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ABSTRACT

Under the influences of stable density stratification and the earth’s rotation, large-scale flows in the ocean
and atmosphere have a mainly balanced dynamics—sometimes called the slow manifold—in the sense that
there are diagnostic hydrostatic and gradient-wind momentum balances that constrain the fluid accelera-
tion. The nonlinear balance equations are a widely successful, approximate model for this regime, and
mathematically explicit limits of their time integrability have been identified. It is hypothesized that these
limits are indicative, at least approximately, of the transition from the larger-scale regime of inverse energy
cascades by anisotropic flows to the smaller-scale regime of forward energy cascade to dissipation by more
nearly isotropic flows and intermittently breaking inertia–gravity waves. This paper analyzes the particular
example of an unbalanced instability of a balanced, horizontally uniform, vertically sheared current, as it
occurs within the Boussinesq equations. This ageostrophic, anticyclonic, baroclinic instability is investigated
with an emphasis on how it relates to the breakdown of balance in the neighborhood of loss of balanced
integrability and on how its properties compare with other examples of ageostrophic anticyclonic instability
of rotating, stratified, horizontally sheared currents. It is also compared with the more familiar types of
instability for a vertically sheared current: balanced (geostrophic) baroclinic instability, centrifugal insta-
bility, and Kelvin–Helmholtz instability.

1. Introduction

The problem of baroclinic instability for a vertically
sheared, rotating, stratified flow is a classical one in
geophysical fluid dynamics. Following early papers by
Charney (1947), Eady (1949), and Phillips (1954)—all
of which differed in their representation of the vertical
structure and boundary conditions for the mean strati-
fication and currents—baroclinic instability has been
the topic of an enormous number of papers, including
some, following Stone (1966), that examine the regime
of strong flow with finite values for the Rossby and
Richardson numbers. Nevertheless, this problem is one
that can be looked at freshly from the perspective of the
limits of balanced dynamics (McWilliams et al. 1998) in
order to investigate the conundrum of how energy dis-
sipation occurs for large-scale winds and currents.

The general circulation of the ocean is forced by sur-
face fluxes of heat, water, and momentum primarily at
large space and long time scales. The circulation has
comparably large and long scales, as well as important
smaller mesoscale flows in equatorial and lateral
boundary currents, and its principal instability modes
also occur on the mesoscale. All of these circulation
elements approximately satisfy geostrophic, hydro-
static, and incompressible dynamical momentum and
mass balances, at least in the interior region. How does
the energy dissipation occur for the general circulation
in an equilibrium balance with the energy generation by
surface fluxes? The general circulation is well known to
be unstable to barotropic and baroclinic instabilities,
both of which are instability types associated with an
inflection point in the velocity profile (cf. Drazin and
Howard 1966). Furthermore, both instability types can
occur within the dynamical balance constraints listed
above. Yet the nonlinear dynamics of balanced flows,
often called geostrophic turbulence (Charney 1971;
McWilliams et al. 1994), is generally understood to pro-
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duce an inverse energy cascade toward larger scales
both horizontally and vertically, hence away from the
small scales where dissipation by molecular viscosity
can occur. Thus inflection-point instabilities do not ob-
viously provide an effective route to dissipation for the
general circulation.

Some of the requisite dissipation undoubtedly occurs
within the turbulent boundary layer near the surface
and bottom. Some dissipation also occurs through cre-
ation of internal gravity waves by flow over topogra-
phy, with subsequent wave propagation into the inte-
rior and a wave-dynamical cascade (sometimes involv-
ing breaking) down to dissipation at small scales. Each
of these routes to dissipation involves an extraction of
energy from the circulation near the vertical bound-
aries, although the bulk of the energy resides in the
vertical interior, and these could only provide sufficient
dissipation if there were a large-scale mechanism for
efficient energy flux toward the boundaries. A possible
alternative, more local route to dissipation is directly
through the interior, turbulent cascade dynamics of the
circulation. In oceanic general circulation models, the
local route to dissipation is implied by the ad hoc use of
eddy viscosities to parameterize this cascade. Our con-
ceptual view of the interior mechanism is the following:
large- and mesoscale circulations typically satisfy a bal-
anced dynamics (as defined below), which have little
interaction with the inertia–gravity wave field; balanced
turbulent cascades are very inefficient in energy dissi-
pation; there are explicitly specifiable limits to the re-
gime of balanced dynamics that are violated sometimes
for the circulation; violations of these limits lead to
energy transfer to unbalanced motions; unbalanced tur-
bulent cascades are much more efficient in their dissi-
pation. In this view, the important bottleneck in the
local route to dissipation is loss of balance and its evo-
lutionary consequences. The purpose of this article is to
examine an initiation mechanism for the local route to
dissipation, without here trying to assess the relative
contributions among the various possible routes.

We previously investigated the relevance of the con-
ditions for loss of balance to some other types of flow
instabilities that may also be relevant to the initiation of
a local energy cascade by unbalanced motions. In
McWilliams et al. (1998) we show that there is an exact
correspondence of these conditions with the onset of
gravitational and centrifugal instabilities (associated
with change of sign of vertical density gradient and po-
tential vorticity, respectively) for parallel and axisym-
metric flows. In McWilliams and Yavneh (1998), we
show that there is an apparent correspondence between
one of these conditions (associated with the difference
between absolute vorticity and strain rate, A � S; see

below) and the onset of elliptical instability for a baro-
tropic flow in an infinite domain. In Molemaker et al.
(2000) and Yavneh et al. (2001), we show for Taylor–
Couette flow that there is a close correspondence of the
potential vorticity condition with the onset of centrifu-
gal instability and there is a looser correspondence for
another type of instability with the A � S condition.
The looseness of the correspondence in this latter case
is in the sense that the growth rate of the unstable mode
is exponentially weakening, with exponent � 1/Ro
(where Ro � 0 is the Rossby number), as this condition
is met on the path toward the quasigeostrophic limit,
Ro → 0. In McWilliams et al. (2001), we summarize the
results for these problems plus that for another flow, a
barotropic boundary current. Our conclusion is that
they all have in common an ageostrophic instability for
anticyclonic flows, in at least a loose correspondence
with the A � S condition, and this type of instability is
distinct from the more familiar gravitational, centrifu-
gal, and inflection-point types.

