
BAROQUE: A Browser for Relational
Databases
AMIHAI MOTRO

University of Southern California

The standard, most efficient method to retrieve information from databases can be described as

systematic retrieval: The needs of the user are described in a formal query, and the database

management system retrieves the data promptly. There are several situations, however, in which

systematic retrieval is difficult or even impossible. In such situations exploratory search (browsing)

is a helpful alternative. This paper describes a new user interface, called BAROQUE, that implements

exploratory searches in relational databases. BAROQUE requires few formal skills from its users. It

does not assume knowledge of the principles of the relational data model or familiarity with the

organization of the particular database being accessed. It is especially helpful when retrieval targets

are vague or cannot be specified satisfactorily. BAROQUE establishes a view of the relational

database that resembles a semantic network, and provides several intuitive functions for scanning it.

The network integrates both schema and data, and supports access by value. BAROQUE can be

implemented on top of any basic relational database management system but can be modified to take

advantage of additional capabilities and enhancements often present in relational systems.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design-data models;

H.2.3 [Database Management]: Languages-query languages; H.3.3 [Information Storage and

Retrieval]: Information Search and Retrieval-retrieual models

General Terms: Design, Human Factors, Languages

Additional Key Words and Phrases: Browsing, database, exploratory search, relational database, user

interface

When I look up something in the dictionary, it’s never where

I look for it first. The dictionary has been a particular disap-

pointment to me as a basic reference work, and the fact that

it’s usuully more my fault than the dictionary’s doesn’t make

it any easier on me. Sometimes I can’t come close enough to

knowing how to spell a word to find it; other times the word

just doesn’t seem to be anywhere in the dictionary. I can’t for

the life of me figure out where they hide some of the words I

want to look up. They must be in there someplace.
ANDY ROONEY

1. INTRODUCTION

1 .l Browsing Interfaces

The standard, most efficient method for retrieving information from databases
can be described as systematic retrieval: The needs of the user are described in a
formal query, and the database management system retrieves the data promptly.

Author’s address: Department of Computer Science, University of Southern California, Los Angeles,

CA 90089.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by permission of the Association

for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

0 1986 ACM 0734-2047/86/0400-0164 $00.75

ACM Transactions on Office Information Systems, Vol. 4, No. 2, April 1986, Pages 164-181.

BAROQUE: A Browser for Relational Databases l 165

There are several situations, however, in which systematic retrieval is difficult
or even impossible, including the following:

(1) The user is not familiar with the principles employed by the system to
organize data (the data model).

(2) The user is not familiar with the contents or definition (schema) of the
particular database to be accessed.

(3) The user is not proficient in the procedures used for the definition and
retrieval of the required information (the data language).

(4) The user has only a vague retrieval target (e.g., the user is looking for
something “interesting” or “suitable”).

(5) The user has a clear retrieval target but lacks some of the information
necessary to describe it (e.g., the user wants to find out the meaning of a
word in a dictionary database, but cannot spell it correctly).

There are many of these situations in real-world environments (e.g., depart-
ment stores, libraries), and a common solution there is to rely on intuition and
embark on an exploratory search. The search often begins at an arbitrary location,
and while it is in progress, the person also gains insight into the nature and
organization of the searched environment. Eventually, the search either termi-
nates successfully or is abandoned. Such a search technique is often referred to
as browsing.

This paper describes a new user interface, called BAROQUE (BROwse
and QUEry), that implements exploratory searches in relational databases.
BAROQUE requires few formal skills from its users. It does not assume knowl-
edge of the principles of the relational data model or familiarity with the
organization of the particular database being accessed. It is especially helpful
when retrieval targets are vague or cannot be specified satisfactorily.

An interface such as BAROQUE (which we call a browser) is expected to
increase the usefulness and popularity of relational database management sys-
tems. It is not intended to replace systematic retrieval but to be used as a
complementary method in any of the situations mentioned above. Such an
interface is also useful in conjunction with systematic retrieval, that is, for
studying the data before submitting a query or clarifying its failure afterward.

The need for this alternative method of retrieval has already been recognized,
and several database management systems have experimented with tools that
allow users to explore their environment. Some of these efforts are discussed
below.

Cattell [l] designed and implemented an interface to an Entity-Relationship
database [4]. The interface features a set of directives for scanning a network of
entities and relationships, and presenting each entity, together with its context,
in a display called a frame. The principles of this interface were carried over to
Cypress, a database management system developed by Cattell at Xerox [2].
Cypress starts with a data model based largely on constructs derived from various
well-known data models, complementing it with an extensive array of features
and tools. In particular, Cypress allows users to browse through the database,
displaying its entities and relationships.

Browsing is offered as the principal retrieval method for loosely structured
databases [16]. Such databases are heaps of facts that do not adhere to any

ACM Transactions on Office Information Systems, Vol. 4, No. 2, April 1986.

166 l Amihai Motro

conceptual design. Since these facts are named binary relationships between data
values, the data may be regarded as a network of values. Two styles of browsing,
called navigation and probing, are defined. Both are derived from a standard
query language that is based on predicate logic.

In contradistinction to these browsers, the browsing features that have been
introduced into relational systems (e.g., SDMS [131, INGRES [191, and DBASE-
III [8]) have only limited exploration capabilities. These features are actually
tools for scanning relations (including relations that are results of formal queries).
Their primary limitation is that browsing is confined to a single relation at a
time, and it is not possible to browse across relation boundaries. If a user
encounters a value while browsing and wants to know more about it, it is
necessary first to determine in what other relations this value may appear (quite
difficult), then formulate a standard query, and resume browsing in the new
relation. Satisfying questions such as, is x related in any way to y? is impossible
without extensively scanning the database.

