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ABSTRACT

RNA molecules are highly dynamic systems characterized by a complex interplay between sequence, structure, dynamics,
and function. Molecular simulations can potentially provide powerful insights into the nature of these relationships. The
analysis of structures and molecular trajectories of nucleic acids can be nontrivial because it requires processing very
high-dimensional data that are not easy to visualize and interpret. Here we introduce Barnaba, a Python library aimed
at facilitating the analysis of nucleic acid structures and molecular simulations. The software consists of a variety of analysis
tools that allow the user to (i) calculate distances between three-dimensional structures using different metrics, (ii) back-
calculate experimental data from three-dimensional structures, (i) perform cluster analysis and dimensionality reductions,
(iv) search three-dimensional motifs in PDB structures and trajectories, and (v) construct elastic network models for nucleic
acids and nucleic acids-protein complexes. In addition, Barnaba makes it possible to calculate torsion angles, pucker con-
formations, and to detect base-pairing/base-stacking interactions. Barnaba produces graphics that conveniently visualize
both extended secondary structure and dynamics for a set of molecular conformations. The software is available as a com-
mand-line tool as well as a library, and supports a variety of file formats such as PDB, dcd, and xtc files. Source code, doc-
umentation, and examples are freely available at https:/github.com/srnas/barnaba under GNU GPLv3 license.
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INTRODUCTION The importance of large-scale analysis tools is critical
when considering that many RNA molecules are not static,
but highly dynamic entities, and multiple conformations
are required to describe their properties. In molecular dy-
namics (MD) simulations (époner etal. 2018), for example,
it is often necessary to analyze several hundreds of thou-
sands of structures. The analysis and comparison of results
from structure—prediction algorithms poses similar chal-
lenges (Dawson and Bujnicki 2016; Magnus 2016; Miao
et al. 2017). In order to rationalize and generate scientific
insights, it is therefore fundamental to use specific analysis
and visualization tools that can handle such highly dimen-
sional data. This need has been long recognized in the field
of protein simulations, leading to the development of sev-
eral software packages for the analysis of MD trajectories

Despite their simple four-letter alphabet, RNA molecules
can adopt amazingly complex three-dimensional architec-
tures. RNA structure is often described in terms of a few
simple degrees of freedom such as backbone torsion an-
gles, sugar puckering, base-base interactions, and helical
parameters (Dickerson 1989; Leontis and Westhof 2001;
Richardson et al. 2008). Given a known three-dimensional
structure, the calculation of these properties can be accu-
rately performed using available tools such as MC-anno-
tate (Gendron et al. 2001), 3DNA (Lu and Olson 2008),
fr3D (Sarver et al. 2008), or DSSR (Lu et al. 2015). These
software packages allow for a detailed description of ex-
perimentally derived RNA structures, but are less suitable
for analyzing and comparing large numbers of three-di-

mensional conformations.
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(Michaud-Agrawal et al. 2011; McGibbon et al. 2015;
Tiberti et al. 2015). While these software packages can be
in principle used to analyze generic simulations, they do
not support the calculation of nucleic acids-specific quanti-
ties out of the box. Notable exceptions are CPPTRAJ (Roe
and Cheatham 2013) and the driver tool in PLUMED
(Tribello etal. 2014), which support the calculation of nucle-
ic acids structural properties, among other features.

A limited number of software packages have been de-
veloped with the main purpose of analyzing simulations
of nucleic acids. Curves+ (Lavery et al. 2009) calculates pa-
rameters in DNA/RNA double helices as well as torsion
backbone angles. do,zgna (Kumar and Grubmdiller 2015)
extends the capability of the 3DNA package to calculate
several base pairs/helical parameters and torsion angles
from GROMACS (Abraham et al. 2015) trajectories. The
detection of hydrogen bonds/stacking in simulations and
the identification of motifs such as helices, junctions,
loops, and pseudoknots can be performed using the
Motif Identifier for Nucleic acids Trajectory (MINT) soft-
ware (Gérska et al. 2015).

Here we present Barnaba, a Python library to analyze
nucleic acid structures and trajectories. The library con-
tains routines to calculate various structural parameters
(e.g., distances, torsion angles, base-pair, and base-
stacking detection), to perform dimensionality reduction
and clustering, to back-calculate experimental quantities
from structures, and to construct elastic network models
(ENM). Barnaba utilizes the capabilities of MDTraj (McGib-
bon et al. 2015) for reading/writing trajectory files, and thus
supports many different formats, including PDB, dcd, xtc,
and trr.

In this paper, we show the capabilities of Barnaba by an-
alyzing a long MD simulation of an RNA stem-loop struc-
ture. We first calculate distances from a reference frame.
Second, we consider a subset of dihedral angles and com-
pare *J scalar couplings calculated from simulations with
nuclear magnetic resonance (NMR) data. We then perform
a cluster analysis of the trajectory, identifying a number of
clusters that are visualized using a dynamic secondary
structure representation. Finally, we search for structural
motifs similar to cluster centroids in the entire protein
data bank (PDB) database. In addition, we show how to
construct an elastic network model (ENM) of RNA mole-
cules and protein—nucleic acid complexes with Barnaba,
and how to use it to estimate RNA local fluctuations.
Source code and documentation are freely available at
https:/github.com/smas/barnaba under GNU GPLv3
license.