In this paper we continue this line of investigation by
calculating solutions for an anticyclonic, ageostrophic
type of baroclinic instability as another avenue for ini-
tiating an energy transfer from balanced to unbalanced
motions. In support of this latter distinction, we devise
a new method for analyzing the degree of balance of
the unstable modes.

2. Formulation and methods

We pose the problem as the linear instability of a
mean horizontal current V(z) in geostrophic balance
for a rotating, stably stratified fluid with Coriolis fre-
quency f(y) � 0 and Brunt–Väisälä frequency N(z) �
0. To focus on our primary issue, we assume here f, N,
and dV/dz are spatially uniform, although effects due to
their variations are not unimportant for realistic, large-
scale currents. Similarly we ignore horizontal variations
in V, except in some final remarks. Since our focus is on
possible departures from balanced dynamics, we will
use the Boussinesq equations as the fundamental fluid
dynamics of an incompressible fluid. The problem con-
sidered is therefore a nongeostrophic, nonhydrostatic
generalization of Eady (1949) and a nonhydrostatic
generalization of Stone (1966, 1970), whose formula-
tion we will initially follow. Thus, we will be able to
assess the degree and importance of loss of balance,
with respect to both the geostrophic and hydrostatic
relations.

The dimensional velocity and buoyancy fields in the
basic state are defined by
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Ṽ�z̃� � V0� z̃

H
� 0.5� and �1a�

B̃�x̃, z̃� � N2z̃ �
fV0

H
x̃. �1b�

Tildes are used here to denote dimensional variables.
Here, B̃ is the buoyancy (i.e., �g/�o times the departure
in density from its background value �o, with g the
gravitational acceleration) in thermal-wind balance
with the horizontally homogeneous vertically sheared
current Ṽ(z̃). The domain is unbounded horizontally
and has planar vertical boundaries at z̃ � 0 and H. In
the inviscid Boussinesq equations, the Ertel potential
vorticity 	 is a Lagrangian, invariant, and as we shall
see, its distribution is often relevant to possible flow
instabilities. For the basic state, its value in the interior
is a constant,

�̃ � fN2 �
�Ṽ

�z̃

�B̃

�x̃
� fN2�1 � � Ṽ

NH�
2�� fN2.

�2�

The final inequality shows that this baroclinic shear
flow is an anticyclonic one, independent of the sign of Ṽ
and f.

If (u, 
, w, p, b) are perturbation fields, their govern-
ing nondimensional equations, linearized about the ba-
sic state (1), are the following:

Ro��u

�t
� V

�u

�y� � � � �
�p

�x
, �3a�

Ro���

�t
� V

��

�y
� � w

�V

�z � � u � �
�p

�y
, �3b�

F2�2��w

�t
� V

�w

�y � � �
�p

�z
� b, �3c�

�u

�x
�

��

�y
� �

�w

�z
� 0, and �3d�

�b

�t
� V

�b

�y
� u

�B

�x
� w � 0, �3e�

together with the boundary conditions, w � 0 at z � 0
and 1. Here u, 
, and w are cross-stream, streamwise,
and vertical perturbation velocity, and p is perturbation
pressure. To obtain the set of nondimensional equa-
tions in (3), the following scales have been used for
nondimensionalization of the basic state and perturba-
tion quantities: horizontal length L, vertical length H
(the domain height), horizontal velocity V0, time L/V0,
dynamic pressure P � �ofV0L, background buoyancy
gradient N2, perturbation buoyancy fV0L/H, and verti-
cal velocity w � fV2

0 /N2H. As a result several nondi-

mensional parameters appear in (3): Rossby number
Ro � V0 /fL, Froude number F � V0/NH, aspect ratio �
� H/L, and � � fLV0 /N2H2 � F2/Ro. This nondimen-
sionalization, which follows that in McWilliams (1985),
is designed to expose the generally weak deviations of
the flow from balance when these parameters are not
large. The nondimensional basic-state variables are

V � z � 0.5 and B � x. �4�

We will solve for normal-mode perturbations in the
form,

�u, �, w, p, b� � û�z�, �̂�z�, ŵ�z�, p̂�z�, b̂�z��

� exp��t� expi�kx � ly��, �5�

where (û, 
̂, ŵ, p̂, b̂) are complex functions of z only,
and k and l are cross-stream and streamwise wavenum-
bers. To compare our results with previous work we will
need a translation into previously used nondimensional
parameters. Since there is no horizontal length scale
associated with the basic state (1), we are free to choose
it such that � � H/L � f /N (i.e., L is chosen as a gravest
baroclinic deformation radius), understanding that the
actual length scale of unstable perturbation modes will
be internally determined by the solution. This choice
implies that

Ro2 �
V0

2

F2L2 �
V0

2

N2H2 � F2 � Ri�1, �6�

where Ri � N2/(dṼ/dz̃)2 � (NH/V0)2 is the Richardson
number. Hence F � Ro, and � � F2/Ro � Ro. The only
two remaining independent nondimensional param-
eters are Ro (or Ri) and the ratio between background
stratification and rotation � � f /N.

