reversal time
does the signal differ from zero. Using this property of
the sigﬁal we can reduce the amount of data during one
reversal to a number between 2x103 and 10“, as shown in
the following part of this section: a reduction by a
factor of 102.

The reduction of information is carried out in the
"Barkhausen Computer Interface" ® (fig. 2.14) [2.19]:.
To reduce the influence of the background noise we detect

x Published in: R. ter Stege, N.J. Wiegman, ."Equipment for the inveg—

tigation of the statietical properties of the Bavkhausen efféct”
J. Phys. E: Sci. Mstrum. 11 1978, p. 791-794.
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the signal only if it exceeds some édjustable reference
bahd around zero, This‘bahd is vafiable in stepé deHO mvV
(one of the 128 levels of the ADC). To this reference level
we will refer in the folloWiﬁg,description as zero. Every

code : compensator 3
conversion ~|zero/non-zero ::le:jisosn
1 data '
- ‘“address
noise »
sign. ADC « ] _|time /data . RAM
clock -»{sample/hold| yqta control  [4atq "
in/out . data
A
trans-
REA[\ZR”E mission
Tdata
PDP 11
disc-memory| -

Fig. 2.14. Block diagram of the “‘Barkhausen Computer Interface”.

microsecond a sample is taken. When the sampled value is
different from zero, this value 1is sent to a Random Access
Memory (10K words of 9 bits) organized as a first-in first-
out memory. If the sampled value is zero, a counter is
started, which coﬁnts thé number of samples with zero
value; In the Barkhausen Computer Interface the time coun-
ter consists of four 28 counters in series. At the moment
that the sample differs again from zero the counter is
stopped. An extra bit is added to the counted number of
samples (consisting of four or less words of 8 bits) indi-
cating that these words represent a time duration and not

a sampled signal value. Then, using a time/data control
unit with a buffer memory, these numbers of nine bits are
transported to the RAM. The next number in the RAM consists
of the first non-zero sampled value of the signal after
this time interval as also are the following numbers, The
memory capacity of the RAM (10K words of 9 bits) is such
"that all information about one reversal of the magnetiza-
tion can be stored in the memory. A flat cable of 70 m
length connects the transmission-unit of the Barkhausen
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Computer Interface with a Digital Equipment PDP 11 comput-
er. At the moment that a zéro sampled value is detected,
no data are fed to the RAM. Af the same moment the read-
out procedure of the first-in first-out RAM is started.
Information is transmitted to the PDP 11 with a maximum
velocity of 5000 words per secdnd up_to the moment at
which a non-zero value of the signal is detected. The
PDP-11 computer stores the received data in a disk memory;
after the measurement the stored information is copied on
a tape memory. Via another PDP-11 computer the data are
transmitted to a Burrough B7700 computer. This computer
carries out the statistical analysis of the Barkhausen
noise.

This equipment enables us to analyse the Barkhausen
effect in the time domain up to frequencies of 500 kHz,
i.e. to determine the frequency-densities of the pulse
(jump) parameters (see chapter 3), to calculate the
noise spectrum from the density functions (see chapter 6)
and to investigate the features of the Barkhausen effect
along the hysteresis loop (sec. 4.2). Furthermore it gives
a method to investigate the stationarity of the signal
(sec. 4.3). '

2.6. HYSTERESIS LOOP TRACER

The basic circuit of a hysteresis loop tracer for
materials with a small. flux change during reversal was
first proposed by Crittenden [ 2.14 ] . A block diagram of
our hysteresis loop tracer is shown in fig. 2.15. The
driving fields are generated by two pairs of Helmholtz
coils which axes are perpendicular to.each other. This
enables hysteresis loop recording in the presence of a
dc-field perpendicular to the driving field. The current
through the coils comes from a function generator or from
the main supply (50 Hz> via a variable transformei. An

36



insulating transformer is used to prevent short-circuits.
The film which lies in a revolving film hoider, is brought
into a pick-up coil, which output is proportional to

a3 /dt. The performance of this large pick-up system is

in principle the same as that of the small pick-up coil

L and T Helmholtz pairs

AL 7

compensating

variable sheet film
isolating
transformer T
3 to one pair integratin
IE DOngﬁg Eocl)trzT) umejifier ’

pick-up 2
coil %7
compensating

coils

scope
0
\1;iE;J/

Fig. 2.15. Biock diagram of the hysteresis loop tracer.

circuits described in sec. 2.3. The amplified output sig-
nal of the pick-up coil can either be observed directly
on the screen of an oscilloscope, or be fed into the in-
put of an integrator. The output signal of the integra-
tor, which is proportional to the component of the magnet-
ization parallel to the axis of the pick-up coil, is fed
to the vertical amplifier of an oscilloscope. The voltage
on the horizontal input of the oscilloscope is obtained
from a resistance in the driving circuit and is propor-
tional to the field. In fig. 2.1 the output signal of the
pick-up coil before integration (b) and after it (a) is
shown. Barkhausen jumps appear in the non-integrated sig-
nal of the film in the easy direction. '
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2.7. OBSERVATION OF THE DOMAIN STRUCTURES

For the observation of the domains in the film the
Kerr magneto-optic effect is used [2.2] . When linearly
polarized light is reflected by a ferromagnetic sample,
the plane of polarization is rotated through an angle
which depends on the magnetization direction in the sam-
ple. An analyzer can be_adjusted_in such a way that_the
light reflected from one kind of domains is extinguished.
We adopted the longitudinal effect: the magnetization was
in the plane of the film and parallel to the plane of in-
cidence (fig. 2.16).

eyepiece
condensing o
d | ng objective
ens
polarizer . - analyzer -

film

Fig. 2.16. Diagrammatic representation of the observation of domains with the magneto-
optic Kerr effect.

The difference in angle of light rotation of domains
magnetized in opposite directions is very small. It is
about 5 minutes for the longitudinal effect. Magnification
of the effect by a factor of about 10 is obtained by evap-
orating a thin 1layer of SiO2 on the film, because of the
multiple beam interference thus obtained, This coating

was also used in our experiments.
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3. MEASUREMENT OF THE FREQUENCY-DENSITY
FUNCTIONS.

3.1, INTRODUCTION
During the reversal of the magnetization the voltage,

induced in the pick-up coil circuit by a wall jump has the
shape as shown in fig. 3.1. The signal can be described

Ving(t]

. '_n’] ” A -t

Fig. 3.1. The voltage, ving(t), induced in the pick-up coil system by the Barkhausen
jumps.

mathematically by four parameters, i.e. the pulse size p,
the pulse duration T the time period 8 during and follow-
ing a pulse and the time t at which the wall motion starts,
as defined in fig. 3.1. In our equipment the applied mag-
netic field H varies linearly with the time t. So instead
of

i-1
t. = Z O. 1s
29 (<]

we can use equally well the quantity Hi’ i.e. the applied

field at which the i=-th jump begins., This will be done

in chapter 4. The statistical behaviour of these parame-

ters has been measured with the Barkhausen Computer Inter-
face [3.1.] Results of these measurements will be discuss-
ed 1in the next sections [ 3.2, 3.3]. '
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In sec. 3,2 the sensitivity of the measurements in
the time domain is con31dered In sec. 3.3 some general
comments are made on the frequency-den51ty functions of
the pulse parameters, namely on the notation and meas-
uring method. In our investigation we have determined all
one- and two-dimensional frequency-density functions of
the pulse parameters P,-Tg and 8. In this chapter the form
of the two-dimensional frequency-density functien of p and
g (sec. 3.4), and of the one-dimensional frequency-den-
sity functions of p, Tg and 6 (secs. 3.5 to'3.7) 1is dis-
cussed at length., We have observed that there was no rela-
tion between p and 8 or between 1 and 8 (eee sec. 3.7).
All frequency-density functions are determined per hyste-
resis loop, which is always traced with the same frequency

(0.05 Hz) and the same value of dH/dt (112 Am—ls_i).

3.2. THE SENSITIVITY OF THE MEASUREMENT IN THE TIME DOMAIN

The general behaV1our ‘of the Barkhausen effect has
been 1nvest1gated by a time domaln analysis [3.1] . The
background noise of the equipment is almost completely
eliminated by using a eymmetrieal reference voltage around
zero -(see sec. 3.5). By this method pulses with an ampli-
tude h smaller than the reference voltage are not detected.
In the investigation a sampling frequency of 1MHz was used
which permits a minimum pulee duration of 1}43 to be detect-
ed.. In view of the presence of the background noise of the
equipmeht we have chosen the value of 2)15 (i.e. two sam-
pled values exceed the reference voltage) for the minimum

detectable value (T of Tg- Summarizing one can

B,det)min
say that a pulse is only detected if both h and Tp exceed
their previously_given minimum detectable values. If the
value of e B 1> i,e. the time interval between success-
ive  jumps (see fig. 3.1), 1is less then 1 PS5 s then these
Jumps are detected as one wall jump. Thus for the time

period © follow1ng a pulse we have to do with a minimum -
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detectable value (edet)min
error at small p and T g values: the number of pulses

of 3 s - This gives a systematic
measuréd there is too small.

For the different samples the amplification differs
from measurement to measurement. The background noise
increases with amplification and it is necessary to in-
crease the reference voltage too. As a consequence at the
output of the Anélog Digitel Convertor the minimum detect-

able amplitude (hdet) varies between 40 and 280 mV for

min
the different samples. The pulse size p is defined as

p = 1000 ] [Vipg (t11at (d in &) [vs] .1

dm

1jump
The pulse size in eq. (3.1) is normalized on a film thick-
neés of 1000 & and thus propprtional to the jump area. In
the films a two-dimensional domain structure is present,
therefore to compare experimental results of different
films thé surface afeas 6f the wall jumps were considered
in our méasuremehts.bThe minimum detectable value of p,

(pdet)min’ depends on (hdét)min‘and Tg- It is given by
© - 1000 2 (T . .2)
(pdet)min iy (hdet)min Tg for Tg { B,det)mm _(3 2)

where Av denotes the amplification of the equipment. With

increasing Tp the value of (pdet)min increases also. We

shall return to this in secs. 3.4 and 3.5, where the den-

sity functions z(p,‘rB) and z(p) are discussed. The sum
of the pulse sizes is also considered there. In the

table 3.1 we preseht the range of variation of (pdet)min

TABLE 3.1

range of minimum detectable values
at 1 B = 2 P

11 -11

to 8.8 x 10 Vs

2.0 x 1079 to 1.2 x 1078 n?

p 1.5 x 10~

A.
Jump
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and of the minimum detectable jump area (A. [m2]’

Jjump, det)mln

both at a pulse duration of 2 Ps. We calculate AJump from
the change of the magnetic moment m during a jump which is
given by
/Iv. g trfat
21, V; 1 n 2
m = 2'sVjump | jump [am?] (3.3

Ko Box (N/L) x 0.5x0-75

In eq. (3.3), IS is the saturation polarization

( ~1 wbm 2), Viump the jump volume, N/1 (= =16°m™1) the
number of turns per metre of the pick-up coil and
0.5x0.75 the transfer factor of the pick-up coil system

(sec. 2.3). The jump area is

A = __:iiEE!L___’ (d_in R) [mZJ i(3.4a)
jump -10 m : :
d, x 10

or using the egs. (3.1) and (3.3)

. P /1000 (3.4b)

A.
jump 10
2Ix {N/1)x0.5x 0.75 x 10

The maximum detectable value of p, is deter-

(pdet)max’
mined by the maximum input voltage of the ADC, which is

5 Volt. For 1y > (TB’det)mln this gives

. 5x1000 , :
(Pyot'max = — Ty - ldgin R) (3.5)
m

By varying the amplification Av we can shift (pdet)max;
thus pulses with a large p can be measured accurately and

without the previously mentioned systematic errors.

3.3. THE METHOD OF MEASURING'THE'FREQUENCY—DENSITY FUNCTION

All frequency-density functions of the pulse . parame-
ters are denoted by z in this thesis, for example we use
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z{(p Ty 6 H), z{p), ete.
In fig. 3.2 the Barkhausen signal is shown as a func-
tion of the applied magnetic field H(%t). The frequency-

density Z(pi T 6, Hy) is equal to

B,J
Nip Tt © H)

2 (p, Ty 6 H = PiTBg k1 V'3 'm]  .6)
toEd Bp, BTy A6, BH,

in which N(p Ty ) k l) is the number of pulses per hys-

teresis loop hav1ng values of p, T 6 and H satisfying

B’
the restrictions that
p lies in the interval Ap; around p; (3.7a)
T, lies in the interval At, . around T, - (3.7p)
B : B,J B,J
® lies in the interval A Gk around 6, (3.7¢)
and H lies in the interval AH, around Hj. (3.74)
el }
’11 " I i | 1 d .ll 1 .I ‘ ' |i .‘ l
N — H(A/m] —p

1 A/m

Fig. 3.2. Barkhausen signal during a small part of the reversal.

Only if we are interested in the behaviour of the Bark-
hausen noise along the hystere51s loop, hence as function
of field H, do we start from eq. (3.6) and do we determine
the density function z(p H)’Z(‘EB H) ete. This will be done
in chapter 4 [3.3] . Mostly, however, the statistics of

the Barkhausen effect are determined for one complete hys-
teresis loop. The field dependence is disregarded. Hence

we shall use z(p T, ©) defindd as

B

44



, _ .
2lp1a0) = Z zlprgor) oH - [Vis7] G.®)

The one- and two-dimensional frequency-density functions
z(p), z(p tB) and z(p 6), etc. follow from eq. (3.8), for
example:

-1 -
2(pTg) = 3 2(pTe0,) 86, [v's?] (3.9a)

~and ' z(tB)

B i

Z z(p; T ) Ap. 7[5-1] (3.9b)
i .

The total number of pulses per hysteresis loop 1is

Niot ° ? JZ % % z(p; Ty O, H ) Ap, ArB_j 89, An (3.10)

o
In the determination of the frequency-density functions
several hysteresis loops are traced. For one measurement
the number of loops is such that about 10“ pulses are
available for the determination of the frequency-density

functions.

In our measuring range the parameters p, IB and 9
vary over several decades (2 to 5) and the frequency-
density functions decrease strongly with increasing value
of the parameters. For example the one-dimensional fre-
quency-density functions of p, Tg and 8 can be represented
in the greater part of the measuring range by functions of
the form

A
z{x)=Alx/x) with 0.75 < A< 2.4 (AN#1) (3.11)

where x stands for p, Ty or 8 and A and A\ have constant
values and x* = 1. We want to take full account of the
pulses at higher x vélues. Therefdre we apply the follow-
ing measuring method. In measuring z(x) we divide the
measuring range of X in intervals of increasing length,
'<s6 that these intervals have equal lengths on a logarithm-
wic scale. Therefore, with increasing x, the number of
pulses measured in an interval decreases slower than in
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the case where intervals with a fixed length would have

been used. Choosing

X, 1= CX, th' c=constant (3.12)
i+ i

we find for the length Axi of the i-th interval

Ax. = x, - x. = (c-1) X, (3.13)

i i+1

so that the lengths of successive intervals grow by a

factor of

Axi,{1 /Axi = ¢ (3.14)
We use the symbol n; for the number of pulses counted in
the i-th interval. If eq. (3.11) holds then n, satisfies
(N#£ 1)

(3.15)

The density =z of pulses measured so in the i-th inter-

m,1i
val is

z . =n./70c-1)x (3.16)
m,i i i

We plot this measured value 2o at Vqui’ on logarithmic .
. 3
scale at the middle of the interval, being the geometric

mean of X. and X. ,. Thus we obtain
1 i+1

NN
z (Ve x. )= z. = /\xf)\(" -1) (3.16a)
m : m.i - Ne-1)

' From eq. (3.11) follows the theoretical value of z at the

lue x = .2
va Ve Xy

2 (VS %) = AVE x, ) (3.17)

Comparing eqs. (3.16a) and (3.17) gives

[

/2 -A
2, (Ve ) Mz
z (VT x,) (1-X)(c-1)

(3.18)
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For p we used ¢ ~2, for 1y the value ¢ = 1.4 and for 8 the
value ¢ = 1.8. Fig. 3.3 shows the ratio Zm/Z. We see that
for 0.75 < A < 2.4 (A# 1) and 1.4 < ¢ < 2 the values of
%n(vﬂf x;) agree within 3% with those of z( V/C x;) through-
out the entire measuring range. For the magnetic field H we
used intervals of equal length. The usé of the values

zm( v@‘xi) do not bring-along any error in the determina-
tion of the slope A, because in the logarithmic plotting

Y
z,, [Vexi) ., n=25
Z‘.VEXi] / o
1.00 |- n=20
n=15
. n=0.75%
n=1-10"°
0955, | ! l | !
D 16 18 20 2.2

Fig. 3.3. The ratio z,,,/z as a function of ¢ with 17 as parameter.

method the curve of the density function is only shifted

a little. So we may conclude that a density function of
the form given by eq. (3.11) can be represented very
accurately by the described method, while the accuracy is
much larger than in .- the case that intervals of a constant
length are used [3.4] as follows from the following dis-
cussion. When intervals of a constant length Ax are used
than the value of Ax cannoﬁ be determined in such a way
that it gives a large accuracy for the determination of
z(x) over a wide range of x values. Choosing the value
of Ax as to give a good definition of z(x) at low x
values we get in most intervals numbers of pulses which
are so small that statistical methods become inaccurate.
Choosing Ax as to give an accurate result in the central
part of the x range at the beginning of the x range
the intervals are then too large to determine the form of
the function z( x ) accurétely.
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3.4, THE TWO-DIMENSIONAL FREQUENCY-DENSITY FUNCTION OF
p AND T

B

The frequency-density function z(p, T B) of the Bark-
hausen pulses was measured. Both coordinate axes of the
p IB-plane were divided into intervals as described in
sec, 3.3. All measured pulses had p and 1 B values, which
are situated in only a part of the p T g-plane (see
fig. 3.4). In fig. 3.5 two typical examples of the iso-fre-

— - =
107 | : 07 [
i Ivs]
plvs) _ P .
I o s
I w0 - | I 0 7
| B
- ! // | /(4
| . 1 PetImin
mo pid B g
(P get Y min A
-9 | V4 = 7/
10 | , .10 | P
| - 7/ 7
L , L 1
/
7 L
i ) |
7/ 4
10" 4 SAMPLE B1973 10°F _ A | SAMPLE B 289.35
1] HoEbb.l Am Prin] 7] He = 144 Am™
- L4 L Hc=576 Am : & Hy = 448 Am™'
Pain b= [ 0m=2380A d = 437 A
"B .
=1 i i i i 1 i i 10’“ 1 1 1 L L 1 1
0 e 10° w0 w0 108 10° 10 107
(o, aet Imin Ty [s] - { vg_gothnin Tglsl —

Fig. 3.4. The intervals in the prg - plane where Barkhausen jumps occur for two differ-
ent samples. The limits of the measuring range are indicated by the dashed lines.

quency-density lines of the measured density function
z(p, T B) are sketched by interpolation between the meas-
~ured densities in the intervals. Table 3.2 presents the
measured number of pulses N(p,‘BB) per interval and

table 3.3 the measured values of the density function
z(p,‘tB) of the samples presented in figs. 3.4 and 3.5.
Table 3.2 presents also N(p) and N('BB). Within our meas-
uring range the iso-frequency-density lines do not form
closed curvés. In the whole measuring range the frequency
density increases with decreasing values of the pulse
parameters. Below the measuring range the density func-
tions of the Barkhausen jumps must somewhere begin to
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TABLE 3.20: Nip, 75) of the sample 8197.3

e [[237 | .35 473 | 668 944 [133 |1.88_[286 376 [631 [750 [106 |[1.60 Nip)
o %1078 | x10°8 [ %1078 | x107® | %1076 | x1078 | %1075 | x1078 | 1078 [ x10°5 | x10°8 | 1074 | 9074
:'lsoa." 0.10 : 010
6.76
x1g~ 11 369 | 26.3 o1 385
:"‘;..o 700 | 174* | 61.7 | 1.50 307
[ . 234
x10° 10 2.00 472 41 38.9 460 0.10
:15:. 10 0.70 39.1 66.4° [ 408 270 0.80 149
:'11!;..0 200 [170 |B21° [206 | 160 @3
:“oz.g 0.20 146 26.4° (179 1.30 59.4
T
31002" 0.30 5.60 229" (1189 1.70 423
:1"‘0‘_9 0.1 020 0.60 5.30 14.2* | 7.90 1.20 294
:"‘u‘_g 0.10 010 [160 |8.10° |620* | 1.00 17
288 020 [150 |4.30 |820* |0.80 12
x10°8
:',7:-5 ~|o20 | 110 |100* |070° [ 30
e, 010 | od0
Nirg) |431 248 244 123 13 54.7 48.7 291 19.3 1.7 7.30 1.0 050 =132

TABLE 3.2b: Nip, 7} of the sample 828935

g [237 | 336 [4.73 |668 | 944 | 133 | 188 268 |3.76 |53t | 760 | 106 | 150 [211 | 299 |422 | Nip)
2 %1078 | x1076 | w1076 [ w1078 | x10°® | %1075 | 1078 | %1076 | %1078 | x3078 [ x1078 | w107% [ %1074 | x1074 | «1074 | x1074

1.26

ao-10|218" | 813° 276
248 ;

wio-10[084 | 616% [120° | 7.00 188
456 :

x10710 0.091 | 161 68.8° | 45.2° 130
3“?. ol 046 |30.9° |404* | 106 . | 014
1.97

%1079 5.00 34.2° | 1B5* (073 58.4
304 :

1079 055 1 16.4° | 3.9% | 320
7.87

X109 273 |9.82° |538° |046 18.4
57

<1078 . 018 |456* |6.27¢ | 091 109
313 .

i 018|191 |a09° |200° | 8.18
6.25

%1078 X 0.091 | 0.27 1.27 1.00" | 0.091 272
1.25

107 0.48 0.36" 0.82
Nirg) |216 - (123 145 763 85.1 45.4 454 295 19.8 13.9 10,1 n 6.27 327 1.48 0.45 =827
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TABLE 3.3a: z{p, r,

3) of the umple B197.3

1.06

1.60

vp |[237 | 335 [ 473 | 663 [ 944 | 133 | 168 | 266 | 376 [ 631 | 780 | 1. k
P k1078 | x1078| 1078 1078 x10°8] x107%| x10°8) %1675 x10°8] x107B| 1078 | x1074 | M107*
707
x10'8
8.00
%10'%
x10'8 | x10"%| x10'8| x10*
133 | 247 | 8.88° | 3.80 ;
%108 | x10'8| 106} x10'
674 | 348 | 428 [ 204°[ 1.10
210" | x10'8| x10'8| x10'8| x10™
358 | 465 [ 137 | 65.08° | 611
x10%3| x10M| x10'8| x10"| x10"
BA4 | 119 | 211 | 169 | 301 | 1.19° | 1.28
x10"2 | x10'3| x109] x10"] x10M| xt0"| x10"
760 150 | 169 [ 6.12 | 3.31° | 3.78
x1012 x10"2| x10"| x10%3] 10| x10"2
707 | 6.08 | 1.10 | 9.85° | 1.20°
x10'2| x10'2| x10'3| x10'2| x10%2
269 | 106 | 6.73 | 3.34°
x10"| x1072| x10'' | x10"
238
x10'°

TABLE 3.3b: zip, rg) of the sampie B289.35

rpl|237 335 [4.73 [688 (844 [133 [188 [266 [378 [631 [250 [108 [150 |21 298 [422
P 07 | x10°8 [ 1078 | 107 | 107 | 1076 | x1078 | x10°% [ x108 | %1078 [ x10°% | x1074 | x1074 | x10°% [ x10°4 | x107*
125 || 2.88° | 6.02°

x10719) x10'8 | x10"?