RESULTS

First we provide a list of tools for the analysis of nucleic
acid three-dimensional structures supported in Barnaba.
All the calculations can be executed from the com-

220 RNA, Vol. 25, No. 2

mand-line, as described in Supplemental Material 1. For
each functionality, practical examples are provided in Sup-
plemental Material and in the documentation:

1. Calculate the eRMSD (Bottaro et al. 2014) between
structures (Supplemental Material 2).

2. Calculate the heavy-atom/backbone-only root mean
squared distance (RMSD) after optimal superposition
(Kabsch 1976) between structures (Supplemental
Material 2).

3. Calculate the relative position and orientations be-
tween nucleobases (Supplemental Material 3).

4. |dentify base-pairing and base-stacking interactions in
structures and trajectories (Supplemental Material 4).

5. Calculate backbone, sugar, and pseudorotation tor-
sion angles (Supplemental Material 5).

6. Back-calculate *J scalar couplings from structures
(Supplemental Material 6).

7. Search for single-stranded and double-stranded
three-dimensional motifs within PDB structures or tra-
jectories (Supplemental Material 7, 8).

8. Extract fragments with a given sequence from PDB
structures. This can be useful to investigate the confor-
mational variability of RNA at a fixed sequence or to
perform a stop-motion modeling (SMM) analysis
(Supplemental Material 9; Bottaro et al. 2016b).

9. Perform cluster analysis of RNA structures using the
eRMSD (Supplemental Material 10).

10. Generate “dynamic secondary structure” figures that
display the extended secondary structure, together
with the population of each interaction within a collec-
tion of three-dimensional structures (Supplemental
Material 11).

11. Construct ENM of RNA molecules and protein—nucleic
acid complexes (Supplemental Material 12).

12. Calculate the scoring function eSCORE (Supplemen-
tal Material 13; Bottaro et al. 2014; Poblete et al.
2018).

In the following, we present the different features of
Barnaba by analyzing a 180 psec long simulation of an
RNA 14-mers with sequence GGCACUUCGGUGCC per-
formed by Tan et al. (2018) using a simulated tempering
protocol where the temperature is used as a dynamic var-
iable to enhance sampling. Experimentally, this sequence
is known to form an A-form stem composed of five consec-
utive Watson-Crick base pairs, capped by a UUCG tetra-
loop (Fig. 1A). In order to make the results described in
this paper fully reproducible, we provide in Supplemental
Material 14 the Jupyter Notebooks to conduct the analy-
ses and to produce the figures described below.
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FIGURE 1. (A) Extended secondary structure representation of the UUCG stem—loop. Watson-Crick base pairs are shown in blue; trans-Sugar-
Watson base pair between U6 and G9 is shown in red. (B) RMSD from native over time of the UUCG simulation. The corresponding histogram is
shown in the right panel. The dashed line at RMSD = 0.23 nm separates native-like from nonnative-like structures. The colors indicate the presence
of native base—base interactions, as shown in the secondary structure representation. Structures where all Watson—Crick interactions in the stem
and the trans-Sugar-Watson base pair in loop are formed are shown in red. Blue indicates structures where only the stem is formed. All other
conformations are shown in gray. (C) eRMSD from native structure over time. Color scheme is identical to panel B. Dashed line at eRMSD =

0.7 separates native-like from nonnative conformations.

RMSD, eRMSD calculation, and detection
of base-base interactions

We start the analysis by calculating the distance of each
frame in the simulation from the reference experimental
structure (PDB code 2KOC, Nozinovic et al. 2010) and de-
tecting base-base interactions. Figure 1B shows the time
series of heavy-atom RMSD after optimal superposition
(Kabsch 1976). During this simulation, multiple folding
events occur: In line with previous analyses (Tan et al.
2018), we thus observe both structures close to the refer-
ence as well as unfolded/misfolded ones. We identify the
base-base interactions in each frame using the annotation
functionality in Barnaba (see Materials and Methods).
Structures where the stem is completely formed together
with the native trans-sugar-Watson (tSW) interaction be-
tween U6 and G9 in the loop are shown in red. Blue points
indicate structuresin which allbase pairsin the stem, butnot
inthe loop, are present. All the other structures are colored
in gray. From the histogram in Figure 1B, it can be seen that
RMSD < 0.23 nm roughly corresponds to native-like struc-
tures. A second sharp peak around 0.3 nm corresponds to

structuresin which only the stem s correctly formed. All oth-
er conformations have RMSD larger than 0.6 nm.