The following set of nondimensional equations is
thus obtained for the normal modes:

Ro��û � ilVû� � �̂ � �ikp̂, �7a�

Ro���̂ � ilV�̂ � Roŵ� � û � �ilp̂, �7b�

Ro2�2��ŵ � ilVŵ� � �
�p̂

�z
� b, �7c�

ikû � il�̂ � Ro
�ŵ

�z
� 0, and �7d�

�b̂ � ilVb̂ � û � ŵ � 0, �7e�

plus the vertical boundary conditions ŵ � 0 at z � 0
and 1. In the limit of strong stratification (the usual
situation in the oceanic interior), �2 is small, and the
vertical momentum equation reduces to hydrostatic
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balance. (Effects of weaker stratification will be inves-
tigated below.)

The system (7) is discretized in the vertical using
standard finite differences on a staggered grid (appen-
dix A). This leads to a generalized eigenvalue problem
that may be quite large depending on the number of
points used in the grid. Previously, authors have re-
ported difficulties in obtaining positive, but small eigen-
values (i.e., weak instabilities) for this problem (cf.
Stone 1970). This is due to the nearly singular behavior
of the coefficients of the equations when the growth
rate (i.e., the real part of �) becomes very small. Since
the resulting matrix is sparse and we are only interested
in a few, largest eigenvalues, we use a Krylov subspace
method, Jacobi Davidson Q–Z (Sleijpen and van der
Vorst 1996) to solve for the most unstable eigenmodes.
Although a direct method (e.g., Q–Z; Golub and Van
Loan 1996) solves for all eigenvalues and eigenmodes,
the computation time for this algorithm increases as the
cube of the order of the matrix and therefore becomes
unusable for large grids. Krylov methods do not scale
with a fixed rate of the matrix order, but instead depend
in a nonanalytical way on the size, condition number,
and eigenvalue spectrum of the matrix. For many prob-
lems, a Krylov method is usable for matrix sizes where
direct methods have long become impractical.

The largest resolution we have used in the vertical is
9192 grid points. The solution of a single eigenvalue
problem of this size for the four largest eigenvalues
takes approximately 5 cpu seconds on a Cray J90.

3. Unstable modes

Following Stone (1970), Fig. 1 shows the perturba-
tion growth rate as a function of the streamwise wave-

number l for several values of the cross-stream wave-
number k. There are two distinct types of unstable
mode for each k, which we will show in section 4 are
appropriately called geostrophic and ageostrophic
types. Note that, for these values of Ro and �, the geo-
strophic instability has a somewhat larger growth rate
and occurs on a larger horizontal scale, relative to the
ageostrophic instability. The geostrophic instability
mode is the most familiar one from previous analyses: it
remains strong as Ro → 0, and it is associated with an
inflection point (i.e., a change of sign of the horizontal
gradient of the basic state potential vorticity, which in-
volves the vertical boundary conditions in this uniform
shear flow; see below).

There are modest differences between Fig. 1 and Fig.
2 in Stone (1970) as a result of our inclusion of nonhy-
drostatic effects for finite �. The nonhydrostatic effects
on the geostrophic modes are small; for example, for
� � 1 the maximum growth rate is reduced by only 5%.
For the ageostrophic modes, however, the effect is

FIG. 1. Growth rate, Re(�), for Ro � Ri�1/2 � 1 and � � 1 as
a function of streamwise wavenumber l for several values of cross-
stream wavenumber k. Solid and dashed lines indicate, respec-
tively, the geostrophic and ageostrophic types of instability.

FIG. 2. Growth rate, Re(�), of the ageostrophic instability mode
for Ri � 2 (Ro � 1/�2) as a function of streamwise wavenumber
l for several values of cross-stream wavenumber k: (a) � � 1.0 and
(b) � � 0.0 (the hydrostatic limit).
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somewhat more significant; for � � 1 the ageostrophic
mode that becomes first unstable for increasing l is now
k � 7; in contrast, in the hydrostatic limit, the first mode
to become unstable for increasing l is the one with the
largest k (which implies an inconsistency with the hy-
drostatic approximation).

For values of Ro � 1 (Ri � 1), the ageostrophic
instability has smaller growth rates. The numerical
method used in Stone (1970) was limited in its ability to
obtain positive eigenvalues, because of the aforemen-
tioned nearly singular behavior of the coefficients. By
using much higher grid resolutions, we are able to track
the ageostrophic instability behavior, even for ex-
tremely small growth rates. In Fig. 2, the growth rates
for ageostrophic instability are shown again as a func-
tion the horizontal wavenumbers, but now for Ro �
0.71 (Ri � 2) and for two different values of �. For
� � 1 it is noteworthy that, contrary to previous char-
acterizations of this type of instability as small scale, the
wavenumbers for which maximum growth is obtained
are in fact comparable to the gravest deformation ra-
dius. However, keep in mind that � � 1 implies that
L � H and N � f, which for geophysical regimes
corresponds to rather weak stratification and small
horizontal scale. In contrast, in the hydrostatic limit � �
0 (Fig. 2b), a shift to much larger wavenumbers occurs
for maximum growth (n.b., the change in abscissa
scale), implying perturbation scales are small relative to
the deformation radius. Thus, in this regard the ageo-
strophic instability behaves differently for small and
large aspect ratios and/or stratification/rotation ratios.

