
Annales Geophysicae (2001) 19: 367–388 c© European Geophysical Society 2001
Annales

Geophysicae

Barotropic response in a lake to wind-forcing

Y. Wang1, K. Hutter1, and E. Bäuerle2
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Abstract. We report results gained with a three-dimensional,

semi-implicit, semi-spectral model of the shallow water

equations on the rotating Earth that allowed one to compute

the wind-induced motion in lakes. The barotropic response

to unidirectional, uniform winds, Heaviside in time, is de-

termined in a rectangular basin with constant depth, and in

Lake Constance, for different values and vertical distribu-

tions of the vertical eddy viscosities. It is computationally

demonstrated that both the transitory oscillating, as well as

the steady state current distribution, depends strongly upon

the absolute value and vertical shape of the vertical eddy vis-

cosity. In particular, the excitation and attenuation in time

of the inertial waves, the structure of the Ekman spiral, the

thickness of the Ekman layer, and the exact distribution and

magnitude of the upwelling and downwelling zones are all

significantly affected by the eddy viscosities. Observations

indicate that the eddy viscosities must be sufficiently small

so that the oscillatory behaviour can be adequately modelled.

Comparison of the measured current-time series at depth in

one position of Lake Constance with those computed on the

basis of the measured wind demonstrates fair agreement, in-

cluding the rotation-induced inertial oscillation.

Key words. Oceanography: general (limnology) –

Oceanography: physical (Coriolis effects; general cir-

culation)

1 Introduction

Knowledge of water movements is a prerequisite for the study

of a multitude of water quality problems of natural and artifi-

cial lakes. The computation of the current distribution in ho-

mogeneous lakes is commonly performed with the shallow

water equations on the rotating Earth. In the present study,

density variations are ignored (that is the case for most of the

Alpine lakes in winter), so that the wind-induced motion is
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restricted to the barotropic component for which the internal

hydrostatic pressure gradient is exclusively due to the varia-

tion of the free surface over its equilibrium value. It is com-

mon knowledge that numerical codes integrating these spa-

tially three-dimensional shallow water equations, explicitly

in time, are conditionally stable; due to the explicit treatment

of the friction (or diffusion) terms, the time step is limited by

the smallest mesh size. For most problems of ocean dynam-

ics, since space scales are usually large, the maximum us-

able time steps can equally be relatively large, and thus, time

integration over physically relevant intervals is often possi-

ble. Since lakes are small, sufficient spatial resolution re-

quires small mesh sizes limiting the economically justifiable

integration time to values below the physically relevant inter-

vals. Thus, implicit or semi-implicit integration routines are

needed. For the latter, time steps are still limited by the value

of the eddy viscosity and the space steps in the horizontal

direction; but this restriction is not severe because the hori-

zontal mesh sizes are usually fairly large. That is why, often,

only semi-implicit schemes are applied instead of fully im-

plicit or ADI schemes. There are also many ocean models

which include implicit schemes for good reasons, especially

in coastal ocean models or when a time- and space-dependent

eddy viscosity is computed. Various implicit models have

been developed and used by many researchers (e.g. Back-

haus, 1983, 1985, 1987; Blumberg and Mellor, 1987; Davies,

1987; Bleck et al., 1992; Davies and Lawrence, 1994; Ip and

Lynch, 1994; Song and Haidvogel, 1994).

On the other hand, with regard to non-linear advection

terms, if the second-order centered finite difference scheme

is used (or other traditional high-order schemes, e.g. the spec-

tral method used here), numerical oscillations always occur.

The smaller the eddy viscosity is, the smaller the mesh size

and time step for stable integration must be. Thus, less nu-

merical oscillations are provoked, so that the small eddy vis-

cosity can still assure stable numerical simulations. The at-

tenuation with time of any oscillating motion increases with

growing eddy viscosity. It follows that amplitude and persis-

tence of oscillations are directly tied to the eddy viscosities.
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Values needed for stable integration are often larger than is

physically justified, i.e. computed physical oscillations are

faster attenuated than in reality. A study how the vertical

eddy viscosity affects the time dependent and steady state

wind-induced velocities is, therefore, urgent.

Wind-induced barotropic responses in lakes or the ocean

have been studied by many researchers (e.g. Mortimer, 1974,

1980; Simons, 1980; Hutter, 1982; Heaps, 1984; Sünder-

mann, 1984). However, for most of these works, if the three-

dimensional field equations including the nonlinear advec-

tion terms are numerically solved, the inertial waves seem to

be hardly observable in the numerical results, or they remain

only for a fairly short time and then are rapidly damped out.

This fact is due to the much larger eddy viscosities used in

the models in order to restrain the numerical (not physical)

oscillations and thus, assure numerical stability.

We employ the three-dimensional, hydrodynamic, semi-

implicit, semi-spectral model SPEM, as originally developed

by Haidvogel et al. (1991) and extended for semi-implicit

integration in time by Wang and Hutter (1998). This soft-

ware is able to cope with the above questions in a reasonable

way. We propose three functional relations for the vertical

distribution of the vertical eddy viscosity: (i) constant, (ii)

sinusoidal half wave in an upper turbulently active layer ex-

tended to a constant value below and (iii) a linear increase

with depth in the upper layer to a maximum continued by a

constant value at this maximum below it. All these distribu-

tions are based on well justified arguments; here we use these

distributions and vary their intensity.

We show that the offset of the surface current to the right

of the wind, the Ekman spiral and the thickness of the Ek-

man layer depend strongly upon both the absolute value and

the distribution of the vertical eddy viscosity, as do the wind-

induced inertial oscillations, the stored kinetic energy and the

details in the up- and downwelling distributions of the mo-

tion. It is further demonstrated that the numerical values of

the eddy viscosities need to be sufficiently small, i.e., at lev-

els of their physical counterparts if the observed dynamics

is to be reproduced by the computations. This demonstrates

that robust software is needed if the barotropic circulation

dynamics is to be adequately modelled. This paper, together

with the previous work relating to the baroclinic circulation

dynamics in lakes (Wang et al., 2000), makes up a complete

pattern of forced motion response in enclosed lakes.

The paper is structured as follows: In Sect. 2, the numer-

ical method is briefly introduced. Results are discussed in

Sect. 3 for a rectangular basin with a constant depth, and

in Sect. 4, for Lake Constance. Comparison of a series of

measured results with the numerical simulation of that case

is performed in Sect. 5. We conclude with a summary and

some remarks in Sect. 6.

2 Numerical method

The balance law of mass and the balances of linear momen-

tum form the hydrodynamic field equations for the consid-

ered fluid system. We apply these hydrodynamic equations

in the shallow water approximation, with the Coriolis term

and the hydrostatic pressure equation implemented. Thus,

the field equations read

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (1)

∂u

∂t
+ v ·∇ u − f v

= −
∂φ

∂x
+

∂

∂x
(νh

∂u

∂x
) +

∂

∂y
(νh

∂u

∂y
) +

∂

∂z
(νv

∂u

∂z
), (2)

∂v

∂t
+ v ·∇ v + f u

= −
∂φ

∂y
+

∂

∂x
(νh

∂v

∂x
) +

∂

∂y
(νh

∂v

∂y
) +

∂

∂z
(νv

∂v

∂z
), (3)

0 = −
∂φ

∂z
− g . (4)

Here a Cartesian coordinate system (x, y, z) has been used;

(x, y) are horizontal, and z is vertically upwards, against the

direction of gravity. The field variables (u, v, w) are the

components of the velocity vector v in the (x, y, z) direc-

tions, φ is the dynamic pressure φ = p/ρ with pressure p

and density ρ, f is the Coriolis parameter and g is the grav-

ity acceleration. Eddy viscosities are taken into account by

differentiating between the horizontal and vertical directions,

νh and νv , respectively; thus, the anisotropy effects of the tur-

bulent intensity are considered accordingly.