One of the features of Barnaba is the possibility to calcu-
late the eRMSD (Bottaro et al. 2014). The eRMSD only con-
siders the relative arrangements between nucleobases
in a molecule, and quantifies the differences in the inter-
action network between two structures. In this perspec-
tive, eRMSD is similar to the Interaction Fidelity Network
(Parisien et al. 2009) that quantifies the discrepancy in
the set of base-pairs and base-stacking interactions. The
eRMSD, however, is a continuous, symmetric, positive def-
inite metric distance that satisfies the triangular inequality.
Additionally, it does not require detection of the interac-
tions (annotation) and is hence particularly well suited for
analyzing MD trajectories and unstructured RNA mole-
cules. Figure 1C shows the eRMSD from native for the
UUCG simulation. We notice that, similarly to the RMSD
case, the histogram displays three main peaks. In this
case, the correspondence between peaks and structures
can be readily identified: when eRMSD < 0.7, native stem
and loop are formed; if 0.7 <eRMSD < 1.3, stem is form-
ed but the loop is in a nonnative configuration. Other
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structures typically have eRMSD > 1.3. We observe that the
separation between the two main peaks (native structure,
red; native stem, blue) is sharper in Figure 1C, confirming
that eRMSD is more suitable than RMSD to distinguish
structures with different base-pairings (Bottaro et al. 2014).

Note that a significant number of low-RMSD/eRMSD
structures lack one or more native base-pair interactions,
and are therefore shown in gray. This is because the detec-
tion of base—base interactions critically depends on a set of
geometrical parameters (e.g., distance, base—base orien-
tation, etc.) that were calibrated on high-resolution struc-
tures. The criteria used in Barnaba (as well as the ones
used in other annotation tools) may not always be accurate
when considering intermediate states and partially formed
interactions that are often observed in molecular simula-
tions (Lemieux and Major 2002).

Transition paths

We now analyze the folding/unfolding paths in order to un-
derstand what is the nature and order of events leading to
folding. In particular, we consider the formation of the na-
tive base pairs in the stem and the rotameric state of the x
angle in G9 that is related to the formation of the Sugar-
Watson base pair between G9 and Ué. Following Lin-
dorff-Larsen et al. (2011), we extract the transition paths
(TP) from the simulation, resulting in four folding and
four unfolding events. The time evolution for one of the
folding events is shown in Figure 2A,B. In the unfolded
state, no base pairs are formed and y freely fluctuates
from anti to syn. The three base pairs at the termini form
early during the TP, followed by the other two Watson—
Crick base pairs. When the native state is reached, all na-
tive base pairs are formed, and g is in syn conformation.

The order of the events can be quantified by calculating
the average presence of base pair (assuming values of 1 =
formed or 0=not formed) and the normalized distance
from syn conformation g=0.5(1 + cos (x — 63°)). Quantities
that reach a native-like value (i.e., one) early during folding
have a high value, and those that form late get a low value
(Lindorff-Larsen et al. 2011). In Figure 2C, we can see that
the Watson-Crick 1-14, 2-13, 3-12 form very early in fold-
ing, followed by 4-11 and 3-10.The transition of the y an-
gle to syn occurs at a later stage, and folding is finally
achieved with the formation of the tSW base pair.

The TP analysis is here performed for illustrative purpos-
es. In real applications, it is important to take into consid-
eration a number of aspects, such as the quality of the
force-field, the assumption that the simulated tempering
trajectory is compatible with the real folding pathway,
and the employed criteria defining folded/unfolded states
(Lindorff-Larsen et al. 2011). Note also that this type of
analysis is carried out to describe the properties on the en-
ergy barrier, while we here describe the properties of the
intermediate state.
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FIGURE 2. Formation of base pairs and G9-y angle during RNA fold-
ing. (A) Formation of the five WC base pairs over time and of the tSW
interaction during one of the folding events. Green indicates that the
interaction is formed; gray, not formed. Nonnative interactions are
shown in red. (B) Time evolution of the y angle in G9 for the same fold-
ing event shown in panel A. (C) Order of events relative to the forma-
tion of the native base pairs and transition to syn. High values
correspond to early formation of the corresponding quantity during
a folding event. The average over each TP is shown as a gray dot,
and the average over the eight TPs is shown as a red bar.

Torsion angle and ®J scalar coupling calculations

Another important class of structural parameters is torsion
angles. Similarly to other software, Barnaba contains rou-
tines to calculate backbone torsion angles (a, 8, v, &, {),
the glycosidic angle y, and the pseudorotation sugar pa-
rameters (Altona and Sundaralingam 1972; Rao et al.
1981).

In Figure 3, left panels, we plot the probability distribu-
tions of four angles (8, ¥, 8, €) for three different residues:
U6, U7, and G9. We can see from the distribution of y
angles that U6 and U7 mainly populate the gauche™ rota-
meric state (0° <y < 120), while G9 significantly populates
the trans state as well (120" <y < 240"). Different rotameric
states can also be seen from the distribution of § angles
(C2'/C3’-endo) and &, which are related to BI/BIl states.
Here, we consider the same trajectory of the UUCG tetra-
loops described above and removed all the unfolded
structures, i.e., structures with eRMSD from native larger
than 1.5 (=6000 out of 20,000), because we below com-
pare to experiments under conditions where these are
absent.