Although the focus of this paper is on browsing in conventional databases, it
is worth noting that exploratory searches have been implemented in related
applications. Browsers have been constructed for the Smalltalk programming
environment [9] and later for PIE [lo], a personal information environment that
evolved from Smalltalk. These environments are intended to support the devel-
opment of software but can be employed to store and manipulate aggregates of
data as well. Browsing is also the principal access method in a prototype electronic
encyclopedia [23] and in WORDNET [15], a prototype automated English
language dictionary, which includes cross-referencing of the entries on the basis
of sense relations.

1.2 Design and Implementation of BAROQUE

Three aspects of the design and implementation of BAROQUE are of particular
significance:

(1) BAROQUE is designed for a basic relational model, and is implemented “on
top” of an existing database management system.

(2) BAROQUE operates on a network view of relational databases that the
interface constructs automatically.

(3) BAROQUE requires from its users few formal skills and minimal preparatory
knowledge.

These aspects are discussed below in more detail.
Since its introduction, there have been numerous enhancements and extensions

of the original relational model [5], and currently there is a great variety of
relational database management systems, many with additional features and
capabilities (see [6] and [20] for discussion of some of the major extensions). To
increase its applicability, BAROQUE assumes the basic model as described by
Codd. Nevertheless, certain enhancements, especially those that give more mean-
ing to the attributes of relations, can be used to advantage by the browser for
improving its behavior. BAROQUE accesses the stored database through the

ACM Transactions on Office Information Systems, Vol. 4, No. 2, April 1986.

BAROQUE: A Browser for Relational Databases . 167

query language provided by the existing database management system. Thus, it
could be built “on top” of existing systems (an advantage when using commercial
products). Actually, the only modification required to the existing database
management system is that it must be programmed to update automatically a
special new relation (which is used exclusively by the browser) after every update
to the other relations. In addition, BAROQUE needs to access the database
definition (schema). Such access is now available in many systems.

The browser operates on a network view of the given relational database. The
relational database is viewed as a network of data items, with named links
connecting related items. This representation resembles a semantic binary net-
work [21] and is derived automatically from the given relations. Although the
principles of this view could be explained to the user, it is usually unnecessary,
since it becomes apparent after some experimentation. One of the common tools
provided by database management systems to help users familiarize themselves
with the contents and organization of the database is access to the database
definition. Although this information may assist users in their explorations,
interpreting it requires technical understanding of the relational data model. To
avoid this requirement, we incorporate the information present in the definition
into the same network view.

The browser provides users with several functions that scan and search this
network, allowing them to present items and ask questions such as, What is it?
or What is known about it? Such access by value is an especially important
feature for users with no knowledge of the organization of the database. The
browser emphasizes simplicity by using a very simple command language that
avoids any relational terminology and by relying on menus. The intention is to
provide an interface that can be mastered quickly by naive users. Of course,
standard query processors provide more flexible access to the data (but are more
complex to use). For sophisticated users who wish to interleave browsing and
querying, the interface can switch rapidly between these two activities.

BAROQUE is a prototype system. As such, it implements mostly those features
unique to its design. For a complete interface it may be enhanced with additional
capabilities; some to consider are listed below. They would provide BAROQUE
with abilities to

(1) Recognize synonyms. For example, users may ask about LA and get infor-
mation on ~os-~ngeles. This can be achieved through simple modifica-
tions of the item dictionary. It will increase system responsiveness, with
relatively low overhead and without affecting the database itself.

(2) Accept browsing topics that are approximate data values, such as substrings
(BAROQUE looks for exact matches only).

(3) Provide summaries prior to listing long answers. For example, the answer to
What is known about Mozart, shown in Section 3.2, would first sum-
marize the list of his compositions with AUTHOR of COMPOSITION (626
items).

(4) Scan long answers flexibly (BAROQUE displays them a windowful at a time).

(5) Accept input via a pointing device (in BAROQUE selection is done by typing)
and use graphics to show the current item and its immediate relationships.

ACM Transactions on Office Information Systems, Vol. 4, No. 2, April 1986.

168 l Amihai Motro

Many of these features have been implemented successfully in several database
management systems.

1.3 Overview of this Paper

The remainder of this paper is divided into three sections. Section 2 discusses
the advantages (for our purposes) of a network view of the data, and shows how

such a view can be derived automatically from a given relational database. The
design and implementation of BAROQUE are the topics of Section 3. Section 4
concludes with discussions on issues such as semantics, cost, and further
possibilities.

2. A NETWORK VIEW OF THE RELATIONAL MODEL

For the purpose of browsing, the tabular representation of the relational data
model presents three problems:

(1) Information about a particular real-world entity may be stored in various
places. In general, users who are unfamiliar with computer data models tend to
think in terms of real-world entities and therefore expect all the information
pertaining to each entity to be grouped together. However, in relational databases
such information may be distributed over several relations. Experienced users
who are familiar with the definition of the database and are proficient in a formal
query language may be able to extract all this information with a suitable query,
but casual browsers are often unable to do so. Some relational database manage-
ment systems facilitate this task with special mechanisms. For example, the
definition of a database may include certain interfile links over common fields;
then, when viewing a record in one file, the user may ask to cross over to the
other file and view the associated records (a typical implementation of such a
feature is available in POWER-BASE [17]). A relational browser should be able
to assemble automatically all the information from the database that pertains to
the browsing topic.