248 ||4.41_ | 303|449 [172

x107'9| x10'8 | x10" | x10'7 | x10'®

496 224 | 280 | 8.46° | 3.93°

x10"19 %10 | x10%® | x10'® | x10"®

[] 281 (174 136" |22

x107'q x10" | 010" | x10' | x10'8

1.97 1.78 3.78° | 144" | 4.02

x1079 x10" | x10'5 | x10"8 | x10%

394 209|432 |453° | 781

x107% x10'3 | x10™ | x10" | x103

[787° 2 [ae0* [372° (223

x10°® x10' | x101 | x10™ | x10"?

167 888 | 158 |1.30° | 158

%108 x10" | x10"® | x10™ | x10%2

3.13 318 (236 [358° | v.24*

x1g-d x10'! | x10'2 | x10'2 | x10'?

5.5 661 | 1.19 | 383 |219° | 148
x10°8 x10' | x10" [ x10" | x10" | x10%
1.26 361 | 2.00°
x1077 x1019 | x10'®
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decrease with decreasing p and 1T as discussed by

3
Stierstadt [3.5] . The minimum juﬁp size will be much
smaller, by a factor of at least 103, than our minimum
detectable jump size. So the iso-frequency-density lines
will be closed far below our measuring range.

The measurements show thét in the Barkhausen process
a most probable pulse size pw( IB) exists at each given
value of Tgs Jjust as found by Lieneweg [3.6] from

nickel-iron wires. In each measurement pw('t ) and 1T

B B
proved to satisfy an equation of the form [3.2]
n
P (Tg) = KTy [Vs] (3.19)

In the measurement pw(‘EB) is determined by tracing a line
through the measuring points that represent the largest
values of the density z(p, IB) at a given value of Tge We
thus obtain an accuracy of w of about + 0.1. This is done
because it is difficult to determine the iso-frequency-
density lines and the method used gives an accuracy which
is sufficient for our investigation. A pulse is only de-
tected if both the pulse amplitude h and the pulse time

T p exceed (hdet)min and (p B,det)min’ respectively, as dis-
cussed in sec. 3.2. The value of (pdet)min (see eq.(3.2))

= ° ' | ‘
zlp.tg) [ z{p.ts} [ ¥
Z (py.Tg) : zlptpw! °
T - °© ® T T
S * STL
10 ‘x , 10 * °
i 3\ 5 3
= = X %
(a) - (b) o
10_2 | | | : 10-2 ! ] ] ]
10" 1 10 10" 1 10
p/Py —> . g/ Tgy—>

Fig. 3.6. (a) Density function of the pulse size for different rg values:

o: 13 =4.7x10-65 x: 75 =0.4x107650 : 75 = 1.9x 1075, +: 13 =3.8x 10 5s and

®: 75 = 7.5x 10~5s. {b) Density function of the puise time for different p values:
e:p=1.2x10"10Vs, x: p=4.6x10-10Vs,0: p=1.8x10"9Vs, +: p=7.2x10"9Vs and
#:p=209x10"8Vs. Both figures present results of the sample B197.3.
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is proportional to Tg- The value of’pw( tB) is hardly dis-
turbed by the limited measuring range of the equipment
owing to the strong relation between p and T ..

In fig. 3.6a z(p, Tg)/z(p,, T g) is shown as a func-
tion of p with T p as parameter and fig. 3.6b shows the
density function z(p,‘tB)/z(p,t B,w) with p as parameter.
All these densities follow the same curve. The guantity
T B,w is the most probable pulse duration at a given
pulse sizg'p. At a given g the spreading of p(T B) values
around pw(‘tB) is small as can be seen from fig. 3.6a.
Thus the mean pulse size at a given value of Tgo <p(‘EB)>
can be approximated by

< p(t8)> = P, LtB) 1 [VS] (3.21)

For the different samples <p( tB)> is somewhat larger
than p,( T5) but it is considerably smally than 2 p,( Ty

The measured values of % are plotted in fig. 3.7 as a
function of the film thickness dm. From the plot one can- '
deduce that two values of % dominate: W= 2 + 0.1 and
w= 1.5 + 0.1. These two different values characterize
two different wall jumping processes, which will be fur-
ther discussed in chapter 5. A small number of samples

I . I I T T
n .
0k -———— - — - — ¥ ____ r _ % _.____;______4.__
T . | |
4
L + . -
18 +
+
16
Iy . bt 4 e e e
14 T
*
12| + _
10F i
d .
! | 1 ] !
500 1000 1500 2000 2500

dm[A] —»

Fig. 3.7. Value of « as a function of the film thickness d.p, for all measured samples.
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1 T
\*

-10 %
10 | / SAMPLE B 199.21
x He = 76Am’
-/ H, = 560Am’
/ dm = 2030 K
-11 | | | L1
0 1076 107° 10°¢ 107

1g [8] —

Fig. 3.8. Curves of p,,(7g) for a sample 2030A thick; * indicates the maximum values of
z{p,7g) as a function oYp fora given 7B-

have values of W between 1.5 and 2. In a few samples,
however, two branches for pw( IB) are measured (fig.3.8).
The second branch is only found for large values of p and
satisfies

B (3.22)

The number of jumps and the values of the frequenéy-
density function in this second branch, as well as the
spreading are very low. Three samples show W values
around 1.3. In chapter 5 the form of pw(‘rB) is derived
for different simplified models of domain wall motion

and the results of the.derivation are compared with the
experimental results.

54



3.5. THE FREQUENCY-DENSITY FUNCTICON OF p

The frequency-density function z(p) of the pulse size
p can be determined from z(p Ty 8 H) (eq. (3.5)) as:

- o -1
2lp) = 2 22 zlpty; 0, H ) ATy A8, AH [V's'] (3.25)

The measured values of z(p) can be approx1mated by a
curve descrlbed by an equation of the form (see fig. 3 9).

p\ 1
A1 (?) pmin < P s po
z(p) = , ) (3.23)
-
A (L) 2 p < p < p
2 p'l o} max

where p .  equals (Pyotdpin &t Tp = ( T and

B,det)min
px = 1Vs. Al’ A2, &, and A, are constants. For all sam-
ples the measured value of A1 is of the order of magnitude
of 10"“'\}"_1_5_1 and the values of a, range between 1.30 and
2.05, as seen from fig. 3.10. The majority of aq values

lie between 1.4 and 1.8. In all experiments we find

a, > 24, (3.24)

The measuremerits show that over abouf three to four dec-
ades the measured frequency-density functions aceurately
follow eq. (3.24), The curve drawn at first sight through
the. measured points in the plot of z(p) against p can be
traced with an accuracy of about + 0.1 with respect to the
slope (dashed curves fig. 3.9). It has to be noted that in
addition to eq. (3. 24) some different functional forms of
z(p) reasonably agree with the measurements, for example

[3.6]

. -
zIlp) = A (p/p ) exp{-p/p, ) (3.26a)
4 . &z -1
or . z(p) = (p/p*) . + p/p ) (3.26b)
A Al
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10 10°
107 | 108
zip} zlty)
z(8)

10" | ~10
107} 108
10° | 10"
z(tg) ' F

10° - SAMPLE B1973 8 Py ~10°

He = 44.4 Am

Hk = 576 Am’ z(p} A

d, = 2380 A ; ‘

: L
107 1 pc) -9 -8 7 _6
10° 10 10 10 10 10

plvs] —»

Fig. 3.9. Shape of the one-dimensional density functions z(p), z(rg) and z(6).

However, we will restrict ourselves to the representation
of eq. (3.24).

A pulse-is only detected if both h and s exceed

<hdet)min’ resp. ( IB;det)min (see sec. 3.2), taking into
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Fig. 3.10. Measured slope a4 of the density function z(p) plotted as a function of the -
film thickness d,p; samples with very small values of Py, are indicated by @.

account that (pdet)min « Ty (eq (3.2)). So a fraction of
the pulses with (see fig. 3.4)

- ;020 (hdet)mhf (t&det)min= Pomin (?.27)
m v '
is not counted by the equipment. By this systematic error
the measured value of z(p) is too low. In the Barkhausen
pulses pw( TB) grows stronger with Tg than (pdet)min does,
as described in sec. 3.4. As a consequence only at the.
beginning of the measuring range do we measure too low a
value of z(p), mostly only for the first two measuring
points 1is the error substéntial (>>10%). So this system-
atic error has scarcely any influence on the slope ay
determined from the experiments; the measured slope ay
becomes a little too low.

For large values of p the number of pulses measured
per interval is so small that application of statistical
methods gives inaccurate results. This applies to about
the last half decade of the p range in which Barkhausen
" pulses are measured. Large pulses are detected with cer-
tainty (see sec. 3.2), therefore only a measuring error

is present here and no systematic error. This discussion
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is also valid for z( TB) and z(8).

With eq.(3.24) we can very easily calculate the meas-
ured total pulse size Ptot per hysteresis loop:

P
ma x
Prot = | P Elp)de [vs] (5.28)
pmin
where pmax is the maximum jump size detected in the sam=-

ple. The pulse size p is proportional to the jump area.
In every reversal the magnetization of the whole film is
reversed and this happens twice per hysteresis loop. The

proper value of the total pulse size (p per hystere-

tot)c
sis loop can be calculated from eq. (3.4b). The surface

area of the samples varies between 0.8 and 1.1 cm2 usual-

2

ly it is 1 cm2. Using a film surface area of 1 cm® and a

transfer factor of the pick-up coil circuit of 0.5x0.75

we find

-6 .
Prote = M x10 Vs (3.29)

In fig. 3.11 the measured value Ptot is plotted as a

L I ) I x |

X X
XX

0”// | 1 I ] ]
© 500 1000 1500 2000 2500
dp [A] ——

Fig. 3.11. Measured sum of all pulse sizes as a function of dm.
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function of the film thickness dm. It varies between

0.38)(10_6 and 1.66)(10_6 Vs, whereas the majority of

P, .+ values range between 1.0)(10-6 and 1.4x10"% Vs. The

difference between Ptot and (Ptot)c is sometimes very

large. As already discussed the error in ay will be

small but a large number of small pulses cannot be meas-

ured. The question now arises: can the systematic

errors give rise to such large differences between

Ptot and KPtot)c? To answer this question we shall

examine the influence of these errors on Ptot‘
In the estimation of the possible error in z(p) the

influence of measuring errors will be neglected. We use

in the calculation two assumptions:

(1) With decreasing p the density function of p will still

1ncrease until p'! ) where it begins to de-

min (<< Pnin
crease w1th a further decrease of p. For p > pmln the
actual dens1ty function z! (p) follows an equation of
the form (3.24).

(2) For values of p argund p, the density of p is measured
accurately, and so are A2 and as. No systematic errors
occur here,

Then the actual frequency-density function of p, z'(p) is

approximated by '

AL (P ’
1 <p.) pmuw = P < po
Z’(p) = (3.30)
-a
2
A (P <
2 (p') po Po= pmax
where p -1Vs. We descrlbe the relationship between A a i
and pmln and the measured quantities Al’ aq and pmin as
follows '
AL = L1210 A (3.31a)
a,'1 = 0.1+ Aa . (3.31b)
Poin = 1710 Poin - (3.31¢)
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where Aa>0 and £ _>>1. With assumption (2), and using
eqs.(3.24) and (3.30) we find

-Aa

E 1
fy = Py > 1 (3.32)

-2 -y '( )
and A2 pov = A1 po 3.33‘

Furthermore the actual total pulse size P%ot is

pmct-x

P;°t= f pzipldp [vs] = (3.28a)

pmin
The relative error in the measured total pulse size,

(Peot = Prot)/Phot _
tion is carried out in Appendlx 2. The result is shown in

can now be calculated. This calcula-

fig. 3.12, where the relative error in P is plotted as

tot
a function of_2— ay for different values of A a and

pm1n
value of Aa (x~0.1) and a value of fp between 10

The curves of fig. 3.12 show that already a small

2 and 10°
can result in large errors in Ptot’ particularly if a,
has a value of about 2. An error of 0.1 in the determi-
nation ofay is quite reasonable (fig. 3.9). The value of
10° for fp is in agreement with the estimation of
Stierstadt [3.5] as already discussed in sec. 3.4. In

T Pt’o(_ Piot curve | Aa P,,:,;n
S ] - —=-] 0 [10%/0
RS S ——|005]10"%/70
SR S T 005 [102/10
L S ====101 [10"%70
".-06‘:\‘\ .. =--—=102 [10%/10
8N ‘\"~\
N N S~ ..\
041NN Say “~..
.\. .'.\..8 \\i\ Y
02} \'\. '\\\.:-‘.'-~
~-. ~—a
| L | | R et T S L

-02 -01 0 01 02 03 04 05 06 07
2-aj+Aa=2-0¢y —»

Flg 3.12. Relative error in Py,: the curves are calculated using eq (A2.6) for fo= 103 and
= 10~8¥i0.
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—
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Fig. 3.13. Relative error in Py for Aa= 0.1, p'min = 10714 V10, f, = 103 and
po = 1078V10’ (dashed curve) and measured values (x) of (Pdc—Piot /(Pwtle for all
" our samples. . : . .

fig. 3.13 we have plotted the calculated curve of

1 [ _ _ 3 . )
(Ptot - Ptot)/Ptot for Aa= 0.1 and f? = 10-, just-as the
P /(P

measured values of (Ptot)c - Peot tot)c'
figure we can conclude that the low values of P

From this
tot Some-
times measured can be accounted for very well by a small
error in the experimentally determined value of a1 and

by the fact that a large number of the pulses has p values
below the detection limit of the equipment. The systematic
errors are thus responsible for the low values of P,CO

t
sometimes measured.

3.6. THE FREQUENCY-DENSITY FUNCTION OF g

The measured frequency-density flunction z( rB) of the
pulse duration Tg can be approximated very well by '
(fig. 3.9) '

b [T\ %
1 (r‘ > (TB,dei)min < tB < (tB)o
B
zltg) = , (3.34)
T ) ’
D2 (%) (TB)O < = (IB)mox
B
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X

where Tp = 1s. Dy, D,, 6, and &, are constants. The value

1 TR
of D1 is of the order of magnitude of 10 4 S 1 for the
different samples. The values of 61 range between 1.55 and

2,40 (fig. 3.14) while for 52 we find

52 > 2 51

The range of measured values of g is two decades,
that of p is three to four decades, and furthermore in
general 6, >a4. As a consequencé the slope 6; determined
from the traced curve through the measured points will
exhibit-a larger inaccuracy than the slope ay of the
curve of z(p). For the same reason the inaccuracy caused

T =T T T T
25| i
6,
23 8 o , + b
+ t +
8 +
21 — . + + -
+ LX) + +
¥ +
19} + .
+ +
bee,
17F + % ot i
+
%
15} .
4;y ! ! ! | I
500 1000 1500 2000 2500

dm [}-] E—

Fig. 3.14. Measured value of §4 as a function of the film thickness; samples with very smali
values of Py, are indicated by &.

by the systematic error is larger in 51 than in aq- The
same discussion as in sec. 3.5 on z(p) can now be applied
to the accuracy of the measured density functions of tB.
For the parameter p it was possible to estimate the error
of the measured frequency density z(p) by comparing re-
sults deduced from the measured function z(p) with other
experimental results. In the cése of TB no comparison
with experimental results can be made.

The sum of the pulse durations per hysteresis loop
is denoted by TB: '
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T, - %.IB‘J.Z(TBJ) Ay, [s] (3.35)

In the presented examples we find for Tg the following

values:
"sample B197.3 Ty = 1072 s
sample B289,34 T, = 1072 s

3.7. THE FREQUENCY—DENSITY FUNCTION OF 6

In our measurements we also investigated z(p,8) and
z( TB,G). No relation between p and 8 or between T and ©
was observed as can be seen in table 3.4, So we can con-
sider © to be.indepéndent of p and Tp. That 6, p and Tp
does not depend on p and TR does not imply that the pulses
occur independently of each other. If the occurrance of
pulses were independent one should find for z(6) [3.7]

2(0) « _1 expl-6/6,) (3.36)
eO
The density function of © is measured in our films and
can be approximated by (see fig. 3.9)
16) = B (6/6%)7 e >6_. (3.37)

min

B and f are constants and 6* = 1s. The measured value of
B is of the order of 1s ' for all samples. For the dif-
ferent samples the measured values of B range between
0.7 and 1.6 (fig. 3.15).

In chapter 5 the wall jumping process is extensively
described. Here we are anticipating the results that will
be deduced there. We shall shortly indicate the parameters

on which p, T, and 8 depend.

(a) The pulseBsize p: The pulse size p; of the i-th jump
a.i at the i-th wall

jump and on TB,i (see egs. (5.2ﬂ), (5,64b) and (5.73)).
The driving field H

given by (see eq. (5?16)).

depends on the driving field H

a.i is discussed in sec. 5.3 and
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TABLE 3.4a: z{p, 0) of the sampie B197.2

8 [422 [750 [ 133 [237 422 |7260 [133 | 237 |422 |750 |1.33_[237 [422 [750 [133_[237_ [422_|7%0

P x10°® | x10"® | %1075 | 1075 [ x1075 [ x10°8 [ w1074 [ %1074 | x107% | %10 | x10°3 [ %1073 | x10°3 | x10°3 [ %102 | x10°7 [ x10°2 | x1077
2588 2.00 0.10
PRL x10™

676 1108|828 | 640 |2.72 | 203 |1.06 |6.25 |395 |267 |216 |128 [7.88 [333 |135 [621 [188 |442 |355 |381
x10"" ' x10'7 | x10' { x10'® | x10% | %108 | 10" | x10'® | 4108 | x10'5 | x10%8 | x10%® | x10™ | x10™ | x10™ | x10" | x10™ | x10'2 | x10™

116 362 |331 (235 (138 780 (494 |264 (188 | 135 | 767 (64D (335 (135 | 456 |148 [3.14 (B85 |650 |304
%107 198 x10'® | x10% | x10' | x10' | x10'5 | x10'® | x10'S | x10'® x10" | x10% [ x30™ | x10% | x10"3 | %10'3 | x10'2 | x30"! | x10'}

229 136 | 149 | 833 648 |320 208 |108 [7.28 117 |49 [170 [327 (62 |17 |666 |z32
%107 "9 %106 | x10'® | x10'6 | x10%6 | x10' [ x10'® | x10'6 | x10™ 10M | x10M [x10™ | x10% | x101 [ 10" [ x101" [ x10" | x10%

456 657 461 | 280 |216 | 128 |6.67 |380 |248 |1.68 (878 | 671 |365 | 164|334 |760 |461 |1.26 0 |18
%1071 x10'6 | x10'6 | x10'5 | x10' | x10'S | x10™ | x10™ | x10' | x10' | 107 | x10' | x10™ | x10* | x10'2 | x10"" | x10% [ %10 | x10°

811 F127 142|130 |689 |481 |228 [1.18 |7.90 |621 (341 [1.82_ |1.17_ | 393 |6.05 |120 93
x107190x10%8 | x10' | x10'6 | x10™ | x10™ | x10™ [ x10M | x10'3 | x10™3 | x10" | x10" | x10M | x10'2 | x10'! | x10!!

182|821 |B63 |462 |243 | 1.68 | 695 3@l |221 |168 |1.12 |7.03 |294 | 784 | 214 |1.00 59
x1079 [x10™ | x10™ | x10™ | x10™ | x10™ | x10" | x10"3 | x10"3 | x10" | x10'3 | x10'2 | x10'2 | x10"! | x10'" | x10'®

362 |239 |28 (171 [8E1 |89 |241 |21 (879 |668 (420 | 1681|784 | 270 | 3567 42
x1070 [x10™ | x10™ | x10™ | 10" | x10* | x10™ | x10'3 | x10"? | x10'2 | x10"2 | x10'2 | x10'* | x10" | x10'°

724 (718 [872 629 (384 223 [143 [5.28_ | 341 181 | 103|706 (327 | 112 | 898 29
x10°% 1x10" | x10"3 | x10'2 | x10™ | x10™ | x10'3 | x10'2 | 102 | x10'2 | x10"2 | x10"" | x10'! | x10" | x10°

144 400 [224 [240 [1.71_ | 480|337 |240 |7.84 (679 |3.94 |152 |570 | 120 |224 17
%1078 1x10'2 | x10% | x10"2 | x10%3 | x10'2 | x30"2 | x10" | x10"" | x10"" [ x10"! | x10" | x10'0 | x10'0 | x10°

283 [600_ (676|633 [303 | 240 (900 |507 |07 |340 [135 |950 |3.67 | 1.00 12
21079 Fx10'? | %102 | x10'2 [ x10'2 [ x10'2 | x10"! | x10"! | x10"" | x30" | x10"! | X300 | x30'0 | x10'0

5.75 564 635 356 |4.02 |635 (8985 (300 [1.13 (636 [1.25 30
x10°8 xioht x10" | x10%? | x10" | %100 | x10% | 110" | x10'¢ | x10? | x10'®

1.15 . 2.83 0.0
x1077 x10°

Ny | |s8 | 72 |a ® |m  |ee 12 128 [144 [148 [10s e |32 6 |89 |92 ~ 1321

TABLE 2.4b: z{rg, 6) of the sample B197.3

0 ||422 | 750 (133 1237 |422 [760 |13 |237 |42z (760 [133 [237 [a22 750 [130 [23 [a22 [ 750 [ Ntrg)
p x10°6 | x107® | 1078 | w1075 5 x10°8 | 01075 | 21074 | x1074 | x1074 | 21074 | %1073 | X107 | %1077 | x107? | 31072 | x10°2 | x10°2 | x10°2
237 1605 (436 (283 155 |1.07 (B81 (334 1222 (188 [ 105 (697 [410 | 171 |B28 | 232 |720 |1.70 | 1.35 | 673
x1078 | x10'2 | ¥102 | x30'2 | x10'2 | x10"2 | x10"" [x10'" | x10'" | x10" | x10" | ¥10"0 | x10% [ x10% | x10® | x10® x108 ‘xﬂ?‘ |Ix10% | x30®
422 11908 05 [642 |474 [208 [143 |[72.31 [620 329 | 219 | 143 |822 |248 |1.18 | 2581 |41 743 | 242
x10°8 [ x107" | x10" | x10'! | x10% [ %1017 | x10" | %10' | x10™ | 410° | x10!0 | 10" | x10 { x10P | x10° | x308 | x107 ‘1107 x108
750 (604 "T428 [291 (175 [192 [7.90 [343 [221 [165 104|685 (342 |152 | 339 |687 |495 |18 |622 | 188
2076|1101 | 10" | x10'" | x10"" | x10'" | x10° | x10' | x10"® | x10"® | x10' | x10% | x10® | x1gP | xic® | x10? | x10B nu" x10°
133 [[230 (167 [145 | 761 [543 |235 [1.27 |752 638 |2373 | 188 | 102 |334 |705 | 625 17
21075 (| x10% | 16" | x10"" [ x10%0 | x10% | x10' | x10'% | x10% | %107 | x10® | 410 | x10% | X100 |07 | P
237 528 [678 492 |230 [173 [743 [601 |219 | 203 892 |666 |z10 |558 | 116 60
21076 |1 %1019 | x10'0 | x10'0 | x10"° | x10" | 2109 | %108 | x10® | x10% | x108 | x108 | 108 | x10? | xi0?
422 (1132 [149 |16 [1.06 [347 [232 [1.31 [440 [428 223 |10 |558 | 182 |2.79 27
x10°5 || x1019 | x10'0 | x10'0 | 100 | x10° x10% | 1P | x108 | x107 | x107 | x108
760 |[188 | 281 |264 |165 |836 139 (470 [a1t [182 |279 12
x10°B || x109 | x10° xwg x10° | x108 x108 | x107 | x107 | x107 | x108
133 2.94 928 | 157 104 (8B | 185 |2 18
x10°4 x108 x107 [ x108 7
Neg: 36 86 [0 |12 |81 12 (128 [144 s [1w05 [eo |32 18 69 [o2 [r=im
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Hai = Moi ™ Heus [anm”] (3.38)
where Hcp,i is the applied field at which the i-th
Wall jumps occurs and Hcl,i is the local coercive
field during the i-th jump.