In this example, we chose these specific torsion angles
because their distribution is related to available 2J cou-
plings experimental data from NMR spectroscopy. The
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FIGURE 3. (Left panels) Torsion angle distribution for 8, , 8, and € in residues U6, U7, and G9. Right panels show the experimental 3J couplings
(crosses) and the calculated value from simulation (dots). The error bars indicate the standard error of the mean calculated over four blocks.

magnitude of *J coupling depends on the distance be-
tween atoms connected by three bonds, and thus on the
corresponding dihedral angle distribution. The depen-
dence between angle 8 and coupling *J can be calculated
via Karplus equations:

3J=Acos?(0+ ¢) + Bcos (0 + ¢) + C,

where A, B, C are empirical parameters. Couplings corre-
sponding to different angles can be calculated with
Barnaba. H1'-H2’, H2'-H3’, H3'-H4’ (sugar conformation),
H5'-P, H5"-P, C4-P (8), H4'-H5', H4'-H5" (y), H3-P(+1),
C4-P(+1) (), H1"-C8/C6, and H1"-C4/C2 (x). The complete
list of Karplus parameters is reported in the Materials and
Methods section, and may be changed within Barnaba.
Figure 3, right panels, shows the back-calculated aver-
age *J couplings and the corresponding experimental val-
ue reported in Nozinovic et al. (2010). Note that in some
cases, experiments and simulations do not agree: This is

because the simulation was performed at different temper-
atures using a simulated tempering protocol, and therefore
the comparison between simulations and experiments is
here made for illustrative purposes only. Significant dis-
crepancies could originate from errors introduced by the
Karplus equations that can be as large as 2 Hz (Bottaro
etal. 2018).

Cluster analysis

The structures within a trajectory can be grouped into
clusters of mutually similar conformations, to understand
which different states are visited and how often. For clus-
tering we use the DBSCAN (Ester et al. 1996) algorithm
with £=0.12 and min samples =70 (Bottaro and Lindorff-
Larsen 2017). As in the previous example, structures with
eRMSD > 1.5 from native are discarded. Figure 4A shows
the trajectory projected onto the first two components of
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FIGURE 4. Example of a cluster analysis on the UUCG stem-loop trajectory. (A) Principal component analysis on the collection of G-vectors
(Bottaro and Lindorff-Larsen 2017). Each circle corresponds to a cluster; gray dots show unassigned structures. Circles are centered in the centroid
positions, and the radii are proportional to the square root of the population. The percentage of explained variance of the first two components is
indicated on the axes. (B) Box-plots reporting eRMSD (top) and RMSD (bottom) from cluster centroids. Lower/upper hinges correspond to the first
and third quartiles, while whiskers indicate lowest/highest data within 1.5 interquartile range. Data beyond the end of the whiskers are shown
individually. The percentages indicate the cluster population. (C) Dynamic secondary structure representation of the 20 native NMR conformers
(PDB 2KOC) and of the first three clusters. The extended secondary structure annotation follows the Leontis-Westhof classification. The color
scheme shows the fraction of frames within a cluster for which the interaction is formed.

a principal component analysis done on the collection
of G-vectors (Bottaro and Lindorff-Larsen 2017). Circles
show the resulting nine clusters, whose radius is propor-
tional to the square root of their size. The 5500 structures
(40%) that were not assigned to any cluster are shown as
gray dots. For each cluster, we identify its centroid, here
defined as the structure with the lowest average distance
from all other cluster members.

Ideally, clusters should be compact enough so that the
centroid can be considered as a representative structure.
Thisinformation is shown in the box-plotin Figure 4B, which
reports the distances (eRMSD and RMSD, as labeled) be-

224 RNA, Vol. 25, No. 2

tween centroids and cluster members. At the same time,
structures within clustersare not all identical to one another.
In order to visualize the intracluster variability, we have
found it useful to introduce a “dynamic secondary struc-
ture” representation. In essence, we detect base-stack-
ing/base-pair interactions in all structures within a cluster,
and calculate the fraction of frames in which each interac-
tion is present. The population of each interaction is shown
by coloring the extended secondary structure representa-
tion (Fig. 4C). This representation has some analogy with
the “dot plot” representation used to display secondary
structure ensembles obtained using nearest neighbor
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models that reports the predicted probability of individual
base pairs (Jacobson and Zuker 1993). We can see that
the first three clusters correspond to three different tetra-
loop structures. In cluster 1, the U6-G9 tSW base pair is pres-
ent, together with the U6-C8 stacking typical of the native
UUCG tetraloop structure. In cluster 2, no U6-G9 base pair
is present, while in cluster 3 we observe stacking between
U6-U7-C8-G9, as also described in the next section. In all
clusters, the population of the terminal base pairs and stack-
ingislowerthan one, indicating the presence of base fraying.