Since the breakdown of balanced dynamics is at least
sometimes likely to be associated with inertia–gravity
wave generation, it is informative to study the behavior
of these instabilities with varying stable stratification N.
In Fig. 3 the geostrophic and ageostrophic modal
growth rates are shown as a function of stratification,
optimized in each case over the horizontal wavenum-
bers. Figures 3a and 3b show a different parametric
route toward N/f � 0. In Fig. 3a, the Rossby number is
constant at Ro � 1. This implies that for decreasing
values of N and for constant f the unstable length scale
L decreases since we have chosen L/H � N/f. This, in
turn, implies that V0 decreases, since the Rossby
number is constant. The time scale L/V0 is therefore
constant for this parametric route. In this particular
limit, the growth rate decreases as N1/2 in the limit of
small N for the geostrophic mode [as it does in the
Eady (1949) analysis for Ro � 0]. The growth rate of
the ageostrophic mode decreases as N in the small N
limit implying that there is a (inertia) gravity wave
component in the ageostrophic mode. This confirms

the hypothesis of, among others, Nakamura (1988)
that the ageostrophic instability is produced by a reso-
nance between a boundary mode and a sheared inertia–
gravity mode. For large N, the growth rates of both
geostrophic and ageostrophic modes attain constant
values.

FIG. 3. Growth rate of geostrophic (dots) and ageostrophic
(solid) modes as a function of vertical stratification N/f � � (op-
timized over horizontal wavenumbers): (a) for fixed Ro � 1 and
(b) for fixed V0 and f [this corresponds to varying the Rossby
number as Ro � (N/f )�1]. In (b) the dashed vertical line indicates
Ro � 1, and centrifugal instabilities may occur for N/f � 1 (Ro �
1) in (b) to its left. Note that the growth rates coincide at N/f � 1
in both panels.
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In Fig. 3b, the stratification N/f is varied while keep-
ing V0 and f constant. Because of our choice of length
scale L, this implies that Ro varies as N�1. This choice
also leads to a different dimensional time scale. For
ease of comparison with Fig. 3a, the growth rates in
Fig. 3b have been rescaled using a constant time scale
1/f. The dependence of Ro on N for this case does mean
that for smaller values of N, the flow becomes increas-
ingly unstable, and at N/f � 1 (Ro � 1) centrifugal
modes become unstable. For N/f � 1 (and in this case,
Ro � 1), the ageostrophic mode becomes harder to
identify separately since it joins with the centrifugal
modes (Stone 1970), and we have not attempted to do
so. The geostrophic mode, on the other hand, becomes
independent of vertical stratification for small values of
N. In the limit of N � 1, the ageostrophic growth rate
decays quite rapidly with N, while the geostrophic
growth rate varies as N�1/2 [again as in the Eady (1949)
quasigeostrophic analysis].

4. Loss of balance

The three conditions for loss of integrability of the
balance equations in isentropic coordinates (Gent and
McWilliams 1984) are that sign changes occur for any of
the buoyancy stratification (N2); the dimensional abso-
lute vorticity,

A � f � 	 �z� � f � �X � uY

(where the horizontal derivatives denoted by capital
letters are in isentropic coordinates), and the difference
between A and the dimensional horizontal strain rate,

S � ��uX � �Y�2 � ��X � uY�2

(McWilliams et al. 1998). For the basic state (1), we can
write the dimensional isentropic horizontal derivatives as

�X � �x �
f V0

2

N2H2 �z and �Y � �y;

therefore, the latter two conditions for loss of balance
may be expressed as sign changes in

A � f�1 �
1

Ri� or A � S � f�1 �
2

Ri�. �8�

Again we see that this basic-state flow is anticyclonic
since A/f � 1 for all Ri. Both A and A � S monotoni-
cally decrease with decreasing Ri.

Thus, we can make the following regime categoriza-
tion in terms of Ri � 1/�Ro and in relation to these
conditions for loss of balance and known instability
types.

• The quasigeostrophic limit occurs for Ro → 0, Ri →
�. It has a geostrophic baroclinic instability (Charney
1947; Eady 1949), whose inflection point in this
particular flow configuration occurs at the vertical
boundaries.

• The A � S condition is satisfied if Ro � 1/�2 (Ri � 2).
• The A condition is satisfied if Ro � 1 (Ri � 1). It has

a symmetric centrifugal instability (Stone 1966; Hos-
kins 1974).

• The classical (nonrotating) condition for the onset of
Kelvin–Helmholtz instability (Miles 1961; Howard
1961) is satisfied if Ro � 2 (Ri � 1⁄4).

• The classical inviscid condition for the onset of gravi-
tational instability is satisfied if N2 � 0 or (Ri � 0).

Our attention is therefore drawn to the intermediate
range of 1 � Ro � 0 (1 � Ri � �) where previous
results give less complete guidance. Note that this re-
gime is the neighborhood of the A � S � 0 (Ri � 2)
condition.

Growth rates for both geostrophic and ageostrophic
modes are shown in Fig. 4a. In the quasigeostrophic
limit (Ro � 0), only the geostrophic mode has a positive
growth rate. Some nongeostrophic influences are
present in the geostrophic mode as Ro increases, but
they are small; for example, the growth rate is reduced
from � � 0.30 at Ro � 0 to � � 0.22 at Ro � 1. On the
other hand, the ageostrophic mode attains a significant
growth rate near Ro � 1, but it decreases very rapidly
for Ro → 0. In Fig. 4b the growth rate of the ageo-
strophic mode is shown as a function of the A � S
indicator for loss of balance. Although there is a very
rapid decrease in � in the vicinity of A � S � 0 (Ro �
1/�2), this point is not a sharp boundary between
stable and unstable behavior. For Ro � 1 (Ri � 1),
centrifugal instability does occur for both symmetric
(zero streamwise wavenumber) and nonsymmetric
(nonzero streamwise wavenumber) perturbations.
These results are fully consistent with the analyses of
this problem in Stone (1966, 1970) and Nakamura
(1988).