(2) A tabular representation introduces structural boundaries and lacks explicit
links that users may follow. A common technique for exploratory searches is to
start with a known item of information, use it to uncover some additional
information, then follow this information to still other information. The tabular
representation of relational databases is not particularly suitable for such search
processes. When a relational database system delivers an item of interest, there
is no immediate way to follow this lead. For example, when a university database
returns the name of an instructor as part of its answer to a query about a
particular course, finding additional information about this instructor usually
requires consulting the definition of the database and formulating another query.

(3) All requests for information must include references to the definition of the
database. During the course of human interaction, information may be obtained
by naming particular entities, as in: What is the population of Los Angeles? To
obtain this information from a relational database, it must first be determined
in which relation and under what attribute the value LO s4nge 1 es may appear.
In other words, most relational databases do not support access by value. This
limitation can be explained by the observation that relational database manage-
ment systems implement a mapping from the data dictionary (attribute names)

ACM Transactions on Office Information Systems, Vol. 4, No. 2, April 1986.

BAROQUE: A Browser for Relational Databases l 169

into the database (values), but not the inverse mapping. Given an attribute, it is
possible to retrieve all its values, but, given a value, it is not possible to retrieve
the corresponding attributes. For example, one can list all values of the attribute
CITY. NAME, but it is impossible to list all the attributes of which Los_Angeles
is a value (i.e., CITY.NAME, UNIVERSITY.LOCATION, and OLYMPIAD.

SITE). By permitting access by value, a user interface approximates more closely
the style of human interaction (note that such access is an essential feature of
natural language interfaces to databases, such as INTELLECT [1 l] or LADDER

WI).

These problems suggest that, for the purpose of browsing, a network represen-
tation of the data may be more satisfactory. In a network representation each
real-world entity is modeled with one database item, and specific links are
established between related items. Relatively few modifications are necessary to
provide relational databases with network views (and make their actual tabular
representation transparent). We present our solution in four steps: First, we
define simple items; then, we define relationships between items; next, the model
is extended to allow composite items; and, finally, the definition of the database
is incorporated into the same model.

2.1 Items

All the occurrences of a particular data value u in a relational database are
considered collectively to be one abstract item called u. For example, the value
Los4nge le s may appear in the database under the attributes CITY. NAME,
UNIVERSITY.LOCATION, and OLYMPIAD.SITE ;together,theseoccurrences
represent an item called ~os4ngeles.l

Assembling this item, of course, requires that all the different occurrences of
a value be accessible through the item name. As mentioned earlier, relational
databases cannot be accessed with values alone: It is also necessary to provide
the attribute names under which these values may be found. To enable such
access by value, a mapping from values into attribute names is needed: Given a
value, this mapping determines the attributes under which it appears. Such a
mapping can be used to correlate all the different occurrences of a value in the
database and will therefore serve as an item directory. This item directory is
implemented with an additional relation that has two attributes: value and
attribute. A pair (u, a) in this relation states that the value u appears under the
attribute a. This relation cannot be modified by the users; the system should
automatically update it to reflect user updates to the other relations. (This is
similar to the way INGRES [18] handles secondary indexes.)

2.2 Item Relationships

After the data items that exist in a given relational database have been defined,
the next step is to define the item relationships that are implied by this database.

Item relationships are based on the functional dependencies that exist in the
database. Each relation embeds several such dependencies, and those that involve
the key are known to the database management system. Specifically, in each

’ Note that when the same data value represents several different real-world entities, the item created

will not have clear semantics. This issue is discussed in Section 4.

ACM Transactions on Office Information Systems, Vol. 4, No. 2, April 1986.

170 l Amihai Motro

relation every nonkey attribute is functionally dependent on the key attribute.’
Consequently, each value is related through functional dependencies to other
values in the same tuple. Since each data item combines all the occurrences of a
particular value in the database, the relationships of this item to other items are
based on all the dependencies in which these occurrences participate. Note that
this item may be the source of a functional dependency in one relation, and the
target of a functional dependency in another.

As an example, consider a database called MUSIC with three relations (key
attributes are underlined):

COMPOSER = (NAME -, COUNTRY, PERIOD, YEAR-OF-BIRTH,
YEALOF-DEATH)

COMPOSITION = (TITLE -t AUTHOR, TYPE)
PERIOD = (NAME -8 START-YEAR, END-YEAR)

Consider the value Mozart. It appears once in the COMPOSER relation:
(Mozart, Austria, Classical, 1756, 17 9 1) and many times in the
COMPOSITION relation, for example, (Jupiter, Mozart, Symphony),
(Magic-Flute, Mozart, Opera), and (Hunt, Mozart, Quartet). On
the basis of these tuples, the item Mozart is related to seven other items:
Austria, Classical, 1756, 1791, Jupiter, Magic-Flute and Hunt. By
concatenating the relation name and the attribute names involved in each
functional dependency, meaningful names for the relationships can be obtained.
For example, the relationships between Mozart and Jupiter and between
Mozart and Austria are, respectively, is-AUTHOR-of-COMPOSITION-
having-TITLE,andis-NAME-of-COMPOSER-having-COUNTRY.Thecom-
plete list of the relationships of MO z a r t is as follows:

Mozart is-NAME-of-COMPOSER-having-COUNTRY Austria
Mozart is-NAME-of-COMPOSER-having-PERIOD Classical
Mozart is-NAME-of-COMPOSER-having-YEAXOF-BIRTH 1756
Mozart is-NAME-of-COMPOSER-having-YEAROF4EATH 1791
Mozart is-AUTHOR-of-COMPOSITON-having-TITLE Jupiter
Mozart is-AUTHOR-of-COMPOSITION-having-TITLE Magic-Flute
Mozart is-AUTHOR-of-COMPOSITION-having-TITLE Hunt

A small portion of database MUSIC is shown in Figure 1. The network of items
that corresponds to this portion (without YEAR-OF-BIRTH and YEAROF-
DEATH) is shown in Figure 2. Note that all edges represent two-way relationships.
For example, Mozart is related to Jupiter via is-AUTHOR-of-COMPOSI-
TION-having-TITLE, and Jupiter is related to Mozart via is-TITLE-
of-COMPOSITION-having-AUTHOR.

Formally, assume a relation A = (A,, . . . , A,) and let (ai, . . . , a,) be a tuple
in A. The following item relationships are implied by this tuple:

(1) Item al is related to item ai(i = 2, . . . , ~TZ) via is-Al-of-A-having-Ai.

(2) Item a,(i = 2, . . . , m) is related to item a, via is-Ai-Of-A-having-Al.

* For now, we only consider relations that have simple (i.e., single-field) keys. Relations with composite
keys are considered later.

ACM Transactions on Office Information Systems, Vol. 4, No. 2, April 1986.

BAROQUE: A Browser for Relational Databases l 171

coMPosER
1

NAME COUNTRY PERIOD YEAR OF BIRTH YEAR OF DEATH -- --

Bach Ccrmany Baroque 1685 1750
Haydn Austria Claeeical 1732 1609
Mozart Austria Claosical 1760 1791

I

COhfPOSITIOI~ PERIOD

G AUTHOR TYPE x STARTYEAR END YEAR - -

Surprise Haydn Symphony Baroque 1600 1760
Jupiter Mozart Spmphov Claosical 1750 1800
Hunt Mozart Quartet Romantic 1800 1900

Fig. 1. Portion of database MUSIC.

Fig. 2. View of database MUSIC as a network of items.

2.3 Composite Items and Their Relationships

Consider again the relation COMPOSITION. Since different composers may have
authored compositions with the same title (such as Symphony-no-l or Pathe-
t ique), a more realistic assumption is that COMPOSITION has a composite key:
COMPOSITION = (TITLE, COMPOSER, TYPE). In this case TYPE is functionally
dependent on a combination of TITLE and COMPOSER. To define item relation-
ships in such cases, we introduce the notion of a composite item, which is a
combination of items. For example, the items Pathetique and Tchaikovksy
are combined to create the composite item (Pathetique, Tchaikovsky),
whose TYPE is Symphony. Another composite item is (Pathetique, Bee-
thoven); its TYPE is Sonata. A composite item occurs in the database wherever

ACM Transactions on Office Information Systems, Vol. 4, No. 2, April 1986.

172 l Amihai Motro

its components appear in the same tuple of some relation under the key attributes.
Composite items need not have separate entries in the item directory, since they
can be located through the entries of their components.

Notice that the individual components of the key are themselves functionally
dependent on the key. These so-called trivial dependencies are important, since
they help establish relationships from components of the key to other values of
thetuple.Forexample,Pathetique isrelatedtoboth(Pathetique, Tchai-
kovsky) and (Pathetique, Beethoven), which in turn are related, respec-
tively, to Symphony and Sonata.

In the previous example, let the attribute IDENTIFICATION denote the pair
(TITLE, AUTHOR). The change in the key of COMPOSITIONS affects the last

three relationships of Mozart, as follows:

Mozart is-AUTHOR-of-COMPOSITION-having-IDENTIFICATION
(Jupiter,Mozart)

Mozart is-AUTHOR-of-COMPOSITION-having-IDENTIFICATION
(Magic-Flute,Hozart)

Mozart is-AUTHOR-of-COMPOSITION-having-IDENTIFICATION
(Hunt,Mozart)

Formally, assume a relation A = (Al,. . . , &, Ap+l,. . . , A,), denote

(A,,.. . , AP) by a, and let (aI, . . . , a,, aPcl, . . . , a,) be a tuple in A. The following
item relationships are implied by this tuple:

(1) Item (ai,. . . , aP) is related to item ai(i = 1, . . . , m) via is-cu-of-A-having-Ai.

(2) Item ai(i = 1,. . . , m) is related to item (aI, . . . , a,,) via is-Ai-of-A-having-a.

2.4 Incorporating Schema Elements into the Model

A useful feature of many database management systems is to allow users to
retrieve information about the definition (schema) of the database. A database
schema describes the structure of the database; in the relational model this
description usually includes the name of the database, the names of its relations,
the attributes of each relation (including the designation of the key attributes),
and the data types of the attributes. Although this information may assist users
in their explorations, it requires technical understanding of the relational data
model. To avoid this requirement, we incorporate the information present in the
schema into the network of items. This uniform representation of schema and
data is an important convenience: Virtually all database interfaces perpetuate
the dichotomy between schema and data when this distinction may be of
concern to database designers, but the distinction is not always clear to
casual database users.

