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Abstract. The Bureau of Meteorology Atmospheric high-

resolution Regional Reanalysis for Australia (BARRA) is

the first atmospheric regional reanalysis over a large region

covering Australia, New Zealand, and Southeast Asia. The

production of the reanalysis with approximately 12 km hor-

izontal resolution – BARRA-R – is well underway with

completion expected in 2019. This paper describes the nu-

merical weather forecast model, the data assimilation meth-

ods, the forcing and observational data used to produce

BARRA-R, and analyses results from the 2003–2016 reanal-

ysis. BARRA-R provides a realistic depiction of the mete-

orology at and near the surface over land as diagnosed by

temperature, wind speed, surface pressure, and precipitation.

Comparing against the global reanalyses ERA-Interim and

MERRA-2, BARRA-R scores lower root mean square er-

rors when evaluated against (point-scale) 2 m temperature,

10 m wind speed, and surface pressure observations. It also

shows reduced biases in daily 2 m temperature maximum

and minimum at 5 km resolution and a higher frequency of

very heavy precipitation days at 5 and 25 km resolution when

compared to gridded satellite and gauge analyses. Some is-

sues with BARRA-R are also identified: biases in 10 m wind,

lower precipitation than observed over the tropical oceans,

and higher precipitation over regions with higher elevations

in south Asia and New Zealand. Some of these issues could

be improved through dynamical downscaling of BARRA-R

fields using convective-scale ( < 2 km) models.

1 Introduction

Reanalyses are widely used for climate monitoring and

studying climate change as they provide long-term spatially

complete records of the atmosphere. This is achieved by us-

ing data assimilation techniques that produce an observation-

constrained model estimate of the atmosphere. They draw

short-term model states towards observations from multiple,

disparate sources to form an atmospheric analysis. A physi-

cally realistic model provides the means to infer atmospheric

states at locations without observations from the limited col-

lection of irregularly distributed observations.

Global-scale reanalyses using global atmospheric general

circulation models (GCMs) have advanced in quality and

quantity during the past 2 decades (Dee et al., 2014; Hart-

mann et al., 2013). At present, the available global reanaly-

ses established for the satellite era include the NCEP–NCAR

reanalysis at 210 km horizontal resolution (Kalnay et al.,

1996), the Japanese 55-year Reanalysis (JRA-55) at 60 km

(Ebita et al., 2011), the Modern-Era Retrospective analy-

sis for Research and Applications-2 (MERRA-2) at about

50 km (Gelaro et al., 2017), and the European Centre for

Medium-Range Weather Forecasts (ECMWF) ReAnalysis

Interim (ERA-Interim) at ∼ 79 km (Dee et al., 2011). The

latter is currently being replaced by the new ERA5 ∼ 31 km

reanalysis (Hersbach and Dee, 2016). These global reanaly-

ses have the advantage of providing globally consistent in-

formation, but at the expense of spatial resolution. With res-

olutions typically greater than 50 km, they may be deficient

in accounting for important sub-grid variations in meteorol-
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ogy over heterogeneous terrains and islands, across irregu-

lar coastlines, and in terms of other small-scale processes

(Mesinger et al., 2006; Randall et al., 2007, and references

therein).

To address these shortcomings, the development in global

reanalysis has also driven concurrent efforts in statistical

approaches and dynamical downscaling (e.g. Dickinson et

al., 1989; Fowler et al., 2007; Evans and McCabe, 2013).

The latter typically embeds a high-resolution meteorological

model within a global reanalysis, whereby effects of small-

scale forcing and processes such as convection are mod-

elled. Such development is supported by improvements in

non-hydrostatic models that run at high resolution in oper-

ational numerical weather prediction (NWP) (e.g. Clark et

al., 2016). Regional reanalyses are emerging as a step fur-

ther in this direction. The first regional reanalysis was the

North America Regional Reanalysis (NARR; Mesinger et

al., 2006). More recent examples include the Arctic System

Reanalysis (ASR; Bromwich et al., 2018), Indian Monsoon

Data Assimilation and Analysis (IMDAA; Mahmood et al.,

2018), and Uncertainties in Ensembles of Regional Reanal-

yses (UERRA) in Europe (Borsche et al., 2015, and refer-

ences therein). In contrast to dynamically downscaled global

reanalyses, observations are used in regional reanalyses in

the same way as in the global ones to reduce model errors

in high-resolution simulations (Bollmeyer et al., 2015). The

resulting reanalyses are expected to have better representa-

tions of frequency distributions, extremes, and actual space-

and time-dependent variability (particularly for near-ground

variables). UERRA consists of four regional reanalyses de-

veloped by the Swedish Meteorological and Hydrological

Institute (SMHI), Météo France, the Deutscher Wetterdienst

(DWD), and the UK Met Office (UKMO), producing an en-

semble of high-resolution (5–25 km) regional reanalyses of

essential climate variables. The SMHI’s HARMONIE (High-

Resolution Limited-Area Model – HIRLAM – Aire Limitée

Adaptation Dynamique Développement International – AL-

ADIN – Regional/Mesoscale Operational NWP in Europe)

reanalysis has entered production for the Copernicus Climate

Change Service (Ridal et al., 2017).

Regional reanalyses provide significant added value to

their global counterparts in diverse applications ranging from

traditional climate studies to industry applications, including

regional climate change assessments that include local im-

pact studies (e.g. Fall et al., 2010) and extreme event recon-

structions (e.g. Zick and Matyas, 2015). As regional reanal-

yses are generally produced with high spatial and temporal

resolution, the extremes of variables at local scales may be

quantified more accurately. They are also an alternative refer-

ence to evaluate climate projections (e.g. Ruiz-Barradas and

Nigam, 2006; Radic and Clarke, 2011). At the same time,

embedded forecast models can be used within the frame-

work of the Coordinated Regional Climate Downscaling Ex-

periment (CORDEX; Martynov et al., 2013) within a seam-

less framework for weather and climate prediction, whereby

model deficiencies that differ in spatial scales and timescales

can be more readily understood (Brown et al., 2012). They

also offer useful datasets for designing new infrastructure,

particularly if they are sufficiently long and spatially rele-

vant to define the likelihood of extremes. For renewable en-

ergy production, they can provide valuable information on

the intermittency (e.g. wind lull) and covariability (e.g. corre-

lation spatially or between variables) of phenomena. For in-

stance, the COSMO (Consortium for Small-scale Modelling)

6 km reanalysis has shown the potential to provide realistic

sub-daily representations of winds at 10 to 40 m of height

(Borsche et al., 2016) and to resolve small-scale cloud struc-

tures (Bollmeyer et al., 2015). NARR was used to define a

climatology of surface wind extremes (Malloy et al., 2015)

and 30-year trends in wind at hub height (Holt and Wang,

2012) over northern America.

To date, while regional reanalyses exist for North Amer-

ica, Europe, and India, no atmospheric regional reanalysis for

the Australasian region has been produced. To close this gap,

the Bureau of Meteorology Atmospheric high-resolution Re-

gional Reanalysis for Australia (BARRA; Jakob et al., 2017)

has been produced. BARRA is the first atmospheric regional

reanalysis that covers Australia, New Zealand, Southeast

Asia, and south to the Antarctic ice edge (Fig. 1). It is pro-

duced by the Australian Bureau of Meteorology (Bureau),

with sponsorship from state fire and governmental agen-

cies across Australia, because of the important advantages

it provides for planning and management to reduce risks

due to extreme weather events, including bushfires. For in-

stance, BARRA will address the lack of accurate climate

information on highly variable surface winds over large ar-

eas of Australia due to the low density of the surface ob-

servation network in remote areas. BARRA covers a 29-

year period from 1990 to 2018, with possible further exten-

sions back and forward in time. The BARRA project delivers

a whole-domain reanalysis (identified as BARRA-R) with

approximately 12 km horizontal resolution and additional

convective-scale (1.5 km horizontal grid-length) downscal-

ing (BARRA-x), nested within BARRA-R, centred on major

Australian cities to generate additional high-resolution infor-

mation needed for local-scale applications and studies. These

resulting gridded (12 and 1.5 km) products include a variety

of 10 min to hourly surface parameters describing weather

and land-surface conditions and hourly upper-air parameters

covering the troposphere and stratosphere. The fields on stan-

dard pressure levels are generated from vertical interpola-

tion of model-level fields. BARRA serves to lay the foun-

dation for future generations of reanalyses at the Bureau and

to further develop its capabilities to produce seamless cli-

mate information that integrates its observational networks

and NWP programme.

In this paper, we describe the forecast model, data assim-

ilation methods, and the forcing and observational data used

to produce BARRA-R in Sect. 2. Section 3 provides an ini-

tial assessment of the reanalysis system over the first 14 years
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Figure 1. The BARRA-R domain is enclosed by the dashed box,

with the model orography shown.