(b) The pulse duration ty: The pulse duration Ty of the
Barkhausen jumps depends on the wall jumping process:
(b1) For a.pinning dominated process TB,i depends on
the distance that the wall segment, after overcoming
pinning poiht i, traverses in the i-th jump before
this wall(segment) is pinned again (see sec. 5.U4).

(b2) For a stiffness dominated process t depends on

B,i
the length of the moving wall segment 1 i of the
i-th jump (see sec. 5.5.2, eq. (5. 593))

(¢) The time 6: As shown in fig. 3.1 the time Gi'during

and following the i-th pulse is the time interval be-

1 I L F. I
o ®
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I} + ®
13F 1e @ .
+
paf e .
+t 1
ool B g6 3 + y o4
. @ + + + 1
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ey +
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¥
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Fig. 3.15. Slope f of the density function z{0) as a function of d,,,; samples with very small
values of Py, are indicated by ©.
tween the beglnnlng of the i-th pulse and the begin-
ning of the (i+1)-th pulse. After overcoming a pinning
point i (at an applied field H ) only a stronger

cp,i
‘pinning point can pin the wall, thus with H p:> Hcp .
The applied field 1ncreases linearly with time (secf

2. M) thus we can wrlte.
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e. o« H . - H . = AH . (3.39)
1 cp,i+1 cp,i A cp,i
where Hcp,i and Hcp,i+1
applied field at which the i-th, resp., the (i+1)-th
jump begins (seg sec, 5.2.2). When Hcp,max corre-
sponds to the strongest pinning point present in the

represent the values of the

sample and a pinning point i is overcome then the
following pinning point (i+1) is overcome at an
applied field Hcp with

Hep,i < Hep < Hep max (3.40)

Several walls are present in the film during the re-
versal (see sec. 2.2.2) and furthermore mostly only a
part of the wall moves. So different wall segments in
different parts of the film are often responsible for
successive wall jumps. The occurranée of successive
wall jumps determines 8. Hence 8 does not depend on
the parameters of a single jump,.as .is the case for p
and .. | |

Hence from the points (a) to (c¢) we can conclude that Gi

is independent of p; and =T and for z(8) measured in

our films we find an equatigﬁlof the form (3.37), so the
pulses do not occur independent of each other. This is not
surprising because when the reversal goes on the range of
possible 8 values for a following jump decrease as follows
from eqs. (3.39) and (3.40). For the i-th jump

0 <« Gi < Hcgmax - chi (3.41)
where Hcp,i increases with the applied field during the
reversal,

The measurements of z(8) are very inaccurate. Two
effects influence the accuracy: '
(1) The presehce of background noise. The background noise
sometimes exceeds the reference'voltage of the Barkhausen
Computer Interface (éee sec. 2.5). A large time interval
8 is then splitted into a small number of smaller intervals.

The presence of background noise results in an increase of
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B . In our measurements.the influence of the background
noise increases with increasing amplification, hence also
with.increasing level of the reference voltage. Fig. 3.16
shows the measured value of fJ as a function of the ref-
erence voltage.

(2) Jumps with an amplitude lower than the reference volt-
age are not deteéted. These missing jumps cause a shift

1 L 1 1 1 r— 1 1 I
fﬁs— A
1.3 +
t + + * ?/ 1
1k 1 E/f N -
s ,
0.9-;/&/?0 @ | T
+ 3 :
t+

07|

N\
NOT

L | | L 1 | | I |
0 1 2 3 4 5 6 7 x[(004V]
reference voltage —»

Fig. 3.16. Measured slope B as a function of the reference level of the Barkhausen Com-
puter Interface; samples with very small values of Py, are indicated by .

from smaller to larger values of the time interval 6. A
decrease of @ results. The effect of the errors is that
large intervals are divided into smaller ones and that
small intervals are joined together. The results of the
measurements of z(8) anywhere have to be used with great
care.

The sum of the values of 6 per hysteresis lcop is
denoted by @ :

© = 76,208 06, [s] (3 .42)

In the presented examples we find for
sample B197.3 ® =~ 3.4 s
sample B289.34 ® 0.4 s

u
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The frequency-density functions of Ty and 0 (see
fig. 3.9) suggest that sometimes different pulses overlap.
This can easily be estimated for a simplified case by

assuming that the beginning of the pulses occurs at random
points in time. From calculations carried out in appendix 3,
we can conclude that the probability of pulse overlapping

is small enough to be disregarded.
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4. GENERAL BEHAVIOUR OF THE BARKHAUSEN EFFECT.

4,1. INTRODUCTION *

As was discussed in secs. 1.2 and 1.3, a large number
of publications on the Barkhausen effect deal with the be-
haviour along the hysteresis curve of bulk samples. In some
papers suggestiohs have been giveh about a relationship
between certain quantities and the Barkhausen effect: for
example investigations are reported about the relation-
ship between the coercive field and the density function
of the pulse size [ 4.1, 4.2 ], as well as the thickness
dependence of the measured total number of jumps per loop
and of the measured mean pulse size [ 4.3, 4.4 ]. In some
of these invéstigations only a small number of measure-
ments has been performed. In the present chapter measure-
ments of this type are described which are carried out on
thin films., A large number of magnetic films has been
investigated, covering a wider range of values of the
coercive field Hc and film thickness dm than is the case
in most other investigations.

In our measurements a large number (about U40) of hys-
teresis loops was traced. Each reversal was divided into
several sections, all having equal lengths AH. The corre-

-sponding sections of the different reversals were taken

® published in: N.J. Wiegman, R. ter Stege, "Barkhausen effect in
magnette thin films: General behaviour and stationarity along the
-hysteresis loop", Appl. Phys. 16, 1978, p. 167-174.

The notation in this paper ig similar to that usually found in the
literature and differs from the one used in this chapter,
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together and in each section of the reversal, several
quantities of the Barkhausen process were investigated.
Thus, in secs. 4.2 and 4.3, each measuring point repre-
sents a value averaged over all jumps recorded in an in-
terval AH from a number of hysteresis loops. Without
further indication all guantities presented in this chapter
are averages. All results of the measurements were obtained
with the aid of the Barkhausen Computer Interface. [4.5].

The behaviour of the jumps as a function of the ap-
plied magnetic fleld H is presented in sec. b4,2. The re-
sults are similar to those measured on bulk samples [M 4
4b.6] . In all published statistical calculations of the
Barkhausen spectrum [4.7, 4.8 ] the authors assume the
process of domain wall jumping to be stationary. Until now
no experimental confirmation of the stationarity has been
published. In sec. 4,3 our results on thin films are shown
with respect to this stationarity. In sec. 4.4 properties
from the measurements in the time domain and from the fre-
quency-density functions of the pulse parameters are sum-
“marized. The influence of H, and d_ is investigated.

When wall jumps Occur then the demagnetizing field of
the sample varies suddenly. This is also the case for the
driving field which decreases then so that the reversal
process is retarded. This effect is called the blocking
mechanism of the demagnetizing field. In sec. 4.4 we have
investigated whether the blocking mechanism caused by the
demagnetizing field [4.9] is present in our samples.

4.2. THE MAGNETIZING BEHAVIOUR ALONG THE HYSTERESIS LOOP
IN THE EASY DIRECTION

The behaviour of the Barkhausen jumps as a function
of the applied field H was inveetigaﬁed on a number of our
films. During both reversals the magnetization behaviour
shows an identical behaviour, as was to be expected. The
results of the different films resemble each other so
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Fig. 4.1. The behaviour of a film with a thickness of 23804 as a function of the applied
field H: z(H), <m > and AM/AH along the loop; the inset shows the hysteresis loop. The

arrows near the curves correspond with the direction along which the hysteresis loop is
traversed.

closely that we present here only the results obtained .
from two samples

‘In fig. 4.1 (inset) the hysteresis loop (at a-field
frequency. of 50 Hz) has been plotted for a sample of
2380 % thickness. Fig. 4.1 shows z(H), the frequency-
density function of the field H, at which a wall jump -
starts. From eg. (3.6) it follows that

(4.1a)

z{H) = ZIZJ Zk Z(pi'T'B,j Qk

H ) Api AtB,j Aek
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or z(H) = N(H)/ 8H — [A"'m] (4.1b)

in which N(H) is the number of wall jumps which start in
the interval AH around H. Fig. 4.1 shows z(H) during
both reversals of the magnetization. The absolute maxima
of z(H) during a reversal are reached at a field + HM. In
this sample the field HM has a value of about 33 A/m and
differs slightly from Hc’

Hy < H [A/m] : | (4.2)

A difference between HM and HC has also been found by
other authors [ 4.101.
We further have considered z(p,H), the frequency-density
fdnction of p.and H fof one particulaf jump size p as a
function of the field H; this was done with the size as
parameter. For all jump sizeé p we found that z(p,H) as a
function of H has the same shape and. the absolute maxima
of z(p,H) as function of H occur always at iHM° Stierstadt
and Boeckh [4.11] found a dependence between HM and the
Jjump size p in their experiments on harddrawn nickel wires.
In our films we found a simple relation between H and
z(H) in two parts of a reversal. For the beginning of the
reversal and for the last part of the reversal the rela-
tion can be approximated by an equation of the form

z(H) = C, exp{C1(H-H°)} [A-1m] (4.3)

The values of C, and H of the sample are given in table
4,13 C_ is about 1 p~?t
crystallite size and HC on z(H) has been thoroughly stu-
died, especially by Stierstadt et.al. and Deimel et al.
{4.1, 4.4, 4.6, 4.12) . The directional dependence of

z(H) has also been investigated [4.13]. On single crystals

m. The influence of temperature,

of silicon-iron Salanskii et al. [ 4.14] found two maxima.
The same was found by Deimel et al. [ 4.2 ], which they
interpreted as being due to the-presence of 180° and 90°
walls in different parts of the loop.

Fig. 4.1 also shows the mean value of the change of
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Table 4.1

Reversal section of C1 HO
the curve (2" 1m) (a7 tm)
. . -2 C =1
’ —?s/ﬁb ‘ nucleation 5.0x10 -26 H < 33 Am'
to +I/ p appr. to -5.9%x1072 | +85 |H >33 am™!
saturation
+I /B nucleation —‘5.5)(10-2 +21 | H>-3% am~ %
to -1/ pg appr. to 5.8x1o'2' -82 |H<-33 Am 1
saturation

the magnetic moment during the Barkhausen jumps,<m> ,
along the loop (see eq. (3.3)).

<m> = 2lg v, > [Amz] (4.4)
Ho jump
where Is is the saturation polarization and Vjump the

volume reversed in one jump. The minimum detectable value
of m in this measurement is 1.3)(210‘9 Am2, corresponding
to a volume of 8)(10-16 m3. The absolute maxima of<m>

during both reversals are reached at the same fields iHM
as the maxima of z(H). The irregularities in the shape

of the curves are-chused by the motion of wall segments
jumping away from a few very strong pinning centres. This
has been confirmed by Visual observations of the domain
wall motion as function of the applied field using the

magneto-optic Kerr effect.

The third curve in fig. 4.1 represents the quantity
AM/AH = (ZIS/}IO ) AV/ AH as a function of H. V is the
volume of the reversed part of the film. Here again the
maxima occur at. + HM._AS can be seen from the curve of
AM/AH in fig. 4.1 almost the whole reversal of the mag-
‘netization takes place in a field interval of about
40 A/m around t Hy. The jumps which take place in the
other part of the reversal are very small and hardly
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contribute to the total change of the magnetization. This
is true a fortiori for their contribution to the noise

spectrum, which is proportional to Z pi2 (see eq. (6.12)).
i

Let us consider the steep part of the hysteresis loop
where,.in this particular sample, about five walls partici-
pate in the reversal process., These walls cross the film
nearly from one side to the other, If a wall is pinned by
a very strong pinning point, no large jumps of this wall
can occur, Small sections of the wall corresponding to
small jumps can still move (see sec. 1.4)., The number of
large wall jumps is low compared to that of small jumps,
vso in the curve of z(H) against H the presence or absence
of large wall jumps cannot be detected. In the steep part
of the loop the contribution to<m>of large wall jumps
is large. Hence, the influence of large wall pinning cen-
tra can, in our type of samples, only be detected in the
curves of<<nn$ (sometimes a small effect is seen in the
curves of AM/ AH). The irregularities in the shape of
these curves are due to this effect. The behaviour along
the loop for different films varies only with regard to
the position and size of the irregularities in the shape
of the curves of<m>and AM/AH. Sometimes even two _
maxima in the curves of <m> are observed [ 4.15] (fig.4.2).

Two maxima in the curves of z(H) were found by Deimel
et al. [4.2]. They attributed those to the presence of 90°
walls in their wire-shaped samples. An experimental con-
firmation of the presence of 180° and 90o walls in’their
samples was not mentioned.

- Most types of magnetic samples show at the beginning of

the reversal process usually a rotation of the magnetiza-
tion which is followed by nucleation of domaiﬁ walls. The
process of domalin wall motion is responsible for the lar-
gest part of the reversal. The last part of the revérsal is
éompleted by rotation again. In the section of the loop
where the domain wall displacement takes place often small
closure- domains (with 90O walls) are present. Their con-
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Fig. 4.2. The behaviour of a film with a thickness of 17904 as a function of the applied
field H: z(H), <m > and AM/AH along the loop; the inset shows the hysteresis loop.

tribution to the remagnetization process, i.e. toAM/AH
is small, but they contribute largely to z(H) in those
regions where they are nucleated and disappear. This can
lead to maxima in the curve of z(H) for the values of H
where the nucleation and disappearance of walls takes
place. In our samples hardly any 90°-walls are present;
yvet in a few cases two maxima occur in the curves of <m>
and AM/ AH, as was previously mentioned. This must be due
to the presence of strong pinning centres.
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4,3, THE STATISTICS OF THE BARKHAUSEN EFFECT ALONG THE
"EASY" HYSTERESIS LOOP

The curves of <m> against H (sec. 4.2) show the
Barkhausen process to be not a stationary process. How-
ever, in all publications deéling with statistical calcu-
lations of the Barkhausen spectrum [4.7, 4.8] the authors
assume that the process of domain wall jumping ié station-
ary: this means that the probability density functions of
the parameters of the Barkhausen proceés do not vary along
the hysteresis loop. This assumption largely simplifies
the calculations. Here we shall investigate as to how
far the actual behaviour deviates from ﬁhis assumption
[4.15, 4.16] .

For this investigation the reversal time is divided
into intervals of constant length of 0.1s, whereas in the
steepest part'of the loop the intervals are 0.05s. These
time intervals corresponds to field intervals AH of
11.2 Am"1 and 5.6 Am_l, respectively. We measured in the
intervals the frequency-density functions z(H), z(p,H)
and z( tg,H)..

In sec. 4.2 it was shown that N(H), the number of
pulses per field interval AH around H which is given by

N{H) = z(H) AH (4.5)

varies greatly as a function of H. This is a characteris-
tic property of the magnetization process of a ferromag-
netic sample [4.4] . Eq. (4.5) can be written as

N(H) AHiZz(pi,H)Api (4.6a)

'or - N(Hf

A H % z (15 H) D Tg (4.6b)

The frequency-density functions z(p,H) and z(tB,H) also
vafy very much 1f they are plotted as a function of p,

respectively of T, with H as parameter. To, show clearly

B
how the probability of large wall jumps changes during

the reversal as compared to the probability of small
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jumps we have determined the conditional probability-

density functions pr(pr) and pr(IBIH) as:

-1 .
priptH) = Z(p.H) [vi's7] (4.7)
z(H)

) z2{Tq.H) -1 :
and pr(I IH) = __B___ [5 ] 4,

B z(H) ' (4.8)

In eqs. (4.7) and (4.8) z(p,H), z(tB,H)'and z(H) are meas-

ured Qquantities. We have plotted pr(p!/H) and pr(IBIH) in
fig. 4.3 with H as parameter for the different intervals

into which the reversal is divided. In each interval,

10"
H{A/m)'| N(H)
+ ] -392] 60
»| 168 | 168
« | +56 | 483
1010 - \\\; o | 4280 [159.4
x +50.4 73.5
priptH) | x « | 28 | 224
[VS]-1 x g v [ +952 6.4
109 ;\} AH =12 A/m
] \
10° ro
107 b
10° |
10° |
B 197.3
He =444 Alm
H.= 576 Alm
L dn= 2380 A
10 " | S 1 Il I
10" 10 10° 10° 107

plVs] —

Fig. 4.3.(a) The probability density pr{pIH) during the comblete ‘reversal with H as
parameter. The broken lines show some curves for p > pq (p* = 1Vs).
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Fig: 4.3.(b) The probability density prirglH) during the complete reversal with H as
parameter. The broken lines show some curves for 7g > (rglg (1" = 1s).

hence at each value of the parameter H: the curve fitted

to the measured points of pr(plH) and pr(tBIH) is a func-

tion of p and Tgys respectively. For each H value the

measured points follow a curve, which can be described

by equations similar to those used in secs. 3.5 and 3.6

(egqs. (3.24) and (3.34)):

-
A (JL) ™
1H p'
priplH]} =

-
2H
()

p-
2H <—p‘
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for the pulse size p(with px=1Vs) and

-6
ST H
D1H (—?) (tB)min < Tgp < (tB)o

B
priTglH )= (4.10)

O,

g 2H

DZH ('E. ) : (tB)o < tB'< (T'B)max
B

for the pulse time Tg (with IBX=1 s); The solid lines in
fig. 4.3 fit very well to the points measured in the in-
tervals of the steepest part of the hysteresis loop. In
these intervals N(H) has the largest value and thus the
measuring'error is minimal here. From the figures it
follows that for all curves of a single sample we find
about the same values of Gt y, oy, 51H’ 52H’ Ay and
DlH' The values of po-and ( IB)O vary by. about a few
orders of magnitude during the reversal, as shown in
fig. 4.3. In the sample of 2380 & thickness we find about
the following values for the constants:

=- —6 —6
A1H 2x10 D1H ¥ S5x10
Ay ® 1-5 61H = 1.9 (4.11)
aZH 2 3.5 62H > 6.5

The slopes of the functions pr(plH) for p < poand
pr(tBIH) for IB<:(IB)O are smaller by 0.1-0.3 than those
of z(p) and z(tB) of the same sample (see fig. 3.9). This
can be understood from fig. 4.3 if one realizes how z(p)
and Z(TB) follow from pr(piH) and pr(tBlH), respectively.
Using egs. (4.7) and (4.8) one finds-

z(p) = ‘lgz(p,Hl)AHl

z(p) = TZ.pr(le!) z(Hl)A-Hl

z{p) = :Zpr(lel) N(H, ) (4.12)
‘and ' z2(1g) = lZpr(‘EBIHl) N(Hl’. (4.13)
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Summarizing one can say that the probability-density
functions pr(plH) and pr( tBlH) are dependent on the
applied field, i.e. on the relative position of H in the
hystereéis curve. Thus they vary during the reversal of
the magnetization. The statistical behaviour is identical
in each interval of a pair that lies symmetrical around
Hc‘ At the beginning and the end of the reversal process
the statistical behaviour differs from that around H,.
Accordingly, if we consider the_totél reversal the Bark-
hausen effect cannot be regarded as a stationary process.

As already indicated in sec. 4.2 the reversal takes
place almost completely (:>90%) within a field interval
around HM’ corresponding to the steep part of the hyster-
esis curve. In this part of the reversal the suscepti-
bility AM/AH is almost constant (see fig. M.i). To inves-
tigate the stationary behaviour of the signal we must
therefore confine ourselves to this region. The functions
pr{(plH) and pr(tBlH) are examined again for this part of
the reversal. For the steep part of the hysteresis loop,
pr(plH) and pr(tBlH) are plottéd in fig. 4.4 with H as
parameter. For all intervals in which the steep part of the
loop is divided the curves through the measured points of
fig. 4.4 can be described by the same equations as used in
fig. 4.3:

_6 -1.5
priplH) = 2x 10 (J%) Pmin < P < P, (4.14)
p ‘ :
and
(t_I -6 T\ (4.15)
pritgiHl= 5x10 ('c") (tB)min< Ty < (Tp), .15
B

From fig. 4.4 it follows that the probability of a jump
of a certain size or duration is donstant during the steep
part of the hysteresis loop. Coﬁsequently we may conclude
that in the steep part of the loop, i.e. for almost con-
stant value of AM/ AH, the Barkhausen noise signal is
stationary. Only the detected number of jumps varies some-
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thing along the steep part of the loop (fig. 4.4). In chap-
ter 6 this important property of the Barkhausen noise in

thin magnetic films is used in our calculations.

Combining fig. 4.3, which shows the entire reversal with
fig. 4.4 where only thg‘steep part of the hysteresis curve
is consideréd, we observe a strongly decreasing probability
of the occurrence of large wall jumps at the beginning and
the end of the reversal where the values of AM/AH substan-
tially varies (see fig. 4,1). In our sample the region of
constant value of AM/ AH covers nearly the whole reversal

10"
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+ 1 +14,0 39
" +196 64
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::ig. 4.14\.,(a)) The probability density function pripiH} during ‘the steep part of the loop
P = sl.
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Figi 4.4.(b) The probability density function pr{rg|H) during the steep part of the loop
(rg = 1s).