For this purpose, a relational schema is perceived as a conceptual hierarchy of
three levels: the database, the relations, and the attributes. Each element of this
hierarchy is represented by a separate item, and several special relationships are
introduced: The relationship contains-information-on relates the database item
to each relation item, the relationship is-identified-by relates every relation item
to its key attributes, and the relationship has-attribute relates every relation item
to its nonkey attributes. When composite items are present, the hierachy is

3 Of course, key of COMPOSITION refers here to database key, not musical key!

ACM Transactions on Office Information Systems, Vol. 4, No. 2, April 1986.

BAROQUE: A Browser for Relational Databases l 173

YEAR OF IiIRTll

\

TYFE --

YEAR OF DEATH --

Fig. 3. View of schema of database MUSIC as a network of items.

extended with an additional level: A composite item is related to each of its
components with is-combination-of.

Consider now the attributes NAME (of COMPOSER) and AUTHOR (of COMPO-
SITION). The values of both attributes are drawn from the same domain, but in
relation COMPOSER this attribute is a key, while in relation COMPOSITION it is
not. Usually, this indicates that COMPOSER has additional information on each
AUTHOR. If it is known that these attributes are from the same domain, then a
new type of relationship is established between them: may-have-additional-
information-on.4 The complete network of items that corresponds to the schema
of the relational database MUSIC is shown in Figure 3. Every edge in this figure
should be labeled with the appropriate relationship name (and every relationship
has an appropriately named inverse). Some examples are

MUSIC contains-information-on COMPOSER

COMPOSER is-identified-by NAME
COMPOSER may-have-additional-information-on AUTHOR

Finally, to connect the schema network with the previous item network, a
relationship called includes is established between every attribute and its values
(its inverse is called is). For example: \

AUTHOR includes Bach, Beethoven, Handel, Haydn, Mozart,
Tchaikovsky

Austria is COUNTRY

Consequently, a relational database is viewed as an integrated network of
concepts and values. The most general concept is the name of the database,

‘The availability of such additional information is discussed in Section 4. An attribute such as
AUTHOR is sometimes called a foreign key. To improve data integrity, some systems can require each

value of the foreign key to occur also as a value of the corresponding key. Such a requirement is
known as a referential integrity constraint [7].

ACM Transactions on Office Information Systems, Vol. 4, No. 2, April 1986.

174 * Amihai Motro

which then leads to relation names. Each relation name leads to its attribute
names, which, in turn, lead to their individual values. Individual values lead to
other values.

3. BROWSING IN A RELATIONAL DATABASE

The network view of relational databases creates a favorable environment for
exploratory searches. Four functions (requests) that scan the network in four
different ways are defined. These functions, called: What is it? What is known
about it? What is the connection? and Any others like it? accept names of items
and return names of other items or names of relationships. First, we describe the
functions and then the actual user interface constructed around them, called
BAROQUE.

3.1 What Is It?

The special relationships introduced in Section 2.4 (and their inverses) create a
classification hierarchy that extends from the name of the database to the data
values. The browsing request: What is it ? classifies items by returning their
position in this hierarchy. The information needed to classify data items is
readily available from the item directory. For example.5

>What is Mozart?
Mozart is NAME of COMPOSER, AUTHOR of COMPOSITION

>What is Jupiter?
Jupiter is TITLE of COMPOSITION

>What is (Jupiter, Mozart)?

(Jupiter, Mozart) is IDENTIFICATION of COMPOSITION

In order to classify schema items, the stored schema is consulted. The following
sequence demonstrates how classification may be used to gain familiarity with
the contents of the database. Note that, in the beginning, the user knows only
the name of the database (MUSIC). Each answer then provides him with a topic
for another request for classification.

>What is MUSIC?
MUSIC is the database
MUSIC includes information on COMPOSER, COMPOSITION, PERIOD

>What is COMPOSITION?
COMPOSITION is part of database MUSIC
COMPOSITION is identified by IDENTIFICATION
COMPOSITION has attribute TYPE

>What is IDENTIFICATION?
IDENTIFICATION is identifying attribute of COMPOSITION
IDENTIFICATION is a combination of TITLE, AUTHOR

>What is AUTHOR?
AUTHOR is part of IDENTIFICATION
AUTHOR is specified in 1-16 characters
COMPOSER may-have-additional-information-on AUTHOR

’ For clarity, when a relationship name and a source item repeat with different target items, they are

listed only once, with all the applicable target items.

ACM Transactions on Office Information Systems, Vol. 4, No. 2, April 1986.

BAROQUE: A Browser for Relational Databases - 175

3.2 What Is Known about It?

Detailed information on items can be obtained with the browsing request: What
is known about it? This request describes items by listing all the relationships in
which it participates, other than those used to classify it (this list is called a
description). These relationships are obtained through the item directory and the
stored schema. Some examples are

>What is known about Mozart?
Mozart is
NAME of COMPOSER having

COUNTRY Austria
PERIOD Classical
YEAR-OF-BIRTH 1756
YEALOF-DEATH 1791

AUTHOR of COMPOSITION having IDENTIFICATION
(Hunt, Mozart)

(Jupiter, Mozart)

(Magic-Flute, Mozart)

>What is known about (Magic-Flute, Mozart)?