In our experience, clusteranalysis is useful to understand
and qualitatively visualize the different types of structures
in a simulation. In many practical cases, however, the num-
ber of clusters and their population may differ depending
on the employed clustering algorithm and associated pa-
rameters. Clustering may not even be meaningful when
considering highly unstructured systems such as long sin-
gle-stranded nucleic acids lacking secondary structures
(Chen et al. 2012).

Motif search

Barnaba can be used to search for structural motifs in a
PDB file or trajectory using the eRMSD distance. In the fol-

Centroid 1

Centroid 2

lowing example, we illustrate this feature by taking the
centroids of the first three clusters described above and
search for similar structures within the PDB database. In or-
der to focus on the loop structure, rather than on stem var-
iability, we consider the tetraloop and the two closing base
pairs for the search (residues 4-11 in Fig. 1A). The search is
performed against all RNA-containing structures in the
PDB database (retrieved May 4, 2018, resolution 3.5 Aor
better). The database considered here consists of 3067
X-ray, 652 NMR, and 177 cryo electron-microscopy (EM)
structures. Note that the search is purely based on the geo-
metrical arrangement of nucleobases, without restriction
on the sequence, a particular feature that is also enabled
by the use of eRMSD.

Figure 5 shows the cluster centroids (gray) and the clos-
est motif match, i.e., the lowest eRMSD substructure in the
PDB database (orange). The eRMSD between the cluster
centroid and the best match are indicated, together with
the associated PDB code. Centroid 1 corresponds to the
canonical UUCG tetraloop structure, with the signature
tSW interaction between U6-G9 and G9 in syn conforma-
tion. Note that the eRMSD between centroid and best
match is small (0.25), indicating that simulated and exper-
imental structures are highly similar. Cluster 2 corresponds

Centroid 3
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FIGURE 5. Motif search in PDB database. (Top panels) Centroids of the first three clusters (in gray) superimposed on the closest structures from
the PDB database (orange). eRMSD between centroid and the best match are indicated, together with the associated PDB code. (Bottom panels)
eRMSD distribution between centroid and substructures from PDB database. Note that different distributions are obtained for different clusters,
meaning that the eRMSD threshold varies depending on the motif. Distances larger than eRMSD = 1 are not reported. The eRMSD threshold at

0.7 (centroids 1, 2) and 0.9 (centroid 3) is indicated as a dashed line.
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to a structure in which the stem is formed, C8 is stacked
on top of U6, and G9 is bulged out. Centroid 3 features
four consecutive stackings between U6-U7-C8-G9-G10.
Note that this latter structure is remarkably similar to the
four-stack loop described in Bottaro and Lindorff-Larsen
(2017).

As a rule of thumb, we consider as significant matches
structures below 0.7 eRMSD, but there are cases in which
it is worth considering structures in the 0.7-1.0 eRMSD
range as well. More generally, it is useful to consider the
histogram of all fragments with eRMSD below 1, as shown
in Figure 5, bottom panels. This type of analysis makes it
possible to identify a good threshold value, in correspon-
dence to minima in the probability distributions. For exam-
ple, there are no structures in the PDB with eRMSD lower
than 0.7 for centroid 3. In this case, a value of 0.9 should
be used instead.

In this example, we performed a simple search of a
structure from simulation against experimentally derived
structures in the PDB database. In Barnaba, any arbitrary
motif can be used as a query by providing a coordinate
file with at least the position of C2, C4, and C6 atoms for
each nucleotide. Searches with more complex motifs com-
posed by two strands (e.g., K-turns, sarcin-ricin motifs, etc.)
are also possible (Supplemental Material 8). Additionally,
Barnaba allows for inserted bases, thereby identifying
structural motifs with one or more bulged-out bases.

Elastic network models

Elastic network models (ENMs) are minimal computational
models able to capture the dynamics of macromole-
cules at a small computational cost. They assume that
the system can be represented as a set of beads connect-
ed by harmonic springs, each having rest length equal to
the distance between the two beads it connects in a refer-
ence structure (usually, an experimental structure from the
PDB). First introduced to analyze protein dynamics (Tirion
1996), ENMs are also applicable to structured RNA mole-
cules (Bahar and Jernigan 1998; Setny and Zacharias 2013;
Zimmermann and Jernigan 2014). Barnaba contains rou-
tines to construct ENM of nucleic acids and proteins,
and, as a unique feature, makes it possible to calculate fluc-
tuations between consecutive C2-C2 atoms. In a previous
work (Pinamonti et al. 2015), we have shown this quantity
to correlate with flexibility measurements performed with
selective 2-hydroxyl acylation analyzed by primer exten-
sion (SHAPE) experiments (Merino et al. 2005). Here, we
show an example of ENM analysis on two RNA molecules:
the 174-nt sensing domain of the Thermotoga maritima ly-
sine riboswitch (PDB ID: 3DIG), and the Escherichia coli 55
rRNA (PDB ID: 1C2X). We construct an all-atom ENM (AA-
ENM), where each heavy atom is a bead, together with a
cutoff radius of 7 A. In Figure 6, we show the flexibility of
the RNA molecules as predicted by the ENM (black) that