(2003–2016), with a focus on analysing the quality at or near

the surface; Sect. 4 concludes with a brief summary of our

findings.

2 The BARRA-R reanalysis

The development of BARRA builds on the Bureau’s experi-

ence in operational (deterministic) NWP forecasting over the

Australian region using the Australian Community Climate

and Earth-System Simulator (ACCESS-R) system (Bureau

of Meteorology, 2010, 2013; Puri et al., 2013), and BARRA-

R is produced using the UKMO’s system in UERRA (based

on Jermey and Renshaw, 2016) but without the ensemble

component. An ensemble NWP forecast system is currently

under development at the Bureau. BARRA-R is produced by

running a limited-area meteorological forecast model forced

with global reanalysis boundary conditions, drawn closer to

observations via data assimilation. This section provides an

overview of these components, while more technical details

are included in the references.

2.1 Forecast model

The Unified Model (UM; Davies et al., 2005) is the

grid-point atmospheric model used in BARRA-R and AC-

CESS. It uses a non-hydrostatic, fully compressible, deep-

atmosphere formulation and its dynamical core (Even Newer

Dynamics for General atmospheric modelling of the envi-

ronment, ENDGame) solves the equations of motion us-

ing mass-conserving, semi-implicit, semi-Lagrangian, time-

integration methods (Wood et al., 2014). The model includes

a comprehensive set of parameterizations, including a mod-

ified boundary layer scheme based on Lock et al. (2000), a

variant of Wilson and Ballard (1999) for mixed-phase cloud

microphysics, the mass flux convection scheme of Gregory

and Rowntree (1990), and the radiation scheme of Edwards

and Slingo (1996), which have all since been improved.

Other parameterized sub-grid-scale processes include, frac-

tional cloud cover and orographic drag. More details on all

of the physics schemes can be found in Walters et al. (2017a).

The prognostic variables are three-dimensional wind com-

ponents, virtual dry potential temperature and Exner pres-

sure, dry density, and mixing ratios of moist quantities. The

model is discretized on a horizontally staggered Arakawa

C grid (Arakawa and Lamb, 1977) and a vertically stag-

gered Charney–Phillips grid (Charney and Phillips, 1953).

The staggered arrangement of grid points allows for accurate

finite differencing but results in different model fields located

on staggered grids displaced by half a grid of spacing along

both axes. Data have been left on the staggered grids to al-

low users to apply the most appropriate re-gridding methods

suited for given applications. The vertical levels smoothly

transition from terrain-following coordinates near the surface

to constant height surfaces in the upper atmosphere (Davies

et al., 2005).

BARRA-R uses version 10.2 of the UM and is config-

ured with 70 vertical levels extending from near the sur-

face to 80 km above sea level: 50 model levels below 18 km

and 20 levels above this. While configured with this height

based on ACCESS-R, we have more confidence in the

data up to a height of 25–30 km where we have the most

information from observations. The horizontal domain of

BARRA-R spans from 65.0 to 196.9◦ E and −65.0 to 19.4◦ N

(Fig. 1), with constant latitude and longitude increments of

0.11◦ × 0.11◦ and 1200 × 768 grid points in the horizontal.

Our choice of the horizontal resolution follows the determin-

istic component of the UKMO reanalysis and the IMDAA

reanalyses. The model was run to produce 12 h (12 h) fore-

casts in each 6-hourly cycle (see Sect. 2.2) to give extra data

for driving dynamical downscaling within the domain.

The model parameterizations in BARRA-R are inherited

from the UKMO Global Atmosphere (GA) 6.0 configura-

tions described in Walters et al. (2017a). The GA6 configura-

tions are also suited for limited-area models with resolutions

> 10 km but with some modifications, as described below.

i. A variable Charnock coefficient is used in surface heat

exchange over the sea to improve the tropical Pacific

air–sea exchange (Ma et al., 2015).

ii. The heat capacity of the “inland water canopy” is set

to 2.11 × 107 J K−1 m−2 for modelling lakes. This im-

proves the diurnal cycle over inland waters. By contrast,

grid cells containing salt lakes in Australia are modelled

as bare soil surface (for Lake Eyre and Lake Frome) and

vegetated surface (e.g. Lake Lefroy, Lake Ballard).

iii. For its deep convective mass flux scheme, a grid-

box-dependent convective available potential energy

(CAPE) closure scheme is chosen to limit the role of pa-

rameterized convection. When vertical velocity exceeds
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the given threshold of 1 m s−1, the vertical-velocity-

dependent CAPE closure is chosen to release the con-

vective instability efficiently (Zhu and Dietachmayer,

2015). These changes aim to improve the model stabil-

ity.

iv. The river-routing scheme has been turned off because

it is not designed for a limited-area model. Therefore,

there is no routing of runoff from inland grid points out

to sea and inland water bodies, and soil moisture is not

affected by this hydrological process.

The characteristics of the lower boundary, climatological

fields, and natural and anthropogenic emissions are specified

using static ancillary fields. These are created as per Walters

et al. (2017a; Table 1), with the exceptions of the land–sea

mask and canopy tree heights. The land–sea mask is created

from the 1 km resolution International Geosphere–Biosphere

Programme (IGBP) land cover data (Loveland et al., 2000),

and the canopy tree heights are derived from satellite light

detection and ranging (lidar; Simard et al., 2011; Dharssi et

al., 2015). Climatological aerosol fields (ammonium sulfate,

mineral dust, sea salt, biomass burning, fossil-fuel black car-

bon, fossil-fuel organic carbon, and secondary organic (bio-

genic) aerosols) are used to derive the cloud droplet number

concentration. Absorption and scattering by aerosols are in-

cluded in both the shortwave and longwave.

2.1.1 Land surface

The UM uses a community land-surface model, the Joint

UK Land Environment Simulator (JULES; Best et al., 2011).

It models the partitioning of rainfall into canopy intercep-

tion, surface runoff, and infiltration and uses the Richards’

equation and Darcy’s law to model soil hydrology. The sub-

grid-scale heterogeneity of soil moisture is represented by

the Probability Distributed Moisture (PDM) model (Moore,

2007). A nine-tile approach is used to represent sub-grid-

scale heterogeneity in land cover, with the surface of each

land point subdivided into five vegetation types (broadleaf

trees, needle-leaved trees, temperate C3 grass, tropical C4

grass, and shrubs) and four non-vegetated surface types (ur-

ban, inland water, bare soil, and land ice). It describes a 3 m

soil column with a four-layer soil scheme with soil thick-

nesses of 0.1, 0.25, 0.65, and 2.0 m and models vertical heat

and water transfer within the column with van Genuchten

hydraulic parameters. The JULES urban parameters are op-

timized for Australia as described by Dharssi et al. (2015).

2.1.2 Soil moisture

For the 1990–2014 period, soil moisture fields in BARRA-R

are initialized daily at 06:00 UTC using soil moisture anal-

yses from an offline simulation of JULES at 60 km resolu-

tion, driven by bias-corrected ERA-Interim atmosphere forc-

ing data, using methods described in Dharssi and Vinodku-

mar (2017) and Zhao et al. (2017). The simulation used a

10-year-long spin-up period and was then run continuously

for the 1990 to 2014 period. The near-surface soil moisture

analyses are found to have good skill for the Australian re-

gion when validated against ground-based soil moisture ob-

servations (Dharssi and Vinodkumar, 2017). As the offline

runs were terminated at the end of December 2014, the daily

initialization scheme is continued with soil moisture anal-

yses from the Bureau’s global NWP system – ACCESS-G

(Bureau of Meteorology, 2016). These external soil moisture

analyses are downscaled to the BARRA-R grid using a sim-

ple method that takes into account differences in soil tex-

ture. In each 6-hourly cycle, a land-surface analysis is con-

ducted within BARRA (see Sect. 2.2). The daily initialization

was conducted with the purpose of avoiding spurious drift in

the BARRA moisture fields and reducing the time needed

to spin up from ERA-Interim initial conditions. However, as

multiple parallel production streams are needed to produce

the reanalysis (see Sect. 2.2), there is a discontinuity in soil

moisture in the bottom two layers between successive pro-

duction streams, although soil moisture in the top two layers

becomes stable after 1 month of runs. A discontinuity oc-

curring at the 2014–2015 changeover has recently been re-

ported by BARRA data users. These impacts, particularly on

forested regions where trees extract water from the deep soil

layers, are under investigation.

2.1.3 Boundary conditions

The BARRA-R sequential data assimilation process is ini-

tialized using ERA-Interim analysis fields (see Sect. 2.2), af-

ter which the only relationship with ERA-Interim is solely

through the lateral boundary conditions. Hourly lateral

boundary conditions for BARRA-R are interpolated from

ERA-Interim’s 6-hourly analysis fields at 0.75◦ × 0.75◦ res-

olution. The rim width of the boundary frame is 0.88◦.