Wind stress forcing at the water surface, free-slip lateral

boundary conditions, and linear bottom friction are used.

Along all boundaries the normal component of the current

is set equal to zero, which, at the free surface, corresponds

to the rigid-lid approximation. With this method, however, a

Poisson equation must be solved at every time step to obtain

a pressure field which ensures ∇ · (hv̄) = 0, where h indi-

cates water depth and v̄ is the depth-averaged velocity (see

Haidvogel et al. (1991) and Wang (1996) for details).

A semi-spectral model was designed with semi-implicit

integration in time to solve the system of differential equa-

tions numerically. The model is based on the semi-spectral

model SPEM developed by Haidvogel et al. (1991), in which

the variation of the field variables in the vertical direction

is accounted for by a superposition of Chebyshev polyno-

mials, whereas a centered finite difference discretization on

a staggered Arakawa grid is employed in the horizontal di-

rection; it was extended by Wang and Hutter (1998) to ac-

count for implicit temporal integration. Due to the small wa-

ter depths of lakes, in comparison to the ocean, the original

SPEM model had to be altered to permit economically justifi-

able time steps in the computation of the circulation of a lake.

In Wang and Hutter (1998) several finite difference schemes,

implicit in time, were introduced; that scheme which uses

implicit integration in time for the viscous terms in the verti-

cal direction was the most successful one.

For a realistic irregular lake, a vertical topography follow-

ing the σ -coordinate, and a horizontal shore following the

curvilinear coordinate system is employed. By using the so-
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Fig. 1. Rotation angle 8 between wind and surface current (a) and absolute fluid velocity Vsurf at the free surface (b). Here 8 and Vsurf are

plotted against νv (solid curves), A (broken curves), A0 (dotted curves), respectively, corresponding to the cases (i), (ii) and (iii).

called σ -transformation, a lake domain with varying topog-

raphy is transformed to a new domain with constant depth,

and this region is once again transformed in the horizontal

coordinates by using conformal mapping, which maps the

shore, as far as possible, onto a rectangle. Uniformity in grid

size distribution is intended because numerical oscillations

(instabilities) occur preferably on the small scales; however,

it is difficult to achieve it in complex geometries. In such

cases, to attain an uniform grid as far as possible, a bounding

line, which deviates in some segments from the actual lake

boundaries, is used for the conformal mapping. In these seg-

ments the actual boundaries can only be approximated by a

step function, and the land areas must be masked with a spe-

cial technique (Wilkin et al., 1995). For the computation in a

rectangular basin, such a conformal mapping in the horizon-

tal direction is not needed; however, for the Lake Constance,

it is required, but not unique. In this case, a conformal map-

ping is performed for a bordering line which deviates in some

segments from the actual shore line, so that a more uniform

grid system is obtained. Then, in the numerical computa-

tions, the land areas within the grid system must be excluded

by the aforementioned masking technique.

This numerical code has proved its suitability in several

lake applications, including diffusion problems (Hutter and

Wang, 1998), substructuring procedures (Wang and Hutter,

2000) and wave dynamics in baroclinic wind-driven circula-

tion dynamics (Wang et al., 2000). Here, the application of

this code to the barotropic motions is performed. It will be

seen in the following numerical results that almost all typical

features in a homogeneous lake, e.g. inertial waves, Ekman

spirals, can be reproduced by this model.

3 Barotropic motions in a rectangular basin

A rectangular basin of 65×17 km2 extent with a 100 m depth

corresponds to the space scale of Lake Constance; we assume

homogeneous water, initially at rest, and subject to external

wind forcing. This wind blows in the long direction of the

rectangle, uniformly in space, Heaviside in time, and with

strength 4.5 m s−1 (10 m above the water surface), corre-

sponding to a wind stress of approximately 0.0447 Pa at the

water surface. This is the wind-forcing we apply throughout

the paper, except for Sect. 5. Integration starts at rest until a

steady state is reached. We shall implement the discretization

with 10–30 Chebyshev polynomials; the exact number de-

pends on the magnitude of the vertical eddy viscosities (the

smaller the vertical eddy viscosities, the more Chebyshev

polynomials are needed to achieve stable and convergent nu-

merical computations). We choose 1x = 1y = 1 km and let

the numerical value of the horizontal eddy viscosity of mo-

mentum be constant νh = 1 m2s−1, because it turned out that

the numerical values of νh are not very crucial (Wang, 1996),

and this value is generally reasonable (Csanady, 1978; Hut-

ter, 1984). The insensitivity of the horizontal eddy viscosity

can be expected and easily recognized because the horizontal

variation of the velocity field is relatively small, in compari-

son with its vertical variation, except in the vicinity of shores

and when tracer diffusion is considered.

3.1 Surface steady current in relation to distributions and

amplitudes of the vertical eddy viscosity

Three chosen vertical eddy viscosities are prescribed as fol-

lows:

– case (i): νv ∈ [0.005, 1] m2s−1,

– case (ii):

νv =

{

A · sin
(

−
π

2

z

30

)

, z > −45m

0.01 , z ≤ −45m

}

m2s−1 ,

where A ∈ [0.01, 1] m2s−1 ,
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Fig. 2. Time series of the vertical velocity component w at the four indicated (inset in panel b) near-shore midpoints at 30 m depth in the

homogeneous rectangular basin of constant depth, subject to constant wind from the West. Results were obtained with three different vertical

eddy viscosities νv . N denotes the number of Chebyshev polynomials needed to achieve stable and convergent numerical computations.

– case (iii):

νv =

{

A0 + (A0 − 0.03)
z

10
, z > −10m

0.03, z ≤ −10m

}

m2s−1 ,

where A0 ∈ [0.01, 1] m2s−1 .

In case (i), the vertical eddy viscosities are spatially con-

stant, but their values are varied. Case (ii) corresponds to

a z-dependence of νv , where νv is large in the upper layer,

growing first with depth until it reaches a maximum in 30 m

and then rapidly decreases to the value 0.01 m2s−1 at 45 m

depth and below. This form corresponds with the vertical

eddy viscosity distribution obtained by Svensson employing

an one-dimensional k − ε model (Svensson, 1979) and by

Güting, using a three-dimensional k − ε closure condition

(Güting, 1998). Case (iii) assumes a linear variation of νv

from the free surface to 10 m depth below, in which νv is

kept constant at the value νv = 0.03 m2s−1 (Csanady, 1980;

Madsen, 1977). The maximum values of νv can be varied by

varying the free parameters A and A0. Choices like these are

considered realistic and have, to some extent, been analysed

with a linear equation system, in which the nonlinear advec-

tion terms are not included in finite depth oceans (see Heaps,

1984).