(>90%). In most bulk samples, however, the section of the
hysteresis loop with an almost constant susceptibility
covers only a small part of the magnetization reversal

. by domain wall motion. In those samples the condition of

a stationary statistical Barkhausen process is therefore
not expected to be fulfilled completely.
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4,4, THE BEHAVIOUR OF THE WALL JUMPS PER REVERSAL OF THE

MAGNETIZATION

Several authors [4.2, 4.3, 4.12] have investigated

the influence of He and dm (in thin films) on the detected

mean pulse size,<p> s .or the measured total number of
pulses per loop, Ntot' The measured mean pulse size per
loop, as a function of the film thickness d is shown in

fig. ll.5(a). In fig. 4.5(b)< p>is shown as a function of
H,. From fig. 4.5 a slight dependence of <p>on the thick-

c
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Fig. 4.6. The detected mean pulse size, < p >, as a function of d,,, (a) and He (b).
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ness and on HC seems to be present in our films. This
agrees with some decrease of the total number of detected
_pulses. per loop with deqreasihg’dm and Hé (seg fig; 4.6).
As explained in sec. 3.2, the density functions are un-
known for small values of p énd Tge It is not possible to
determine the actual total number of pulses per loop and
the actual value of the mean pulse size per loop [4.17].
Only the pulses.with P énd L3 values that lielwithin the
measuring range are considered in the measurements of < p>
and Ni .. The minimum detectable level varies for the dif-
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ferent samples and so does the inaccuracy in< p>and Ntot
(compare sec. 3.5). Therefore it is difficult to draw con-
clusions from our measurements shown in figs. 4.5 and 4.6,
because they show scarcely any indication about a rela-
tionship between<p>or Neoy and dp and H, in our samples.
In similar investigations by different authors the ranges
of p and g values, which can be detected, vary as well as
the measured frequency-density functions of these quanti-
ties. For the different types of samples investigated, the
ranges of p and g values vary also from sample to sample.
Hence one must be very careful.in comparing the experimen-
tal results of measurements concerning< p> and Ntot of
different authors [ 4.3, 4.16, 4.18, 4.19 | . An improvement
in the measuring procedure of a variation of the number of
pulses with Hc and dm is to plot the number of pulses of a
certain size as a function of H and d ., as was done by
Parzefall and Stierstadt [4.1] . Fig. 4.6 shows a plot of
z(p) for p=10_9Vs and N ..
the total number of pulses and z(p) per loop are indepen-
dent of Hc and dm.

In their investigation of polycrystalline nickel wires

Parzefall and Stierstadt [ 4.1 ] found that the density func-
5

We infer from that figure that

tion z(u m) for Hpom = 5)(10_1 Vsm depends on H_, i.e. a
decrease for z(p) with increasing Hd' In the contrary to .
this Deimel et al. [4.2] found an increase in the total
number. of jumps per reversal with increasing Hc in anneal-
ed polycrystalline . iron wires. The temperature treatment
of the samples was different. Deimel et al., observed in
their limited measuring range an increase in the number of
jumps of "all" sizes with increasing Hc. This may be at-
tributed to the limited measmring range. Another cause can
be the variation of the reversible part of the magnetiza-
tion in their different measurements.

The quantity < p> is normalized to thickness of
-1000 R; thus proportional to the jump area Ajump' Hence
the figs. 4.5 and 4.6 show that the area reversed by a

jump is independent of dm, while m, which is proportional
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to d_ (eq. (3.3)), increases with film thicness. The lat-
ter result agrees with the experimental result found by
Salanskii et al. [M.}] . Any information about a possible
transition to the single domain state of a thin mag-
netic film must follow from an extrapolation to zero p of
the curve of <« p>versus dm, instead of an extrapolation
of the curve of m against d_, as was done by Salanskii.
In our experiments down to 420 B we found no indication
of any transition to the single domain state. This agrees
with Middelhoeks observations on very thin films of Ni-Fe
(@, > 100 R) [4.20].

The very small number of jumps (of the order of 100)
detected in some films is due to difficulties in the do-
main growth from the spikes. When the domain growth starts
the jumps at the beginning of the reversal process will be -
very large (see sec., 2.2.2). The total region which must
be reversed iS constant, so that the total number of jumps
will be appreciably reduced.

Fig. 4.7a shows the total number of detected jumps,

Ntdt’ as a function of the exponent «, of the density

1
function z(p). In fig. 4.7b some samples of the same films
are considered. No relation between Ntot and a, can be

detected. The same holds for z(p) for p=10""Vs and «,. Ac-

cording to Bleil et al. [4.9] ay is dependent on the count-
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Fig. 4.7. Ny as a function of the exponent a, of z{p}: {a) for all our measured films;
{b) for five films of different thicknesses.

ing rate of the jumps; the blocking mechanism of the de-
magnetizing field [4.21] generates this effect. In our
films the demagnetizing factor is negligible and so oy
must be independent of the counting rate and the frequency
of the driving field. This is confirmed by the curve of
a, against fFIELD in fig.lu.8. The biocking mechanism is
indeed absent in our samples, in accordance with the in-
fluence of the demagnetizing field calculated in sec. 2.2.
The influence of the field frequency on the Barkhausen
effect is observed in the density functions and the noise
spectrum [4.22] (see sec. 1.2(b)). Fig. 4.8 shows the in-
fluence on a, and &, (of z(p) and z( tB) respectively)
and on the exponent % R whlch describes the relation be-
tween p and Tp (see sec. 3 4), These measurements are
performed w1th a digital equipment [4.5] . By the method
of noise elimination (see sec. 2.5) used in this equip—
ment, the influence of fFIELD can be measured to much
lower frequencies than in the analog measurements of the
noise spectrum {(curve of n against f o TELD in fig. 4.8,
where n is the slope of the noise spectrum, see eq.(1.4)).
Fig, 4,8 shows that a value of ferpIp S 5)(10_2 Hz is low
enough to glve reliable measurements. The high mobility
of the domain walls in the films enables such a high

field frequency to be used in the experiments.
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4.5 CONCLUSIONS

In this chapter we have examined the behaviour of the
Barkhausen effect in thln NiFe films. The behaviour of the
Barkhausen effect in our samples is in general the ‘same as
found by others in bulk samples. However iﬁ the films the

reversal of the magnetization takes pléce entirely by do-
"main wall motion. The time domain analysis has been used
to investigate for the first time the stationarity of the
noise signal along the loop. In_previous calculations a
statistically stationary behaviour has always been assumed.
Our results indicate that this 1s only correcﬁ if the sus-
ceptibility has about a constant value in the_region con-

sidered. In our samples the measured quantities?:p:>and.
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Ntot show no dependence.on H and d . The actual values

of the mean pulse size and the total number of pulses per
reversal cannot be determined. No dependence is found be-
tween the surface aréa reversed by a wall jump and dm. The
density functions do not change when the driving field fre-
quency is varied, which agrees with the absence of demag-
netizing effects. The high mobility of the domain walls

in the films enables field frequen01es up to 5x10 2Hz

(dH/dt = 112 A/sm) to be used in the experlments.
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5. THE RELATION BETWEEN THE PULSE SIZE AND THE -
PULSE DURATION.

5.1. INTRODUCTION

The reversal of the magnetization in our films has
been investigated and,déscribed at length by Middelhoek
[5;1-5.6] . A brief review has been given in sec. 2.2.

Magnetic hystereéis and the.Barkhaﬁsen effect are
attributed tg random perturbations of the properties of
the magnetic material.'The character of the perturbations
is usually not khown. The perturbations can be regarded
either as varying more or léss smoothly across the material
or as highly localized variations in the properties of the
sample. In the latter case the disturbances are called
"pinning centres" or "defects". Most experimental results
can be interpreted equally well from either point of view
[5.7, 5,8].. In sec. 1.1 the character of the Barkhausen
process has been éxplained using a potential energy model
which is a smoothiy varying function of the wall position.
In this chapter (see also fig. 1.4) we shall use the model
in which the perturbations take the form of highiy local~
ized pinning centres.

A model for the Barkhausen effect with which one can
deduce the measured relationship between the pulse size p
and the pulse duration Th (see sec. 3.4) has as yet not
begn published. The subject is very difficult because of
the poor knowledge available on the interaction between
domain walls and inclusions. In this chapter, in the secs.

5.2.2. to 5.4, we will make an attempt to present in simple
terms a description of the Barkhausen effect which en-
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ables us to outline the relationship between'p and Ty in
the secs. 5.4 to 5.7. This relation has the functional
form pw(rB) o« rg . v

In sec. 5.2 we discuss a wall jumping process governed
by wall pinning. Thz length of a wall segment between two
pinning points can easily be derived in this case. In sec.
5.3 some general comments are made on the relation between
p and Tge Iﬁ sec, 3.4 the measured two-dimensional fre—
quency—density functions of p and TB.have been discussed.
In secs. 5.4 to 5.7 three wall jumping models are present
ed for which we can derive the values of % . In sec. 5.7
the results of the calculations are compared with the meas-
ured relations. The results of the theory agree with the

experimental findings.

5.2. DOMAIN WALL PINNING PROCESS

In this chapter we will use the term inclusions for
all localized disturbances that 1nteract with the wall. A
localized disturbance that actually pins a wall is called
a pinning point.

In the first subsection 5.2.1 we will start with a
simple description of the inclusions that play a part in
the Barkhausen effect. Then, in sec. 5.2.2., we will dis-
cuss the wall jumping process and some assumptions which
enable us to derive (sec. 5.2.3) the distance d between two
pinning points.

5.2.1. The types of inclusion

Considering the interaction between an inclusion and
a domain wall, the inclusions can be divided into three
groups [5.9]
(a) Inclusions‘having dimensions that are much smaller
than the domain wall width 6 . These-inclusions can
not pin the wall. The wall passes them reversibly.
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(o)

(c)

Inclusions with dimensions much larger than the. domain
wall width. They are passed via an interaction of the
wall with the Secondary magnetic domain structure sur-
rounding the inclusions (see fig. 5.1) [5.10] . When
the wall comes within the acquisition distance of the

t AL
Q] étl
tN :

Fig. 5.1. General form of the secondary domain structure arising from the interaction
between a domain wall and an inctusion.

inclusion; the wall attaches itself to the pinning
point, and at a certain value of the increasing applied
field the wall snaps free from the Néel spikes. This
can readily occur for cross-tie walls (see fig. 2.7),
because these walls can adjust their structure [5.10]
by the'displacement of the cross-ties over some dis-
tance in the wall. In this way the energy of the wall
structure sﬁrrounding the pinning point caﬁ be mini-
mized.

Inclusions with dimensions of the same order of mag-
nitude as the domain wall width. Only these inclusions
can directly pin the wall. As calculated by Middelhoek
[5.3], the domain wall width 6w in our samples is of
the order of 400 R.

In the Barkhausen process only those inclusions are import-

ant that 1impede the domain wail.motion, resulting in wall

jumps. Hence we neglect the inclusions of type (a) in the

following sections of this chapter.
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5.2.2. The wall jumping process

In ail our experiments a sample is placed in a magnetic
field which increases linearly in time and under these con-
ditions we measure the Barkhausen effect which occurs during
a reversal of the magnetization. In this experiment we de-
fine the strength Hp of an inclusion or pinniqg point as the
field Hcp necessary to start the movement of the wall pinned
¢,min at which the do-
main wall motion in the film begins (see sec. 2.2.2.):.

by the disturbance minus the field H

Hp = Hcp' - He min [Am"] (5.1)

We use this definition for all samples except the few mac-
roscopically inhomogeneous samples (sec. 2.2.2).
After the wall has overcome a pinning point i with

strength.Hp ; any following point j which can pin the wall
>
will satisfy ‘

HRJ*> Hpj and hence chj > Hcpj (5.2)

At a value H of the applied field with

H = Hepi ‘ (5.3)

all inclusions of strength Hp for which: .

Hp < Hpj andhence H < Hep.i (5.4)

cannot pin the wall any more. As mentioned in sec. 2.2.2

H varies between H and H

cp ¢,min ¢c,max’

In general the wall does not move as a whole but only

a part of the wall is displaced as shown in fig. 1.4, An

area of the film which has not yet been reversed, can be

remagnetized in two ways:

(é) The area can be reversed by the motion of each of the
two adjacent walls (fig. 5.2a). The strongest pinned
wall will make the smallest contribution to the re-
magnetizafion of this part of the film.

.(b) Another possibility is the growth of a new domain in
the nén-reversed area from a spike at one of the edges
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Fig.5.2. The remagnetization behaviour after the reversal of most of the film: {a) by
motion of the adjacent walls, {b) by new domain growth from a spike domain at the edge
of the film.

of the film (fig. 5.2b).
Both these cases were observed during the reversal.

Baldwin et al. [5.11] found in toroids of perminvar
and in cores of 50-50 Ni-Fe that weak inclusions are very _
numerous, whereas very strong inclusions are scarcely pre-
sent. We assume that his results also hold for our thin
films. Therefore at first sight one might think that the
number of weak pinning points far exceeds the number of
strong pinning points. However, this is not true as we
will explain below. o

Ir thg applied field exceeds Hc,min
_are present at the edges of the film (see sec. 2.2.2).

very small spikes

Since our films with a surface area of 1 cm2 had been cut’
from large 25 cm2 slices, the film edges are disturbed re-
gions so that most of the spikes are strongiy pinned. Let
us assume for example thét one spike grows if the value H
c,min’ In this‘case in-
clusions of nearly all values of Hp can pin the wall. By

of the applied field just exceeds H
the first inclusion with HCp > H, that is encouhtered, one
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wall of the spike is pinned. The growth of the spike con-
tinuous (fig. 5.3) until also the second wall of the spike
is pinned at H2. These pinning points are characterized
cp,?2
> H If the applied field increases then the

Hcp,l cp,2° .

spike begins to grow again at H3 = Hcp o A1l other inclu-
>

> cannot pin the wall any

by HCp 1 and H respectively, which satisfy for example
A >

sions in the film with Hcpsg Hcp,

more. Thus only one of the inclusions with Hcps; Hcp,2

pinned a wall. Now if the spike is pinned by an inclusion
Hcp,3 with H

has

p,3 > Hcp,l’ the spike growth stops for the

(a) v (b}
| |V

el l\y 7 {d) IXQ/

Fig. 5.3. The growth and pinning of a spike domain.

—» T

second time (at HM) and starts again at an applied field
H5 = Hcp,l’ etc. We thus see that in spite of the enormous
number of weak inclusions only a very small fraction of
them can indeed pin a wall.

In the last part of the reversal the situation is as
follows. The strong inclusions, which can pin the wall in
this part of the reversal lie in the non reversed domains
in the films. There number is small. The total wall length
also decreases substantialiy (sec. 2.2.2) in this part of
the reversal. Therefore the walls are pinned by most of
these inclusions.

Usually a few spikes grow simultaneously. The total
wall length in the film increases rapidly at the beginning
of the reversal. The wall length is nearly constant during
the sﬁeep part of thé hysteresis loop:(HRBssziHRE, see
fig. 2.5) and then, at the end of the reversal it decreases
~sharply to zero as discussed in sec. 2.2.2. Let us first
~consider the case that the film is reversed by one rigid
domain wall which is pinned by one pinhing point.. If at
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a field H the wall Jumps and is pinned again by a pinning
point H i w1th H >>-H-a then none of the other inclu-

Cp,1 cp,i .
sions with Ha-< H . < H . can pin the wall at follow-

) ] CP,J cp,i )
ing Jumps. If, however, different walls are present in
the film, then a number of the inclusions which satisfy
Hy < Hcp,j < Hcp,i can stilllpin domain walls. Therefore
in the central part of the reversal of our samples the
number of pinning points per constant field interval AH
which were passed by all walls together is larger than
for a single domain wall. It is possible that two differ-
ent wall segments can be pinned by pinning points with
the same Hcp values; so.two wall jumps can occur at the
same value of the applied field. However, this occurs

scarcely (see sec. 3.7).

We have presented above a description of the wall
pinning proéess. For the wall jumps with a size and dura-
tion that can be measured by our Barkhausen Computer In-
terface (sec. 2.5), the freguency-density function of Hcp
can be measured. The reversal is divided into field inter-
vals AH of constant length. The number of Barkhausen
jumps measured in a field interval equals the number of
pinning points which are overcome in this interval. By
measuring this throughodt the entire reversal we can find
the frequency—density function of the values of Hc of the
pinning points. In chapter U4 [5.12] we presented results
of ‘an investigation of the features of the Barkhausen ef-
fect along the hysteresis loop. In sec. 4,2, in figs. b1
and 4.2 we have also plotted results of this type of meas-
urement. The curves of z(H) in these figures present in
principle the distribution of Hcp values of two samples
throughout the entire reversal. At the beginning the
values of z(H) increase.and at the end of the reversal.
they decrease rapidly with increasing field H. Fig. 5.4
shows that in the steep part of the loop (HRBz; H < Hpg,
fig. 2.5) z(H) Varies only by a factor of about 2. Almost
the whole reversal of the magnetlzatlon takes place in the

steep part of the loop Thus in first order approximation
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we can take the values of Hc to be uniformly distributed

P
between HRB and H_..

RE
We have considered rigid wall motion which starts when
a pinning point is 6vercome and which is finished by encoun-
tering another pinning point again. The influence of a fi-
nite value of the wall stiffness was ignored. When the do-
main wall is rigid then after overcoming a pinning point i
a wall segment will only move if large wall segmentsvare

100 : . . T T
] N
z(H)60 i |
[A'm]
Sample B1973
20 LHe = 444 Am’! _
Hk = 576 Am"
dm =|2380‘i‘ 1 1 1
0 20 40 60

HIAM!] —»

Fig. 5.4. The variation of the number of wall jumps z{H) {averaged over different reversals)
along the steep part of the hysteresis loop.

detached from-all inclusions which pin the wall at both
sides of pinning point i. Thus at most "pinning points”
which are overcome no wall displacement occurs. A flexible
wall,on the contrary, will move as follows. When a pinning
point is overcome then the small wall segment, which is now
free, moves. It keeps moving until the energy increase
(increase in wall energy, stray field energy and anisotropy
energy) caused by bending the wall between the neighbouring
pinning centres counterbalances the increase of the energy
supplied by the field. In this case the wall motion is
mostly stopped before this wall segment encounters again a
pinning centre (dompare fig. 5.5a and 5.5b). Whereas in the
first case where a stréight wall is moving in general wall
-pinning will stop the displacement.
The term with which we indicate the wall jumping pro-

.cess will be derived from the mechanism that mostly stops
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(b}

Fig. 5.5. {a) Wall jump of a rigid domain wall at Hp'i (e : pinning points with Hy > Hp ;
-and . x : pinning points with Hy <"Hy, ;); . {b) Wall jump of a flexible wall. The.wall before ..
{—) and after (— — —) the jumps.

Fig. 5.6. Wall position before (=) and after {= = =) a large number of small wall jumps
{~ — —) which form an avalanche of snapping free wall segments.

the wall. When in general pinning stops the wall displace-
ment we call this a pinning-dominated wall motion, when the
movement is ended by wall-stiffness we call this a stiffness-
dominated process.

In a stiffness-dominated pfocess the area of a wall
jump, which occurs after the wéll_snaps free from a pinning
centre, is very small. Often during the movement of the wall
segment neighbouring wall sections also begin to move so. that
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an avalanche effect can occur. The resulting wall jump con=
sists of a large number of small single wall jumps which oc-
cur simultaneously and consecutively. This is sketched in
fig. 5.6. '

5.2.3. The dlstance between two inclusions

We shall deduce here the distance between two inclu-
sions of strength Hp >'Hp,i’ Therefore we consider two
cases: (a) the simplified case of a very flexible wall;

(b) the case of a rigid wall. We shall calculate the length
of a moving wall segment. In this calculation we assume
that the wall motion is stopped by pinning of the wall.

(a) Flexible wall

A domain wall. is pihned by three pinning points (fig. 5.7).
If the applied field H equals H ¢p,i’
free from pinning point i (with strength Hp .) and the

then the wall snaps

i-th jump takes place. Pinning p01nt J pins the wall again.

O
g N
7/
/ \ =d
A % ' Fig. 5.7. The wall before {—)
) i . _and after (— — —) the i-th jump.
>
lwi =2d

In the i-th jump an area Ai(Hp,i) of the film is reversed.
We can experimentally determine the mean value A (Hp,i)

from measurements of a large number of reversals. We take
the mean distance d(Hp .) between two adjacent inclusions

of strength Hp >_Hp i to be:

2

d{H ) = VA (Héﬂ [m] (5.5)

oY

We can relate d(Hp ) to the pulse size p(H .) by using
eqs. (3.3) and (3. 4)

-10
(21574 Viymp = ( 215/l 107 d Ay

= (dy,71000) p/ { (N/L)x0:5x0-75 K |
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-2
or p = 0.75x10 Ajump [VS] : (5.6)

where vjump is the jump volume,_i;'J ump the Jugp area, IS the
saturation polarization (1 Wb m ), N/1 = 10° the number of
turns per unit length of the pick-up coil and 0.5x0.75 the
transfer factor of the pick-up coil system (sec. 2.3). The

use of eq. (5.6) in eq. (5.5) gives

diHy;) = \/p(Hp'i)/(0~75x10'2) [m] (5.7)

where p(Hp i) represents the mean jump size of a wall
, = .

jumping away from a pinning point of strength Hp i The
. 3

mean length 1. (Hp i) of the moving wall segment, just
3
after the wall has snapped free from a pinning point of

strength Hp is (fig. 5.7)

y1

‘ -2
Ly (Hyi) = 24 (Hy)) 2'42\/p(Hp’i)/(0-75x10 r o [m] (5.8

(b) Rigid wall _

Domain walls have a certain stiffness, which strongly de-
pends on the wall type. For example a Bloch wall has a
much larger stiffness than a cross-tie wall. The Bloch
wall behaves as a rigid wall while the cross-tie wall

can easily be bent at low values of H In sec. 5.5 we
shall further dlscuss this wall bendlng. Here we discuss
the Jump of a rigid wall., In the case of a rigid wall the
displacement will be small compared with the léngth of
the moving wall segment. At a certain moment the wall is
pinned by a number of pinning points. On increasing the
applied field much pinning points are overcome by the wall
but this hardly gives rise to wall jumps, until a large

Fig. 5.8. The wall before {— ) and after (— — =) the i-th jump if the rigid wall snaps free
from pinning point i, as the pinning points i — 1 and i — 2 were already overcome.
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wall segment is detached from all the pinning centres
(fig. 5.8)., Let us assume that this happens if a pinning
centre of strength Hp,i is overcome. When the wall jump is
stopped by wall pinning, an area A(Hp,i) (eq. (5.5)) has
been reversed during this jump. Let us assume that the

wall will be displaced through a distance xw(Hp i) of
;]

Xy (Hg) % (270,10 d(Hy) [m] (5.9)

where d(H. .) is given by eq. (5.7) and n_ . is a number.
p,1° - w,1

>
The length lw(Hp i) of the whole moving wall segment is
>
then

2
1] .
lw(Hm) LI d(Hm) s ;J Xw i
' (5.10)
v . —
Ly (Hp) # nw’i\/p(Hp'i) / (0:75x107%)
with n,; = 2, For a pinning determined Barkhausen pro-

> . . .

cess we shall use eq. (5.10) in sec. 5.6 in the deriva-
tion of a relationship between p and TB}

5.3. SOME GENERAL COMMENTS ON THE RELATION .
BETWEEN p AND Th

The size p of the wall jump is given by

-2 ' _
P o= 0:75x10 " A [Vs] (5.6)

With lw,i = lw(Hp;i) the length of the moving wall seg-

ment and xw,i = Xw(Hp,i

(fig. 5.9) at the i-th jump, we find for pi=p(Hp i)
. >

), the displacement of the wall

P = 0.75%1072 I x,,; [VS] (5.14)

w,i “wi

For the wall velocity we use the viscous flow approx-
imation of the equation of motion of a domain wall [5.6].
The wall velocity v is then given by
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Fig. 5.9. Thelength |, ; and displacement x,, ; of the i-th Barkhausen jump.