226 RNA, Vol. 25, No. 2

1C2X; r=0.42

F2.00

Fr1.75

F1.50 2
o
®

F1.25 3
v
=

F1.00 5
<

L0.75 0

F0.50

F0.25

0 20 40 60 80 100 120
Res. Index
3DIG; r=0.45

F0.25
1%}
c
kel

020 8
kS|
=l
=
o~
<

F0.15 ~
Q

F0.10

0 25 50 75 100 125 150 175
Res. Index

FIGURE 6. C2-C2 fluctuations as predicted by the ENM of lysine
riboswitch (bottom panel) and 5S rRNA (top panel). SHAPE reactivity
data from Hajdin etal. (2013) are shown for comparison. Pearson’s cor-
relation coefficient rbetween SHAPE data and ENM-predicted fluctu-
ations is also indicated.

can be qualitatively compared with the measured SHAPE
reactivity (Hajdin et al. 2013) (orange).

The implementation of the ENM in Barnaba uses
the sparse matrix package available in Scipy, which allows
for significant speed-ups compared to the dense-matrix
implementation. Figure 7 shows the execution time for
constructing ENMs of biomolecules with sizes ranging
from a few tens to several hundreds of nucleotides. Cal-
culations were performed running Barnaba on a personal
computer. This, combined with the significant memory
saving granted by sparse matrices representation, makes
it possible to easily compute the vibrational modes and
the local flexibility of large RNA systems such as ribo-
somal structures using a limited amount of computer
resources.

DISCUSSION

Many RNA molecules are highly dynamical entities that un-
dergo conformational rearrangements during function.
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FIGURE 7. Execution time for the ENM calculation using sparse matrices (red) or dense matrices (yellow) on a 2.3 GHz Dual-Core Intel Core i5
processor, as a function of the number of residues in the RNA molecule. Results are shown both for sugar-base-phosphate (SBP) ENM (triangles)
and all-atom-ENM (AA-ENM) (circles), as defined in Pinamonti et al. (2015). Left panel shows the time for the interaction matrix diagonalization
only; right panel shows the total time including the calculation of C2-C2 fluctuations.

For this reason, it is becoming increasingly important to
develop tools to analyze not only single structures, but
also trajectories (ensembles) obtained from molecular sim-
ulations. In this paper we introduce software to facilitate
the analysis of nucleic acids simulations. The program,
called Barnaba, is available both as a Python library as
well as a command-line tool. The output of the program
is such that it can be easily used to calculate averages
and probability distributions, or conveniently used as input
to the many existing plotting and analysis libraries (e.g.,
Matplotlib, SKlearn) available in Python.

Barnaba consists of a number of functions, and some
of them implement standard calculations (RMSD, tor-
sion angles, base-pairs, and base-stacking detection). A
unique feature of Barnaba is the possibility to calculate
the eRMSD. This metric has been successfully used in
several contexts: for analyzing MD simulations (Kiihrova
et al. 2016), as a biased collective variable in enhanced
sampling simulations (Bottaro et al. 2016a; Yang et al.
2017; Poblete et al. 2018), to construct Markov state
models (Pinamonti et al. 2017), and to cluster RNA tetra-
loop structures (Bottaro and Lindorff-Larsen 2017). In this
paper we show the usefulness of this metric to monitor
simulations over time, to perform cluster analysis, and
to search for structural motifs within trajectories/struc-
tures. This last feature can be extremely useful to exper-
imental structural biologists, as it makes it possible to
efficiently search for arbitrary query motifs within the en-
tire PDB database. For analyzing simulations and clusters,
we have found it useful to introduce a dynamic secondary
structure representation that recapitulates the variability
of base-pair and base-stacking interactions within an
ensemble.

Another important feature of Barnaba is the possibility
to back-calculate 2J scalar couplings from structures. This
calculation is per se extremely simple. However, it can be

difficult to obtain from the literature the different sets of
Karplus parameters, and the calculation of the correspond-
ing dihedral angles is error-prone.

Finally, Barnaba contains a routine to construct ENMs of
nucleic acid and protein systems and complexes. This is a
useful, fast, and computationally cheap tool to predict the
local dynamical properties of biomolecules, as well as the
chain flexibility of RNA molecules.

MATERIALS AND METHODS

Implementation and availability

Barnaba is a Python library and command-line tool. It requires
Python 2.7 or >3.3, Numpy, and Scipy libraries. Additionally,
Barnaba requires MDTraj (http:/mdtraj.org/) for manipulating
structures and trajectories. Source code is freely available at
https:/github.com/sras/barnaba under GNU GPLv3 license.
The github repository contains documentation as well as a set of
examples.