One typical result of the Ekman problem is the angle 8

between the direction of the wind and the surface current in

steady state. In the original problem, an infinite ocean with

constant vertical eddy viscosity exists, and the surface cur-

rent vsurf is 45◦ to the right of the wind. Results of our non-

linear calculations are summarized in Fig. 1. In case (i), the

maximum value of 8 is 42.5◦ for νv = 0.005 m2s−1, and 8

decreases rapidly with increasing vertical eddy viscosity to

a value as low as 4◦ for νv = 1 m2s−1. It can never reach

45◦ as it does (independent of the value of νv) in the infinite

ocean, because of the finiteness of the rectangular basin that

induces a geostrophic flow which has the tendency to reduce

8. This simply indicates how significantly the circulating
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Fig. 3. Time series of the horizontal velocity components u (a) and v (b) in the rectangular basin, subject to constant wind from the West,

computed with constant vertical eddy viscosity νv = 0.005 m2s−1. The labels on the curves stand for depth in meters.

motion in a finite basin can depend on the absolute values

of the eddy viscosities. Even more surprising are the results

of case (ii). Here 8 varies non-monotonously with A: For

A ≤ 0.12 it decreases with growing A, while it grows with

A when A ≥ 0.12. Case (iii) presumes, for most values of

A0, a very active turbulent near-surface layer and illustrates

that for such a stiff situation, the typical dependence of 8

can even be reversed. In Fig. 1b the moduli of the surface ve-

locities vsurf are shown as functions of the eddy viscosities.

As expected, they rapidly decrease with increasing eddy vis-

cosities. These results demonstrate how critical the distribu-

tion and absolute values of the eddy viscosities are; reducing

the numerical diffusion to levels below the physical values

is, therefore, compelling, if results are not to be physically

falsified.

3.2 Time series of the velocity components

Figure 2 shows the time series of the vertical velocity com-

ponent w in 30 m depth at the four nearshore midpoints, as

sketched in panel (b) of Fig. 2, subject to three different mag-

nitudes of the constant vertical eddy viscosity, respectively.

Immediately after the west wind sets in, the motion starts

rapidly with an upwelling at the western end (Fig. 2a) and a

downwelling at the eastern end (Fig. 2b), due to the direct

effect of wind stress at the surface. In the northern mid-

boundary point, there occurs an upwelling (Fig. 2c), while

in the southern shore, a downwelling emerges (Fig. 2d). This

behaviour is, clearly, due to the Coriolis force that causes

a horizontal velocity drift to the right and therefore, is re-

sponsible for the downwelling (upwelling) at the southern

(northern) shore on the northern hemisphere. The motion is

characterized by oscillation, with a period of approximately

16.3 hours, which can obviously be identified as the inertial

period using a Coriolis parameter approach for Lake Con-

stance, f = 1.07 × 10−4s−1. The smaller the vertical eddy

viscosity is, the stronger the superimposing oscillations will

be, and the longer the oscillations will persist. For the larger

value νv = 0.02 m2s−1, only one day after the wind starts,

the inertial oscillations are damped out, whereas the oscilla-

tions for νv = 0.001 m2s−1 can still be clearly identified af-

ter six days. For this small eddy viscosity, due to the emerg-

ing strong oscillation, even a short-time downwelling (up-

welling) at the western (eastern) shore can be observed.

In Fig. 3, the time series of the horizontal velocity compo-

nents u (a) and v (b) for a medium value of νv = 0.005 m2s−1

in the center of the basin, at different depths, are displayed.

Steady motion is reached approximately after five days, but

initially, an oscillating motion can be seen at all water depths,

however, with decreasing amplitude as the depth increases.

It is also interesting that the horizontal velocity that oscil-

lates above 30–40 m, with the opposite phase from below

this depth, corresponds approximately to the Ekman depth.

This can be explained by the use of a linear equation system.

It is known that for a linearized equation system, the hori-

zontal motion consists of a drift current directly due to wind-

stress, and a geostrophic current due to the surface slope (the

surface pressure gradient) that can be described as follows:

Neglecting the horizontal friction terms, the linearized hor-

izontal momentum equations (2) and (3) then take the form

∂u

∂t
− f v = −

∂φ

∂x
+ νv

∂2u

∂z2

∂v

∂t
+ f u = −

∂φ

∂y
+ νv

∂2v

∂z2
(5)

with νv = const. For the homogeneous case the dynamic

pressure is independent of z. The local solution u(z, t), v(z, t)

of (5) (depending only parametrically on x, y) may be writ-

ten as

u = u1(t) + u2(z, t), v = v1(t) + v2(z, t), (6)
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Fig. 4. Hodographs of the horizontal velocity vectors in the middle of the rectangular basin in 0, 5, 10, 20 and 60 m depths (a). In order to

see more clearly the spiral at 20 m depth, the 20 m hodograph is shown separately in (b). The motion starts from a state at rest. The small

circles mark time intervals of 1/4 inertial period.

where u1(t), v1(t) is the geostrophic current which is a so-

lution of

∂u1

∂t
− f v1 = −

∂φ

∂x
,

∂v1

∂t
+ f u1 = −

∂φ

∂y
, (7)

due to the surface pressure gradient, whilst u2(z, t), v2(z, t)

is the depth-dependent or frictionally induced velocity com-

ponents

∂u2

∂t
− f v2 = νv

∂2u2

∂z2
,

∂v2

∂t
+ f u2 = νv

∂2v2

∂z2
. (8)

With the suddenly imposed windstress τ 0 at the surface in the

positive x-direction, and with a surface pressure gradient (a

surface slope) ∂φ/∂x in the positive x direction and bottom

stresses neglected, (7) and (8) have the local solutions

u1 = −
1

f

∂φ

∂x
sin f t, v1 =

1

f

∂φ

∂x
(1 − cos f t) (9)

of the geostrophic current and

u2 =
τ 0

π1/2

∫ t

0

cos f s

(νvs)1/2
exp

(

−
z2

4νvs

)

ds,

v2 = −
τ 0

π1/2

∫ t

0

sin f s

(νvs)1/2
exp

(

−
z2

4νvs

)

ds (10)

of the drift motion, respectively. The solution (10) was first

given by Fredholm (Ekman, 1905). It is obvious that the two

motions have opposite phase. It is of interest to note that

such a combination of the currents can give a satisfactory

approximation for the vertical current profile in regions far

away from the lateral boundaries, even in those cases where

nonlinear effects cannot be neglected in solving the horizon-

tal circulation problem (Nihoul and Ronday, 1976). Above

the Ekman depth, the drift motion (u2, v2), induced directly

by windstress, is dominant, whilst below this depth, the Ek-

man drift motion dies out and only the geostrophic current

(u1, v1) remains, which is independent of depth under ho-

mogeneous, hydrostatic conditions. From the solutions of

such a simplified linear, horizontal momentum equation sys-

tem, one can easily see that these two contributions to the

current oscillate with opposite phase; at 30 to 40 m depth, the

two oscillations possess comparably large amplitudes, and

hence, the superimposing oscillation is hardly visible at this

depth (see the 40m-depth curves in Fig. 3). Such oscillations

have been discussed by Krauss (1979) and Csanady (1984).

The same time series of the velocity components u and

v, as shown in Fig. 3, are displayed again in the form of

hodographs in Fig. 4 for 0, 5, 10, 20 and 60 m depths. The

small circles along the curves mark time intervals of 1/4 of

the inertial oscillations, which is approximately 4 hours. The

arrows represent the velocity vectors in the steady state. This

graph is very similar to the result obtained by Krauss (1979)

in an infinite channel of rectangular cross-section. In the up-

per layer (0, 5, 10, 20 m), the wind-induced drift current, due

to sudden wind, approximates the steady state in the form

of inertial oscillations. The spiral in 60 m depth reflects

the adaptation of the current field to the geostrophic current.