The land boundary is provided by a land-surface analysis

(Sect. 2.2). Daily sea surface temperature (SST) and sea ice

(SIC) analysis at 0.05◦ × 0.05◦ resolution from reprocessed

(1985–2007; Roberts-Jones et al., 2012) and near-real-time

(NRT) Operational Sea Surface Temperature and Ice Analy-

sis (OSTIA; Donlon et al., 2012) are used as lower bound-

aries over water after being interpolated to the UM grid. The

NRT data are used from January 2007. OSTIA is widely

used by NWP centres and operational ocean forecasting sys-

tems owing to its short real-time latency. Even though the

re-processed and NRT data do not constitute a homogeneous

time series, OSTIA is favoured over other SST reanalyses

owing to its higher spatial resolution. Masunaga et al. (2015,

2018) have shown that steep SST gradients unresolved by

coarse SST reanalyses can influence the organization of long-

lived rain bands and the enhancement or reduction of surface

convergence; this is particularly problematic for atmosphere-

only reanalyses as thermal structure and motions in the ma-
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Figure 2. Cycling set-up of BARRA-R at base time t0 = 00:00,

06:00, 12:00, and 18:00 UTC. Each UM forecast is initialized at

t0−3 h by the previous forecast (grey arrows) with increments from

the current analysis (red arrows). The purple bars indicate the time

steps of the model states that have been archived.

rine atmospheric boundary layer are not well constrained by

data assimilation.

2.2 Data assimilation system

The BARRA-R analysis scheme is based on fixed deter-

ministic atmospheric and land-surface assimilation systems

used by the UKMO in UERRA (Jermey and Renshaw, 2016)

and IMDAA (Mahmood et al., 2018). BARRA-R uses a

sequential data assimilation scheme, advancing forward in

time using 6-hourly analysis cycles centred at synoptic hours

t0 = 00:00, 06:00, 12:00, and 18:00 UTC and 12 h forecast

cycles from t0 − 3 h (Fig. 2).

In each analysis cycle, available observations, distributed

across a 6h analysis window t0 − 3 h ≤ t < t0 + 3 h, are com-

bined with the prior information of the model forecast from

the previous cycle (the background state) to provide a more

accurate estimate of the atmosphere over this window. This

first involves a four-dimensional variational (4D-Var) anal-

ysis of the basic upper-air atmospheric fields (wind, tem-

perature, specific humidity, pressure) with conventional and

satellite observations (see below). The 4D-Var is favoured

over 3D-Var as it takes account of time tendency information

in the observations and this has a positive impact on the re-

sulting forecasts (Rawlins et al., 2007). The UKMO’s VAR

assimilation system (version 2016.03.0) is used. The 4D-Var

uses a linear perturbation forecast (PF) model (Lorenc, 2003;

Rawlins et al., 2007; Lorenc and Payne, 2007), which uses

a simpler model state linearized about a “guess” trajectory

(i.e. tangent linear model) with a lower resolution (0.33◦

cf. 0.11◦) than the full forecast model. The lower resolu-

tion is chosen to limit computational costs. The PF model

uses a simplified set of physical parameterizations including

a simple boundary layer, cloud latent heat release, large-scale

precipitation, and convection. In other words, it is assumed

that the lower-resolution corrections to the background state

(i.e. increments), interpolated to a higher resolution, are suit-

able corrections for the full model. The analysis increments

from 4D-Var valid at t0 − 3 h are added to the background

state at t0 − 3 h to produce an improved initial condition for

the forecast model to perform the next 12 h forecast from

t0 −3 h to t0 +9 h. A constraint of zero analysis increments is

specified at the model boundary such that BARRA-R relies

on the driving model ERA-Interim to define large-scale flow

and other atmospheric conditions (Sect. 2.1.3). The observa-

tion departure statistics of the analysis, which are differences

between the analysis and observations, are shown to be less

than those of the model background (Supplement, Table S1).

The assimilation is therefore behaving as desired by draw-

ing the model towards observations for nearly all observa-

tional types.

The variational method minimizes a cost function whose

two principal terms penalize distance to the background state

and distance to the observations. The two terms are squared

differences weighted by the inverse of their corresponding er-

ror covariances. In BARRA-R, the background error covari-

ance has been estimated by a smooth parameterized approxi-

mation to climatology tuned by forecast differences (Ingleby,

2001). Accordingly, the estimated background error covari-

ance is invariant between successive analysis windows but

is time varying within the analysis window. The cost func-

tion also includes a pressure-based energy norm that serves

as a weak-constraint digital filter to suppress spurious fast os-

cillations associated with gravity-inertia waves produced in

model forecasts when analysis increments are added to the

background state (Gauthier and Thépaut, 2001).

The initial land-surface state can have a significant impact

on short-term forecasts of screen-level temperature and hu-

midity, and its quality can also be improved through data as-

similation. An extended Kalman filter (EKF) using observa-

tions of 2 m temperature and humidity is used to analyse the

BARRA land state at every 6 h cycle and provide analyses of

soil moisture, soil temperature, and skin temperature as de-

scribed by Dharssi et al. (2012). The assimilation of satellite-

retrieved soil moisture is not attempted here as it has not been

realized in ACCESS. The UKMO’s SURF analysis system

(version 2016.07.0) is used to perform EKF. The Jacobian,

which relates observed variables to model variables, for the

Kalman gain matrix is estimated using finite difference by

perturbing each model variable to be analysed in 40 pertur-

bations and performing short 3 h forecasts. Here JULES (ver-

sion 3.0) is run in the stand-alone mode, decoupled from the

UM. The BARRA-R land state is reconfigured with EKF-

derived surface analyses at every t0.

Note that the last 6 h forecast of a model run represents

the prior state estimates needed for the next analysis cycle.

The forecast fields valid at t0 − 3 h, t0 − 2 h, and t0 − 1 h are

discarded, as these fields may still be influenced by transient

artefacts due to the slight imbalance introduced by the addi-

tion of the analysis increments. It is already noted that this

effect is also mitigated with the energy norm in the 4D-Var’s

cost function that penalizes the unbalanced structure in the

increments.

www.geosci-model-dev.net/12/2049/2019/ Geosci. Model Dev., 12, 2049–2068, 2019
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The reanalysis is produced with multiple parallel produc-

tion streams to speed up production. Each stream has a month

of spin-up time from the ERA-Interim initial conditions be-

fore production data are archived, with most streams produc-

ing 1 year of reanalyses. Trials have shown that a 1-month

period is a sufficient spin-up for the atmosphere (Renshaw et

al., 2013) and top levels of soil moisture but insufficient for

soil moisture in the deeper layers.

2.3 Observations

Conventional observations from land-surface stations, ships,

drifting buoys, aircrafts, radiosondes, wind profilers, and

satellite observations, namely retrieved wind, radiances, and

bending angle, are assimilated in BARRA-R. The various ob-

servational types are chosen as they have been assimilated

in the Bureau’s operational NWP systems; other observa-

tional types, such as clear-sky radiances, have not been as-

similated due to resource constraints. Rain observations from

radar and gauges are also not assimilated as their assimilation

schemes are still being tested for operational NWP. As listed

in Table 1, the datasets are pragmatically taken from multi-

ple sources, as they are being prepared during the production

runs. Most of the observations prior to 2009 are supplied by

the ECMWF, and the satellite radiance data from 2017 and

onwards are extracted from the UKMO operational archive.

The Bureau’s archived observational data are also used to

support this work, especially for the cycles from 2010 on-

wards. BARRA-R also assimilates additional high-frequency

(10 min) land-surface observations from automatic weather

stations in Australia and locally derived satellite atmospheric

motion vectors (AMV). Ground positioning system (GPS)

radio occultation bending angle data up to 2009 are provided

by the Radio Occultation Meteorology Satellite Application

Facility (ROM SAF). Additional land-surface observations

over New Zealand are extracted from their National Climate

Database (CliFlo, 2017). The 4D-Var assimilation of local

AMV (Le Marshall et al., 2013) and GPSRO (Le Marshall et

al., 2010) has been shown to improve operational forecasts.

Before being assimilated, observations are screened to se-

lect the best-quality observations, remove duplicates, and

reduce data redundancy via thinning using the UKMO’s

Observing Processing System (OPS; based on version

2016.03.0) (Rawlins et al., 2007). There are per-cycle qual-

ity controls performed based on the method of Lorenc and

Hammon (1988). Observations significantly different from

the model background are rejected when exceeding a thresh-

old calculated by a Bayesian scheme unless they are con-

sistent with other observations nearby. The observational er-

ror variances and thinning distances are established at the

UKMO and the Bureau for their NWP systems. For the sur-

face, sonde, and aircraft observations, an observation auto-

matic monitoring system performs monthly blacklisting of

sites that show consistently large differences with BARRA-

R’s forecast over a 1-month period. The system also calcu-

lates bias corrections for surface pressure and for aircraft and

sonde temperature.