Vo= plH-H) [m§4] : (5.15)

in which pa is the wall mobility and H the applied field.
The wall motion is impeded by the local coercive field
Hcl during the jump. When the wall snaps free from pinning

point i(with H cp ) then the wall velocity v; given by
’ .

= .- . .16
Vo= BUH G -H ) (5.16)
represents the ve10c1ty at the beginning of the motion.

Now we must consider two cases: (a) a uniform motion
of the wall during the jump and (b) a non-uniform wall
motion:

(a) If we may assume a uniform motlon of the wall during
the Jump, then the wall dlsplacement is at the i-th
Jump

*wi® Vi Tg (5.17)

where v; is the wall velocity and Tp,i the time dur-
ation of the i-th Jump With eqs. (5. 16) and (5.17) we
find for the pulse size p, (eq. (5.14)) in this case
0-75x 1072 1 (H Ho,oo1T. . (5.18)
N . x . .- . - .
pl " w,i M cp,i cl,i B,i _ >
" (b) For a non-uniform wall motion the wall displacement
is
o]
X ® / vi(t) dt - (5.19)
)
The pulse shape of vy (t) of the Barkhausen process
eq. (5. 19) can often be described by (see sec. 5.5.2)
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(5.20)

X . = AV .
W, i ¢ o, tBJ

where Vo,i represents the velocity just after the wall
motion is started and is given by eq. (5.16). The time
duration of the'pulse is given by TB,i and c¢ depends
on the shape of vi(t). According to eq. (5.18) we find
thus for the pulse size

-2
P, ® 0-7-5x 10 [w,i cC U (Hcp,i_ H ’.] T, (5..18a)

For pinning-dominated processes we will use case (a)
(eq. (5.18)), for the stiffness-dominated processes case
(b) (eq. (5.18a)) can be used as discussed in secs. 5.4
to 5.6.

We shall now proceed to discuss the variation of the
driving field Hy = (Hcp—Hcl) during the reversal of the
magnetization. The value of the local coercive field
Hcl . during the i-th jump depends on the number and
strength of the disturbances, that are reversibly passed,
in the area reversed in this jump. This value will vary
from jump to jump. The number and strength of the inclu-
sions which can be passed revers1b1y, increases with the
applied field H (see sec. 5.2.2.). Therefore the value
of}%1 shows a_tendendy to increase with H. Since it is
likely that the surface-frequency-density function of in-

clusions of strength Hp decreases with increasing Hp, thus

cp '<Hcl’> HCD
[Am™]

T

<Hg >
He min
0
0
He,min HIAM' ] —>

Fig. 5.10. The average value of H as a function of H. The value of H; varies within the
shaded area.
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with increasing H(see sec. 5.2.2.), it is plausible that

with increasing H the averaged growth of HC decreases and

1
the absolute value of the scattering of the Hc values. of

1
< < ).

i .'um i increase - H . H .
successive Jjumps will creas (Hc,mln‘” ¢1,i = Hep,i

This is shown in fig. 5.10.

The frequency-density function of Hd,i =Hcp,i-Hcl,i
cannot be measured. We assume the frequency-density func-
tions of Hcp to be uniform. In sec. 5.2.2 we have given
arguments and experimental results that support thiswassump-
tion. In the case described above we assume that Hd,i is
also uniformly distributed. Wall motion takes place if

Hy > 0. For the maximum driving field H we can choose

two different values based on the folloiiggxobserved re-

versal processes. In principle we can distinguish two

forms of reversing the films.

(a) In some films the reversal takes place as follows:
at the moment at which the bulk of the reversal pro—
cess begins, one or more spikes grow rapidly until
they form narrow reversed domains, which cross the
film from one side to the o¢other, parallel to the easy
axis (fig. 2.3b). The walls of these domains are re- _
sponsible for almost the whole reversal. In this case
the maximum value of the driving field can be approx-
imated by

d, max ® Hc,mox - Hc,min = Hm'1- (5.21)

(b) In other films the behaviour is different. A larger
number of spike-domains is growing during the increase
of the applied'field; at the moment when these domains
reach the other side, about one half of the film is
reversed; for this process we have the property that
My max)1 ® HeHy 5y (fig. 5.11). Then the reversal
is completed by domain walls crossing the whole film
which move as indicated. in fig. 2.3b, reéulting in

( H H In this case H equals

H, _ ~ -
d,max)Z c,max “¢° - d,max

H- H . =« H - H = H
mmuxw‘ c ‘c,min c,max [ m2 (5.22)
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Our microscopic observations of the reversal process
showed that in thinner films (dn1$ 900 8) mostly the first
process is found, while in thicker films the second magneb-
ization reversal processes usually dominate. Both cases
are used in sec. 5.7, where the theory and experimental

results are compared. For the value of Hc min W€ choose the
3

‘B2 reversed area
H [] non-reversed

1

Fig. 5.11. Growth of reversed domains from different spikes.

field HRB just before the spikes start to grow; for

Hc,max we use the field Hgpp at which the film is nearly
saturated (see fig. 2.5).

In the following sections 5.4 to 5.7 we shall con-
sider 3 different wall jumping models.

(A) A wall, crossing the film along the easy axis from
one side to the other, moves as a whole through the
film. (fig. 5.12a). Thus 1, ; = constant = 10%m. The
’wall movement is stopped by wall pinning and Xﬁ,i var-
ies .in the different wall jumps.

L)

l o

I \

| lo

g o ) ] ;L

|

| / °

\

\

|

{a) LARGE WALL JUMPS (b} FLEXIBLE WALL {c) RIGID WALL

Fig. 5.12. The three models of wall motion (schematically): — wall position before the
jump and — — — wall position after the jump.
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(B) The size of the wall jump is determined by the wall
stiffness: the wall segment is displaced until the
radius of curvature of the wall segment equals the
minimum radius of wall curvature in the film. This
leads to g_relationship between lw,i and xw,i (see
fig. 5.12b).° _

(C) We consider a pinning-dominated wall motion: the wall
motion is finished by the pinning of the moving wall
segment (fig. 5.12¢). In this process the length lw,i

of the moving wall segment varies just as the wall

displécement xw,i'

To derive the relation between p and TB we start from

eq. (5.18) or eq. (5.18a). In all models we assume that
the driving field Hd,i = (Hcp,i-Hcl,i) is unlformly dis-
tributed between the values Hd,min and Hd,max"Whlle
Hd,mid<<;Hd,max' As previously discussed this can be con-
sidered as a first order approximation of the frequency

density function of Hy-

5.4. LARGE WALL JUMPS

In this model the wall moves as a whole., There are
no wall segments. The length of the moving wall segment
equals the length of the film

. -2
le 2 10 m (5.23)

In this case the wall motion 1s finished by wall pinning.
The pinning points can be considered as highly localized
disturbances of the magnetic properties of the thin film
(sec. 5.1). Hence the wail motion is ébruptly stopped.
This occurs in generél after a small wall displacement.
Therefore the driving field Hy can be considered to be
constant during the wall jump and thus the wall motion
may be regarded as uniform. We neglect variations of

H . during the jump, the influence of which is dimin-

cl,i ’ .
ished by the stiffness of the domain wall. We can then

106



use the results of sec. 5.3. Substituting eg. (5.23) in
eq. (5.18), we obtain: ’

(t ) 0-75 -h V ‘ (5.24)
p.ltg) = 0-75x10 " -de tBJ' v .

The value of the driving field Hy ; = H,, ;-H,, 5 is

determined by the value of H of the pinning point i,

cp,1i
which has been overcome by the wall at the i-th jump, and
the value of HCl i around pinning point i (see sec. 5.3).
- 3

The value of TB i is determlned by the distance to the
next pinning p01nt which stops the wall motion, i.e. the

first pinning point encountered by the wall with Hp>»Hp i
3

B,i’
Averaging eq. (5.2) over all Jumps w1th a given value of

So we can take the driving field H i 1ndependent of t

Ty therefore gives for the most probable pulse size

-4
pw('l:B) s 0.75x10 ho< Hd,i> s (5.25)

In table 5.1 (sec. 5.7) a comparison is made between the
results of relation (5.25) and the results of the meas-
urements.

5.5. STIFFNESS-DOMINATED. WALL MOTION: THE DISPLACEMENT OF
A FLEXIBLE WALL

We consider here the case of a flexible wall the mo-
tion of which is sfooped'by wall stiffness instead of by
wall pinning (compare the figs. 5.5a and 5.5b of sec.
5.2.2). Stiffness-dominated wall motion is partially re-
ver51ble when the applied field is reduced again. By fur-
ther 1ncrea51ng the applled field the wall can move revers-
ibly until pinning follows. The length of the wall seg-
ment 1 (before the wall jump takes place) is of course
determined by wall pinning. So we can characterize this
wall jumping process as follows: stiffness-dominated in
the direction of motion and pinning-dominated along the
wall, i.e. normal to the direction of motion.
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"The wall stiffness determines a minimum radius of
curvature ry of the wall at a particular jump. The minimum
radius of curvature together with the distance between two

adjacent pinning points (1w) determines the jump size. The

s
~

Fig. 5.13. A wall segment with radius of curvature rg.

relation between the length of the wall segment and the

wall displacement is derived using fig. 5.13. For the wall
displacement one finds

2
NV S LI G PN PR W
W o o 3 ° 2
_ Lr?

Our microscopic observations showed that we can assume that

0'5& (5.26)

the maximum jump size always occurs for 1w-< 1.5 ro. Thus
we can use the following approximation

2 2
' - (lw> s 1 - w (5.27)
2r, 8r°2

with an error smaller than 20%. Hence for x,, one finds

= /e, (5.28)
or | ~. 8r. x "~ (5.28a)

The jump area Ajump

from fig. 5.13. After some calculations one finds

and the angle ao can also be deduced

Ajump = %% *w tw (5.29)

and a = W (5.30)

Substituting eq. (5.29) in eq. (5.6) we obtain the follow-
ing relation : : - -
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Py ® 310y, (5.31)
With eq. (5.28) this becomes
-3

p., = i" 10 w (5.31a)
I 8 ‘. .

or with eq. (5.28a)

-2 - 1.5 :
p. = 10 y/2r, X, : (5.31b)

In a process in which a jump is ended by pinning,
the wall motion is abruptly stopped when the wall is
catched by a stronger pinning point. Then we can consider
the wall motion to be uniform (see sec. 5.4), which gives
xw,i = vy tB,i' We consider‘in this section a stiffness-
dominated wall motion. Owing to wall bending the energy
of the wall, the anisotropy energy and the stray field
energy increase during the jump. The applied field must
supply the increase of thé energy. This energy balance
determines the ﬁew-equilibrium position of the wall when
a pinning point has been overcome. Therefore one might
wonder if we still may.consider Xy,i < TB,i° We will dis-
cuss this in the subsecs. 5.5.1 and 5.5.2.

First in subsection~5.5.1 we calculate the different
energies which are important in the stiffness-dominated
wall jdmping process: the field energy (eH), the increase
in wall energy (ew), and the increase in stray fileld (es)
and anisotropy energy(eA)at bending the wall. Then we de~
termine the minimum radius of wall curvature, In subsec-
tion 5.5.2 the equation of motion is considéred. The wall
displacement is'calculated and - the pulse size of a single
wall juhp derived. In subsection 5.5.3 the clustering of
single wall jumps is considered.
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5.5.1. The energy balance
(a) The increase in field energy ey.
The field energy increases during a jump with (fig. 5.14)

eH = ZISHd Ajump dm [J] ) (5.32)
using eq. (5.29) this becomes

- - b .
eH_ ? IS Hd Xw lw dm (5.32&)

(b) The increase in wall energy e, .
If during a wall jump the domain wall is bent then the
length of the domain wall segment will grow. If we repre-

sent the wall bending by a cyllnder (fig. 5.13 and 5.14)

H ) N
// 71
) / /47/5 dm
/ v
e

Fig. 5.14. A bulged 180° wall under the action of an applied field H,

we can easily calculate the wall length 1norement Al as
a function of the wall dlsplacement X

2
A, = L ’l‘w [m] (5.33)
w

so that the increase in wall energy is

ew =‘ 8 Xw Yo, dm [J] (5.34)

where the surface energy of the wall is given by Yuw
( = 5x10 -3 Jm~ ) We assume that Yu is constant during
~the wall motion. '

(¢) .The increase in stray field and anjisotropy energies:. eq and e A
When the wall is bent, strong magnetlc poles are 1nduced
at the bent portion of the wall [5.13]. They give a very
large demagnetizing field at the bulgedporiionof the'do-

main and thus a large stray field energy (fig. 5.15a).
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(a)

(b)

(c)

Fig. 5.15 (a) The free pole distribution at the surfaces of a bent wall without compen-
sating free poles of the wall; (b) curved wall which has a wall structure with compensating
free poles on it; {c) free pole distribution on an ellipsoid magnetized along the long axis.
The dashed lines show the direction of the demagnetizing field.

The stray field energy is difficult to calculate except
for the case that there are no free poles at the outside
of the wall (fig. 5.15b). Then the stray field energy can
be approximated by a half of that of a very flat ellip-

W and da. (1> 2x >> d ), which is

magnetized parallel to the long axis (fig. 5.15c¢) and has

soid with axes lw, 2x
the double free pole intensity at the inside of the wall.

The increase in stray fiéld energy during the wall jump
is estimated to be
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= -1 . : J .
e (THDIS)x(0751wxwdm) [ ] - (5.35}
where Hj, is the demagnetizing field and is given by

Hy = oNg 2ls [am='] (5.36)

Ho

The demagnetizing factor Ny is given by (see Osborn

[ 5.14] )

2% 9n {kim)- E(m)} o (5.37)

{

£

ND. 14

€N

where K(m) and E(m) are complete elliptic inteérals [5.15]

Their argument m is

m = |1- (“w)z }0'5 (5.38)

lw

We find for ey the formula

2 2 2
e v 1.5 5 XwOm {yk(m)-E(m) (5.39)
s “'O lw

For 2x, /1 = 0.1 we find K(m)-E(m) = 3 and for 2x,/1,=0.01
the value of K(m)-E(m) is about 5. To present an. order of

magnitude we calculate eg and ey for dm = 7)(10_8 m:

) -9 x2
e % 5.8x10 w {Ki(m) - E(m)} (5.40a)
s I, :
10 42
~and e, * 9:3x10 ¥ © (5.400)
w

and find for Xw=10—5 m and 1W=2x10"_1l m the values

-15 ‘ _
e, = 9x10 J (5.40aa)

-16
and - e, = 5x10 J : (5.40bb)

Thus the stray field energy strongly exceeds ey
To reduce the stray field energy the direction of the
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(b) — L/ -

Fig. 5.16. (a) and (b) The magnetization distributions around a curved wall without free
poles on the outside of the bulged domain wall.

magnetization around the bent wall will follow the wall
curvature (fig. 5.16 ) which gives rise to an increase of
the anisotropy energy. The free pole intensity is now di-
luted over a surface area with width w (fig. 5.17 ) inside
the wall (compare the Néel spikes [5.16] ). With a lattice
constant a the free‘pole‘intensity is diluted over M atoms
with

M= ¥ (5.41)
a

We estimate the stray field energy to be in this case

2,2 42
e » 15 s Xwm {ki{m)-E(m)} ' (5.42)
sTOM ,

Let us calculate the anisotropy energy. Here we assume
that the wall is-bent into a cylindriéal form (fig..5.17).
The angle af(r,¢ ) between the magnetization and the easy ~
axis is assumed to be ‘ ' - .

atee) = =2 ir-rl. e (5.43)
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Fig. 5.17. The dilution of free poles.
The increase 1in anisotropy energy e, is now
e« [[Kd_ sini{alrel] r [J] (5.um)
) m sin {a(re)} rdrde 5.
G

with G the area where the magnetization deviates from the
easy axis and K the uniaxial anisotropy constant of the

film, The angle a(¢,9 ) is small thus

%y 0 2
e =* 2 / Kd a(r,g)rdrdy (5.44a)
\p:o l‘:l‘o—w
eAa_g_K ag(-%w2+row)dm

Using w << r, we find

(5.440)

Using the property that aozﬂxw/lw (eq. 5.30) in eq.(5.40Db)
and substituting r, from eq. (5.28) gives for ep

16 xZ
EA % _g_ K —l: Mddm (5.145)

The width w of the resulting magnetization distribution
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around the wall is such that the sum of the anisotropy
energy and the stray field energy is a minimum. Thus M
follows from

d . =
- (es e ) =0 (5.46)
which results in
1.5d_ {K{m)-E(m}}
M- 3 15\/ o {K(m m} (5.47)
4 uqu

The sum of the stray field and anisotropy energy is hence

(es = eA)
3 S22
8 \/1.5de0 [kim) - Etm)}  x,
e +e = S 1 L4
sT AT 3 s ™ T, (5.48)
With d_ = 7x1078 m, x = 200 gn™? and a = 3x107'%n we ring
for M and egte,
M= 8.9x10°y/Kim)-E(m) (5.49)
-1 x2
and es+ eA- 1.3 x 10 \/K(m)-E(m) l_W (5.50)
: W

choosing xw;lo_sm and lw=2x10Fum this becomes

M= 1500 (5.51a)

17
and es+eA=1.1 x10  J (5.51b)

which is a reduction with a factor of about 103 compared
with ey of eq. (5.40). We thus see that by dilution of the
free pole intensity over M atoms the energy increase cau-
sed by the présence of the free poles can be neglected
with respéct to the incrgése ih wali energy e, at bending
the wall. In the case considered the increase in wall ener-
gy e, thus dominates the process of wall jumping.
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Bloch lines

, €, Cross wall
i inl -luc;,",

‘>/ \

Is /0

Fig. 5.18. (a) The symmetrical cross-tie wall; (b} the asymmetrical cross-tie wall with free
poles on its surface; (c) macroscopic free pole distributions caused by wall curvature (c1),
of a symmetrical cross-tie wall {c2) and of a bulged asymmetrical cross-tie wall {c3).
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As described at the beginning of sec. 5.5.1c the re-
sults can be applied to'a domain wall where the free poles,
which are caused by the curved shape of the wall are pre-
sent only at the inside of the bulged wall (see fig. S.iSb).
This can be realized if the wall 1tself can generate compen-—
sating free poles on its surfaces. Of the three wall typee
occurring in thin films-only the cross~tie wall (see sec.
2.2.3, fig. 2.7) with legs of Néel walls can do this.

Fig. 5.18a shows a cross-tie wali in which all Néel wall
segments have equal length. On macroscopic scale ﬁo free
poles are present, while by shifting the Bloch lines free
poles occur at the surfaces of the wall'as shown in fig.
5.18b. The macroseopic free pole distribution on the cross-
tie wall can compensate tﬁe free poles caused by the wall
bending. This is explained in fig. 5;180. A bulged wall
with a Bloch wall structure has stray fields as shown in
fig. 5.15a. Fig. 5.19 shows the resulting magnetization

Fig. 5.19. Magnetization distribution round a bulged Bloch wall.

distribution which has a stray.field and anisotropy energy
which is extremely large compared'with that of the pre—
vious case (seeralso sec. 5.6). So the energy increase by
bendlng the wall is much larger for a Bloch wall than for
a cross-tie wall By «this proporty the large flexability
_of the cross-tie wall compared with that of the Bloch wall
can be explalned the cross- t1e wall behaves as a flex1ble
wall, the Bloch wall as a rlgld wall,



(d) The energy balance for a flexible (cross—tie) wall at wall bending .
The energy terms which are important at wall bending of a
flexible wall are thus the energy supplied by the field

~

- - &
eh = 3 Is Hd *w lw dm (5.32a)
and the wall energy increase
X2 .
e, = B _w oy d (5.34)

The minimum radius ro of wall curvature for a particular

jump follows from the following equation

d = d -
s (e, ) =0 or ?ﬂ?( e, *e, =0 (5.52)
which gives
2
x, = Js gl (5.53)
LY, ’

Using now eq. (5.28) we find for ro

o ZZ—WH [m] (5.54)
s d

With Y, ® 5x107° gn™2 and I_ % 1 Wom 2 we find

-3
rx 2-5x10 : (5.54a)

Hy

The minimum radius of wall curvature for a particular

_ jump decreases for increasing H., until at 2ro=10 an irre-

d
versible expansion of the wall occurs [5.17] . When the

field exceeds the critical field Hdo

H, = IYlw [am'] (5.55)

than the wall will expand discontinuocusly. In the pre-
vious calculations of the model of flexible wall motion
only small values of Xy, with respect to lw occur, We have

used there the property that lw < 2ro. Thus we have not
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considered there the irreversible wall jumps of a flexible
wall. As explained in sec. 5.2.2. when a pinning point of
a rigid wall is overcome mostly no wall jump occurs. Only
if nearly the whole wall is free of pinning centres then
wall motion can follow. At a flexible wall a small wall
jump_foliows everytime that the wall overcomes a pirining
centre. Therefore 1w of-a flexible wall is much smaller
than 1 of a rigid wall. 3o with our range of driving
fields the irreversible wall jumping of a flexible wall’
will scarcely occur. ) '

5.5.2, The equation of motion and the pulse size of a sin-

gle wall jump

Let us now consider the wall motion during a jump. The
equation of motion (viscous flow approximation [5.6]) for a
domain wall jump is :

2[W dmIs d x d

. dx L ) - 0 (5.56)

with P the domain wall mobility. Substituting the egs.
(5.32a) and (5.34) in eq. (5.56) results in

d x 8 _HYw - 24 H, =0 (5.57)
at 3 1 12 X 3 H e
S W

which has the simple solution

vit) = _g_ W H, exp(-t/j) =Y expl-t/T) [ms'q (5.58)
where the time constant T is given by

2
t = 3 Igly i[s] (5.59)
8wy, ‘

In our films

%

T % 7.5 x 10 (5.59a)

The total wall displacement in a single jump is
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Xy = L pH T (5.60)

Let us now cons1der the relatlon between the measured

pulse duration TB and the measured wall displacement
p¥(t= 'cB)

measured as the time that the pulse amplitude h(t) ex-

In our equipment the pulse duration TB is

ceeds the reference voltage of the Barkhausen Computer
Interface (see sec. 2.5), which corresponds to a pulse
amplitude h . . The pulse amplitude h(t) is

hit) o 1, v(t) (5.61)

The pulse duration tB is deflned as the time 1nterval
from the beginning of the pulse until the moment that the
pulse amplitude has decreased to h_._ . Then the relation

min
between xp and Ty can be deduced from eq. (5.58),

: (hin /Lo V) - 1
Xg = VY, Tg min ‘; o _(5.622
ln(hmm lwa

with vo=% P Hy (see eq. (5.58?)

or x = cv. T with ¢ = (Pmin/tw ¥ °)—1 (5.63)
ln(hmm Ly %)

In fig. 5.20 the factor ¢ is plotted as a function of
mlrl/1 V,+ Thus in this non-uniform wall motion the mea-
ured wall displacement is still proportional to the
measured pulse duration, only ¢ < 1. _

Using the eqs; (5.31b) and (5.63) we find for the rela-
~tion between the pulse size 3 and the time duration T i

3
for the case that the wall snaps free from one pinning

centre 1i:
1.5 -2 1.5 . 1.5 1.5
= (2 10 Yw H T, (5.64)
P () ¢ Lo it el
-4 15 .
or P, = 3-8x10 ¢ H u15 1-5 (5.64a)
. i - d,i B,i ’

The maximum variation of the factor hmin/lwvo ranges be-
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Fig. 5.20. The factor ¢ = { (hpin/lwvo) = 1} /Inlhmin/lwvo) as a function of hypin/lwvo-

tween about 0.05 and 0.86 in the samples in which we find
p « tBl 5. This corresponds to a variation of ¢ between
0.32 and 0.92, i.e. ¢ varies a factor 3. In our calcula-

tion we use ¢ =z 0,62 which.gives for eq. (5.64a).