The reflection of the water surface, due to the sudden wind,

produces a sudden change of the pressure field, in the en-

tire water column. The adaptation of the current field, which

was zero, to the new condition, occurs in the form of inertial

waves. Similar to those in the surface layer, these waves start

together with the wind because the pressure gradient is felt

immediately. In the hodograph for 20 m depth, one can see,

at first, (perhaps during the first two hours) the same north-

westward current as in 60 m depth; at this initial time, only

the geostrophic current exists in 20 m, but when the surface
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a) νv=0.02m2s−1

in an infinitely large basin

b) νv=0.02m2s−1

at the center of

the rectangular basin

without bottom friction

c) νv=0.02m2s−1

at the center of

the rectangular basin

with bottom friction

d) νv=0.02m2s−1

at the midpoint of

the southern shore of

the rectangular basin

with bottom friction

e) νv=0.005m2s−1

at the center of

the rectangular basin

with bottom friction

f) νv=0.005m2s−1

at the midpoint of

the southern shore of

the rectangular basin

with bottom friction

Fig. 5. Ekman spirals in an infinite ocean (a) and in a rectangular basin with 65 km × 17 km side lengths and 100 m depth (b-f), respectively.

The graphs show the horizontal velocities in a vertical profile at the indicated positions. The drawn arrows are for positions 5 m apart from

one another, from the free surface to the bottom. (a) in an infinite ocean with νv = 0.02 m2s−1; (b) at the midlake position of the rectangular

basin with νv = 0.02 m2s−1, no bottom friction; (c) at the midlake position and (d) near the southern shore with νv = 0.02 m2s−1 and

bottom friction; (e) at the midlake position and (f) near the southern shore with νv = 0.005 m2s−1 and bottom friction. Note the different

scales used in each graph.

drift current reaches this depth, an abrupt change in direction

occurs. It can be explicitly detected that the wind-induced

current in the upper layer (in 0, 5, 10 and 20 m depth) os-

cillates with opposite phase of the geostrophic current in the

lower layer.

3.3 Ekman spirals

In Fig. 5 we display vertical structures of the horizontal ve-

locities in the form of Ekman spirals for several different

cases in steady state. For a wind-induced motion, where
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Time series of the total kinetic energy in the rectangular basin subject to constant wind from
Fig. 6. Time series of the total kinetic energy in the rectangular basin subject to constant wind from the West in the long direction (a) and

from the South in the cross direction (b) with three different vertical eddy viscosities (see inset, N = number of Chebyshev polynomials

used).

the vertical velocity is negligible, for example, in the mid-

dle of a lake, the motion under homogeneous conditions can

be considered a linear combination of (i) the geostrophic cur-

rent, constant in the vertical, (ii) a bottom current deviation

indicating the bottom Ekman layer, decaying exponentially

away from the bottom which, together with the geostrophic

current, satisfies the bottom boundary condition, and (iii) a

surface-drift current (the Ekman layer) decreasing rapidly

with depth and satisfying the surface dynamic boundary con-

dition. In an infinite ocean with infinite depth, there exists

only the surface-drift current. As is evident from Fig. 5a,

for a constant vertical eddy viscosity, the drift current at the

surface, in steady state, is directed 45◦ to the right of the

windstress (on the northern hemisphere). In a bounded rect-

angular basin, due to the surface slope under windstress, a

geostrophic current shares the wind-induced motion. Sub-

ject to a western wind, a surface pressure gradient towards

the east is built up, and hence, the caused geostrophic cur-

rent points towards the north, as displayed in Fig. 5b; the

current below the Ekman depth is approximately 60 m for

νv = 0.02 m2s−1. If the northward geostrophic current is

eliminated from the motion in Fig. 5b, a velocity field is ob-

tained which is almost identical with that of the infinitely

large ocean (Fig. 5a). If bottom friction cannot be ignored,

the bottom Ekman layer occurs (Fig. 5c). The surface drift

current, as well as the bottom current deviation, decreases

rapidly with distance from the boundaries and a decay rate

depending on the magnitude of the vertical eddy viscosity, as

can be seen from a comparison of Fig. 5c,e. We also note

that the northward geostrophic current automatically reduces

the off-set angle of the surface current relative to that of the

Ekman drift, a fact visible when comparing Figs. 5a and 5b.

Finally, Figs. 5d,f display the Ekman spirals for a position

near the midpoint of the southern shore (the distance from

shore is 500 m) that is computed for two values of the verti-

cal eddy viscosities. Here too, the value of the vertical eddy

viscosity considerably affects the distribution of the velocity.

3.4 Total kinetic energy in relation to the vertical eddy vis-

cosity and the wind-fetch

In Fig. 6, the time series of the total kinetic energy in the

homogeneous rectangular basin of constant depth, subject to

constant western (a) and southern (b) wind, respectively, are

displayed, as previously computed with three vertical eddy

viscosities, as indicated. As has been seen in the time series

for the horizontal velocity, the inertial motions of the tran-

sient energy persist much longer, when νv = 0.005 m2s−1

than when νv = 0.02 m2s−1, and this difference is even

more distinct between νv = 0.005 m2s−1 and νv = 0.001

m2s−1. The total kinetic energy stored in the basin for νv =

0.001 m2s−1 is much larger than for νv = 0.005 m2s−1 or

νv = 0.02 m2s−1, due to the much larger energy input from

windstress because of the much larger water velocity at the

free surface (or more precisely, its component in the wind

direction), and the likely smaller dissipation for the smaller

vertical eddy viscosity. Comparison of Figs. 6a,b shows that

the kinetic energy subject to the longitudinal, western wind

is only slightly larger than that which is subject to the trans-

verse, southern wind.

The dependency of the total kinetic energy on the wind di-

rection is worked out in terms of a polar diagram, which plots

the variation of the total kinetic energy stored in the station-

ary circulation of the rectangular basin as a function of the di-

rection of the wind. We compute the water motion subject to

a constant wind from different directions (in intervals of 10◦)

for a fixed vertical eddy viscosity νv = 0.02 m2s−1. The po-

lar diagram of the total kinetic energy is displayed in Fig. 7a.

It is seen that the kinetic energy in the rectangular basin with

constant depth depends only marginally on the wind direc-
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Fig. 7. Total kinetic energy computed three days after the wind set-up (steady state) subject to constant wind from different directions with

the vertical eddy viscosity νv = 0.02 m2s−1. The computations are performed for two case: (a) the Coriolis force effect is considered; (b)

the Coriolis force is neglected. The directions of the drawn arrows are the wind directions (for an interval of 10◦) around the basin, their

lengths indicate the magnitudes of the total kinetic energy. The dashed circles show the maximum value of the total kinetic energy in all

directions, which is 5.24 × 109 N m for (a), but 4.49 × 1010 N m for (b).
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Fig. 8. Same as Fig. 7, but for a rectangular basin with larger aspect ratio. Here, the basin dimension is 60 km × 5 km × 100 m instead

of the dimension of 65 km × 17 km × 100 m in Fig. 7. The dashed circles show the maximum value of the total kinetic energy, which is

9.71 × 108 N m for the case with consideration of the Coriolis force (a), but 8.57 × 109 N m for the case without the Coriolis effect (b).