For the satellite data, instruments and their individual

channels are rejected when they become unreliable. The

blacklisting is informed by the work of the ECMWF and

MERRA-2 reanalysis teams. Further, air-mass-dependent

variational bias correction is applied to satellite radiances as

part of the assimilation process, allowing the time-varying

corrections to fit drifts in instrumental bias (Harris and Kelly,

2001; Dee and Uppala, 2009). The bias corrections were cal-

culated monthly, with the satellite radiances during the first

month of each production stream not assimilated. There are

abrupt changes to the amount of satellite data assimilated at

the start and end of satellite missions and the various obser-

vational data archives. In some cases, changes occur when

corrections were made to the observation screening and thin-

ning rules mid-production for the 2010–2015 reanalyses. The

impacts of such changes, known to cause artificial shifts and

spurious trends in a reanalysis (e.g. Thorne and Vose, 2010;

Dee et al., 2011), are still to be investigated for BARRA-R.

3 Preliminary evaluation

Our evaluation focuses on three areas: surface variables,

pressure-level temperature and wind, and precipitation. For

the surface variables, we compare BARRA-R against point-

scale observations and gridded analyses of observations

for 2 m temperature. For the pressure levels, we evaluate

BARRA-R against point-scale observations of temperature

and wind and examine the time series of the bias between

BARRA-R and the global reanalyses. Finally, as rain obser-

vations are not assimilated in BARRA-R, gridded analyses

of rain observations from gauges and satellites are used to

provide the best independent reference in this study.

3.1 Surface

3.1.1 Point-scale evaluation of 2 m temperature, 10 m

wind speed, and surface pressure

The t0 + 6 h model forecasts of 2 m (screen) temperature,

10 m wind speed, and surface pressure are evaluated against

land observations. These observations have only an indi-

rect relation to the forecasts as they are not used in the

analysis for the associated cycle t0. Since errors tend to

grow with the forecast range, the assessment places an up-

per bound on the true errors of the analysis fields between

time t0 and t0 + 3 h. These fields are interpolated from the

model levels using surface similarity theory (Walters et al.,

2017a). The ERA-Interim t0 + 6 h forecasts from 00:00 and

12:00 UTC and the MERRA-2 hourly time-averaged fore-

cast fields (M2T1NXSLV) are also evaluated to serve as

benchmarks. It is not ideal to directly compare reanalyses

with different resolutions, and interpolating them onto com-

mon (observed) locations diminishes some of the improve-
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Table 1. Observations assimilated in BARRA. Only the period concurrent with the reanalysis period is used. The various datasets were

retrieved during the production, and thus the exact periods of each set used may differ.

Observations Variables Time periods Sources

Land synoptic observations

(LNDSYN)

Surface pressure, temperature,

humidity, wind

1978–2018 Reanalysis prior to 2003 uses data

from the ECMWF archive collected

for ERA-Interim and ERA-40.

Reanalysis between 2003 and

2009 uses data from the ECMWF

operational archive. Reanalysis

from 2017 uses satellite radiance

data from the UKMO operational

archive. Reanalysis from 2010 also

uses satellite data from the Bureau’s

operational archive. The Bureau’s

archive also provides 10 min land

synoptic data from 2001, METARS

between 2000 and 2009, TEMP

from 2002, and WINPRO from

2010. The New Zealand National

Climate Database (CliDB) provides

additional LNDSYN data over New

Zealand.

Meteorological airfield reports

(METARS)

Ship synoptic observations (SHPSYN)

Buoy Surface pressure, temperature, wind

Radiosondes (TEMP) Upper-air wind, temperature,

humidity

1978–2009

Wind profilers (WINPRO)

Wind-only sondes (PILOT) Upper-air wind 1978–2018

Aircraft Meteorological Data Relay

(AMDAR)

Flight-level temperature, wind 1978–2018

Air Report (AIREP)

Advanced Infrared Sounder (AIRS) Infrared radiances 2003–2018

Advanced TIROS operational vertical

sounder (ATOVS)

HIRS–AMSU radiances 1998–2018

TIROS operational vertical sounder

(TOVS)

MSU and HIRS radiances 1979–2002

Infrared Atmospheric Sounding Inter-

ferometer (IASI)

Infrared radiances 2007–2018

ESA cloud motion winds (ESACMW)
Satellite radiometer-based

winds (satwinds): cloud motion

winds, AMV

1982–2018

Geostationary Operational Environ-

mental (GOESBUFR)

1995–2018

Meteosat second-generation satellite

winds (MSGWINDS)

1982–2018

Japanese geostationary satellite winds

(JMAWINDS)

1987–2018

MODIS winds (MODIS) 2005–2018

SeaWinds Scatterometer-based winds

(scatwinds)

1996–2009

Advanced Scatterometer (ASCAT) 2007–2018

GPS Radio Occultation (GPSRO) Bending angle 2001–2018 Reanalysis prior to 2010 uses data

provided by the Radio Occultation

Meteorology Satellite Application

Facility (ROM SAF) archive, under

EUMETSAT. Reanalysis from 2010

uses data from the Bureau’s opera-

tional archive.

Australian locally derived satwinds AMV 2002–2018 Bureau of Meteorology operational

archive

WindSat Scatwinds 2015–2018

Advanced Technology Microwave

Sounder (ATMS)

Microwave radiances 2014–2018

Cross-track Infrared Sounder (CrIS) Infrared radiances 2014–2018

Tropical cyclone track (TCBOGUS) Central pressure and position 1848–2018 The International Best Track

Archive for Climate Stewardship

(IBTrACS) provides track data up

to 2017. The Australian Tropical

Cyclone Database is used for 2018.

www.geosci-model-dev.net/12/2049/2019/ Geosci. Model Dev., 12, 2049–2068, 2019



2056 C.-H. Su et al.: BARRA v1.0

ment achieved by BARRA-R relative to coarser reanaly-

ses. Nonetheless, we undertake the latter to assess whether

the models contain finer-scale information captured by point

measurements; it therefore does not provide an assessment of

the true quality of the reanalyses at their native resolutions.

To correct representativity errors in both reanalyses, their

model values at (modelled) land grid cells are interpolated

to the observation times and the station locations via bilinear

interpolation in time and in the horizontal direction. Height

corrections are applied to the interpolated fields to match

the station heights: the corrections to the screen temperature

are based on dry adiabatic lapse rate (Sheridan et al., 2010),

10 m wind speed is based on Howard and Clark (2007),

and the correction to surface pressure is based on the hy-

drostatic equation under a constant lapse rate. As the ob-

servations are irregularly distributed in time, we consider

all observations within a t0 + 5 h to t0 + 7 h time window,

with t0 being 00:00 and 12:00 UTC, and the model grids

are linearly interpolated to the observation times. Root mean

square difference (RMSD), Pearson’s linear correlation, ad-

ditive bias, and variance bias are calculated at each station,

with bias = mean(dm) − mean(do) and the variance bias as

Mbias = var(dm)/var(do) − 1, to capture differences in the

dispersion, where var(∗) computes the variance in time.

Box plots in Fig. 3 show the distribution of scores across

900–1500 stations in the BARRA-R domain. BARRA-R

shows better agreement with the point observations than the

global reanalyses for all three surface variables by most of

the measures. This result is expected since BARRA-R re-

solves near-surface features below a 50 km horizontal scale

and assimilates more surface observations over Australia and

New Zealand. In particular, BARRA-R shows lower RMSD

at about 80 % of the stations for screen temperature and

10 m wind speed and at 70 % of stations for surface pres-

sure (see Fig. S1). At closer inspection in Fig. 4a, a per-

centile comparison plot of screen temperature deviation from

monthly mean indicates that the frequency distribution of

BARRA-R temperature is closer to that of the observations

than ERA-Interim, particularly in regimes below percentile

25 and above percentile 90.

For 10 m wind speed, there are negative biases for vari-

ance in all the reanalyses assessed in this paper. Figure 4b

shows that 10 m wind speeds are positively biased during

light wind conditions and vice versa during strong wind

speeds. There are many possible reasons for underestimat-

ing strong winds: inaccurate descriptions of boundary layer

mixing, form drag for sub-grid orography, and surface prop-

erties such as land cover and vegetation types. Changing the

fractional area of the vegetation canopy modifies the scalar

roughness of the vegetated tiles, affecting the wind speed.