5. Diagnosis of balance

To assess quantitatively the departure from the bal-
anced manifold in both the geostrophic and ageo-
strophic baroclinic instabilities, we must specify the bal-
ance equations for the present situation of linearization
around the basic state (1). To derive the balance equa-
tions, the horizontal flow uh � (u, 
) is decomposed into
horizontally nondivergent and vertically irrotational
components. This is accomplished by defining a stream-
function � and a velocity potential �:
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u � �
y � Ro�x and � � 
x � Ro�y. �9�

The vertical component of the vorticity is � � 
x � uy �
�2

h�, and the divergence of the horizontal flow is � � ux

� 
y � Ro�2
h�. Taking the curl of the horizontal mo-

mentum balance in (3), we obtain the vorticity equation

Ro��	

�t
� V

�	

�y
� Ro

�w

�x
Vz� � Ro�h

2� � 0.

�10�

Alternatively, taking the divergence of the horizontal
momentum balance in (3) leads to

Ro�Ro
��h

2�

�t
� RoV

��h
2�

�y
� Ro

�w

�y
Vz� � 	 � ��2p.

�11�

Making the appropriate approximation (i.e., dropping
all terms in the previous two equations at higher than
the leading two orders in Ro) leads us to the balance
equations in height coordinates (cf. Lorenz 1960;
McWilliams 1985):

�	

�t
� V

�	

�y
� Ro

�w

�x
Vz � �h

2� � 0, �12a�

	 � �2p, �12b�

�p

�z
� b, �12c�

�h
2� �

�w

�z
� 0, and �12d�

�b

�t
� V

�b

�y
� u � w � 0. �12e�

For normal-mode solutions (with ���K2� and K2 � k2

� l2), these simplify to

��� � ilV�K2�̂ � ikVz Roŵ � K2�̂ � 0, �13a�

�̂ � p̂, �13b�

�z p̂ � b̂, �13c�

K2�̂ � �zŵ, and

�13d�

�� � ilV�b̂ � il�̂ � ikRo�̂ � ŵ � 0. �13e�

To cancel the explicit time dependence in the vorticity
and buoyancy relations, we combine (13a) and (13e) to
form the so-called � equation. After also using (13b)–
(13d) for substitutions, the � equation is

�il�1 � Vz��̂ � ikRo�1 � Vz��̂ � �z�̂ � ŵ � 0.

�14�

Equation (14) plus (13b)–(13d) form a set of constraints
that have to be satisfied by the balanced part of the
modes, from now on indicated by a subscript “bal.”

We can now project the solution obtained with the
full Boussinesq equations onto this manifold, given the

FIG. 4. Growth rates maximized over both horizontal wavenum-
bers for the hydrostatic regime, � � 0.01: (a) geostrophic (dots)
and ageostrophic (solid) modes as a function of Ro; (b) only the
ageostrophic mode as a function of the third condition for break-
down of the balance equations, (A � S)/f.
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definition of an inner product (see appendix C). This
projection operation reduces the dimensionality of the
space of Boussinesq solutions by splitting it into two
orthogonal subspaces: “bal” and “un,” where the latter
subscript denotes the unbalanced component, equal by
definition to the total field minus the balanced part.
The definition of the inner product is dependent on the
particular measure of imbalance that we choose to
minimize in fitting the balanced component. The pro-
jection is accomplished by fitting a balanced solution
component Xb to the full solution X by minimizing a
cost function schematically of the form

F � �
0

1

F �X � Xb� dz

��
�̂ � �̂bal

�̂ � �̂bal

ŵ � ŵbal

p̂ � p̂bal

b̂ � b̂bal

� D�
�̂ � �̂bal

�̂ � �̂bal

ŵ � ŵbal

p̂ � p̂bal

b̂ � b̂bal

�
*

,

�15�

where D is a Hermitian, positive, semidefinite matrix,
and * denotes a complex conjugate. The unbalanced
solution component is the residual; for example,

Xun � X � Xbal.

By minimizing F, we determine the largest part of a
particular mode of the Boussinesq equations that sat-
isfies the (subset) of the balance equations defined
by (13b)–(13d) and (14). The coefficients of the matrix
D depend on the choice of the quantity that we wish to
measure the closeness of the fit by. Below we present
results for alternative choices of the fitting norm (i.e.,
several D choices; see appendix C) and examine the
sensitivity of the fitted amplitude to these choices. To
present the results of the partitioning in balanced and
unbalanced parts we choose a norm, defined by the
same inner product that defines the cost function F. In
general, a different measure for norm and cost function
could be chosen, but at least initially it seems natural to
use the same measure for both.

Potential vorticity (see appendix B) often has been
used as the representative field for the balanced com-
ponent of both natural and simulated flows (Hoskins et
al. 1985). In Olsson and Cotton (1997), for example, the
potential vorticity is fit exactly at each point in space,
but only a less accurate balanced approximation is used
in “inverting” the potential vorticity for the various bal-

anced flow fields (specifically, the terms representing
the vertical shear of horizontal divergent winds and the
horizontal shear of the vertical velocity are neglected).