-4 1.5 1.5 .
= 2.4 x 1 . .
P, 0 Hd,i 1L tB,i (5.64p)

The driving fleld of the motion of a flex1b1e wall segment
equals that of the plnnlng-domlnated wall motion and is
discussed in sec. 5.3. The time duration of a wall jump is
indebendent of Hd as shown in eq. (5.59). Therefore at a
given value of Tg we find for the most probable pulse

size of a single wall jump

A . .
pw(‘l:B) s 2.4 x10 . < Hy ;> B T - (5.65)

With the assumption made in sec. 5.3 of a uniform frequency
density function of the dr1v1ng field, one finds

< iﬁj > = 0.5 H¢mox (5.66)

which gives for the most probable pulse size pw( IB) of a
single wall jump:
v -4 1.5 1.5
PulTg) = 1:2x10 " Hy Ty (5.67)

For the stiffness dominated wall jumps of a flexible wall
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we find thus for the relation hetween p and Tp an equation
of the form

PulTgl = K Tg ' (5.67a)

Table 5.2 (sec, 5.7) shows a number of measured K values
wh1ch are compared with the K values calculated with eq.
(5.67). A deviation of a factor ranging between 5 and 35
is found between the measured and calculated K values.
Mostly the deviation is a factor of about 10. The measured
K values always exceed the K values calculated from eq.
(5.67) for single wall jumps. This indicates that at the
motion of a flexible wall complicated wall jumps occur as
already discussed in sec. 5.2.2 (see also fig. 5.6). In
subsection 5.5.3 we shall explain with the help of an
illustrative example that the K value of a wall jump com-
posed of many'single wall jumps can be much larger than
that of a single wall Jump.

5.5.3. The clustering of single wall jumps

When‘during the movement of the wall segment neigh-
bouring wall sections also'begin to move an avalanche ef-
fect can occur. The resulting wall jump consists of a
large number of smaller-single wall jumps each satisfying
relation (5.67). We assume that the measured Barkhausen
pulses of the cross-tie wall cons1st of such compllcated
large wall jumps.

With the aid of a simple example we shall 1llustrate
~ that the constant K of such a complicated wall jump can be
much larger than that of a single wall jump. We use in
this example a single pulse with shape as shown in fig.
5.21a: pulse amplitude h e pulse duration Te and pulse
size Po- We assume that a complicated pulse consists of a
series of n; pulse each of which consists of ny single
pulses which occur simultaneously (fig. 5.21b). Further
we assume that the single pulses are independent of each
other,

The pulse size p of the large pulse is given by
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Fig. 5.21. A single pulse (a) and a complicated pulse composed of many single pulses (b).

p = nh n_[: pe

while the duration of this pulse is

e
then we can deduce from
= n n KT
P h T
n A
that - p = __h Kk t
-1 e
n
T

100
m K
n? K,

(5_'.68)

(5.69)

(5.70)

(5.71)

(5.72)

Ne=1

nv:l.

Ny=16

Ny =64

|

1
10

100

Ny —»

Fig. 5.22. The factor K/K,, as a function of ny with n, as parameter, when k = 1.5
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Fig. 5.22 shows the factor K/K_ =np/n; %=1 for %=1.5 as

function of n, with n as parameter, A value of 10 for

T
K/Ke can be easily obtained.

With the presented simple example we have illustrated that
a complicated pulse can have a much larger K value than

the single pulse if ny >>n.cM 1

5.6. PINNING-DOMINATED WALL MOTION: THE DISPLACEMENT OF
A RIGID WALL

In this model a rigid wall is considered the motion
of which is stopped by pinning of the domain wall (see
fig. 5.8). We can characterize this Jjumping model as fol-
lows: pinning'dominated in the direction of motion and
stiffness dominated along the wall.

After overcoming a pinning point 1 (with'strength
H .), a‘wall segment with length lw,i moves through the

p,1
film. As discussed in sec. 5.2.3 1 . depends on the num-

ber of adjacent pinning points of Zé;ut the same strength
as Hp,i which were passed before the wall jump takes

place. The wall motion is flnlshed by wall pinning and the
time duration of the wall jump is given by TB In a
pinning-dominated wall Jumping process we may con51der

the wall motion as uniform (see sec. 5.4). Thus we can
apply here the results of sec. 5.3. Substitution of egs.

(5.10), (5 16) and (5.17) in eq. (5.18) results in

-2 2 2 2
b 0-752x10 nlon Hditezi (5.73)"

Just as discussed in sec. 5.4 the driving field and time
duration of the i-th jump are 1ndependent of each other.

The value of e— depends on the ratio between the length
>

of the moving wall segment and the mean distance between

the pinning points of strength Hp > H as dlscussed in

p,i’

sec. 5.2.3. So we can also take ng o4 to be iIndependent of
, R .

T . and the driving field H, .. Averaging over all jumps
B,1 d,1
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gives for a given value K most probable pulse size

. ) .
p (T,) s 0:75x10 2,22 .2 (5.74)
W B [3 v d,max ‘B
2 N
for | < Hd,i > = - Hd,max (5.75)
and < n2. > = n2 . (5'76)
LA w ’
: - 2= -1 ~ -1,
If we insert nw-S, }1—1 m-A s and Hd,max“'zoAm in
eq. (5.45) we obtain
2
Pyl Tgl = 12:5 Tg (5.74a)

Eq. (5.45) is calculated for some films and the results
are listed in table 5.3 in sec. 5.7.

5.7. COMPARISON BETWEEN THEORY AND EXPERIMENT

The different quantities which were presented in the
model calculations of secs. 5.4 to 5.7, are estimated as
follows. For the wall mobility P we use the mean value
at the given film thickness d as found by Middelhoek
[5.6] (see fig. 2.9). The max1mum deviation is of the or-
der of 25%. The value of the constant ns varies from film
to film. An averaged value of about 5 1s experlmentally es-
timated and 1s used for all samples. The range of the driv-
ing field Hd was already discussed 1n sec., 5.3.

The inaccuracy in the experlmentally determlned value

of K (see sec. 3.4) in the expre551on
plT ) = K T (3.19)

was estimated to be about +25%, partially caused by an
inaccuracy in the amplifier gain.

Now the three models developed in the secs. 5.4 to
5.7 are compared with the experlmental results.
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(A) P lTg) = K Ty (5.77)
This form of the two-dimensional frequency-density
function was obsérved in ébout one third of odr_sam-
ples but only for large values of p. It corresponds
to the model of large wall-jdmps derived in éec.S.M
(eq. 5.25). Iﬁ table 5.1 the resulﬁs are presented
for <:Hd,f>=Hd,max/2 . The results calculated with

~eq. (5.25)can be higher or lower than the experimen-

tal results by at most a factor of about 2. In spite:

of the inaccuracy in the estimation of e and<:Hd,.>
TABLE 5.1. The relation between p and 7g for large wall jumps

DATA OF SAMPLES K-values

sample d, M Hm’1/2 Hm’2/2 measured calculated, eq. (5.25)

number ~[ﬂ] [meAnls_q [Am_ﬂ [Am_ﬂ with Hm,l with Hm,2

B199.21 2030| 1.35 | 13 8 8.4x1074| 1.3x1077 | 8.1x107"

B198.29K |1580| 1.1 16 11 2.4x1073 | 1.3x1073 | 9.1x1074

B194(1).46]1230| 1.1 12 | 10 . | 1.6x1077] 9.9x10™" | 8.3x10~"

B194(1).54|1230| 1.1 12 8 1.6x107 | 9.9x107% | 6.6x107"

S941.47 875| 0.78 8 6 boax10”t | yo7xao”® 3.5%10~"

B192.9K 840 | 0.75 18 | 11 1.4x1072 | 1.0x107% | 6.2x107"

B190.50 805| 0.71 8 5 6.1x10~" _u.3x10'4 2.7x10~"

5782.14 700| o.42 | 26 12 3.9x10"" | 8.2x107" | 3.8x107%

s8h2, 41* 575| 0.17 26 | 17 7.4x10" 4| 3.3x207% | 2.2x107¢

s724.38 | 525 0.3 13 | 8 [6.6x107" 2.9x207" | 1.8x107"

3724.51% 525| 0.3 31 22 6.6x107% | 7.0x10™% | 5.0x107%

5725.36 4s5| 0.5 9 6 1.2x107° 3.ux10‘“ 2.3x10'“

5725.42 455 0.5 9 6 9.5x10”% | 3.ux107" | 2.3x107%

B340.52 4s5| 0.5 11 8 1.1x1073 | 4.1x20™% | 3.0x107H

B193.31 450| 0.5 13 8 1.1x1073 | 4.9x107% | 3.0x107%

25289.34 437 0.58 11 6 8.8x10™" | 4.8x10™" 2.6x107"

S723.32 420 0.66 14 9 8.2x10™" | 6.9x20™" | u.s5x2074

$723.53 420| 0.66 16 11 9.2,x10‘lI 7.9x10‘" s.uxlo‘u

® sample with irregularities in the hysteresis ioop
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(B)

(C)

there is a reasonable agreement between theory and
experiment, . '

The model based on the wall stiffness (sec. 5.5, eq.
(5.67)) gives the relation

P (Tg) = KT (5.67a)

Just as in the prev1ous case the measured values of
agree within +57 with the derived wvalue of w=1.5.

Here we deal with films thlnner than about 9008

where the reversal begins with the growth of a few
spikes. In thls case the value of Hg ,max is equal to
Hm 1 in eq. (5.21). In table 5.2 all resultlng K
values of the measurements for ®k=1,5 are compared with
the calculated results. The experimentally determined
K values are always larger than those calculated with
eq. (5;67). A deviation of a factor ranging between 5
and 35 is found, mostly the deviation is a factor 10.
In table 5.2 we compare the measured K values with the
K values calculated for a process of single wall
jumps, whereas the actual wall.jumps in films with
dm<< 9008 will be'composed of many individual single
wall jumps which are generated simultaneously and con-
secutively. In table 5.2 two different processes are
thus compared. In sec. 5.5.3 we have illustrated with
a very simple example that for a process consisting

of large pulses each of which is composed of many sin-
gle pulses occurring simultaneously and consecutively,
the K value can be much larger. than the K value of a
process consisting of the single pulses. We think that
the deviation between the measured and calculated K
values in table 5.2 is caused by the fact that at the
motien of a flexible wall such complicated wall jumps
occur.

The quadratic dependence of pw( IB) on 1y is mostly
found in thick films (d_ > 9008%)

p (T ) = K ré (5.78)
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TABLE 5.2. The relation between p and rgfor a fiexible wall

DATA OF SAMPLES K-values
sample dm )l Hm’2 measured |calculated
number [ﬁ] h2A-1s_q [Am_] eq. (5,67)
_|B380.214 1080 | 0.92 18 || 2.9x1072 [1.9x1072
S9U1.47 875 | 0.78 16 | 1.3x1072 |1.3x10677
S941.,48 875 0.78 11 1.2x107° 9.1x10‘[l
$954.1 805 | 0.71 21 || 1.4%107° | 1.5x1073
5954.149 805 | 0.7t | u6 |l 1.ux1072 |3.3x1077
B190.5 805 | 0.71 29 || 1.6x1072 | 2.1x1077
B190.50 805 | 0.71 16 || 2.1x107% |1.1x107
S782.14 700 | o0.u2 51 || 1.8x107% |1.7x1073
S782.43 700 | 0.42 43 || 1.3x1072 |1.Ux1077
5951.10 595 | 0.18 10 ;.3x10'2 9.2x107°
$951,22% 595 | 0.18 54 || 1.7x1072 |4.9x107"
5951.23 595 | 0.18 | 107 || 1.6x1072 |9.8x10™"
S724.38 525 | 0.3 26 || 1.5x107° 5.1x10fu
s72h.51% 525 | 0.3 62 || 1.5x1072 |1.2x1072
$725.36 455 0.5 19 'ﬁ.9i1b‘é é.lxlo‘“
S725.42 455 | 0.5 19 || 1.9x10"2 | 8.1x10™"
B340.37% us5 | 0.5 88 |l 2.0x1072 | 3.7x1072
B340.52 455 | 0.5 22 | 2.3x1072 | 9.3x107"
B193.31 450 0.5 27 2.4x1072 | 1.1x1073
B289.34 437 | 0.58 22 | 1.7x107? | 1.2x1077
B289.35 437 | 0.58 27 | 1.6x1072 | 1.4x107°
$781.20 420 | 0.66 19 | 1.8x107° | 1.2x1072
5781.33% 520 | 0.66 55 | 1.8x1072 | 3.4x1072
$723.32 420 | 0.66 29 || 2.ux1072 | 1.9x107
8723.53 420 | 0.66 32 |l 2.4x1072 | 2.1x107°

% sample with irregularities in the hysteresis loop
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The pinning-dominated model of wall motion of section
5. 6 (eq. (5.74)) gives this relation. Because in

these films the reversal process beglns with the
growth of different spikes (see sec. 5.3) we only
tabulate Hd max-Pm )2 (eq. (5.22)). In table 5.3 the
calculated results of this model are presented for
nw=5 and the measured results are glven too. All meas-
ured slopes are exactly equal to two. Macroséopical-
ly inhomogeneous samples (see sec. 2.2.2) give calcu-
lated values of K which are extremely large. The fre-
quency- den31ty function of the driving f1e1d Hd of

the jumps is not uniform in this case as was assumed
in the derivation (see sec. 5.6). This effect can also
be seen in the other tabies. Regarding the rough esti-

TABLE 5,3. The relation between p and:r g for a rigid wall

DATA OF SAMPLES i K-values

sample dm M Hm,2 measured | calculated
number [R] [meA_ls_l] [Amﬂl] ‘ eq. (5.74)
636.45" 2800 1.5 35 ‘ 1.4 86
B197.2 2380 1.5 15 8.1 16
B197.3 2380 1.5 13 6 12
B197.8K 2380 1.5 17 6.5 20
B197.27K 2780 1.5 17 9.7 20
B197.28K 2380 1.5 17 6.5 20
B199.19% 2030 1.35 69 .7 272
B199.21 2030 1.35 16 4.5 14
B198.18K 1580 1.1 19 7.3 14
B194(1).11K"|1230 1.1 35 5.9 46
BI94(1).46 |1230 | 1.1 10 7.5 4

B194 (1) .54 1230 1.1 17 9.4 10
B192.6 840 0.75 14 4.6 y

+ Hy~ 1120 Am '

®* sample with irregularities in the hysteresis loop
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mation of the unknown parameter n., which is choosen
the same for all samples, and the inaccuracy in the
value of AR good agreement between theory and experl—
ment is found . for the samples with a smooth hystere-

sis curve.

Before discussing the samples with w values which are
at variance with the previous models, we will first com-
pare the structure of the domain Walls in those thin films
where W agrees with one ef the models. .
The different types of wall in thin Ni-Fe films were
extensively described in sec. 2.2.3, The Bloch walls afe
present in the thicker films (dm > 9003) used in our inves-
tigation and the cross-tie walls in our thinner films with
d, < 9008 as can be seen from fig. 2.8. We conclude now
that in general a valuen =2 is found for Bloch walls and
®=1.5 for cross- tle walls in this type of sample. In other
words: we were the first to show experlmentally that the
Barkhausen process in films with Bloch walls is in general
pinning dominated in the direction of motion and in films
with cross-tie walls it is stiffness dominated in the di-
rection of motion. |
(D) In sec. 3.4 (fig. 3.7) we showed that some samples
have a value of ® between 1.5 and 2. This exponent
cannot be accounted for directly by one of our models,
but it can be attributed to the fact that pinning- and
stiffness-dominated wall motion are about equally im-
portant in these samples. The measured frequency-den-
sity function is then composed of the frequency-den-
sity functions of both processes and can be obtained
by adding the frequency-density functions of both pro-
cesses together. This can give values of X ranging be-
tween 1.5 and 2. For the two cases which can be dis-
tinguished we shall illdstrate this using a simple
example. i

(D1) At the same value of p both processes are about
equally important. Let us now consider in the p Tg”

plane the number of pulses measured in the intervals.

130



+ RN

&
N
™ |slgpe|15

2
I

~a | slope
10 15/ <% [ <2
plvsl N
I e
10%F
//
A
AN
+4
Vi
16°

N
~e AN

-1 1] - - }
10 = - - - .
10° 103 104 . 10°

1 [s] ——»

Fig. 5.23. The maximum number of detected pulses for a process with k =2 ( o )}, for a
process with k = 1.5 { + } and for a mixed process {shaded intervals).

In fig. 5.23 the interval in which fcr a given value
of g the number of pulses is maximum for the pro-
cess withwn=2 is indicated with ¢ , for the process
with®=1.5 is indicated with +. We assume that the
number of the pulses measured in the adjécent inter-
vals at the same Tg is about a half of the maximum
number. In fig. 5.23 the shaded intervals are the in-
tervals where the resulting total number of pulses is
maximum. The slope of the line through these points
has a value ® with 1.5 < ® < 2. The same result can
be found for the frequency-density functioh.
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(D2) For low p values one process dominates, e.g. the pro-
cess with w=2, while for hlgher p values the other
process dominates, so in this example the process with
®=1.5. Just as in (1), this also gives a slope w be-
tween 1.5 and 2. .

In both cases (1) and (2) the value of w of the sam-
ple can vary between 1.5 and 2. We found such a behav-
iour in 4 films; of each film two specimens were mea-
ured. Five samples showed a % value between 1.5 and
2, the remaining specimens of these films had w values
of either 1.5 or 2.

(E) In fig. 3.7 we see that three films possess values of
% around 1.3. All ten specimens of these three films
which were measured show W values around 1.3. An ex-
ponent w x 1.3 can be obtained in two ways:

(E1) As explained in (D) this can be caused by the fact
that during the reversal jumping processes withw=1.5
and w=1 both are important in these films. However,
the model of sec. 5.4, which gives w=1, can not be
applied for a jumping process with w=1 in a large
range of p and Ty values.

(E2)Another possibility is that apart from the relation-
ships between p and IB’ which are treated in secs.

5.4 to 5.7, a relationship between p and Ty can be
present in the films, which gives % =z 11/3
Until now we found no theoretical model which
can account for a w value of about 1.3 in either way.
We now pay some attention to the three samples
(d =5758, 6308 and 7358) in which values of . around 1.3
are found. The film w1th d =735% has values of the coer-
.c1ve field Hc( ~ 130Am ) and the anisotropy field

H ( 360Am ) which are often found in our films. The

two films with dm=6308 and 5758 are the only ones in our

investigation which contained an additional amount of

10% Co (see sec. 2.2.1). The uniaxial anisotropy of the

films is therefore very large ( > 1600Am_1), resulting in

walls with a very large cross-tie density [5. 3] (see fig.

2.7). The cross-tie length Ct is, however, small (“‘2ﬂm
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[5.3]) and equals the distance between adjacent cross-
ties. Hence the walls can be pinned by the inclusions
over a larger area than with walls in a low (uniaxial)
anisotropy film (with a smaller number of cross-tie of
larger Ct)‘ In this case the wall will contain about all
pinning centres within an area of width Cy around the
wall. Furthermore a high density cross-tie wall has a
larger stiffness than a low density cross-tie wall. It
is striking that we have found these values of % in the
films with a high anisotropy which show a characteristic
magnetization behaviour. Of all 23 films with different
specifications 21 films have a uniaxial anisotfopy field
Hy between 300 and 600Am~ 1. In only one film (7358 thick,
HK = 360Am_1) did we measure a X value of 1.35 (two spe-

cimens of this film were measured).

From the previous part of this section it is evident
that the three models of the secs. 5.4 to 5.7 present a
description of the Barkhausen process during quasi-static’
reversal of the magnetization in thin Ni-Fe films. Perhaps
it is also possible to describe the relationship between
jump size and duration with similar models in samples with
a three-dimensional. growth of the domains. Such a relation
between p and TR has already been measured by some authors
in those samples [5.18]

5.8. CONCLUSIONS

In this chapter we have presented some models for the
Barkhausen effect in thin Ni-Fe films; The comparison be-
tween our theory and the experiments shows that it is pos-
sible to describe the wall jumps and the relationship be-
tween p and g with simple models. In samples of all
thicknesses large wall jumps can take place, which follow
the relation p « s for large p values. In general in
thick films, dn = 9008, the process is completely deter-
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mined by wall pinning in the direction of motion and by
stiffness along the wall (p « IB2), while in thinner sam-
ples the process is mostly stiffness dominated in the di-

rection of motion and pinning dominated along the wall

1.5y,

(p « Ty In some samples these two processes are both

equally important. Comparison of our wall jumping models
with the experimental results shows that in general the

measured value of w gives information on the wall struc-
ture present in the sample: ™w=2 corresponds to a Bloch-

wall and w=1.5 to a cross-tie wall.
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6. BARKHAUSEN NOISE SPECTRA.

6.1. INTRODUCTION

A commonly used method for investigating the statisti-
cal properties of é physical process of a more or less
random nature is the measufement of their power spectrum.

In many cases, the process can be represented by a sequence'
of random pulses.

Often one considers a pulse sequence with an average
number of v pulses per unit time. All pulses have the same

shape g(t) and amplitude h; the pulse size p is defined by

@

p = h J g(t) dt (6.1)

The occurrence of any pulse is assumed to be independent of
the occurrence of other puises. The shot noise in a vacuum
tube is a physical process which behaves as described above.
The resulting power spectrum S(f) has the form [6.1]

2
S(f) = v s(f)+ vip Blf) (6.2)

where So(f) is determined by the Fourier transform Go(f)
of the individual pulse

© 2 5
. -
Sf) = | f hg(t)exp(—Zth]dt = h"G(f)G () (6.3)
- Q0

The second term of equation (6.2) represents the contribu-
tion of the de-component of the pulse sequence; &(f) is

135



the Dirac &-function. The dc-term will be omitted in the
following treatment.