tion. The kinetic energy attains its maximum for longitu-

dinal, western wind, while for a transverse southern wind,

the kinetic energy is minimum, although the maximum and

the minimum differ from each other only by approximately

15%. As expected, the dependence of the kinetic energy on

the wind direction is anti-symmetric about the E-W or S-N

axis. It is also seen that the kinetic energy subject to south-

west or northeast wind is larger than that for northwest or

southeast wind. This loss of symmetry is due to the effect of

the Coriolis force, which can be demonstrated by means of

repeating the computations, but under the neglect of the Cori-

olis force. The analogous polar diagram of the total kinetic

energy, without consideration of the Coriolis force, is dis-

played in Fig. 7b. In this case, the dependence of the kinetic

energy on the wind direction is symmetric about the E-W or

S-N axes. When the Coriolis force is ignored, the kinetic
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Fig. 9. Map of Lake Constance. Untersee, Überlinger See and Obersee. Also shown are the 50 m und 200 m isobaths and a few main towns

along the shore.

energy is almost an order of magnitude larger. One likely

reason may be that the water motion decays exponentially

with increasing depth when the Coriolis force is accounted

for, while the velocity decreases only linearly with depth, if

the Coriolis force is neglected. The other reason may be that

in the absence of the Coriolis force, the water motion at the

free surface is mainly along the wind direction, hence, there

is more energy input from the windstress. When the Coriolis

force is neglected, the maximum kinetic energy occurs for a

wind blowing in the diagonal direction of the basin. In fact,

the difference in the total kinetic energy depends primarily on

the wind-fetch, i.e. the integrated distance over which wind-

action takes place, taken along the wind direction. For diago-

nal winds, the wind-fetch is at maximum. In the presence of

rotation, the integral for the fetch would probably have to be

taken over the Ekman layer. This may be why the maximum

of the kinetic energy is not reached for diagonal winds.

The stronger dependence of the total kinetic energy on the

wind direction can be expected for a basin with a larger as-

pect ratio (e.g. a larger variation of the wind-fetch). In or-

der to demonstrate this point, we repeat the computations

for a basin with a larger aspect ratio. A basin dimension of

60 km × 5 km × 100 m is used instead of 65 km × 17 km ×

100 m. The results are displayed in Fig. 8. In this case, the to-

tal kinetic energy depends on the wind direction much more

intensively than in Fig. 7. Obviously, the basin must be very

long and narrow before a directional dependence of the total

kinetic energy is appreciable.

In the next section we will see that the response of Lake

Constance, subject to a wind, is much more conspicuously

dependent on the wind direction with regard to the total ki-

netic energy, even though its geometry is close to the rectan-

gular basin in Fig. 7. This means that such a dependence on

the wind direction depends not only on the wind-fetch, but

also on the bathymetry of the lake basin.

4 Barotropic circulation in Lake Constance

Lake Constance consists of three basins: Obersee, Überlinger

See and Untersee, but the Untersee is separated from the

other two basins by a 5 km long channel; we shall be con-

cerned here with the ensemble Obersee+Überlinger See, for

brevity, also referred to as Lake Constance. It is approxi-

mately 64 km long and 16 km wide with has a maximum

depth of 253 m and an approximate mean depth of 100 m, as

shown in Fig. 9.

A study analogous to that above was also performed for

Lake Constance with the same number of grid points (65 ×

17) as for the rectangle. Computations were also done for

νh = 1.0 m2s−1, νv = 0.02 m2s−1 and νv = 0.005 m2s−1,

respectively. In the second case, the larger number of poly-

nomials, namely N = 25 instead of N = 10, was needed

to achieve stable and convergent numerical integration. Let

a spatially uniform, temporally constant wind with a wind

speed of 4.5 m s−1 blow from Northwest (305◦ (NW) in the

longitudinal direction of the lake) until steady state condi-

tions are established.

4.1 Horizontal distribution of the steady currents

The horizontal variation of the currents at the surface and at

depth levels 10, 20 and 40 m is depicted in Fig. 10. The hori-

zontal motion is displayed by arrow-diagrams. In the central

part of the lake, the surface current is deflected by about 50–

60◦ to the right of the downwind direction and amounts to 5

cm s−1, on average. The boundary currents somewhat off the

northern and southern shore increase to a magnitude of 8–10

cm s−1 and are directed parallel to the boundary.

As is typical for drift currents, the direction of the motion

in the open lake continuously turns to the right on with in-

creasing depth and decreasing velocities. At 10 m depth and

far away from the shores, the current deflection to the right of

the wind exceeds 90◦, and the average velocity decreases to

3–4 cm s−1. At the 40 m depth, the motion in the middle of

the lake is nearly reflected to the upwind direction. However,

above the 40 m depth, the shore currents are still basically
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Fig. 10. Velocity vectors, 6 days after a constant northwest wind (305◦ NW in the longitudinal direction of the basin) started, in 0 m, 10 m,

20 m and 40 m depth. Each panel has its own velocity scale.
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Fig. 11. Stream function of the vertically integrated volume transport in the steady state (6 days after a constant longshore northwest wind

started). Solid (dashed) streamlines belong to cyclonic and anticyclonic rotations.
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Fig. 12. Ekman spirals for a wind in the longitudinal direction of Lake Constance at the positions shown in the insets. The graphs show

the horizontal velocities in two vertical profiles computed for large (left) and small (right) vertical eddy viscosities, as indicated. The drawn

arrows are for positions 5 m apart from one another, from the free surface to the bottom. Each panel has its own velocity scale, as indicated.

parallel to the shores with the exception of the northeastern

shore, where the motion below the 20 m depth is almost in

the upwind direction. Near the northeastern corner, a cy-

clonic gyre is visible.

In order to show the general influence of the depth con-

figuration on the wind-driven circulation, the vertically inte-

grated volume transport is displayed in Fig. 11 for the same

longitudinal constant wind forcing; the figure displays vol-
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Fig. 13. Hodographs, i.e., time series of the horizontal velocities in the middles of the Überlinger See (a) and the Obersee (b) in 0, 5, 10 and

60 m depths. The motion is set up from rest. The small circles mark time intervals of approximately four hours. In order not to confuse the

spirals at 20 m and 60 m depths, the 20 m hodographs are shown separately in the panels (c) and (d) for the two positions.

ume transport streamlines. The circulation consists, in prin-

ciple, of two cells which rotate in such a way that the trans-

port is downwind along the shores, orientated roughly in the

direction of the wind. The central part of the circulation

shows a net transport with an upwind component which re-

sults from the geographic current (caused and bounded by

the bottom topography); with the bottom current prevailing

over the surface drift current. In contrast, the drift current

dominates the other currents in the shallow, nearshore region.

Due to the Coriolis force, subject to a western wind forcing,

the sloping bottom causes an intensification of the northward

flow component at the northwestern shore as well as at the

southeastern shore (Serruya et al., 1984; Wang, 1996). If

there would be no Coriolis effect, the circulation would con-

sist of two gyres, which are located almost exactly to the

north and south of the Talweg, rotating in the clockwise and

anticlockwise directions, respectively.

4.2 Ekman spirals and time series of the horizontal velocity

The vertical variation of the current depends strongly on the

eddy viscosity. We display in Fig. 12 two steady Ekman spi-

rals at the midlake positions of the Überlinger See (above)

and the Obersee (below), as they form, for an impulsively

applied uniform wind from 305◦ (NW) (approximately in the

long direction), and as obtained with the two different indi-

cated eddy viscosities. Those Ekman spirals are considerably

affected by the νv-values. The turning of the arrows which

make up the spirals, also indicates that the surface Ekman

boundary layer is thinner for the smaller value of the eddy

viscosities (right panel) than for the larger value (left panel).