However, for this particular problem, potential vor-
ticity is not a natural choice for the cost function. The
basic state has a constant potential vorticity, and, since
potential vorticity is conserved by fluid elements in this
inviscid, adiabatic flow, all perturbations are character-
ized by a pointwise zero potential vorticity. The use of
a generalized potential vorticity such as suggested by
Bretherton (1966) for quasigeostrophic flows and
Schneider et al. (2003) for more general flows was
also considered. In this case, the interior potential vor-
ticity is supplemented by sheet of potential vorticity
just inside the horizontal boundaries at z � 0 and 1.
However, for this very specific problem, even the use of
a generalized potential vorticity did not lead to mean-
ingful estimates of degree of balance of the considered
eigenmodes. Since only the boundary values of fields
appear effectively in the cost function, the amount of
underdetermindness of the used set of balanced equa-
tions lead to that the balanced part of the eigenmodes
could always be fitted such that it contained all of the
generalized potential vorticity, which would lead to the
misleading result that all eigenmodes are fully bal-
anced. This does not mean that, for such a fit, the un-
balanced part of the solution is absolutely small, let us
say in a l2 sense, but merely that the extended potential
vorticity (PV) content of the unbalanced part is small
relative to the extended PV content of the balanced
solution, which is dominated by the surface PV. This
makes the choice of (extended) PV as a basis for the
cost function a poor one and we therefore did not use it
in the remainder of the work.

Another difference in the present approach is that
most previous ones were restricted to the analysis of a
particular snapshot in time. Here, because of the har-
monic nature of the perturbations in time and the lin-
earity of the perturbation equations, we are able to
incorporate the evolution of the perturbations into the
analysis. Using quadratic forms like ff* amounts to fit-
ting the balanced component of the unstable eigen-
modes over a full oscillation period. As illustration con-
sider the integral,

���� | f |2 dx dy dz dt, �16�

where f � f̂(z) exp(�t) exp[i(kx � ly)] is harmonic in x,
y, and t if we neglect the real growth rate �re. The
integral, which is over one full period in x, y, and t, (16)
can be evaluated analytically:
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���� f̂ expi�kx � ly � �imt��2 dx dy dz dt

�
3

2 �� f re
2 � f im

2 � dz, �17�

where fre and fim are the real and imaginary parts of f̂
respectively. It is now obvious that (17) is equal to ff *,
multiplied by the constant �3/2*.

In Fig. 5 the perturbation eigenmode streamfunction
and its balanced fit are shown for the geostrophic mode
at Ro � 1. Figure 5a shows a y–z slice of � calculated
with the Boussinesq equations. In Fig. 5b, the unbal-
anced part of this solution is shown, based on a total
energy norm. In Fig. 5c, the vertical profiles of the real
part of the total and the balanced component of �̂ are
shown. As expected, the unbalanced part is relatively
small (�10%). This indicates a high degree of balance
for the geostrophic instability, even at the rather large
value of Ro � 1.

In Fig. 6 the streamfunction is shown for the ageo-
strophic mode for Ro � 1. From Fig. 6c it is clear
that throughout the lower part of the domain, the so-

lution is mostly balanced, but in the upper part a cri-
tical layer is evident, and the solution is highly un-
balanced in its vicinity. Critical layers or “inertia critical
levels” (Jones 1967) are levels where the Doppler-
shifted wave frequency equals plus or minus the Corio-
lis frequency. Mathematically they result in singu-
larities of the equations for neutral waves. The position
of these critical layers depends on the wavenum-
bers and eigenvalue and therefore cannot be deter-
mined a priori. A discussion of the physical charac-
teristics of critical layers can be found, for example,
in Kitchen and McIntyre (1980). The occurrence of a
critical layer becomes even more evident as Ro de-
creases and the growth rate becomes very small (see
Fig. 7).

Figure 8 shows the degree of balance of the strongest
geostrophic and ageostrophic unstable modes as a func-
tion of Ro. The degree of unbalance of the geostrophic
mode (shown with a solid line) is small for Ro � 1 (7%)
and rapidly decreases for Ro → 0. In contrast, the de-
gree of unbalance of the ageostrophic mode (dotted
line) is large and remains relatively constant through-
out the range of Ro.

FIG. 5. (a) Streamfunction, �(x, z), for the geostrophic instability (Ro � 1). (b) The un-
balanced component, �un(x, z), based on a total energy norm in the cost function. (c) Vertical
profiles of � (solid) and �bal (dots) at x � 0.

FIG. 6. (a) Streamfunction �(x, z) for the strongest ageostrophic instability at Ro � 1
(optimized over horizontal wave numbers). (b) Unbalanced part of the streamfunction; notice
that near the critical layer the streamfunction is almost completely unbalanced. (c) Vertical
profiles of � (solid line) and �bal at x � 0.
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From the point of view of loss of balance, we thus
obtain the following picture. The baroclinically un-
stable shear flow may lose energy into unbalanced mo-
tions in two ways. First, the geostrophic baroclinic in-
stability, which has a nearly constant growth rate with
Ro, becomes increasingly unbalanced for larger Ro, al-
beit modestly so. Second, the ageostrophic instability,
which has a nearly constant and large degree of unbal-
ance, attains a significant growth rate when Ro be-
comes O(1). To test the generality of these conclusions,
we have repeated the results of the last section using
the kinetic energy as a fitting norm (appendix C). These
computations lead to results that are only slightly dif-
ferent from the ones using total energy, and the esti-
mates of degree of balance remain the same within a
few percent.