(Magic-Flute, Mozart) is
IDENTIFICATION of COMPOSITION having TYPE Opera

For schema items, the same request returns a list of all the instances of that
item. In particular, for an attribute it lists all the data values that appear under
it; for a relation, all the tuples in that relation; for a database, all the relations
in the database. (Of course, in practice, these requests should be verified before
they are performed.) Of these three requests, the most useful is the first, since it
enables a smooth transition from the schema subnetwork to the item subnetwork.
For example:

>What is known about AUTHOR?
AUTHOR includes Bach, Beethoven, Brahms, Handel, Haydn,

Mozart, . . .

3.3 What Is the Connection?

When information cannot be located by navigating on the network, it may be
useful to present the browser with two items and request that it attempt to
establish a connection between them. The browsing request: What is the connec-
tion? searches for paths of relationships between the two given items. As an
example, consider the request:

>What is the connection between Bach and Baroque?

Two paths are returned:

1. Bach is NAME of COMPOSER having PERIOD Baroque
2. Bach is NAME of COMPOSER having YEAR-OF-DEATH 1750 which is

END-YEAR of PERIOD having NAME Baroque

While the information revealed by first path may seem obvious (“Bach was a
composer during the Baroque period”), the second path may be a discovery of
sorts: The year Bach died is considered the end of the Baroque period.” Note
that the two connections use different occurrences of Baroque, and that Bach
and Baroque in the latter connection occur in two different relations.

ACM Transactions on Office Infiirmation Systems, Vol. 4, No. 2, April 1986.

176 l Amihai Motro

Fig. 4. Portion of the integrated network of items.

Consider now a request to connect Verdi and Opera. Since Verdi composed
many operas, there will be numerous paths, each leading from Verdi, to one of
his operas, to the type Opera. Such parallel paths should be abstracted into a
single connection (such paths are easy to detect, since they happen only when
the two items occur as values of two nonkey attributes in the same relation).

An item that occurs in two relations establishes connections between all items

that occur in either tuple (in the previous example, 17 50 occurs in both
COMPOSER and PERIOD and establishes a connection between Bach and
Baroque). With such intermediaries, connections may be established between
almost any two items. Searching a path of connections between two items could
become very costly as the length of the path increases. However, the significance
of the path declines rapidly with its length. Consequently, limiting path length
to a small value, such as three or four, will produce most of the significant paths
in reasonable time.

Still, some short paths may have little significance. Consider the portion of
the item network described in Figure 4. With includes relationships, two data
items may be connected simply because they are instances of two related attribute
items; for example, Mozart and Russ ia may be connected through NAME,
COMPOSER, and COUNTRY. Similarly, two attribute items may be connected
through every relationship between their data items; for example, NAME and
COUNTRY may be connected through Mozart and Austria, Beethoven and
Germany, and so forth. Paths of both types are avoided if relationships between
two schema items are not used for a path between two data items, and relation-
ships between two data items are not used for a path between two schema items.

3.4 Any Others like It?

Occasionally, it may be useful to browse “by an example”: the user presents the
browser with an item and the browser returns similar items. The browsing
request: Any others like it? is different from the previous three in that it may
require further user involvement. Given an item, the browser attempts to find
other items that have a similar description. Since most items have elements in
their descriptions that are unique to them, usually these requests cannot be
satisfied without relaxing some of these constraints. This is done by accompany-
ing the failure message with a list of relationships that can be matched individ-
ually (and the total number of matched items). The user then selects the
relationships that are relevant to the request (or abandons it altogether).
Consider, for example, the request:

>Any others like Mozart?

ACM Transactions on Office Information Systems, Vol. 4, No. 2, April 1986.

BAROQUE: A Browser for Relational Databases 177

The uniqueness of the relationships derived from the relation COMPOSITION

(e.g., only Mozart authored a composition entitled (Jupiter, Mozart))

results in no matched descriptions. Therefore, the outcome is

None. There are
17 other NAME-of-COMPOSER-having-COUNTRY Austria
23 other NAME-of-COMPOSER-having-PERIOD Classical

Assuming the user selects both relationships, the answer would be6

Others like Mozart: Haydn

Of course, selecting relationships that match successfully does not guarantee
the successful matching of their conjunction, so the second attempt can fail too.
Still, as the example demonstrates, this process crystalizes requests that at first
may be quite vague (“Others like Mozart”) into specific queries (“Other Austrian
composers of the Classical period”). Alternatively, an algorithm for matching
descriptions may be used; it lists the data items whose descriptions are closest to
the description of the topic of the request (i.e., share with it the most data items).

Together, the four browsing requests constitute a simple, yet flexible, tool to
search the item network. What is it? can be used as a blind attempt to find the
meaning of a value. What is known about it? gives fuller descriptions and provides
the basic form of navigation. The other requests are convenient for particular
types of searches.

3.5 The User Interface

BAROQUE has three modes of operation: main, query, and browse; each mode is
reachable from the other two modes. When invoked, BAROQUE goes into its
main mode, where the user selects a database and may examine some of its global
parameters, such as size or description. To interact with the selected database
through a standard relational query language, the user switches to query mode.
For browsing, the user switches to browse mode. This simple architecture enables
rapid switches back and forth between browsing and querying in the selected
database. To select a different database, the user returns to main mode.

To store and manipulate the databases, BAROQUE uses the UNIFY [22]
database management system. Since UNIFY supports SQL [3] as its primary
retrieval language, SQL is also the language used in query mode. In this mode,
BAROQUE simply solicits SQL queries from the user, submits them to the SQL
processor, and returns the answers (or messages) to the query screen.