Equally interesting is the comparison of the time series

of the horizontal velocity components u and v for various

depths at the midlake positions of the Überlinger See and

the Obersee, as displayed by the hodographs in Fig. 13 and

obtained with νv = 0.005 m2s−1. At both positions, tran-

sient oscillations can be discerned with the inertial period of

approximately 16 h. The oscillations can be seen at all wa-

ter depths, however, with decreasing amplitude as the depth

increases. Furthermore, they die out before two inertial pe-

riods in the Überlinger See, but only after 5–6 inertial pe-

riods in the Obersee. The reason is the smaller size of the

Überlinger See and, therefore, the enhanced frictional re-

sistance due to the lake bottom and the side shores. In the

Obersee, the transient velocities oscillate around a slowly
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Fig. 14. Time series of the total kinetic energy in Lake Constance, subject to constant wind from 305◦ NW approximately in the long

direction (a) and from 215◦ SW, approximately in the cross direction (b) with two different values of the vertical eddy viscosity.
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Fig. 15. Total kinetic energy computed three days after the wind set-up (steady state) subject to constant wind from different directions with

the vertical eddy viscosity νv = 0.02 m2s−1. The computations are performed for two cases: (a) the Coriolis effect is considered; (b) the

Coriolis force is neglected. The directions of the drawn arrows are the wind directions (for an interval of 10◦) around the basin, their lengths

indicate the magnitudes of the total kinetic energy. The dashed circles show the maximum value of the total kinetic energy in all directions,

which is 1.11 × 1010 N m for (a), but 4.65 × 1010 N m for (b).

varying mid-velocity at each depth; this is different from

the corresponding behaviour in the rectangular basin where

the motion oscillates approximately around the steady state

(compare with Fig. 4). This difference is due to the complex

topography of Lake Constance. From the spirals at larger

depth (e.g. 20 m), during an initial time interval after the

wind started, a sudden change in the direction of the mo-

tion can be seen when the wind-induced surface drift flow

reaches this depth. Before this time, only the geostrophic

current exists at this depth which, due to the restriction of

the bottom topography, is along the Talweg. This is different

from the behaviour of the flow in a basin with constant depth,

in which the geostrophic motion is basically perpendicular to

the wind direction or surface pressure gradient (90◦ to the left

on the northern hemisphere).

4.3 Total kinetic energy in relation to the vertical eddy

viscosity and the wind direction

The time series of the stored, total kinetic energy in Lake

Constance for NW and SW wind, νv = 0.02 m2s−1 and

νv = 0.005 m2s−1 (Fig. 14) show that the inertial oscilla-

tions persist longer, and the value of the total kinetic energy

is much larger for the smaller νv-value (as shown before for
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the rectangular basin). More interesting is the comparison of

the kinetic energies for the case of longitudinal NW wind and

transverse SW wind (Fig. 14a,b). For the transverse wind, the

temporal inertial oscillations persist much longer than those

associated with the longitudinal wind, whereas the magni-

tude of the kinetic energy subject to the longitudinal wind is

much larger.

The variable response of the lake to constant wind forcing

from different directions at 10◦ interval is represented in the

polar diagram of the kinetic energy uptake in Fig. 15a, com-

puted for νv = 0.02 m2s−1. The stored, total energy depends

very strongly on the wind direction. The geographical direc-

tion of maximum exposure coincides approximately with the

longitudinal direction of the lake. The kinetic energy under

a transverse wind is only one fifth of thekinetic energy for

a longitudinal wind. The strong dependence of the total ki-

netic energy on the direction of the wind should be mainly

due to the topography, and less to the dimension of the lake,

since Lake Constance has a comparable aspect ratio to the

rectangular basin in Fig. 7, in which the dependence on the

direction of the wind is much weaker. This dependence of the

total kinetic energy on the direction of the wind is similar, to

some extent, to that obtained by Serruya et al. (1984), where

only the kinetic energy of the two-dimensional vertically in-

tegrated net transport was calculated. The dependence of the

kinetic energy on the wind direction, without consideration

of the Earth’s rotation, is also displayed in Fig. 15, in panel

b. In this case, the total kinetic energy is much larger than the

kinetic energy with the Coriolis force, while the dependence

of the kinetic energy on the direction of the wind is somewhat

weaker; here, the kinetic energy under a transverse wind is

nearly half as large as the kinetic energy for a longitudinal

wind.

4.4 Vertical distributions of the steady currents

The isotachs of the three velocity components in a steady

state on the cross-section through the center of the Überlinger

See are presented in Fig. 16. The wind is blowing in the di-

rection of the longitudinal axis of the lake, perpendicular to

the plane of the graphs upwards. The most distinguished fea-

ture of the motion is a nearshore coastal jet in the direction

of wind (Fig. 16a). The change of the horizontal velocity

with depth happens primarly in the upper layer and in the

middle of the cross-section (Fig. 16a,b). At lower depths,

where the geostrophic current plays an important part in the

motion, the velocity components do not significantly change

with depth. Due to the effect of the Coriolis force, for a west

wind, there occurs a downwelling along the southern shore

(left side in Fig. 16c) and an upwelling along the northern

shore (right in Fig. 16c), however, the vertical velocity com-

ponent is much smaller than the horizontal components. In

the zone far away from shore, the vertical velocity compo-

nent is practically negligible.

Figure 18 displays the transverse variations of the long-

shore transports. These are the depth integrals of the posi-

tive and negative velocities in the x-direction, as functions

of the y-coordinates in the cross-section, with the wind di-

rection (positive, broken lines) and against the wind (nega-

tive, dotted lines), in cross-sections through the centers of the

Überlinger See and the Obersee, respectively. From Fig. 18,

the nearshore coastal jet in the direction of the wind can be

seen more clearly, not only in the Überlinger See, but also in

the Obersee. Close to the shore, the transport is almost only

in the direction of the wind; far away from shore, where the

motion is dominantly in the upwind direction, the transport

is against it. This feature is due to the approximate parabolic

shape of the cross direction.

If the positive and the negative transports are added, the

net volume fluxes per unit width (the solid lines in Fig. 18)

are obtained. These lines would be obtained with a depth

integrated model. Obviously, the horizontal integration of

the net volume flux along the cross-section must vanish in

steady state.

The vertical distributions of the horizontally integrated

transport at the centers of the Überlinger See and the Obersee

can be extracted from Fig. 19. It can be seen that the transport

occurs primarly in the top 80 m, especially in the top 40 m.

The transport in the wind direction (positive, broken lines)

assumes its maximum at the surface, while the maximum of

the transport against the wind (negative, dotted lines) occurs

at approximately 20–30 m depth. Below 100 m there exists

only the transport against the wind with very small values.

The sum of the two fluxes for a fixed depth yields the net

volume flux per unit depth, which is also displayed as solid

lines in Fig. 19. Obviously, its vertically integrated total flux

through a cross-section must vanish in a steady state. It is

also obvious that these results cannot be obtained with the

use of a vertically integrated model.

In Figs. 17, 20 and 21, graphs are displayed for the iso-

tachs of the three velocity components in a cross-section of

the Überlinger See (Fig. 17) as well as the horizontal and

vertical distributions of the longshore transport in the two in-

dicated cross-sections of the Überlinger See (Fig. 20) and the

Obersee (Fig. 21), respectively. This is also the case in Figs.