FIGURE 8. Definition of the local coordinate systems and of the vec-
tor R for purines and pyrimidines.
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Relative position and orientation of nucleobases

For each nucleotide, a local coordinate system is set up in the cen-
ter of C2, C4, and Cé atoms (Fig. 8). The x-axis points toward the
C2 atom, and the y-axis in the direction of C4 (C/U) or Cé (A/G).
The origin of the coordinates of nucleobase j in the reference sys-
tem constructed on base i is the vector Rj={x;, y;, zj}. Note that
|Rjl =|R;i| but Rj#Rs. The Ry is central in the definition of the
eRMSD metric and of the annotation strategy described below.

eRMSD

The eRMSD is a contact map-based distance, with the addition of
a number of features that make it suitable for the comparison of
nucleic acid structures. We briefly describe here the procedure,
originally introduced in Bottaro et al. (2014). Given a three-dimen-
sional structure a, one calculates R§ for all pairs of bases in a mol-
ecule. The position vectors are then rescaled as follows:

R
r,.,=(;f,;f,gf), (1)

with a=5 A and b=3 A. The rescaling effectively introduces an
ellipsoidal anisotropy that is peculiar to base-base interactions.
Given two structures, a and 8, consisting of N residues, the
eRMSD is calculated as

1 ~ ~
eRMSD = NZ IGEF) — GEF)I”. @
L

G is a nonlinear function of ¥ defined as

sin (yT’)%X
NN - .
an=| MNON7 [« oo =) @)
sin (y?)?z
1+ cos (yr)

where y = 7/F 10t and © is the Heaviside step function. Note that
the function G has the following desirable properties:

1. IGFEY) — GFP)| ~ [F* — F8] if 79, 7P < Feuto-
2. |GF) — GF)| = 0if F*, 7 > Peyionr-
3. G(F) is a continuous function.

The default cutoff value is set to Fouof = 2.4 and can be changed
within Barnaba.

Annotation

Apair of bases iand jis considered for annotation only if [F;| < 1.7
and |f'j,| <1.7.

Stacking
The criteria for base stacking are the following:

(1zj] and |z;| > 2A) and (p; or p;; < 2.54) and (|6 < 40°). (4)

Here, p; = /xﬁ + y,% and 6; is the angle between the vectors nor-
mal to the planes of the two bases. Similarly to other annotation

228 RNA, Vol. 25, No. 2

approaches (Gendron et al. 2001; Sarver et al. 2008; Walen
et al. 2014), we identify four different classes of stacking interac-
tions according to the sign of the z-coordinates:

e upward: (> or 3'-5') if z;>0 and z; <0
* downward: (« or 5-3') if z;<0 and z;>0
* outward: (<> or 5'-5) if z;< 0 and z; <0

* inward: (>< or 3-3') if z;>0 and z;>0

We notice that, with this choice, consecutive base pairs with alter-
nating purines and pyrimidines result in a cross-strand outward
stacking (see, e.g., Fig. 1A).

Base-pairing

Base pairs are classified according to the Leontis-Westhof no-
menclature (Leontis and Westhof 2001), based on the observa-
tion that hydrogen bonding between RNA bases involves three
distinct edges: Watson—Crick (W), Hoogsteeen (H), and sugar
(S). An additional distinction is made according to the orienta-
tion with respect to the glycosidic bonds, in cis (c) or trans (t)
orientation.

In Barnaba, all nonstacked bases are considered base-paired if
0] < 60" and there exists at least one hydrogen bond, calculated
as the number of donor-acceptor pairs with distance <3.3 A.
Edges are defined according to the value of the angle
¢ = arctan2(y;;, X;).

¢ \Watson-Crick; edge (W): 0.16 <y <2.0 rad
* Hoogsteen edge (H): 2.0 <y <4.0 rad
e Sugar edge (S): w>4.0rad, w<0.16 rad

These threshold values are obtained by considering the empir-
ical distribution of base-base interactions shown in Supplemental
Material 3 and discussed in Figure 2 of Bottaro et al. (2014). Cis/
trans orientation is calculated according to the value of the dihe-
dral angle defined by C1; — N1/N9; — N1/N9; — C1/, where N1/
N9 is used for pyrimidines and purines, respectively.

We note that the annotation provided by Barnaba might fail in
detecting some interactions, and sometimes differs from other
programs. This is due to the fact that for non-Watson-Crick and
stacking interactions it is not trivial to define a set of criteria for
a rigorous discrete classification (Waleh et al. 2014). Typically,
these criteria are calibrated to work well for high-resolution struc-
tures, but they are not always suitable to describe nearly formed
interactions often observed in molecular simulations.

Torsion angles and 3J scalar couplings

We use the standard definition of backbone angles, glycosidic ¥
angle (O4-C1’-N9-C4 atoms for A/G, O4'-C1’-N1-C2 for C/U),
and sugar torsion angles (vo - - - v4) as shown in Figures 9 and 10
(Saenger 2013).