The seemingly linear variation in wind speed is known in the

global reanalyses (e.g. Carvalho et al., 2014), and Rose and

Apt (2016) attributed the problem of wind underestimation to

inaccuracy in modelling wind speeds in unstable atmospheric

conditions.

Pressure is a large-scale variable which is likely to be bet-

ter represented by a global model than a limited-area model.

However, the BARRA-R estimates of point-scale surface

pressure are more accurate in topographically complex re-

gions and coastlines (see Fig. S1), where the estimates from

the coarser reanalyses are less representative.

3.1.2 Comparison with gridded analysis of observed

2 m temperature

The reanalyses are compared against a gridded daily

0.05◦ × 0.05◦ analysis of station maximum and minimum

2 m temperature data from the Australian Water Availabil-

ity Project (AWAP; Jones et al., 2009). The AWAP grids are

generated using an optimized Barnes successive-correction

method that applies weighted averaging to the station data.

Topographical information is included by using anomalies

from long-term (monthly) averages in the analysis process.

The AWAP analysis errors for maximum temperature are

larger near the coast around northwest Australia and around

the Nullarbor Plain due to strong temperature gradients be-

tween the coast and inland deserts and a relatively sparse net-

work (Jones et al., 2009). The coast of western Australia and

parts of Northern Territory are likely to share this analysis is-

sue. The analysis errors are larger for minimum temperature,

especially over western Australia and the Nullarbor Plain.

Figure 5 shows the differences for 2007–2016 averages

in daily maximum and minimum temperature from AWAP,

ERA-Interim, MERRA-2, and BARRA-R. The daily statis-

tics are derived from 3-hourly forecast fields of ERA-Interim

and hourly fields of MERRA-2 and BARRA-R. While in-

herent biases due to sampling are expected, this comparison

also highlights the advantage of higher-frequency data when

examining lower and upper tail statistics. BARRA-R shows

cold and warm biases (relative to AWAP) of around 1 K

in daily maximum and minimum temperature, respectively,

particularly over the eastern region. MERRA-2 also shows

similar levels of biases but with different signs and variabil-

ity. BARRA-R and MERRA-2 agree better with AWAP than

ERA-Interim, which reports differences (in mean) up to 5 K

in magnitude. The reduced amplitude of the diurnal cycle of

temperature is a long-standing problem in the UM; experi-

ments have shown that changes to the representation of the

land surface (e.g. reductions in the amount of bare soil and

changes to the scalar roughness and albedo of vegetated tiles)

reduce clear-sky biases (Bush et al., 2019).

Figure 6 shows the monthly means of the differences in

daily maximum and minimum temperature between the re-

analyses and AWAP averaged across Australia. Here the OS-

TIA SST anomaly time series is also included, and it does

not show a visible discontinuity at 2006–2007 (Sect. 2.1.3).

The maximum temperature in BARRA-R appears cooler than

AWAP after a strong La Niña event in 2010–2011, while

the global reanalyses also show cooler trends in biases af-

ter 2010. BARRA-R and ERA-Interim show smaller levels
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Figure 3. Box plots showing the distribution of ERA-Interim, MERRA-2, and BARRA-R evaluation scores for (a) 2 m temperature, (b) 10 m

wind speed, and (c) surface pressure over all stations in the BARRA-R domain. The scores are calculated on model forecasts valid between

t0 +5 h and t0 +7 h against observations during 2007–2016. Individual boxes show the interquartile range of the scores, medians are marked

in each box, and “whiskers” cover the 5th–95th percentile range.

Figure 4. Comparisons of percentile values between observations

and reanalyses for (a) 2 m temperature, and (b) 10 m wind speed

during 2010–2013. The values for percentiles 0.05 to 99.95 are cal-

culated using values derived from monthly means. The vertical blue

dashed lines indicate the corresponding percentiles of the observa-

tions.

of temporal variability than MERRA-2. The minimum tem-

perature in BARRA-R does not show an obvious trend but is

warmer during 2010–2011 when ERA-Interim and MERRA-

2 are cooler. These changes do not coincide with the change

in soil moisture initialization in 2014–2015 (Sect. 2.1.2) or

OSTIA SST.

3.2 Pressure levels

To assess BARRA-R in the atmosphere, we compare the

t0 + 6 h forecasts on pressure levels with radiosonde and

pilot wind observations at 00:00 and 12:00 UTC on stan-

dard pressure levels ranging from 1000 to 10 hPa, using

the harmonized dataset produced by Ramella Pralungo et

al. (2014a, b). The pressure-level fields of BARRA-R and

ERA-Interim analyses at time t0 are also compared, even

though they are not independent from the observations; such

comparisons only provide baselines to interpret the rela-

tive quality of the BARRA-R forecasts. Similar comparisons

with ERA-Interim’s twice-daily forecasts at these observa-

tion times are also not possible because they start from 00:00

and 12:00 UTC. The model data are interpolated horizontally

to the sonde and pilot launch locations via bilinear interpola-

tion, and RMSD is calculated at each location and pressure

level. The resulting box plots of RMSD are shown in Fig. 7.

Depending on the pressure level and parameter evaluated, be-

tween 54 and 203 sites were available. There is a marked

variability in RMSD with the pressure levels, particularly for

wind speed, due to factors such as variations in the number

of observing sites, increasing sonde drift error on ascent, and

differences in the dynamic range of the fields with height. A
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Figure 5. Mean differences in (row i) daily maximum (TMax) and (ii) minimum (TMin) 2 m temperature (K) for 2007–2016 between

(a) ERA-Interim and AWAP, (b) MERRA-2 and AWAP, and (c) BARRA-R and AWAP. The spatial means of the differences are reported in

the text.

Figure 6. Monthly mean differences in daily (a) maximum (TMax)

and (b) minimum (TMin) 2 m temperature (K) averaged over Aus-

tralia between (row i) BARRA-R and AWAP, (ii) ERA-Interim and

AWAP, and (iii) MERRA-2 and AWAP. Black curves are shaded

around the 14-year means. Green curves plot the monthly anoma-

lies, from 2003–2016 monthly averages, of the OSTIA sea surface

temperature averaged over 46–4◦ S and 94–174◦ E.

markedly higher RMSD for wind speed occurs at 200 hPa, a

height a which the jet stream can be located.

It is difficult to discern the differences between the two

analyses, suggesting that they perform similarly from assim-

ilating the same observations. Assimilation at a coarser reso-

lution of 0.33◦ (cf. 0.11◦ of the forecast model) in BARRA-R

does not drastically improve 0.75◦ representations of temper-

ature and wind at these pressure levels and at point scales.

There are also small differences between the analyses and

BARRA-R background, indicating that the 0.11◦ forecast

model does not degrade from the lower-resolution analysis of

BARRA-R but also does not improve upon the ERA-Interim

0.75◦ representation of these fields at the observation loca-

tions.

Figure 8 compares BARRA-R’s 00:00 UTC analysis of

air temperature at 850, 700, and 500 hPa against the anal-

yses from ERA-Interim and MERRA-2 (M2I3NPASM).

BARRA-R is cooler at 500 hPa across the domain and

warmer at 850 hPa in the tropics than the global reanalyses,

and the monthly differences in the zonal mean are of the or-

der of 1 K. BARRA-R also shows a cooling shift at 700 and

500 hPa in the tropics and a warming shift south of 40◦ S af-

ter 2010. But when compared against MERRA-2, in the trop-

ics, BARRA-R is warmer at 700 hPa, and the apparent shift

in BARRA-R is also seen in MERRA-2 (relative to ERA-

Interim) at these levels.

3.3 Precipitation

We consider three reference gridded datasets to compare with

the reanalyses. First is the 0.05◦ × 0.05◦ rain gauge analysis

of daily accumulation over Australia from AWAP, produced

using the Barnes method in which the ratio of observed rain-

fall to monthly average is used in the analysis process (Jones

et al., 2009). There is a north–south gradient in the AWAP

analysis errors with larger analysis errors in the northern
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Figure 7. Box plots showing the RMSD distribution of BARRA-R t0 + 6 forecast and t0 analysis, as well as ERA-Interim analysis for

(a) temperature and (b) wind speed at multiple sites in the BARRA-R domain. RMSD is calculated for temperature and wind speed at

pressure levels of 10, 50, 100, 200, 400, 500, 700, 850, 925, and 1000 hPa against pilot balloon and radiosonde observations at 00:00 and

12:00 UTC. The numbers of sites are indicated in brackets.

Figure 8. Hovmöller plots of the monthly difference in zonal mean air temperature (K) at 00:00 UTC and three pressure levels, (row i) 850,

(ii) 700, and (iii) 500 hPa, between (a) BARRA-R and ERA-Interim and between (b) BARRA-R and MERRA-2.

tropical regions, where the length scales of convective rain-

fall events are shorter and more variable (Jones et al., 2009).