6. Discussion

We have reexamined the classical geophysical fluid-
dynamical problem of baroclinic instability in a uni-
formly sheared parallel flow to emphasize its depen-
dence on the Rossby number Ro. In particular we have
investigated both geostrophic and ageostrophic baro-
clinic instability modes for their degree of diagnostic
momentum balance and for their relationship to the
conditions for loss of time integrability of the balance
equations. Our principal conclusions are that the geo-
strophic mode is nearly balanced for all values of Ro
examined; the ageostrophic mode is highly unbalanced
for all Ro; and the occurrence of significant ageo-
strophic growth rates (i.e., comparable to the geo-
strophic ones) occurs in the neighborhood of the A � S
� 0 and A � 0 conditions for loss of balance. The
ageostrophic mode is thus clearly distinct from the
more familiar geostrophic mode. Although it does not
exhibit any critical transition at a finite Ro value, it does
achieve a significant growth rate even before the onset
of centrifugal instabilities at A � 0. Its growth rate
becomes vanishingly small, at nearly an exponential

rate, as Ro → 0. Since the mean baroclinic flow is in-
herently anticyclonic (i.e., its potential vorticity is re-
duced relative to the stratified resting state), we view
this solution to the baroclinic instability problem as
consistent with the paradigm that is emerging from pre-
viously discovered examples of unbalanced, anticy-
clonic, ageostrophic instabilities that arise at interme-
diate values of Ro between 0 and 1.

We have introduced a method to analyze the degree
of balance of solutions of the Boussinesq equations and
thus to decompose the flow into balanced and unbal-
anced components. This method appears to be satisfac-
tory for the particular linear eigenvalue problem exam-
ined here, insofar as it allows us to draw rather sharp
conclusions about the mostly balanced geostrophic and
mostly unbalanced ageostrophic modes. However, the
method involves fitting a balanced component—de-

FIG. 8. Ratio of norm of the unbalanced part of the solution to
the norm of the full solution, using total energy as the cost func-
tion, for geostrophic (solid line) and ageostrophic (dots) modes.

FIG. 7. As in Fig. 6, but for Ro � 1/�2 (Ri � 2).
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fined entirely by diagnostic constraints derived from
the balance equations (including the � equation)—to a
Boussinesq solution whose time dependence is not nec-
essarily consistent with the time evolution implied by
the balance equations. Because the linear modal solu-
tions have a factorable harmonic time dependence, our
balanced fits are uniformly valid over the oscillation
cycle. In more general, nonlinear evolutionary regimes,
this procedure may require modification to reconcile
the balanced and Boussinesq tendencies. Also, the
norms used here to measure the degree of unbalance
were different types of energy norms. In general, we
expect that the use of potential vorticity will also prove
to be useful in providing insight in the degree of bal-
ance of a particular flow. Only the singular nature of
the Eady problem, with zero interior gradient on the
potential vorticity of the basic state leads to the fact
that, for this problem, potential vorticity measures do
not give meaningful answers for the solution decompo-
sition.

As always in discussions of balanced dynamics, the
particular definition of balance is an issue since many
alternatives have been proposed. For example, the bal-
ance equations defined in isentropic coordinates (Gent
and McWilliams 1984) might be used as an alternative in
section 5, since it is the basis for the conditions for loss
of balance in section 4 and it has a potential vorticity that
is an exact Lagrangian invariant [even though not one
that is equal to the perturbation Ertel potential vortic-
ity at relative O(��2)]. However, since the distinction
between balanced and unbalanced parts is so clear in
the geostrophic and ageostrophic instabilities (see Fig.
8), we have chosen not to pursue these alternatives here.

At finite Ro values the ageostrophic instability pro-
vides a mechanism through which the balanced mean
flow can transfer energy into the unbalanced manifold.
This consequently can be the first step of kinetic energy
entering into a forward energy cascade en route to
eventual dissipation. What still remains to be investi-
gated is the nonlinear evolution along this path, since
we have only looked here at the linear instability prob-
lem. The linear solution does not allow us to estimate
how large the energy flux from balanced to unbalanced
flow components may become in the equilibrated re-
gimes. Nevertheless, this study provides a partial an-
swer to the question of how a highly balanced, large-
scale circulation may dissipate energy through a local
forward energy cascade into unbalanced motions.
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APPENDIX A

Discretized Equations

The Boussinesq equations are discretized in the ver-
tical using a staggered grid. All variables are defined at
cell centers with exception of w, which is defined at cell
boundaries. This results in a set of 5 � l coupled alge-
braic equations for 5 � l unknowns. Formally, one
would need integral conditions for p and b, since one
can add an arbitrary constant to either variable without
dynamical effect. However, for eigenvalue purposes,
this merely results in two extra neutral modes, charac-
terized by a constant eigenmode and zero eigenfre-
quency:

Ro��ui � ilViui� � �i � ikpi � 0, �A1a�

Ro[��i � ilVi�i � RoVz�wi � wi�1��2]

� ui � ilpi � 0, �A1b�

Ro2�2��wi � ilViwi� � �pi�1 � pi��dz

� �bi�1 � bi��2 � 0, �A1c�

ikui � il�i � Ro�wi � wi�1��dz � 0, and

�A1d�

�bi � ilVbi � ui � �wi � wi�1��2 � 0. �A1e�

All equations are defined for i ∈ [1, n], where n is the
number of grid points, with the exception of (A1c),
which is defined for i ∈ [1, n � 1] and is supplemented
with the boundary condition wn � 0. Here w0 is not
considered an unknown of this system and is set to w0