Pseudorotation sugar parameters amplitude tm and phase P
are calculated as described in Rao et al. (1981):

tm = VA2 + B2, (5)

P = arctan2(B, A) — %77, (6)
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FIGURE 9. Definition of the backbone/glycosidic angles y (Frellsen
et al. 2009).

where
A—gf rcos (z(i— N ?)
=z 2 v; cos gl ,

5
B:—%;v;sin (g(i—”ﬂ) ®)

Optionally, it is also possible to calculate pseudorotation param-
eters using the Altona-Sundaralingam treatment (Altona and
Sundaralingam 1972):

PO = arctan2(v4 + vi — v3 — vg, 3.0777v,), 9)
tm = v, PO, (10)
P= @PO. (11

T

3J Scalar couplings are calculated using the Karplus equations:

Acos? (0+ ¢) + Bcos (0+ ¢) + C. (12)

Karplus parameters relative to the different scalar couplings are
reported in Table 1.

Elastic network model

In ENMs, a set of N beads connected by pairwise harmonic
springs penalize deviations of interbead distances from their ref-
erence values. Spring constants are set to a constant value k
whenever the reference distance between the two beads is small-
er than an interaction cutoff (R.), and set to zero otherwise. Under
these assumptions, the potential energy of the system can be ap-
proximated as

U(Eri,p.r 6rj,v) = Sri,p.ij,;warj,v: (}I 3)

where M is the symmetric 3 N x 3 N interaction matrix, and 8r;
is the deviation of bead i from its position in the reference
structure.

The user can select different atoms to be used as beads in the
construction of the model. The optimal value of the parameter R,
depends on this choice, as described in Pinamonti et al. (2015).

The covariance matrix is computed as

3N
1
CU.IJ«V: E A—vﬁ‘”vﬁu, (14)
a=6""¢

where 1, and v® are the eigenvalues and the eigenvectors of the
interaction matrix M, respectively. The sum on a runs over all non-
null modes of the system.

Mean square fluctuation (MSF) of residue i is calculated as

MSF; = (8r7) = Ciip- (15)

p=1

The variance of the distance between two beads can be directly
obtained from the covariance matrix in the linear perturbation re-
gime as

3 g
o= 22”(6,-,-,,” + Cjiw = Cijyw — Ciw), (16)
=1

where aff is the p Cartesian component of the reference distance
between beads i and j.

For most practical applications of ENMs, only the high-amp-
litude modes, i.e., those with the smallest eigenvalues, provide
interesting dynamical information. The calculation of C2-C2 dis-
tance fluctuations using Equation 16 requires the knowledge of
all eigenvectors. This can be performed by reducing the system
to the “effective interaction matrix” Mg} relative to the beads of
interest (Zen et al. 2008).

[ Mc W
M= ( WT Mother >’ (1 7)

where Mca(Moiher) is formed by the rows and columns of M rela-
tive to the (non) C2 beads, while W represent the interactions be-
tween C2 and non-C2 beads. The effective interaction matrix is
defined as

MEf = Mcz — WM W (19
This can be computed efficiently using sparse matrix-vector mul-
tiplication algorithms. The resulting effective matrix Mg} has
reduced size: 1/3 for sugar-base-phosphate (SBP), ~1/20 for all-
atom (AA), making its pseudo-inversion considerably faster.
Note that, in case one is interested in computing the C2-C2 fluc-
tuations for a portion of the molecule only, the algorithm could be
further optimized by directly computing the effective interactions
matrix associated to the required C2-C2 pairs.

FIGURE 10. Definition of pucker angles vg - - va.
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TABLE 1. Karplus parameters used in Barnaba

Name [’] A (Hz) B (Hz) C (Hz) ¢ (rad) Ref.

H1'-H2 H1'-C1’-C2/-H2 9.67 -2.03 0 0 Condon et al. (2015)
H2'-H3 H2'-C2'-C3'-H3’ 9.67 -2.03 0 0 Condon et al. (2015)
H3/-H4' H3/-C3/-C4'-H4’ 9.67 -2.03 0 0 Condon et al. (2015)
H5'-P B 15.3 —6.1 1.6 -2/3r Lankhorst et al. (1984)
H5”-P B 15.3 —-6.1 1.6 23w Lankhorst et al. (1984)
C4-P B 6.9 -3.4 0.7 0.0 Marino et al. (1999)
H4'-H5' y 9.7 -1.8 0.0 -2/3n Davies (1978)
H4'-H5” y 9.7 -1.8 0.0 0.0 Davies (1978)
H3-P(+1) £ 15.3 -6.1 1.6 2/3 Lankhorst et al. (1984)
C4-P(+1) £ 6.9 -3.4 0.7 0.0 Marino et al. (1999)
H1'-C8/Cé X 4.5 -0.6 0.1 —r/3 lppel et al. (1996)
H1’-C4/C2 X 4.7 23 0.1 —m/3 Ippel et al. (1996)

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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