Second is the 1◦ × 1◦ (full data daily) rain gauge analysis

over the domain from the Global Precipitation Climatology

Centre (GPCC version 2018; Ziese et al., 2018), created us-

ing an empirical weighting-based interpolation method de-

scribed in Becker et al. (2013). As with AWAP, GPCC is less

accurate in regions where station scarcity and high precip-

itation variability coexist. For instance, different GPCC in-

terpolation methods can yield very different analyses over

the south Asia region (Becker et al., 2013). The third refer-

ence is the 0.25◦ × 0.25◦ satellite-based analysis of 3-hourly

rain rates from the Tropical Rainfall Measuring Mission

(TRMM) multi-satellite precipitation analysis (TMPA 3B42

version 7; Huffman et al., 2006). TMPA 3B42 combines pre-

cipitation estimates from various satellite systems and rain

gauge monthly analysis. Satellite-derived estimates of con-

vective precipitation are largely accurate in the low latitudes

(Ebert et al., 2007; Chen et al., 2013), but the TMPA prod-

uct is less accurate over the ocean due to the absence of lo-

cal observations used for gauge adjustments (Sapiano and

Arkin, 2009) and south of 40◦ S due to limited local cross-

sensor calibration (Huffman et al., 2006). TRMM often un-

derestimates precipitation in high-latitude regions with sig-

nificant topography due to difficulties of satellite retrievals

over snow-covered surfaces and/or due to the high eleva-

tions (Barros et al., 2006; Matthews et al., 2013). TRMM

is also known to underestimate light rainfall and drizzle

over subtropical and high-latitude oceans (Berg et al., 2010).

In addition to these considerations, there are inherent lim-

itations in comparing the reanalyses with AWAP, GPCC,

and TMPA. Specifically, products with coarser grids tend
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to over-represent low-threshold events occurring at spatial

scales smaller than their grid sizes and under-represent high-

threshold events. Further evaluation of BARRA-R precipita-

tion estimates against point gauge observations and AWAP

are reported in Acharya et al. (2019).

Neither BARRA-R nor ERA-Interim assimilated rain-

fall observations. Precipitation estimation from their fore-

cast models is constrained by other observation types. Fol-

lowing Sect. 2.1, in BARRA-R, the microphysics scheme

based on Wilson and Ballard (1999) parameterizes the at-

mospheric processes that transfer water between the four

modelled states of water (vapour, liquid droplets, ice, and

raindrops) to remove moisture resolved on the grid scale.

As the 12 km model is not “storm resolving”, BARRA-

R uses the mass flux convective parameterization scheme

of Gregory and Rowntree (1990) with the CAPE closure

to model sub-grid-scale precipitating and non-precipitating

convection using an ensemble of cumulus clouds as a single

entraining–detraining plume. Such a scheme prevents the un-

stable growth of cloudy structures on the grid, which is oth-

erwise required for explicit vertical circulations to develop

(Clark et al., 2016). The modelled convection also works in-

dependently at each grid point, and the model can only pre-

dict the area-average rainfall instead of the spectrum of rain-

fall rates. Consequently, BARRA-R’s precipitation estimates

from sub-grid convection will be more erroneous than those

for large-scale precipitation. In other words, the accuracy of

BARRA-R is expected to worsen during the warm season

and at low latitudes and to improve during the cooler season

and at high latitudes where non-convective precipitation is

dominant. To allow the UM to spin up from the analysis in-

crements, we examine the quality of the precipitation accu-

mulation between t0 + 3 h and t0 + 9 h by comparing against

gridded datasets. This also addresses the issue that the UM

yields excess precipitation at analysis time (t0 −3 h) due to a

temporary imbalance in the moisture fields by allowing time

for the model to adjust and remove the excess. For ERA-

Interim, we used its first 12 h accumulation, which is consid-

ered the most accurate (Kallberg, 2011).

3.3.1 Mean annual precipitation and frequency of rain

days

Figure 9i compares the 10-year (2007–2016) annual mean

precipitation estimated from the five datasets. A close-up

over Australia can be found in Fig. S2. BARRA-R provides

a realistic depiction when compared with TMPA across the

domain but shows higher precipitation over the tropics and

over the Tasman Sea and Southern Ocean. BARRA-R agrees

very well with AWAP and GPCC over Australian land ar-

eas, reflecting the markedly higher precipitation in the north-

ern tropics, and western Tasmania. It also agrees with GPCC

over New Zealand. BARRA-R also shows better agreement

with AWAP, GPCC, and TMPA in some dry areas such as

western Australia.

The frequency of days with three intensity regimes is ex-

amined next. In Fig. 9ii, we examine the frequency of light

rain days with amounts between 1 and 10 mm. The 1 mm

threshold is chosen to account for the tendency of the model

to create light “drizzle” events with very low rain rates. Even

so, the two reanalyses show significantly more rain days in

the tropics than TMPA and GPCC and more rain days than

TMPA over the Southern Ocean. TRMM is known to miss

light rainfall events over subtropical and high-latitude oceans

(Berg et al., 2010), while simulated precipitation over the

Southern Ocean overestimates drizzle compared with satel-

lite observations (Franklin et al., 2013; Wang et al., 2015).

Some of these differences from TMPA are not mirrored by

AWAP over Australia, suggesting a possible underestimation

of rain days in TMPA over land (e.g. eastern seaboard, south-

west Australia) where the gauge network is relatively dense.

Despite these considerations, BARRA-R overestimates the

frequency of light rain days compared with AWAP, notably

in the northern and central regions of Australia and Tasma-

nia. The UM’s parameterized convection scheme assumes

that there are many clouds per grid box, which is marginal at

the BARRA-R resolution, and thus produces a bias towards

widespread precipitation and provides little indication of the

areas which could expect larger rain rates (Clark et al., 2016).

For heavy precipitation days, with amounts of 10 to

50 mm, Fig. 9iii shows greater similarities between BARRA-

R, AWAP, and GPCC over land regions, such as the south-

east coast of Australia and Tasmania, than for ERA-Interim.

BARRA-R shows differences from AWAP and GPCC over

Australia north of 30◦ S where the gauge analyses are poorer.

Over the tropical ocean, the two reanalyses show more heavy

precipitation days than TMPA.

Lastly, for the very heavy precipitation days (≥ 50 mm) in

Fig. 9iv, it is obvious that ERA-Interim does not fully capture

the frequency over land in northern Australia and Southeast

Asia, whereas BARRA-R is more comparable with the three

reference datasets. This agrees with the findings of Jermey

and Renshaw (2016) that higher-resolution regional reanaly-

ses show improvement in representing high-threshold events

at these spatial scales. Over the ocean, BARRA-R also shows

greater rainfall intensity in the tropics than ERA-Interim, but

both reanalyses show lower intensity compared to TMPA.

These results reflect the deficiency of the parameterized con-

vection scheme in BARRA-R for estimating convective pre-

cipitation amounts in this region.

3.3.2 Comparison of monthly totals

Figures 10 and 11 compare differences in domain-averaged

monthly totals between the reanalyses (BARRA-R and ERA-

Interim) and reference data (TMPA and GPCC) over five sep-

arate sub-domains between 80 and 180◦ E. Precipitation over

land and ocean are distinguished. Over the tropical ocean at

±10◦ N (Fig. 10i), the two reanalyses show different shifts

in overall differences from TMPA at around 2010, and these
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Figure 9. (i) Mean annual precipitation (mm), (ii) fractions of light rain days with 1–10 mm of precipitation, (iii) heavy precipitation days

with 10–50 mm, and (iv) very heavy precipitation days with > 50 mm over 2007–2016 from (a) AWAP, (b) GPCC, (c) TMPA, (d) ERA-

Interim, and (e) BARRA-R. Regions with more than 10 % missing values in AWAP are masked. Close-ups of the plots over Australia are

provided in the Supplement (Fig. S2).

shifts are not apparent in the other sub-domains. Across the

sub-domains, the variances of the differences are similar be-

tween the two reanalyses.

Over tropical land regions, BARRA-R shows much higher

totals than others (Fig. 11i) due to higher precipitation occur-

ring in mountainous terrains in Papua New Guinea (PNG),

Indonesia and Sumatra, and relatively small Indonesian is-

lands (see Fig. S3). Other reanalyses and other gridded pre-

cipitation products disagree greatly at these locations with

few observations and mountainous terrains (e.g. over PNG

in Smith et al., 2013). BARRA-R (and GPCC) also shows

markedly higher monthly totals below 39.2◦ S (Fig. 11v) than

TMPA and ERA-Interim. This is due to higher BARRA-R

precipitation estimates on the west coast and in the Southern

Alps of New Zealand, where precipitation is likely underes-

timated in TMPA.