Browsing is an iterative process, in which the user supplies a browsing topic
and a browsing request, and BAROQUE returns its findings. Accordingly, the
browse screen features several windows. They display the current mode, the
selected database, the current topic, the current request, and the latest findings.
After the user enters a data value in the topic window and selects a request from
the request menu (existing topic or request are the default values), BAROQUE
fills in the findings window with the appropriate data values and relationships.
Typically, the user then selects one of the data values in the findings window as

s This answer should not he interpreted too literally!

ACM Transactions on Office Information Systems, Vol. 4, No. 2, April 1986.

178 . Amihai Motro

BASOQLIB

DATABASE: Q
MODE : browse
REQUESTS: claaaify describe associate euggeet
SWITCHES: ctrl-q (query) ctrl-m (main) ctrl-h (help)

Baroque is ---

NM5 of PERIOD having ---

START YEAR 1600
END +kAR 1750

PERTOD of CkPOSER having NAl5 ---

Bach

Handel
Telemann
Vivaldi

Enter next topic:

Fig. 5. The browse screen of BAROQUE.

the next browsing topic and selects a new browsing request.7 Thus, necessary
interaction is kept to a minimum, with the combined advantage of simplicity
(everybody can learn to browse in a matter of minutes) and efficiency.

A typical snapshot of a browse screen is shown in Figure 5. The requests
classify, describe, associate, and suggest implement, respectively, the requests:
What is it? What is known about it? What is the connection between them? and
Any others like it? The database name is MUSIC, the mode is browse, the
request is describe, and the topic is Baroque. Underlined strings are actually
highlighted to provide instant identification of database values.

Upon entry to browse mode, the name of the database is established as the
default topic. Thus, this most general value is provided to the user as the end of
a thread. By following it, the user may survey the database and ultimately reach
every other value.

4. CONCLUSION

A user interface such as BAROQUE may be implemented with relative ease on
top of any relational database management system that provides database access
from a host language. Note that the database itself is never modified, except for
the additional directory relation. All other applications and user interfaces are
unaffected by BAROQUE.

Experience gained with BAROQUE indicates that it is mastered very quickly
by users without any database experience. In particular, the organization of the

7 Clearly, this calls for implementation using a pointing device. Currently, the user must retype these

items (or leave them unchanged).

ACM Transactions on Office Information Systems, Vol. 4, No. 2, April 1986.

BAROQUE: A Browser for Relational Databases l 179

data in a relational model is transparent, since it gives the illusion of a network
of items and relationships. There are few technical details, and the browsing
requests are very intuitive. We note that so far the system has been used with
databases of modest size and complexity; its performance with larger volumes of
data still needs to be tested.

The cost entailed by the browser, in terms of the additional space to store the
item directory and the additional computation for its initialization and its
continuous update, is comparable to the cost of a secondary index on every
database attribute. If sufficient storage is unavailable, it is possible to implement
only part of the item network, by inverting on selected attributes only. For
example, values of YEAROF-BIRTH and YEAROF-DEATH could be left out of
the item directory. These values will be listed while browsing in their neighbor-
hoods (e.g., with requests such as What is known about Mozart?), but they may
not become topics of browsing requests. Selective inversion has the interesting
effect of distinguishing between actual items that participate in relationships and
simple properties that describe items. In fact, the resulting model resembles the
Entity-Relationship approach to data modeling [4]. One possible strategy for
selective inversion is to invert only on attributes that are keys or foreign keys.
Under this strategy, every item that is assembled occurs at least once as the
value of the key in some relation. For effective browsing, the item directory
should be implemented with an efficient access method, such as hashing or
indexing [71.

Another performance issue is the processing of requests. Consider, for example,
the way BAROQUE handles a request to describe an item. First, it issues a
selection query to the item directory. Then, for each entry found in the item
directory, it issues a selection query to a database relation. The answers are then
combined to form a description. This process could be speeded up substantially
if the item directory contained actual pointers to the tuples that include this
item, instead of just references to the attributes under which this item may be
found. However, in addition to the increased overhead for maintaining this new
item directory, processing of browsing requests could no longer be done through
the query language alone, but would require modifications to the underlying
database management system.

Our method for assembling data items is based only on identities of data
values. Consequently, values that possess different meanings altogether, but are
expressed with the same string of characters, are assembled into one item (e.g.,
the period Baroque and the database interface by this name). This weakness,
sometimes referred to as the “connection trap,” can be attributed to the limited
semantic capabilities of the basic relational model, in which the only information
available on the meanings of the different attributes are their names and their
primitive types (e.g., integer, character). A well-known enhancement to the
relational model [14] uses a stronger concept of abstract domains to classify the
attributes. This enhancement can be readily incorporated into BAROQUE to
assemble separate items for values that belong to multiple domains. For example,
assume a database with attributes SALARY, PRICE defined over the domain
DOLLARS, andattributes YEAROF-BIRTH and YEAFLOFXEATH defined over
the domain YEARS. If the value 1685 appears under both PRICE and

ACM Transactions on Office Information Systems, Vol. 4, No. 2, April 1986.

180 l Amihai Motro

YEAR-OF-BIRTH, BAROQUE will create two separate items: 168 5 DOLLARS

and 1685 YEARS.
Another semantic enhancement, available in several systems, is the definition

of referential integrity constraints in the schema of the database. A referential
integrity constraint [7] links an attribute of one relation to the key attribute of
another relation, requiring every value of the former attribute to occur also as a
value of the latter attribute. Typically, these “cross-references” are used to
enhance the integrity of the database. However, like abstract domains, referential
integrity constraints provide strong evidence of the similarity of two attributes
and can, therefore, be used to guide the assembly of values into items; two
occurrences of the same value under two attributes that are related by a referential
integrity constraint may be assembled safely into one item. Note that relying
exclusively on integrity constraints for assembling items implies that only values
of key attributes participate in items. This suggests using integrity constraints
in tandem with the selective inversion strategy offered above, which inverts only
on keys and foreign keys.