16, 18 and 20, but now with a smaller vertical eddy viscos-

ity νv = 0.005 m2s−1. Principally, they are very similar to

those subject to νv = 0.02 m2s−1. The most distinguishing

differences is that for the smaller vertical eddy viscosity, the

surface layers of positive x-velocity are much smaller (Figs.

17 and 21) than in Figs. 16 and 19, while the absolute val-

ues of the velocity are much larger, and the two-dimensional

depth integrated model is less justified (compare Figs. 18 and

20).

5 Comparison of measured values and computational

results in Lake Constance

Unfortunately, there are insufficient data available which

would allow validation of the model. Nevertheless, a partial

check of the reliability of the numerical method was possible

with data from 16 February 1993 (0 MET) to 22 February

1993 (24 MET), a period of seven days. Wind velocity and
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Fig. 16. Isotachs of the two horizontal and vertical velocity compo-

nents (a) u, (b) v and (c) w in a cross-section of the middle of the

Überlinger See in steady state, subject to constant wind from 305◦

NW approximately in the longitudinal direction (perpendicular to

the plane of the graphs upwards) with the vertical eddy viscosity

νv = 0.02 m2s−1.

direction were measured at “Boje Mitte”, a buoy with me-

teorological instruments approximately in the center of the
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Fig. 17. Isotachs of the two horizontal and vertical velocity compo-

nents (a) u, (b)v and (c) w in a cross-section of the middle of the

Überlinger See in steady state, subject to constant wind from 305◦

NW approximately in the longitudinal direction (perpendicular to

the plane of the graphs upwards) computed with the vertical eddy

viscosity νv = 0.005 m2s−1.

Überlinger See. These data are displayed in Fig. 22. Dur-

ing the first three days (16–18 February), the wind was very
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Fig. 18. Vertically integrated volume flux per unit width in the cross-sections of the center of the Überlinger See (a) and in the Obersee (b)

computed with the vertical eddy viscosity νv = 0.02 m2s−1. Broken curves indicate the transport part with the wind direction, dotted curves

against the wind direction. The solid lines show the sum of the two. The location of the cross-sections is shown as inset.
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Horizontally integrated volume flux per unit depth through the cross-sections in the Überlinger
Fig. 19. Horizontally integrated volume flux per unit depth through the cross-sections in the Überlinger See (a) and in the Obersee (b) as

indicated in the insets, computed with the vertical eddy viscosity νv = 0.02 m2s−1. Broken curves indicate the transport part with the wind,

dotted curves against the wind direction. The solid lines show the net volume flux.

weak. On 19 February, a strong wind was initiated; its am-

plitude reached 8 ms−1 and it persisted for the remainder of

the period. For the same period, the water velocity and its di-

rection at the “Mainauschwelle” (near the island Mainau) at

80 m depth were also measured; they are displayed as solid

curves in Fig. 23a,b. In the first 80 hours, the water velocity

was less than 1.1 cm s−1, which was below the threshold of

the current meter. At the fourth day, strong currents started

with superimposed oscillations of a period of approximately

16 hours, which can be interpreted as inertial oscillations.

The flow direction superimposed by oscillations is approxi-

mately 300–340◦ (NW).

Here we simulate, numerically, the corresponding water

motion with the measured wind input and check if the mea-

sured water velocity can be reproduced by the computed ve-

locity field. In winter (here, in February), the water den-

sity in Lake Constance can be considered to be homogenous

(Bäuerle et al., 1998). For this simulation the measured wind

at the station “Boje Mitte” is used and extrapolated to the en-

tire lake. This uniformity is certainly unlikely to be realistic,

but we apply it due to lack of better knowledge. The shear

stress at the water surface can be calculated with the aid of

the classical drag formulas

τ
0 = ρac0 | V wind | V wind,
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Fig. 20. Vertically integrated volume flux per unit width in the Überlinger See (a) and in the Obersee (b) computed with the vertical eddy

viscosity νv = 0.005 m2s−1. Broken curves indicate the transport part along the wind direction, dotted curves against the wind. The solid

lines show the sum of the two. The location of the cross-sections is shown as insets.
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Fig. 21. Horizontally integrated volume flux per unit depth through the cross-sections in the Überlinger See (a) and in the Obersee (b) as

indicated in the insets, computed with the vertical eddy viscosity νv = 0.005 m2s−1. Broken curves indicate the transport part with the

wind, dotted curves against the wind direction. The solid lines show the net volume flux.

where V wind is the wind speed 10 m above the water sur-

face, ρa the air density (ρa = 1.225 kg m−3) and c0 a di-

mensionless friction coefficient. The specification of c0 is

not unique and varies from author to author. A typical value

for a weak or medium wind strength (Vwind < 10 m s−1) is

c0 = 1.8×10−3 (Lehmann, 1992). The wind speed measured

at 4.4 m above the lake surface (Fig. 22) must be converted

to the value at 10 m. Assuming a logarithmic wind profile,

yields

V10

V4.4
=

ln 10 − ln z0

ln 4.4 − ln z0
,

where z0 is a measure for the corrugation of the water sur-

face (roughness length). In the computations, we choose

z0 = 1.0 × 10−4 m. The vertical eddy viscosity is assumed

constant with value νv = 0.02 m2s−1 and the simulation is

started from rest, although at the initial time, a small motion

must exist in nature.

The computed water velocity and its direction in 80 meters

depth, at the position “Mainauschwelle” where the measured

time series are plotted in Fig. 23, are also displayed in Fig. 23

as dashed lines. During the first three days, when a weak

wind prevailed, the measured and computed current speeds

could not be compared, but their directions could (Fig. 23b),

and, they deviated considerably from one another. This is
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Fig. 22. Measured wind speed (a) 4.4 m above the lake surface

at the station “Boje Mitte” (approximately at the center of the

Überlinger See) from 16 February 1993 (0 MET) until 22 Febru-

ary 1993 (24 MET), and direction (b) of which the mean value is

approximately 270◦ (West).

most likely due to the fact that the computations started from

a state of rest, but there was some (small) motion in na-

ture (however, not caught by the current meter) which was

not considered in the simulation. A relatively strong wind

is needed to bring the computed and the measured veloci-

ties together. This strong wind occurs after 80 hours when

both measured and computed current speed and direction co-

incide quite well with one another. Only at the seventh day

do the current speeds of the computations differ from the re-

spective measured values. The computed current orientation

at this depth lies between 300–340◦ (towards Northwest),

which is in fair agreement with the measured values (com-

pare the solid and dashed lines of Fig. 23b), which are basi-

cally around 320◦, superimposed by oscillations. Given the

measuring technique and the bold extrapolation of the wind

over the entire basin, a better agreement can hardly be ex-

pected.

In Fig. 24a,b we have plotted time series of the two hor-

izontal velocity components at several depths in the mid-

lake position in the Obersee, as indicated in the inset. Ev-

idently, the strong wind commencing after 80 hours gener-

ates equally strong oscillations; with a period of almost ex-

actly 16.3 hours, they are most likely, inertial oscillations.