The UM can produce grid-localized high precipitation in

BARRA-R, especially in unstable atmospheric conditions

over steep orographic slopes. This issue is not unique to

the UM but, for instance, also occurs in the Weather Re-

search and Forecasting model (Gustafson Jr. et al., 2014).

When the convective parameterization in non-convective-

resolving models does not stabilize the air column, meteo-

rological events can develop at the smallest resolvable scales

in the model, producing unrealistically strong vertical veloc-

ities and precipitation; this is known as a “grid-point storm”

(Scinocca and McFarlane, 2004; Williamson, 2013; Chan et

al., 2014). In our cases, the model only produces isolated ex-

cessively intense rainfall over steep topography. Such storms

occur more readily in models with higher horizontal reso-

lutions (Williamson, 2013). As the resolution increases, re-

solved motions can produce moisture convergence and in-

crease CAPE very rapidly, and the rate at which column in-

stability is produced depends on the scale of moisture and

heat convergence. This also tends to occur over tropical land

areas, over steep topography, and during the warm seasons,

when the atmosphere is unstable and there is a sufficient

warm moisture supply at the surface. These considerations

do not lend themselves to completely explain the observed

bias in BARRA-R.
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Figure 10. Differences in monthly precipitation total (mm) av-

eraged over the ocean in five sub-domains (rows i–v) between

(a) BARRA-R and TMPA and between (b) ERA-Interim and

TMPA. Black curves are shaded around the 14-year means. Green

curves plot the monthly anomalies, from 2003–2016 monthly aver-

ages, of the OSTIA sea surface temperature averaged over respec-

tive sub-domains.

By contrast, BARRA-R shows better agreement with

GPCC and TMPA in other sub-domains between 39.2 and

10.0◦ S (Fig. 11ii–iv). Over the land between 23 and 10◦ S,

BARRA-R simulates wetter summer events than observed in

TMPA and GPCC from 2011, when Australia was recover-

ing from drought conditions with the onset of La Niña. Be-

tween 39 and 23◦ S, BARRA-R also simulated wetter events

over Mt. Kosciuszko, Tasmania, and the North Island of New

Zealand than TMPA after 2014. This overestimation is, how-

ever, less apparent when BARRA-R is compared with GPCC.

4 Discussion and outlook

The recent development of global and regional reanaly-

ses addresses the need for high-quality, increasingly higher-

resolution, and longer-term reanalyses, accompanied by esti-

mates of uncertainty, within the research and broader user

communities. BARRA is the first regional reanalysis that

focuses on the Australasian section of the Southern Hemi-

sphere. It is developed with significant co-investment from

state-level emergency service agencies across Australia due

to the advantages of a deeper understanding of past weather,

including extreme events, especially in areas that have been

poorly served by observation networks. The 29-year BARRA

reanalysis, which is expected to be completed in 2019, will

ultimately represent a collection of high-resolution gridded

meteorological datasets with 12 and 1.5 km horizontal reso-

lution and 10 min to hourly time resolution.

In this paper, we describe the BARRA 12 km regional re-

analysis, BARRA-R, which is closely related to the Bureau’s

regional NWP system but with an updated UM, 4D-Var, vari-

ational bias correction, and automated station blacklisting

systems. BARRA-R covers a significant region of the globe,

including parts of Southeast Asia, the eastern Indian Ocean,

the southwest Pacific, Australia, and New Zealand, and as-

similates a wide range of conventional and satellite observa-

tions that have proven to improve the skill of NWP.

BARRA-R produces a credible reproduction of the me-

teorology at and near the surface over land as diagnosed

by the selected variables. BARRA-R improves upon its

global driving model, ERA-Interim, showing better agree-

ment with point-scale observations of 2 m temperature, 10 m

wind speed, and surface pressure. Results are similar when

BARRA-R is compared with MERRA-2. Daily maximum

and minimum statistics for 2 m temperature at 5 km reso-

lution are captured in BARRA-R with smaller biases than

ERA-Interim. There appear to be shifts in biases relative to

land observation analyses over Australia amongst all the re-

analyses, mirroring changes in SST. This behaviour, how-

ever, does not coincide with known changes to the forc-

ing data (soil moisture and SST) used in BARRA-R and

requires further analysis to be better understood. BARRA-

R’s 10 m wind fields show lower biases than ERA-Interim

and MERRA-2, but the negative bias during strong winds,

which is common amongst other reanalyses, remains sig-

nificant. Altogether, BARRA-R provides good representa-

tion of near-surface extremes, which has implications for

its uses for energy management, fire risk, and storm dam-

age. The bias could be addressed via post-processing using

methods such as those of Glahn and Lowry (1972) and Rose

and Apt (2016). More generally, a variety of post-processing

methods can further improve the accuracy of BARRA-R data

(e.g. Berg et al., 2012; Frank et al., 2018). Our study did

not discern clear merits in BARRA-R analysis and forecast

relative to ERA-Interim analysis for pressure-level tempera-

ture and wind. Further, there is no conclusive explanation for

the shifts in 500, 700, and 850 hPa air temperature occurring

at 2010, as comparisons with ERA-Interim and MERRA-2

yield mixed results. Other evaluations of the UM GA6 con-

figuration, including tropical cyclones, precipitation, clouds,

and large-scale flow, are reported in Walters et al. (2017a, b)

but in global models at coarser spatial resolutions.

Precipitation fields from BARRA-R show similarities with

AWAP and GPCC rain gauge analyses over Australia, where

it reflects more similar frequency statistics for heavy rain

events and annual mean than ERA-Interim. While this is

expected from comparing grids with different resolutions,

BARRA-R contains more information pertaining to rain

events at local scales. The frequency statistics (of both light

and heavy rain days) of the two reanalyses are markedly
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Figure 11. As with Fig. 10a and b, but over land. Additional comparisons are made between (c) BARRA-R and GPCC and between (d) ERA-

Interim and GPCC.

different from TMPA over regions exterior to Australia.

BARRA-R is likely to be positively biased over land in the

regions north of 10◦ S and New Zealand due to higher precip-

itation estimates concentrated in regions with high or steep

topography. This is partly due to the presence of grid-point

storms that occur in non-convective-resolving models. Alas,

the likely underestimation in observations associated with

high elevations poses difficulties to quantify the wet bias.

The characteristics of grid-point storms in terms of super-

ficial spatial localization, precipitation amount, and vertical

wind speed could be detected and screened out via post-

processing. This is important as this model artefact affects

the analyses of rainfall averages and extremes.

The disagreement with TMPA is also apparent over the

oceans, but consensus between satellite-based products gen-

erally degrades over higher latitudes, especially over the

Southern Ocean (Behrangi et al., 2014). Over the 2003–2016

period, the variability of the monthly precipitation totals is

similar amongst the reanalyses, TMPA, and GPCC across

the domain. Notable exceptions are a dry shift occurring in

BARRA-R during 2010 over the tropical ocean and wetter

summer events over land in northern and southeast Australia,

as well as the North Island of New Zealand, after 2014. These

coincident shifts in daily maximum 2 m temperature (over

Australia), upper-air temperature (across the BARRA-R do-

main), and tropical precipitation in all the reanalyses suggest

larger differences in large-scale synoptic patterns between

them after 2010. Given all the above considerations, local

evaluation of BARRA-R reanalysis before application is rec-

ommended.

Higher-resolution models used to downscale BARRA-

R could alleviate the observed shortcomings by resolving

sharp topographical features, resolving sub-grid processes

(e.g. convection), and using science configurations more

suited for a given climatic region. Assessment of the UM’s

first Regional Atmosphere (RA1) science configurations for

convective-permitting models, recently concluded in Decem-

ber 2017, distinguishes two different science configurations

for mid-latitude and tropical regions (RA1-M and RA1-T, re-

spectively). Developments in RA1 have produced improve-

ments to 2 m temperature, 10 m wind speed, and precipita-

tion (Bush et al., 2019). Further, it is known that BARRA-R’s

convection scheme, involving instantaneous adjustment of

cloud fields to changes in forcing (e.g. solar heating, land–sea

temperature differences), can lead to unrealistic behaviour at

places such as coasts and in time (e.g. incorrect diurnal cy-

cle) (Lean et al., 2008; Clark et al., 2016). A companion arti-

cle will examine the merits of downscaling BARRA-R with

convective-scale models.

Finally, BARRA represents an important step in support-

ing the Bureau’s ability to prepare for future reanalysis-

related activities such as data rescue and reprocessing of

observational data. Future reanalyses could use higher-

resolution models and ensemble-based forecast and assimila-

tion systems to quantify uncertainties. They will also benefit

from international efforts in reprocessing historical conven-

tional and satellite observations with enhanced quality and/or

more accurate uncertainty estimates.
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Code availability. All code, including the UM (version 10.2), VAR

(version 2016.03.0), JULES (version 3.0), OPS (version 2016.03.0),

and SURF (version 2016.07.0) systems, used to produce BARRA

is version-controlled under the Met Office Science Repository

Service. Readers are referred to https://code.metoffice.gov.uk/trac/

home (last access: 23 May 2019; UK Met Office, 2019) for access

information.