Notice, however, that even with the current approach, the names of relation-
ships in which 168 5 participates provide different interpretations for this item.
For example, BAROQUE, will classify the topic 168 5 as both PRICE of ITEM
and YEAR-OF-BIRTH of COMPOSER. Similarly, it will describe it as PRICE
of ITEM having ITEM-NO 6710 and YEAROF-BIRTH of COMPOSER
having NAME Bach. Thus, while the information included in these answers
combines different semantics of the item 1685, it is interpreted clearly,
and the user can disregard the portion of the answer that is irrelevant, thus
avoiding any “traps.”

REFERENCES

1. CATTELL, R. G. G. An entity-based database interface. In Proceedings of ACM-SIGMOD

International Conference on Munugement of Data (Santa Monica, Calif., May 14-16). ACM, New

York, 1980, pp. 144-150.
2. CATTELL, R. G. G. Design and implementation of a relationship-entity-datum data model. CSL-

83-4, Xerox Palo Alto Research Center, Palo Alto, Calif., May 1983.

3. CHAMBERLIN, D. D., ET AL. SEQUEL 2: A unified approach to data definition, manipulation,

and control. IBM J. Res. Deu. 20, 6 (Nov. 1976), 560-575.

4. CHEN, P. P. The entity-relationship model-toward a unified view of data. ACM Trans.

Database Syst. 1, 1 (Mar. 1976), 9-36.
5. CODD, E. F. A relational model for large shared data banks. Commun. ACM 13, 6 (June 1970),

377-387.
6. CODD, E. F. Extending the database relational model to capture more meaning. ACM Trans.

Database Syst. 4, 4 (Dec. 1979), 397-434.

7. DATE, C. J. An Introduction to Database Systems, vol. I. 3rd ed. Addison-Wesley, Reading,

Mass., 1982.

8. DBASE-III. Reference Manual. Ashton-Tate, Culver City, Calif., 1984.

9. GOLDBERG, A., AND ROBSON, D. A metaphor for user interface design. In Proceedings of the
13th Hurvaii International Conference on System Science (Honolulu, Jan. 3-4). Univ. of Hawaii,

Honolulu, 1980, pp. 148-157.

10. GOLDSTEIN, I., AND BOBROW, D. Browsing in a programming environment. In Proceedings of

the 14th Hawaii International Conference on System Science (Honolulu, Jan. 8-9). Univ. of

Hawaii, Honolulu, 1981.

11. HARRIS, L. R. Natural language front ends. In The AZ Business, P. H. Winston and K. A.

Prendergast, Eds. MIT Press, Cambridge, Mass., 1984.

ACM Transactions on Office Information Systems, Vol. 4, No. 2, April 1986.

BAROQUE: A Browser for Relational Databases l 181

12. HENDRIX, G. G., ET AL. Developing a natural language interface to complex data. ACM Trans.

Database Syst. 3, 2 (June 1978), 105-147.
13. HEROT, C. Spatial management of data. ACM Trans. Database Syst. 5,4 (Dec. 1980), 493-513.
14. MCLEOD, D. J. High level definition of abstract domain in a relational data base system.

Cornput. Languages 2,3 (July 1977), 61-73.
15. MILLER, G. A. Dictionaries of the mind. In Proceedings of23rdAnnual Meetingofthe Association

for Computational Linguistics (Chicago, July 8-12). Association for Computational Linguistics,
Morristown, N.J., 1985, pp. 305-314.

16. MOTRO, A. Browsing in a loosely structured database. In Proceedings of ACM-SZGMOD Znter-

national Conference on Management of Data, (Boston, June 18-21). ACM, New York, 1984,
pp. 197-207.

17. POWER-BASE. Reference Manual. Power-base Systems, New York, 1983.
18. STONEBRAKER, M., ET AL. The design and implementation of INGRES. ACM Trans. Database

Syst. I,3 (Sept. 1976), 189-222.
19. STONEBRAKER, M., AND KALASH, J. TIMBER: A sophisticateddatabase browser. InProceedings

of the Eighth International Conference on Very Large Data Bases (Mexico City, Sept. 8-10).
VLDB Endowment, Saratoga, Calif., 1982, pp. l-10.

20. STONEBRAKER, M., AND ROWE, L. A. The design of POSTGRES. UCB/ERL 85/95, Electronics
Research Laboratory, College of Engineering, Univ. of California at Berkeley, Nov. 1985.

21. TSICHRITZIS, D. C., AND LOCHOVSKY, F. H. Data Models. Prentice Hall, Englewood Cliffs, N.J.,
1982.

22. UNIFY. Reference Manual. 3rd ed. UNIFY Corporation, Lake Oswego, Oreg., 1983.
23. WEYER, S. A., AND BORNING, A. H. A prototype electronic encyclopedia. ACM Trans. Off. Znf.

Syst. 3, 1 (Jan. 1985), 63-88.

Received December 1984; revised July 1985; accepted April 1986.

ACM Transactions on Office Information Systems, Vol. 4, No. 2, April 1986.