General expressions for the power spectrum and the
correlation function of random pulse sequences have been
derived by different authors [6.2-6.7] . Arbitrary fre-
quency-density functions of © (i.e. the time period pre-
ceding or following a pulse (fig. 6.1)) and h, and randomly

u(t)

T 3
h
y/4 n I

/7
7 oo t
TBJ —_—

Fig. 6.1. Definition of the pulse parameters.

varying pulse éhapes g(t) were taken into account.
Mazzetti et al. [6.3, 6.4 ] have calculated the power
spectrum in the case of a complete correlation between
the amplitude h, and the time Gj of the form hj=h(6j).
Heiden [6.7] has extended the theory further by consider-
ing the general case of a combined probability density
function +vy(8, Tys h) which permitted a coupling between
the pulse parameters, amplitude h, time duration T and
the time period 6 preceding or following a pulse; he
assumed that the shape function g(t/ Tg) was the same
for all pulses.

In sec. 6.2 we shall derive the form of the power
spectrum for pulse sequences with a relation between the
pulse size p and the pulse duration Th [6.7] . In our
derivation we assume that the pulses occur independently
of one another which is a simplification of the actual
behaviour (see sec. 3.7). The same case is also discussed
by Lieneweg [6.8] . In sec. 6.3 we apply the results of
sec., 6.2 to the Barkhausen effect in thin filmﬁ. The meas-

ured frequency-density functions are substituted into
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the equations found in sec. 6.2 and we investigate the
influence of the different parameters on the slope of

the noise spectrum. In sec., 6.4 the calculated and meas-
ured noise spectra of three samples are discussed. Further-
more we compare in this section the measured and calcu-
lated slopes of the frequency spectra of a large number-of
films [ 6.9 *].
cies are also shown as functions of the film thickness.

The measured slopes and cut-off frequen-

6.2. THE FORM OF THE POWER SPECTRUM FOR PULSES WITH A
" RELATION BETWEEN p ‘AND T

B

We will derive here the power spectrum of a sequence

of pulses with the following properties [ 6.7, 6.8 ] :

(a) the pulse sequences are stationary and ergodic;

(b) the parameter values of the successive pulses are
independent of one another;

(c) the shape of the j-th pulse is shown in fig. 6.1 and
can be déscfibed by

j-1 -1 -1
hglt- 261 for Zo<t<rty + 26
| =

= BIJ i=1 i
ult) =
J 0 elsewhere (6.&)
® .
with jgm dx = T (6.5)

o

(d) we only consider the_flhctuating part, u(t) -<u(t)> ,
of the signal;

(e) the pulses occur independently of oné another, we con-
sider thus a Poisson process.

z Preliminary results of measured noise spectra have been published
in: N.J. Wiegman, "Barkhausen effect in magnetic thin films:

Expertmental noise spectra", Appl. Phys. 12, 1977, p. 157-161.
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A sequence of N pulses in a time period T can be de-
scribed by

ult) = 2 ul(t) =2 h glt-6 ) [v] (6.6)
j J j J ) J

j-1
with e,- . ‘21 e, (6.7)
1=
With the properties (b) to (e) we find for the power
spectrum S(f) of the sequence of independent pulses
[ 6.10, 6.11]

S(F) = 2 UlIUNE) = 2.5 h26.(f) 6™f) (6.8)
T ET I A

where U(f) is the Fourier transform of u(t) and G(f) the
Fourier transform of g(t). A large variety of pulse shapes
g(t) all give a spectrum Sg(f) which can be approximated
by [6.11]

th

Sglt) = 2 6(f) Gg"(f) = _—Bz . (6.9)
1+ (zmtB)

Eq. (6.9) is exact for a pulse shape g(t) = exp (-t/ IB).
So the power spectrum S(f) of the pulse sequence becomes

hz‘[:2
S(f) = 2 2 _ i "Bi [st] (6.10)
T 2 : °
1+ (Zth‘CBi)

or, using the pulse size ;o expressed by the formula:

a
P, = / h glt) dt [VS] (6.11)
[e]
one finds
s(f) = 2 2 i . 6.12)
L 1+ (2TTfT :F‘ o

B

The number of pulses per second is given by N/T=V, Using
the probability density function pr(p, ty, 8) of the

138



pulse parameters p, Ty and 8 eq. (6.12) can be written as

e o]
2
S{f) = 2V ]// m(ptgeq p ddeBdG (6,13)
. (o]

1 (2mfT ]

We consider the case that p and IB do not depend on 8.
Eq. (6.13) then becomes

S{f)

o0 .
2
2V // prip, Tg) __ P dp dtg (6.14)
o 1+ (2TfTg) - _

p2 pripTg) dp dTg  (6.14a)

"\8

[+ 2]
=O1+(2TEfT,]

The mean value of p2 for a given value of Ty is given by

2
p pr(p,T.B) dp

J
< pz(T,B) > = ; ' [V s] (6.15)

prip.Tg) dp

Substitution of eq. (6.15) in eq. (6.14) gives

® -2(T, ) 2
S(f) = 2V / < Pltgl> prity) d1g [vis] (6.16)
J 1sl2mity)

The low frequency limit S(0) of S(f) for this case becomes

®
S{0) = 2V f < pz(IB) > thB) dig [st] ; (6.16a)

(o]

Equation (6.16) represents the power spectrum S(f) of a se-
quence of v pulses per second; the‘pulses are independent
of one another but there is a relation between the pulse
size p and the pulse duration Tge
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6.3. THE BARKHAUSEN NOISE SPECTRA OF MAGNETIC THIN FILMS

First we will show that eq. (6.16) can be applied to
the Barkhausen effect of thin magnetic films. In sec, 4.3
[ 6.12 ] we showed that the Barkhausen effect in thin films
is a stationary process. Furtﬁermore we take the process
to be ergodic. Using the Barkhausen Computer Interface we
also looked for a possible correlation between the param-
eters of two successive wall jumps; no relation has been
found. Since only a relation has been found between p and
TB of a jump the combined probability-density function
pr (8, Ths p) can be written as (secs. 3.4 and 3.7):

prip,t5.0) = Prip.tg) pri®) : (6.17)

Fig. 6.2 shows a computer plot of pulses measured with the
Barkhausen Computer Intérface. The pulses have an irregular
shape as explained in sec. 1.4 (see also fig. 1.4). A large
.variety of pulse shapes g(t) all give a spectrum Sé(f)

Vind ( t)
(V]

N

I/4
tls]—

10ps

Fig. 6.2. Computer plot of pulses measured with the Barkhausen Computer Interface.

which can be approximated very well by eq. (6.9): the
spectrum S-(f) is only slightly dependent on the pulse
shape. Therefore we can use for the power spectrum of a

Barkhausen pulse with amplitude h; and time duration t

) B,i
the equation
S ' hf téi p?
ui ® . 2 - ! 2 (6-18)
1+ (2rchB‘i) 1+ (ZEftBli)

with (see fig. 6.1)
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p. = f ult) dt (6.18a)
[o]

The shape of the frequency-density function of 6 shows that
the Barkhausen jumps are not independent of one another.
In our samples we have that:

V<> << 1 (6.19)

The measured values of vV <lp> range between 1/30 and
1/1000; for most samples this value is about 1/300, so
overlapping of pulses can be neglected. In the calcula-
tions we take, therefore, the pulses to‘be indepen-
dently of one anoppér. Thus the Barkhausen process sat-
isfies the properties used in sec. 6.2 for the derivatioﬂ
of the power spectrum (eq. 6.16). '

In our case we are interested in the noise spectral
density per hysteresis loop. The time duration of a hys-

teresis loop is denoted by T ; multiplying eq. (6.16)

loop
with Tloop gives the noise per hysteresis loop. Using then
= (6.20
Tloop v opritg) zltg) 20)

in which z(TB) represents the frequency-density function
per hysteresis loop of the pulse duration TB’ gives for

the noise spectral density of the Barkhausen noise per hys-
teresis loop the following formula:

2
: (1,)
err = 2 [ 22 T8 % aqngar, [ VEs?)

(6.21)
0 1+ (2TfT F

B

2

For the mean value of p (TB) at a given value of g

we take (see sec. 3.U4)
2
< p (IB) > = pw(IB) : (6.22)

The measured frequency-density function of T, has been

B
discussed in sec. 3.6 and is given by the empirical rela-

tion[6.13] of eq.(3.34). So for the noise spectrum of
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the Barkhausen effect we find with = ftB

f(t)
2')(.-61
E(f) = 2K° f A dm
' X—1;141 1 ch
flt,) * “
B'min
(6.23)
fTalmax 2% -5,
+ —DZ._ f dT]
fZ'K-5241 1+4T52T]2
f(tB%

In most cases z( T B) can be accurately measured for large
values of Ty and we may write

5, - 6 .
D, = D, (Tg), (6.24)

We assume that in all other cases eq. (6.24) is also
valid. Hence eq. (6.23) becomes '

f(t )
2 1 ZX 61
E(f) = 2D1K d'n
: ¢ 2701 1+ 4 on?
f(.t )mln
(6.25)
f(T
. )52-51 Talmax 2w -5,
+ Bo _D___;___‘dn
fFlTglo
or written in a convenient form:
E(1) = 20, K2 { Lif) « 1060} (6.25a)
The integrals of eq. (6.25) must be calculated
using a numerical integration method. First we shall
discuss the function
1 2 g2 0
Cs e | Ty 91 where =0T (6.26)
f 1+LTE_T]
Ty

which appeared in eq. (6.25). If the integration bound-
aries are LE 0 and n2 =« the frequency dependence of
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I is fully determined by the values of & and ®

I « .t (6.27)
f21-6+1

The calculated slope (2% - 51+1) varies between 1 and 3
for the measured values of % and 61.

If n,=f TB,l and M, = f TB,Z’ then the value of
the integral
T
f{ Bb nzx—ﬁ )
f —— dm (6.28)
flrg), 4T
Te'1

depends on the frequency f and I is no longer proportional
to

1
f21—6+1

If T o >> Tg.1° then I is almost independent of the
> >
lower integration boundary. We have numerically calculated
- -8 - ~4
tB,l = 1Q 5, T B,2_2X10 S
and f ranging between 1 Hz and 1 MHz with 2w -0 +1 as param-

the dependence of I on f for

eter. We can represent I as a function of f by the follow-
ing equation:

Lo 1 (6.29)
1+ (t78)€
where n.depends on 2 -6+1 as is shown in fig. 6.3, In

this case f does not equal (211, 2)‘1 but f_ exceeds
_1 3
(2TETB,2) agd depends on n,

Fig. 6.3. Slope n as function of 2k — & + 1.
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Let us now pay attention to the Barkhausen noise

~ spectrum given by eq. (6.25). The first term Il(f) re-
presents a summation of spectra over a wide range of tB
values. We can apply the previous discussion to I (f) the
slope in the higher frequency range (f:>{2Tt(’EBlJ Yean
be found from fig. 6.3. The contribution of the second term
Iz(f) of eq. (6.25) represents a summation of spectra over
a small range of Ty values. This gives a spectrum with a
slope 2 in the higher frequency range,f:ﬁgxt(tB)orl. The
influence of the integral I (f) on the spectrum given by
Il(f) is determined by the slope of the quantity I, (f) for
f>>{2TE(t ) }1 and by the ratio I,/I, for f <<{2W (T )}
ie. I, (o)/I (0) with

2%-05+1
(TBhnux 2

(Tg)s

12(0) 2%-51+1 [

-1 6.30)
11(0) _2%—52-»1 ] .2

For the range of our measured %, 61 and 62 values,
the calculated noise spectra can be represented accurately

by an equation of the form

2
E(f) = E(0) [ v2s?] (6.31)
(f/f5) €
where fo is the cut-off frequency of the noise spectrum.
In fig. 6.4 we have plotted the calculated value n, as a
function of 61 with W as parameter choosing 52=2.5x 51,

-8 _ =4
(T,B)mln 10 s, (tB)O = 2x10 s and (IB)ma —2x(tB)o. All
T L ] T f 7 T
Ne
20 \ i
16 % _
. " Calculated slope ng as a function
150 of 81 with k as parameter.
12} 138 T_
1.25 i
08 |- .
i 1.0 ]
04} i
,Il [ 1 1 | | L ] ]
0 1.6 20 24



spectra are calculated for frequencies ranging between

10 Hz and 1 MHz. From fig. 6.4 it follows that dépendent
on the value of the parameter W the variation in the value
of n, is about 0.7vto 0.2 for a variation of 61 between
1.6 and 2.4. The calculations show that the influence of
the slope 61 on the slope n, of the noise Spectral density
_(f:e>fo) decreases with increasing« .
Furthermore we see from fig. 6.4 that in our case (for

1.6 < 61A< 2.4) iow'values of nc(s 1.3) can only be ob-
tained with low values of % (g 1.25). High w'values (= 2)

always give rise to high values of n, (1.8g n_ < 2.0).

c

6.4, COMPARISON BETWEEN CALCULATED AND MEASURED NOISE
SPECTRA

We have plotted E(f), the noise spectral densities
averaged over L0 to 60 hysteresis loops. Furthermore the -
noise spectrum is normalized to a film thickness of
1000 R (sec., 2.4, eq. (2.5)). The experimental fre-
quency-density functions to be used in the caleulation of
the noise spectra were obtained by measuring 10 to 30 hys-~
teresis ioops (see sec. 2.5),

The measured noise spectra can be described by an
equation_of the form

Elr) = elf [v2s2] (6.32)
1T+ (f7 1)

with fo the cut-off frequency, n the measured slope in the
‘high-frequency rangg.(f>e>fo) and e(f) the level of the
spectrum in the low-frequency range (f<<:fo). In the meas-
ured spectra of some samples e(f) is a slowly decreasing
function of f. The measured spectra of other samples have
a constant density e(f) = E(0) for f<< £o- In the calculaged

spectra (see eq. (6.25)), however, the noise spectral density
always has a constant value for f << fo.
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After these general remarks we will compare the meas-
ured and calculated spectra of three samples. In the figs.
6.5 upto 6.7 we present the measured and calculated noise

spectra of samples which are 2380 ﬂ, 630 % and 420 R thick.

10_12 T = T
E(f) SAMPLE : B 1973
[VZSZ] HC = 444 A/m
Hg = 576 A/{m
N dy, = 2380
T o T e —e "
“\:i'\ y
\ “\
‘NN
N\
-14 \ \\\
10 \ N\,
2 A
\
+ : measured lcurvel)
| zlel=39 10" curve
0°F - (tglg = 7x10° . (Tamax)=2(Ts)o
n =2
=i [1g)0=35x10" . [Tghnox=5{Taly }cwve
61 =22 ; w=2 3
-16
. 10 [ 1 [
10 10? 10° 10*

flHz] —»
Fig. 6.5. Measured (1) and calculated (2 and 3) spectra of a 2380A thick sample.

Fig. 6.5 shows the calculated and measured noise
spectra of a sample which is 2380 & thick. Using the meas-

ured values of % , 61 and ('EB)o which are w =2, 61:2.2
and (T B)o = 7x10_55 and taking 62 = 2.5 61 and '
('EB)maX = 2(1T B)o’ the shape of the measured (curve 1)

and calculated (curve 2) spectra agree very well. For the
value K2D1 = 3.6x10"° the levels of the calculated and

measured spectra are in good agreement in the low-frequency

however, a
deviation by a factor of about 3.5 is found, as is shown
in fig. 6.5. The value of N

is lower by a factor of about two than the value of f

range. In the high-frequency range (f > fo),
of the calculated %pectrum
in

the measured spectrum. The frequency- dens1ty functlon of
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té is inaccurate for small values of g (see section 3.2).
In this sample the range of 13 values is very small (about
one and a half decade) Therefore the inaccuracy in the
frequency-density function of Tg can give rise to a rather
large error in the measured values of D1 and 61. The in-
fluence of the error in 61 on the noise spectrum is very
small becausen= 2 (see fig. 6.4). The number of jumps with
T5 % 0.5 (1), is so small that the density function
comes inaccurate. This causes an error in the calculated
value of fo. Comparison between the calculatéd and measured
values showed a factor two difference. The calculated value
of fo in this sample can be fitted to the measured value by
taking the value of (‘CB)O to be smaller. In order to pre-
serve the agreement with the measured function of z( tB)
For the third

max S(IB)O and

. This calculated spectrum (curve 3 in fig.

one must also increase the value cf (_CB)max'
spectrum, we use (Tg), =.3.5x10_5s, (t«B)
KD, = 1.7x107% )
6.5) agrees better with the measured spectrum (curve 1)
than does the calculated spectrum represented by curve 2.
Fig. 6.6 presents the calculated and measured {curve 1)
noise spectra of a 630 2 thick sample. Using the results of
the measurements of the frequency—demsity functions of the
pulse parameters we calculate.the noise spectral density
shown by curve 2 in fig. 6.6. Here we used K D =1.3x%x10 -1l
to fit the calculated to the measured (curve 1) noise spec-
tra in the high-frequency range. Good agreement between
measured and calculated slopes is found, as can be seen in
fig. 6.6. The calculated cut-off frequency f is larger by
a factor of about 6 than the measured value of f Increas-
ing (-cB)o with a factor 6 and decreasing &, w1th 0.1
results in a calculated (curve 3) spectrum whlch shows an
excellent agreement w1th the measured one. In this case we
use K° Dy = 8x 10 11. The adJustment of 6 is within the
accuracy of the measurement of z(< ) (see sec. 3.6). Be-

)

cause wall jumps with a large time duratlon (T B~ (1 B)o
are scarcely present the statistics for large values of

T (~ (T B) ) can show large errors. For two other samples

of the same film (630 %) the measured value of (T is

B)o
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SAMPLE @ S8437

He = 272 A/m
Hy = 1600 A/m
6ok dn=630A
\\
Elf} Na.
V&) 1-N\s— 3
\\
10" AN -
— \
<\
N
10® | 1

+ : measured (curve 1)

o - zltp)=437x10° T2%¢ \
075 (tplg=bx10* , (tghox=lTaly | 2 \\ i
%=12 +\'\§
- (tg)y=25x10° (tB)mo,‘:(TB)o} curve ]
B1=22, w=12 3
10-17 [ S L L
10! 102 103 0% 10°

f [Hz}] —

Fig. 6.6. Measured (1) and calculated (2 and 3) spectra of a 630A thick sample.

107%s. In the sample presented in fig. 6.6 at the (digital)
measurements of the.frequency—density functions only 24%
of the remagnetized volume is measured: (Ptot)m X QfZM Piot
(see sec, U4.2), Therefore it is not surprising that a large
discrepancy is found between the curves 1 and 2 in fig. 6.6.
Fig. 6.7 presents the noise spectra of a 420 R thick
sample being a wall stiffness dominated one so that w=1.5.
When the calculated spectrum fits the measured spectrum in
thekﬁgh.frequency'range, the calcplated noise spectral den-
sity in the low frequency range (at about 10 Hz) is about
a factor of 2 too large using the measured frequency-density

functions. By taking (<t B) = 2('cB)O instead of the meas~

max
ured value (T p) . = 5( Tgp), @ good agreement between

measured and calculated spectra is found in the investiga-
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Fig. 6.7. Measured {1) and calculated (2 and 3) noise spectra of a sample with a thickness
of 420A.

ted frequency range of 10 Hz to 100 kHz.

In general the agreement between measured spectra and
spectra calculated with'the'measured density function, is
very good, as is shown in figs. 6.5 and 6.7.

We have shown that it is poss1b1e to obtain agreement
between calculated and measured spectra by adjusting the
measured frequency- denslty functlons within the 1limits of
accuraey of'the expefimental procedure. We will now make
some general remarks abeut this point and therefore we
shall distinguish the samples in two groups with regard to
the spectra: (a) samples with e(f) = constant and (b) sam-
ples for which e(f) varies slowly with frequency.
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(a) This concerns samples where the measured noise spec-

’ trum in the low-frequency range (f<x:fo) has a con-

stant value. Here the agreement of the calculated spec-

trum with the measured spectrum can be obtained by ad-

Justing ( IB)O; In this way we can ensure that the

measured and calculated cut-off frequencies are equal.

The level can be fitted by choosing a proper value of

K2D1 (see figs. 6.5 and 6.6),

(b) Samples, in which some frequency dependence of the
noise spectral density is found in the 1ow—frequehcy
range. In these samples we can adjust the measured and
calculated spectra by varying ( tB)

the value of ( IB)O.

max and by changing

Fig. 6.8 shows the measured slope n of all samples as
a function of the film thickneés dm [6.9]. A comparison
between the calculated slope n, and the measured slope n is
shown in fig. 6.9 for all our samples. The calculated slo-
pes n, were determined with the aid of the curves of fig.
6.4, thus all for the same (T5)gs B8 max*
ations of ('cB)o and ( T,) between the different samples

B max
were neglected, In spite of the errors thus incurred and of

and (1T The vari-

T T T =T T
x
221 s
‘n x x
x
" x § x —
x )(XX x x X .
18F = x x * .
g‘ x : x x % x
| > x X x x
x ]
x x
x
14 -
x
x -
| %
10 x J.

;I 1 I | | L
500 1000 1500 2000 2500
dn [A] —>

Fig. 6.8. Measured slope n of the noise spectra as a function of the film thickness.
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the error in the measured value of 51 and 52 the value of
n, and n agree very well. In three samples the deviation
between n, and n is larger than 0.3. These samples are
macroscopically inhomogeneous samples (sec. 2.2.2) or they
show large irregularities in the magnetization process.
The measured slopes of the largest part of our sam-
ples varies between 1.6 and 2.0 (fig. 6.9). Only a small

number of samples show a slope n ranging between 1 and 1.5.

141 x/x g x _

Fig. 6.9. Comparison between the measured and calculated slopes of the spectra.

The value of 51 is not the same for the different samples
and therefore the measured value of the slope n does not
decrease with decreasing % (see fig. 6.4). Thus the value
of n is not an unequivocal measure for the value of =«
[6.12 ] . This corresponds with the experimental fact that
in most samples in which the value of ® becomes smaller
the value of 61 decreasés also. Fdr most samples with
n<1.5we find n > 1.6 (figs. 3.7, 3.14 and 6.4).

Fig. 6.10 shows the measured cut-off frequency fo as
a function of the film thickness dm. We will show that
fo is strongly dependent on the domain wall mobility Py of
the films. For this purpose we will consider the value of
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Fig. 8.10. Cut-off frequency f, and mobility u as a function of d;,.

fo of all our samples: in different samples of one film
and in different films in which M varies by a factor
of about 10. We were not able to measure the mobility in
our samples. We assume that the samples of one film have
about the same mobility and that in our films the mobili-
ties vary as a function of the film thickness as found by
Middelhoek [6.14],

From eqgs. (5.17) and (5.20) it follows that

« — Fw (6.33)
p.(Hcp—Hcl)

T

where u is the wall mobility, (H ) the driving field

cp cl
and X the wall displacement. For fo we have the relation

fo o0 — 1 [Hz] (6.34)
2wt gl

In general the measured values of fo varies by a factor of
two at the most in samples of the same film, as can be seen
ip fig. 6.10. Thus we may conclude that in different sam-
ples of the same film the range of values of (Hcp—Hcl)/xw
varies only slightly. - Let us now assume that this is
also true for different films. Then from eqgs. (6.33) and

(6.34) it follows that, if J shows .a certain dependence
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on the thickness, then nearly the same dependence must be
found for fo. In fig; 6.10 the domain wall mobility H is
also shown as a function of dm, as measured by Middelhoek
[6.14] (compare fig. 2.9). In fig. 6.10 we see that the

band containing the wall mobilities closely resembles the

band containing our measured cut-off frequencies.