� 0 at all times. We can now take a linear combination
of these equations and neglect small terms to arrive at
a (discretized) system of balance equations that is con-
sistent with the discretized Boussinesq equations:

�K2
i � ilViK
2
i � ikRoVz�wi � wi�1��2

� K2�i � 0, �A2a�


i � pi, �A2b�

2�pi�1 � pi��dz � bi�1 � bi, �A2c�

dzK2�i � wi � wi�1, and �A2d�

�bi � ilVibi � ��il
i � ikRo�i�

� �wi � wi�1��2 � 0. �A2e�

Analogous to the continuous derivation, previously dis-
cussed, we now take a linear combination of above
equations to eliminate the eigenvalue � and arrive at a
discrete omega equation in a way that is consistent with
the discretization,
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�il�Vz � 1��
i�1 � 
i� � ikRo�Vz � 1���i�1 � �i�

� 2��i�1 � �i��dz � �wi�1 � 2wi � wi�1��2 � 0.

�A3�

APPENDIX B

Ertel Potential Vorticity

The dimensional Ertel potential vorticity is defined
(e.g., Pedlosky 1987, p. 39) by

� � �wy � �z�bx � �uz � wx�by

� ��x � uy � f ��N2 � bz�. �B1�

Using the nondimensionalizing scales defined following
(3) plus fN2 for 	 itself, we arrive at a nondimensional
potential vorticity,

� � �Ro2�2wy � Ro�z�bx � �Rouz � Ro2�2wx�by

� �Ro�x � Rouy � 1��Ro�1 � bz�. �B2�

For the linear perturbations under consideration, this
reduces to a perturbation potential vorticity,

� � Ro2�2wy � Ro�z � Robx � ��x � uy� � bz,

�B3�

and a mean-state potential vorticity, 	 � Ro�1 � Ro.
For the linear eigenmodes, the perturbation form is

� � ilRo2�2w � Ro�z� � ikRob � �ik� � ilu� � �zb.

�B4�

In terms of (�, �, w, p, b), this is

� � ��K2 � ikRo�z�
 � ilRo2�z� � ilRo2�2w

� �ikRo � �z�b. �B5�

Since the basic state of the Eady problem possesses a
PV that is identical zero everywhere we have sought to
use the extended potential vorticity as originally pro-
posed by Bretherton (1966). He proposed that the in-
terior potential vorticity is supplemented by sheet of
potential vorticity just inside the horizontal boundaries
at z � 0 and 1. Following Bretherton (1966), the
amount of surface PV, which results from a varying
temperature at the boundary, is

�surf � fb��z � zs�. �B6�

At the time, Bretherton was working with a quasigeo-
strophic flow and recently an extended PV has been
proposed for more general flows (Schneider et al.
2003). For inviscid and adiabatic Boussinesq flow, the
surface potential vorticity becomes

�surf � �� · n�b��z � zs�

� ��x � uy � f �bz�1 � ��x � uy � f �bz�0.

�B7�

However, since the basic state depends linearly on x,
this expression would introduce a secular term if used
in a cost function for the (periodic) perturbations. We
were not able to find a way to deal in an appropriate
manner with that and therefore opted to use the origi-
nal expression from Bretherton. In either case, as de-
scribed in the text, the fit to the set of balanced con-
straint is underdetermined in such a way that we are
able to fit any perturbation completely to the surface
PV. This leads to a characterization that, falsely, would
indicate that all perturbations are completely balanced.
So finally, as discussed in the text, none of the consid-
ered definitions of PV proved to be useful for this par-
ticular problem. We do envision that for more general
flows, the use of PV to characterize the degree of bal-
ance of a flow will prove to be a useful and practical
quantity.

APPENDIX C

Projection onto the Balanced Manifold

The solutions to the set of balanced constraints,
(13b,c) and (14), define a manifold in function space.
Minimization of the cost function L may also be seen as
a projection operation given a suitably defined inner
product. Define the balanced manifold with

Bxbal � 0, �C1�

where B represents the set of (discretized) balanced
constraints and x is the solution vector. Now introduce
the inner product,

�x, y�D � xTDy*, �C2�

where D is a positive semidefinite, Hermitian matrix
and * indicates a complex conjugate. Given a solution x
of the Boussinesq equations, minimize the distance to
a solution to the balanced constraints xbal or minimize
(e, e)D, where e � x � xbal; e must then be orthogonal
to xbal; hence

xbal
T De* � 0. �C3�

This can be solved if we let De* � BT� since this yields

xbal
T De* � xbal

T BT� � �Bxbal�
T� � 0. �C4�

We therefore find the following system to be solved:

D*x � D*xbal � BH�* and �C5a�

Bxbal � 0, �C5b�
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for which a solution can be found by solving

BD*�1BT*�* � Bx. �C6�

Different choices of D will correspond to specific cost
functions L. For instance, if we are considering the en-
ergy as a measure of unbalance, then

E � 0.5�uu* � ��* � Ro2�2ww* � bb*�

� 0.5�K2

* � Ro2K2��* � Ro2�2ww* � bb*�,

�C7�

and the cost function is

L � �
i�1

i�n

dz Ex�i� � xbal�i��. �C8�

In this case, D is simply

D ��
K2 0 0 0 0

0 Ro2K2 0 0 0

0 0 Ro2�2 0 0

0 0 0 0 0
0 0 0 0 1

	 . �C9�

Since the pressure p does not appear in these cost func-
tions, D cannot be inverted in this form. To overcome
this we merely need to use (13b) to eliminate p from D
and the system of balanced constraints.
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