On the other hand, comparison of the water velocity at 80 m

depth at the Mainauschwelle (Fig. 23) with the driving wind

suggests that these oscillations might simply be the direct

response to the wind forcing. In order to confirm that the

oscillations exhibited by the time series of water velocity are

indeed inertial oscillations due to the Coriolis force, the same
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Fig. 23. (a) Flow velocity at 80 m depth near the Mainauschwelle

subject to the wind forcing displayed in Fig. 22. The solid curve

indicates the measured values, the broken curve corresponds to the

computational result. (b) Same as (a) but for the flow direction. Its

value after the wind set-up is approximately toward 320◦ (north-

west).

computation but without consideration of the Coriolis force

was repeated. For this case, the computed water velocities

at the Mainauschwelle, at 80 m depth, and at the center of

the Obersee, at several depths, are shown in Figs. 25 and

26. Comparison of Figs. 23 and 25 shows that without the

Coriolis term, the computed velocity at the Mainauschwelle

does not exhibit the oscillations shown by the measurements.

Moreover, the direction of the current is toward 260◦, which

is substantially different when one accounts for the Coriolis

effects. Similar differences are also seen when Figs. 24 and

26 are compared. The computed current oscillations at the

midpoint position of the Obersee are not established without

the Coriolis force. These facts should be sufficient demon-

stration that the measured oscillations are indeed rotational

effects due to the motion of the Earth.

6 Concluding remarks

In this paper, wind induced barotropic circulation in lakes

was studied, first, from a more fundamental point of view,

using a rectangular basin with constant depth, but later, with

Lake Constance, a medium-size Alpine lake. The tenor of the

investigation was to see how the absolute values of the eddy

viscosities affect the flow within such basins. Vertical eddy
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Fig. 24. Time series of the horizontal velocity components (a) u and (b) v at the center of the Obersee (see inset) subject to the wind forcing

of Fig. 22. The labels indicate the depths in meters.

F
lo

w
v
el

o
ci

ty
[c

m
s−

1
]

Time [h]

(a)
F
lo

w
d
ir
ec

ti
o
n

v
[c

m
s−

1
]

Time [h]

(b)

Fig. 25. Time series of the horizontal velocity components (a) u and (b) v at the center of the Obersee subject to the wind forcing of Fig. 22,

where the Coriolis force is not considered. The labels indicate the depths in meters.

viscosities were varied in three different ways, as suggested

by other studies, and the steady Ekman problem was solved.

The following results were obtained, each demonstrating the

significance of the eddy viscosity:

– The direction of the surface water velocity at the mid-

point of a rectangular basin relative to that of the wind,

the so-called wind set-off, depends strongly on the ab-

solute value and vertical distribution of the vertical eddy

viscosity. It cannot be concluded that the current set-off

(to the right on the northern hemisphere) decreases with

increasing eddy viscosity. Depending upon the vertical

distribution of the eddy viscosity, opposite or even non-

monotonic behaviour may occur (Fig. 1a).

– The surface current speed, however, decreases mono-

tonically with an increase in the eddy viscosity (Fig. 1b).

– The amount of kinetic energy stored in the water de-

pends equally upon the absolute value of the eddy vis-

cosity (but less on its vertical distribution). Its transient

behaviour from a state of rest to a steady state is char-

acterized by oscillations that are attenuated in time, but

equally, the smaller the vertical eddy viscosity is, the

larger the oscillations. This is true for the rectangle

(Fig. 6), as well as Lake Constance (Fig. 14).

– The wind-directional dependence of the total kinetic en-

ergy depends strongly on the wind-fetch and the lake

bathymetry. For a rectangle with constant depth and a

width to length ratio of 0.25, this dependence is less

than approximately 10% (Fig. 7); for Lake Constance,

it is substantial (Fig. 15).

– The Coriolis force implies a significant reduction of the

total kinetic energy that can be established in a basin

due to wind forces, when compared to the case when

rotational effects are neglected (Figs. 7, 8 and 15).
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Fig. 26. Time series of the horizontal velocity components (a) u and (b) v at the center of the Obersee subject to the wind forcing of Fig. 22,

where the Coriolis force is not considered. The labels indicate the depths in meters.

– The vertical distribution of the water velocity, i.e., the

Ekman spiral, depends considerably upon the absolute

values of the eddy viscosities. Not only the Ekman

depth is affected by these values, but equally so, the

orientational distribution of the horizontal current with

depth (Figs. 5, 12).

– Inertial oscillations are more easily established in open

water than bounded channels; this demonstrates the

significance of the frictional effects due to boundaries

(Fig. 13).

All these results support the conjecture that it is important

for adequate reproduction or prediction of observed current

fields in lakes to use the correct orders of magnitudes of the

numerical eddy viscosities. On the other hand, the eddy vis-

cosity should be chosen according to physical considerations,

and simultaneously, ensure numerical stability of a simula-

tion. On the other hand, if the eddy viscosity desired by nu-

merical stability is much larger than the values suggested by

measurements, the numerical code needs to be adjusted, es-

pecially with some modern numerical treatments of the non-

linear advection terms. Inappropriate numerical schemes of

these advection terms are often the reason for the production

of numerical oscillations, which require large eddy viscosi-

ties in order to prevent their development and hence, assure

numerical stability. At present, we are making an effort in

this aspect. It is exactly the problem in many existing three-

dimensional lake circulation models, that in order to reach

numerical stability, the eddy viscosities must be chosen to be

much larger than physically acceptable so that the physical

oscillations are also rapidly damped away or are even indis-

cernible. It has been clearly demonstrated by this model that

observed inertial oscillations due to the rotation of the Earth

persist long and are slowly attenuated. That these inertial

waves are indeed a dominant effect is shown in a restricted

comparison of the measured current at 80 m depth for Lake

Constance. Neglecting the Coriolis effects does not yield re-

sults that can be compared with the measured ones. This

wave dynamic, in turn, determines the advective properties

and thus, the transports of nutrients and pollutants both hori-

zontally and vertically.
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Modell der Ostsee, Ber. Inst. f. Meeresk., Kiel, 231, pp. 104,

1992.

Madsen, O. S., A realistic model of the wind-induced Ekman

boundary layer, J. Phys. Oceanogr., 7, 248–255, 1977.

Mortimer, C. H., Lake hydrodynamics, Mitt. Internat. Verein Lim-

nol., 20, 124–197, 1974.

Mortimer, C. H., Inertial motion and related internal waves in Lake

Michigan and Lake Ontario as response to impulsive wind stress.

I: Introduction, descriptive narrative and archive of IFYGL data.

Univ. Wisconsin-Milwaukee, Center for Great Lakes Studies,

Spec. Report No. 37, 1980.

Nihoul, J. C. J. and Ronday, F. C., Hydrodynamic models of the

North Sea: A comparative assessment, Mem. Soc. R. Sci. Liege,

10, 61–96, 1976.

Serruya, S., Hollan, E., and Bitsch, B., Steady winter circulations

in Lakes Constance and Kinneret driven by wind and main trib-

utaries, Arch. Hydrobiol., 70(1), 32–110, 1984.

Simons, T. J., Circulation models of lakes and inland seas, Canadian

Bulletin of Fisheries and Aquatic Sciences, Bulletin 203, Ottawa,

1980.

Song, Y. and Haidvogel, D. B., A semi-implicit ocean circulation

model using a generalized topography-following coordinate, J.

Comp. Phys., 115, 228–244, 1994.

Sündermann, J., Numerical modelling of barotropic circulation pro-

cesses, in Hydrodynamics of Lakes, Ed. K. Hutter, Springer,

Vienna-New York, 1984.

Svensson, U., The structure of the turbulent Ekman layer, Tellus,

33, 340–350, 1979.
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