6.5. DISCUSSION

In the calculations we assumed that the pulses occur
independently of one another, which is not in agreement
with experiment. In spite of this simplification of the
Barkhausen effect we find in the calculations a-good agree-
ment with the experimental results when we use the other
results of the statistical analysis in the time domain.

The measured one- and two- dlmen31onal frequency-den-
sity functlons give values of % and 61, which were used
in the calculation of n,. For small values of w and large
values of 6 the influence of the inaccuracy of w and 6
on the value of n, is strongest, as follows from fig. 6.“.
Furthermore a deviation in w has a larger influence on n,
than has a deviation in 6,. For a large range of w and 61
values the measured and calculated slopes, agree within 0.2,
Hence we conclude that 61 and w were determined accurately
from z( T ) and z(p, T B)'

In general a simple relatlon between n and ® has not
been found. The values of n is almost completely determined
by % and 61, whereas in our samples 61 varies between 1.6
and 2.4. However large values of w (X 2) are always related
to values of n around 2. A decrease of W at a fixed value
of 61 gives a decreasing n. From the relation between n,

% and 61 we conclude that the value of W can be estimated
from a measurement of n and 61. In chapter 5 it has been

shown that w 1s determined by the mechanism of domain wall
motion. Thus from the measurement of n and 61 we can find

the mechanism of domain wall motion.
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In the noise spectra the calculated and measured cut-
off frequencies differ by a factor of about two. The cut-
off frequency fo is proportional toP_and also depends on

the range of values of (H Hcl)/xw” In different samples

i ep
differences are found in the strength and number of pin-

ning points, the number of walls, the wall structure, the
wall stopping méchanism, etc. They all have an influence

on (Hcp—HCl)/xw. Experiments performed on a large number

of samples show that a plot of the mgasured values of fo

against the film thickness closely resembles the plot of

pal against d,- Thus the differences mentioned above only

slightly affect fo
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APPENDIX 1:

DATA OF THE INVESTIGATED

SAMPLES.

film thick-| sample coercive anisotropy

ness dm(ﬂ) number field HC(Am-l) field Hk(Am_l)

2800 636.45 56 624
B197.2
B197.3

2380 B197.8K Ly 4 576
B197.27K
B197.28K
B199.19 '

2030 B199.21 76 560
B194(2) .4

1790 B194(2) .13K 100 520
B198.18K

1580 B198.29K 136 560
B194(1).11K

1230 B194(1).46 148 512
B19U(1)f54
B380.24

1080 B380.30 128 400
S9u1,47

875 S941.48 104 368
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a (%)

sample

number

Hc(

Am~

L

Hk(Am

)

840

B192.
B192.

9K

- 272

560

805

S954.
3954,

49

152

hoo

805

B190.

B190.

50

180

5hh

735

sS952.
8952,

12
§4K

136

360

700

S782.
sS782.

14
43

168

376

630

S843.

S843.
S843.

16
17

272

1600

595

S951
S951.
S951.

.10

22
23

72

400

575

S842.

S842
s8u2,
S84z,

15

«39

4o
b1

280

1760

525

S724
S724.

.38

51K

124

h16

455

S725.
S725.

36
42

108

448
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-1 -1
dm(ﬁ) sample Hc(Am ) Hk(Am )
number
B340.37
455 B340.52K 96 4he
450 B193.31 240 640
~ B289.34
437 B289.35 144 4u8
S781.20
420 $781.33 124 32
3723.32
420 S723.53K 104 448
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APPENDIX 2: THE RELATIVE ERROR IN Piot-

The assumed actual frequency-density function of p,
z'(p) and the measured frequency-density function z(p)
given by eqs. (3.30) and (3.24), respectively determine

the relative error of Ptot:

.

P’ - P
_tot tot (A2.1)

ptot

On substituting eq. (3.24) in eq. (3.28) for a, #2 and

& 5> 2, we find

P - _M
tot 2-a,

2 -0y 2 -0 A 2 -0y 2-G5
o " Pmin ] *+ 2 ‘ngx - P ’ (A2.2a)
2-0,

and by the use of eq. (3.28) for’a1:2, we can calculate:

2-a 2-a
. ) Po . A2 2 2
Prot = A1l”(pmm>, 2-a, !pmux Po (A2.2D)
Correspondingly for (1& # 2 we find for Péot:
o A 2-0(:1 , 2-CL'1 A 2 -0 2—(12
ot = 2_La{ﬁa = {Pmin! ’ * 2_52 {pmcx “ Py - ’ (A2.3a)
)
and for ql = 2:
p ; 2-Q 2-Qjp
P = P A2 -
tot ~ A1l”(3'°.—> ' T ' max ~ Po , (A2.3b)
min &2 k

. ¢ .
The relative error of Ptot for oy # 2 and a, ¥ 2 is

given by
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‘ 2-Qq1 . 2-Q4 2-a 2-aq
al {po - (Prmind ]" A1 {po . Pmin ’
P’ -P 2- 1 2'@1
tot - tot = S 7
’ g 2-a . 2-d 2-Q 2-a
Rot A ip 1 (o ) 1} . Ao ipm xz_ 2}
2-o 1 ° 2-a, @ °
(A2.4a)
and for (11' = 2 and A0# 0 one finds
: . . 2-Q 2-Q
, A In p,o R, A1 p 1- p_. !
Pot~ P ! Pmin 2-Q °© min
tot” 'tot = 1 (A2.LDp)
’ . - 2-Qa :
F;Ot A1 ln FiO + A2 ‘pz 2_ p 2]
Prin 7-a, max o
The contribution of the term
A 2-Q9
—2 P, . (A2.5}
CLZ- 2

to Ptot varies between 0 and about 15%; we shall ignore
this term. With the aid of egs. (3.31a), (3.31c) and
(3.32) we can deduce that

“ .- P 2-ay ,  2-af) -1
tot™ 'tot - (AT 1} x
Pl (o] min
tot (A2.6a)
2—(1’1 , , 2'a’1 , AC(
, 2~ 2-Q9q) f f ;
o R R A R b I < = pm'") -1]
2—@1*AC‘. 2—CL1+ Aa po
1 1
for a1¢ 2 and a4 # 23 for ay; =2 and Aa# 0 one finds
PP _P .
tot” tot - 1 - 1 1 - (fo Pmin Aa
- PUETNT VRN 5 (A2.6b)
tot Aa hmﬁg_) o
Pmin
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APPENDIX 3: PULSE OVERLAPPING.

In this appendix we will estimate the probability
that pulses overlap.
To simplify the calculation we make the following as-
sumptions which agree not with the experimental results
of the secs. 3.6 and 3.7. .
1) All pﬁlses have the same duration 1 , where

T = < 1> and T < T, (A3.1)

Trev is the time duration of the reversal of the magnet-

‘ization of the sample. In all measurements we find

2 O z(©,) AB,
k K >> (A3.1a)

jZ Tg,j Z(‘IZB'j) AtB,j

This ratio varies between 30 and 1000, for most sam-
ples it is about 300.
2) The pulses start at random during the rever§al time.
The number of Barkhausen pulses per revgrsal is Ntot/2
with

Ntot /2 > 1 (A3.2)

Here Ntot is the number of pulses per hysteresis loop.

For a time interval ta with

te 7 Tray << 1 (A3.3)
the probability that k pulses with length t lie entirely
or partially in the interval ty is gilven by the probabil-
ity that k pulses start in the interval t +7T . Accord-
ing to [A3.1] this is given by

(Mtge 1))

exp{—k(tq+t)} : (A3.0)
k!

P (k,fq+T) =
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where SN = _tot” © _ (A3.5)

The probability that k pulses occur in the interval T,
i.e. k pulses start in the interval 2t , follows from
eq. (A3.4)

k.
P(k,21) = 12ZAT)  aypl-2AT1) (A3.6)
k!

If k > 1 then pulse oyerlapping occurs in the time in-
terval 1 :

Plpulse overlapping) = P(k>1, 271} (A3.7)

where Plk>1,2T) = 1- Pl0,2T) - P(1,271T) (A3.8)

so that we find
Plk>1,2T) = 1 - (1+2XAT) expl-2XT). (A3.9)

A more important quantity is the ratlo between the proba-
bility that pulse overlapping occurs in the 1ntervalt and
the probability that only one pulse start in the 1nterva1
21 . For some samples P(k > 1,2T )/P(k = 1,21 ) have been
calculated. The results are presented in table A3.1. All
pulses are assumed to occur in the steep part of the hys-

teresis loop; so we use for ’I‘r a typical value of 0.2s.

ev
TABLE: A3-1
sample|d (8)] z( Ty) T, <Tg>=T A %,’:;))
B197.3 [2380 3x1o'1‘ IB_2°2 7x1072 7.1.x10-6 3700| 2.6x1072
B289.35| 437 | 5.hxt0 ¢ 70 2x10™ | 1.1x1075 | 2000| 2.1x1072
$725.36| Ls5 2.hx1o'2-cB'1'6 5x10™" | 2.6x1070 | 250 6.3x1073

The value of<:IB> is determined from the measurements of
. -6
T = . =
z( B) using 62 0 and (IB,det)mln 2x10 “s. For Ntot we
used the measured value. '
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In the Barkhausen process a large number of pulses

oceur with IB < (‘EB,det)min' Therefore we have calcula-

ted also P(k > 1,27 ) using a minimum pulse time IB of
10_7 s. This is listed in Table A3.2 for the same samples
as used in table A3.1.

TABLE: A3.2

X P(x>1,21)

sample <lg>=T Pt .27)

B197.3 | 4.hx10™T | 1.6x10° | L.2x1072
B289.35 | 1.0x107° | 3x10% 3,0x10~2

§725.36 | b.hx107® | 1.6x103 | 7.1x1073

From this simplified model calculations it is clear
that the probability of pulse overlapping is so small that

we can safety neglect this effect in our investigation
(see also sec. 4.4, fig. 4.8).

A3.1 A. Papoulis, " Probability, Random Variables and
Stochastic Processes", McGraw Hill, New York,
1965, p. 73.
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SUMMARY ;AND CONCLUSIONS.

The present thesis deals with an investigation into
the mégnetic Barkhausen effect in thin magnetically uni-
axial films with a thickness larger than 900 R, having a
two-dimensional maghetic domain structure. The_rémagnet
ization process in the easy direction was cauéed solely
by domain wall motion. The Barkhausen process, i.e. the dis-
continuous domain wall motion due to inhomogeneities in
the magnetic material, was studied when the hysteresis
loop was traced in the easy direction. Examination of the
samples used enabled a relationship.to be established be-

tween the Barkhausen noise and the micromagnetic behaviour.

Investigated were a large number of samples whose
coercive field and strength of uniaxial anisotropy were
varied and the film thickness was in addition varied be-
tween 420 and 2800 8. The structure of the magnetic do-
main wall changes with its thickness. Thicker films (i.e.
ones with a thickness in excess of 900 R) contain Bloch
walls with a high stiffness whereas in thinner films
(i.e. ones with a thickness between 400 and 900 8) flexible
cross-tie walls occur. Hence we are able in the samples
to assess the effect of the wall structure on the Bark-
hausen effect. For this purpose we have investigated the
Barkhausen effect both in the time domain and in the fre-
quency domain: the frequency-density function of the
parameters of the Barkhausen_gffect_have been determined
(chapter 3) and the spectral noise intensity has been
measured (chapter 6). ' .
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Our measurements (sec. 3.4) have revealed that there
is a relationship between the time Tg and the size p of a
Barkhausen jump. The Barkhausen jumps in a sample obey a
relationship of the form p a'ﬁ% . In our samples two
values of w , i.e. W =2-and K= 1.5 were dominant. The
experiments showed that in thicker fiims (with a thickness
between 400 and 900 8) usually the value w= 1.5 is
found. From a comparison between the experimentally
found w values with the wall structure (sec. 2.2.3)
occurring in samples of different thickness it follows
that in magnetic films with Bloch walls, the Barkhausen
process can be characterized by = 2 and in films with
cross-tie walls by w= 1.5.

In chapter 5 the process of domain wall pinning is
outlined and models are established for the Barkhausen
jumps of a domain wall. For a process, in which the wall
motion stops due to the finite radius of éurvature of the
flexible wall (sec. 5.5) the model provides the relation
p = K tBl'S (stiffness-dominated wall motion). For a '
process at which the motion of a rigid wall stops owing
to wall pinning (sec. 5.6) if can be deduced from the
model that the relation p = K tBZ must be valid (pinning
dominated wall motion). These models completely account
for the most frequently ocdufring.x,values measured in
sec. 3.4: the cross-tie wall behaves as é flexible one
and hence yield W= 1.5; to the Barkhausen jumps of a
rigid Bloch wall the model of sec. 5.6 applies, conse-
quently, in a sample having this wall structure we find’
n = 2.

Chapter U4 presents measurements of the Barkhausen
jumps along the hysteresis loop which are compared with
similar measuréments carried out on bulk'samples by other
investigators. In thin films the Barkhausen effect along
the loop is almost identical to that in bulk samples. In
this chapter we also discuss the stationarity:of the
Barkhausen noise, which has been inQestigatedffor the
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first time. Our measurements have revealed that the sig-

nal can be considered stationary provided that the sus-
ceptibility is almost constant.

In chapter 6 the measured frequency-density functions
are used for calculating the spectral noise intensity of
the Barkhausen signal. The noise spectra thué calculated
are in reasonable agreement with the measured spectral
noise intensities. From the model of a Barkhausen jump
(sec. 5.3) it can be inferred that the cut-off frequency
fo of the spectrum should have the same trend as a func-
tion of film thickness as the wall mobility P which has
indeed been found experimentally.
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SAMENVATTING EN. CONCLUSIES.

In dit proefschrift worden de resultaten weergegeven van
een onderzoek aan het magnetlsche Barkhausen-effect in
dunne films van nikkel ijzer (80% Ni, 20% Fe). Deze mag-
netisch uniaxiale films hebben een twee-dimensionale mag-
netische domeinstructuur. Het onmagnetisatie proces in de
gemakkelijke richting vindt.volledig plaats door domein-
wandbeweging. Het Barkhausenproces, i.e. de discontinue
domeinwandbeweging ten gevolge van inhomogeniteiten in
het magnetisch materiaal, werd onderzocht tijdens het
doorlopen van de hystere51slus in de gemakkellee richting.
In deze preparaten is het mogelijk een verband te leggen
tussen de Barkhausen ruis en het mlcromagnetlsch gedrag.

Een groot aantal preparaten werd onderzocht waarvan het
coércitief veld en de sterkte van de uniaxiale anisotropy
varieerden. Bovendien varieerde de filmdikte tussen 420
en 2800 8. Als functie van de dikte verandert de struc-
tuur van de magnetische domeinwand. In de dikkere films
(met een dikte groter dan 900 ®) komen Biochwanden voor,
die een grote wandstijfheid bezitten'en in dunnefe films
(met een dlkte tussen 400 @ en 900 ®) komen flex1be1e
cCross- tlewanden voor. We kunnen dus in deze samples de
1nvloed van de wandstructuur op het Barkhausen-effect
onderzoeken Hiervoor hebben we het Barkhausen- effect zZ0-
wel in het tledomeln als ook in het frequentledomeln on-
derzocht: de frequentledlchthelds functles van de para-
meters van het Barkhausen-effect zijn bepaald (hoofdstuk
3) en de spectrale ruisintensiteit is gemeten (hoofdstuk 6).
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Uit onze metingen (par. 3.4) volgt dat een relatie aanwe-
zig 1s tussen de duur IB en de grootte p van.een Bark-
hausensprong. De Barkhausensprongen in een preparaat vol-
doen aan een relatie van de vorm: p-&“cg . In onze prepa-
raten overheersen twee waarden van ®,nl. ®= 2 en % =1.5.
De experimenten tonen aan dat in dikkere films (met een
dlkte groter dan 900 R) de waarde % = 2 en in dunnere
£ilms (met een dikte tussen 400 R en 900 R) de waarde

n= 1.5 meestal wordt gevonden. U1t een vergelijking van
de experimenteel gevonden Y waarden met de wandstructuur
(par. 2.2.3), welke in samples van verschlllende dikte
voorkomt, volgt dat in de magnetische films met Bloch-
wanden het Barkhausen-proces gekarakteriseerd kan worden
door %= 2 en in films met cross-tiewanden door W= 1.5.

In hoofdstuk 5 is het proces van de domelnwandplnnlng glo-
baal beschreven en zijn er modellen opgesteld voor de Bark-
hausensprongen van een domelnwand. Voor een proces, waar-
bij de wandbeweging étOpt t.g.v. de eindige wandkromming
van een buigéame wand (par. 5.5) géeft het. model de vol-
gende relatie p = K té'S (stiffnesstomihated wall motion).
Voor een proces, waarbij de beweging van een ‘stijve rechte
wand stopt t.g.v. wandpinning (par. 5.6) Qolgt uit het mo-
del dat de relatie p = K T g_ moet gelden (pinning-dominated
wall motion). Deze modellen verklaren .volledig de in par.
3.4 gemeten, meest voorkomende % waarden: de cross-tiewand
gedraagt zich als een flexibeie wand en geeft dus W =1.5;
voor de Barkhausensprongen vén.een starre Blochwand geldt
het model van paf. 5.6, in een pfeparaat met deze wand—
structuur vinden we dus % = 2. .

In hoofdstuk 4 zijn metingen van de Barkhausensprongen
langs de hysteresislus gepfesenteerd en vergeleken mét
soortgeiijke metingen vah ahdére 6nderzoekeré aah bulk
samples. Het Barkhausen effect langs de lus gedraagt zich
in dunne films vrleel hetzelfde als in bulk samples., In
dit hoofdstuk is ook voor het eerst de stationairiteit van
het Barkhausen-effect experimenteel onderzocht. Uit onze
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metingen volgt dat het signaal als stationair beschouwd
kan worden zolang de susceptibiliteit vrijwel constant is.

In hoofdstuk 6 zijn de gemeten frequentiedichtheidsfunc—
tles gebruikt voor de berekenlng van de spectrale ruis-
1nten31te1t van de Barkhausen ruis. De aldus berekende
ruisspectra stemmen goed overeen met de gemeten spectrale
ruisintensiteiten. Uit het model van een Bafkhausensprong
(zie par. 5.3) volgt dat de afsnijfrequentie f, van het
spectrum eenzelfde verloop als .functie van de fllmdlkte
moet hebben als de wandbewegelleheld P Dit is inderdaad
experlmenteel ook gevonden,
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STELLINGEN

behorende bij het proefschrift van

N.J. Wiegman

I Het voordeel van de hogere toelaatbare temperatuur in
vermogenskunststofkabels van vernet (cross-linked)
polyetheen t.o.v. gewoon polyetheen moet bij ligging
in de grond vooral gezocht worden in zijn vermogen om
kortsluitstromen en kortdurende piekbelastingen beter
te weerstaan en eigenlijk niet in de hogere toelaat-
bare continue belasting.

- J.Th.J. Beeren, A.F.G. Jacobs, J. Vermeer, G.M.L.M. van de Wiel,
Elektrotechniek 56, 1978, p. 579-587.

IT Magnetisch geladen wanden kunnen hoogstwaarschijnlijk
niet voorkomen in orthorhombische-granaatfilms. Het
feit dat orthorhombische granaatfilms hierdoor onge-
schikt zouden kunnen zijn voor propagatie van magne-
tische bubbles met behulp van geImplanteerde structuren
vormt geen enkele beperking voor de toepassing in
hoogfrequent bubblegeheugens,

- E.H.L.J. Dekker, N.J. Wiegmen, K.L.L. van Mierloo,
R. de Werdt, J.Appl.Phys. 50, 1979, p.2277-2279

- A.H. Bobeck, S.L.Blank, A.D. Butherus, F.J. Caik,
W. Strauss, Bell Syst.Techn.J. 58, 1979, p.1453-15L0.

IITI Het vernetten van polyetheen kabels voor het midden-
spanningsgebied d.m.v. hete stikstof (dry curing)
i.p.v. met hete stoom (steam curing) vormt een beter
fabricageproces, waarbij bovendien het indringen van
vocht in de isolatie tijdens het fabricageproces gro-
tendeels wordt vermeden, Dit laatste wordt echter bi]j
de huidige opbouw van de kunststofkabels ten onrechte
als verkoopargument gebruikt.

- M. Aaltonen, Wire J., 11, juni 1978, p.6k-68
~ J.A, Wiersma, Electra (Parijs) 55, dec. 1977, p.25-38.
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De doorbraak bij de toepassing van R6ntgenstraling in
lithografische processen voor submicron structuren
wordt bemoeilijkt door het fundamentele probleem dat
de massa-absorptiecoéfficient van de lakken en van het
transparante deel van het masker van dezelfde orde

van grootte zijn.

Door de snelle toename van de pakkingsdichtheid van
conventionele bubblegeheugens en de extra problemen
die opgelost moeten worden bij de geheugens die ge-
bruik maken van bubblerocosters valt het te betwijfe-
len of het zinvol is aan bubbleroostergeheugens te
werken zolang met de conventionele geheugens nog

grotere pakkingsdichtheden bereikt kunnen worden.

Het komt veelvuldig voor dat bij warmte-isolatie van
gebouwen de spouw zodanig opgevuld wordt met isolerend
materiaal dat er geen voldoend dikke luchtlaag tussen
isolatie en buitenmuur blijft bestaan. In deze geval-
len is het twijfelachtig of op den duur de aaﬁWezig-
heid van de spouwmuurisolatie nog enige energiebespa-

ring oplevert,

De relatie tussen de grootte en de tijdsduur van
Barkhausensprongen hangt in dunne Ni-Fe films af van
de structuur van de magnetische domeinwand.

- Hoofdstuk 5 van dit proefschrift.

Het storende effect van Barkhausenruis in devices kan
verminderd worden door het. vergroten van het aantal
magnetische domeinen of door ervoor te zorgen dat

wandbeweging niet plaats kan vinden.

In verband met de verkeersveiligheid dient de ont-

grendeling van de autogordels gestandaardiseerd te
worden.



XI

Voor het verkrijgen van informatie over het micro-
scopische magnetisatie proces is het meten van de
spectrale ruisintensiteit van het Barkhausen—effect
een weinig zinvolle bezigheid.

Hoofdstuk 6 van dit proefschrift.

Het effect van de wet op gelijke beloning van man

en vrouw wordt wat betreft de werkende gehuwde vrouw
ernstig aangetast door de grote ongelijkheid in de
positie van echtgencten in de Nederlandse belasting
wetgeving.

Waalre, 6 November 1979