Data availability. The first releases of the BARRA-R dataset for

the period 2003–2016 are available for academic use, with sub-

sequent releases planned for mid-2019. Readers are referred to

http://www.bom.gov.au/research/projects/reanalysis (last access: 23
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C., Ebisuzaki, W., Jović, D., Woollen, J., Rogers, E., Berbery,

E. H., Ek, M. B., Fan, Y., Grumbine, R., Higgins, W., Li, H.,

Lin, Y., Manikin, G., Parrish, D., and Shi, W.: North Ameri-

can Regional Reanalysis, B. Am. Meteorol. Soc., 87, 343–360,

https://doi.org/10.1175/BAMS-87-3-343, 2006.

Moore, R. J.: The PDM rainfall-runoff model, Hydrol. Earth

Syst. Sci., 11, 483–499, https://doi.org/10.5194/hess-11-483-

2007, 2007.

Puri, K., Dietachmayer, G., Steinle, P., Dix, M., Rikus, L., Logan,

L., Naughton, M., Tingwell, C., Xiao, Y., Barras, V., Bermous, I.,

Bowen, R., Deschamps, L., Franklin, C., Fraser, J., Glowacki, T.,

Harris, B., Lee, J., Le, T., Roff, G., Sulaiman, A., Sims, H., Sun,

X., Sun, Z., Zhu, H., Chattopadhyay, M. and Engel, C.: Imple-

mentation of the initial ACCESS numerical weather prediction

system, Aust. Meteorol. Oceanogr. J., 63, 265–284, 2013.

Radic, V. and Clarke, G. K. C.: Evaluation of IPCC models’ per-

formance in simulating late-twentieth-century climatologies and

weather Patterns over North America, J. Climate, 24, 5257–5274,

https://doi.org/10.1175/JCLI-D-11-00011.1, 2011.

Ramella Pralungo, L. and Haimberger, L.: A “Global Ra-

diosonde and tracked-balloon Archive on Sixteen Pressure lev-

els” (GRASP) going back to 1905 – Part 2: homogeneity adjust-

ments for pilot balloon and radiosonde wind data, Earth Syst.

Sci. Data, 6, 297–316, https://doi.org/10.5194/essd-6-297-2014,

2014.

Ramella Pralungo, L., Haimberger, L., Stickler, A., and Brönni-

mann, S.: A global radiosonde and tracked balloon archive on

16 pressure levels (GRASP) back to 1905 – Part 1: Merging and

www.geosci-model-dev.net/12/2049/2019/ Geosci. Model Dev., 12, 2049–2068, 2019

https://www.ecmwf.int/sites/default/files/elibrary/2011/10381-forecast-drift-era-interim.pdf
https://www.ecmwf.int/sites/default/files/elibrary/2011/10381-forecast-drift-era-interim.pdf
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
https://doi.org/10.1175/WAF-D-12-00018.1
https://doi.org/10.1175/2008MWR2332.1
https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2
https://doi.org/10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2
https://doi.org/10.1256/qj.02.131
https://doi.org/10.1002/qj.49711448012
https://doi.org/10.1002/qj.36
https://doi.org/10.1080/014311600210191
https://doi.org/10.1007/s00382-014-2281-7
https://doi.org/10.1007/s00382-014-2281-7
https://doi.org/10.1002/asl.808
https://doi.org/10.1175/JAMC-D-14-0009.1
https://doi.org/10.1007/s00382-013-1778-9
https://doi.org/10.1007/s00382-013-1778-9
https://doi.org/10.1175/JCLI-D-14-00314.1
https://doi.org/10.2151/sola.2018-002
https://doi.org/10.1002/jgrd.50865
https://doi.org/10.1175/BAMS-87-3-343
https://doi.org/10.5194/hess-11-483-2007
https://doi.org/10.5194/hess-11-483-2007
https://doi.org/10.1175/JCLI-D-11-00011.1
https://doi.org/10.5194/essd-6-297-2014


2068 C.-H. Su et al.: BARRA v1.0

interpolation to 00:00 and 12:00 GMT, Earth Syst. Sci. Data, 6,

185–200, https://doi.org/10.5194/essd-6-185-2014, 2014.

Randall, D. A., Wood, R. A., Bony, S., Colman, R., Fichefet, T.,

Fyfe, J., Kattsov, V., Pitman, A., Shukla, J., Srinivasan, J., Stouf-

fer, R. J., Sumi, A., and Taylor, K. E.: Climate models and their

evaluation. In: climate change 2007: The physical science basis,

in: Contribution of working group I to the fourth assessment re-

port of the intergovernmental panel on climate change, edited by:

Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Av-

eryt, K. B., Tignor, M., and Miller, H. L., Cambridge University

Press, Cambridge and New York, NY, 2007.

Rawlins, F., Ballard, S. P., Bovis, K. J., Clayton, A. M., Li, D., In-

verarity, G. W., Lorenc, A. C., and Payne, T. J.: The Met Office

global 4-dimensional data assimilation system, Q. J. Roy. Mete-

orol. Soc., 133, 347–362, https://doi.org/10.1002/qj.32, 2007.

Renshaw, R., Jermey, P., Barker, D., Maycock, A., and Oxley,

S.: EURO4M regional reanalysis system. Forecasting Research

Technical Report No. 583, available at: https://www.metoffice.

gov.uk/binaries/content/assets/mohippo/pdf/o/4/frtr583.pdf (last

access: 13 February 2018), 2013.

Ridal, M., Olsson, E., Unden, P., Zimmermann, K., and Ohlsson, A.:

HARMONIE reanalysis report of results and dataset, UERRA

Project Deliverable D2.7, available at: http://www.uerra.eu/ (last

access: 13 February 2018), 2017.

Roberts-Jones, J., Fiedler, E. K., and Martin, M. J.: Daily,

global, high-resolution SST and sea ice reanalysis for 1985–

2007 Using the OSTIA system, J. Climate, 25, 6215–6232,

https://doi.org/10.1175/JCLI-D-11-00648.1, 2012.

Rose, S. and Apt, J.: Quantifying sources of uncertainty in re-

analysis derived wind speed, Renew. Energy, 94, 157–165,

https://doi.org/10.1016/j.renene.2016.03.028, 2016.

Ruiz-Barradas, A. and Nigam, S.: IPCC’s twentieth-century

climate simulations: Varied representations of North Amer-

ican hydroclimate variability, J. Climate, 19, 4041–4058,

https://doi.org/10.1175/JCLI3809.1, 2006.

Sapiano, M. R. P. and Arkin, P. A.: An intercomparison and

validation of high-resolution satellite precipitation estimates

with 3-hourly gauge data, J. Hydrometeorol., 10, 149–166,

https://doi.org/10.1175/2008JHM1052.1, 2009.

Scinocca, J. F. and McFarlane, N. A.: The variability of modeled

tropical precipitation, J. Atmos. Sci., 61, 1993–2015, 2004.

Sheridan, P., Smith, S., Brown, A., and Vosper, S.: A simple height-

based correction for temperature downscaling in complex terrain,

Meteor. App., 17, 329–339, https://doi.org/10.1002/met.177,

2010.

Simard, M., Pinto, N., Fisher, J. B., and Baccini, A.:

Mapping forest canopy height globally with space-

borne lidar, J. Geophys. Res.-Biogeosci., 116, G04021,

https://doi.org/10.1029/2011JG001708, 2011.

Smith, I., Moise, A., Inape, K., Murphy, B., Colman, R., Power,

S., and Chung, C.: ENSO-related rainfall changes over the New

Guinea region, J. Geophys. Res.-Atmos., 118, 10665–10675,

https://doi.org/10.1002/jgrd.50818, 2013.

Thorne, P. W. and Vose, R. S.: Reanalyses suitable for character-

izing long-term trends, B. Am. Meteorol. Soc., 91, 353–361,

https://doi.org/10.1175/2009BAMS2858.1, 2010.

UK Met Office: Met Office Science Repository Service, available

at: https://code.metoffice.gov.uk/trac/home, last access: 23 May

2019.

Walters, D., Boutle, I., Brooks, M., Melvin, T., Stratton, R., Vosper,

S., Wells, H., Williams, K., Wood, N., Allen, T., Bushell, A.,

Copsey, D., Earnshaw, P., Edwards, J., Gross, M., Hardiman,

S., Harris, C., Heming, J., Klingaman, N., Levine, R., Man-

ners, J., Martin, G., Milton, S., Mittermaier, M., Morcrette, C.,

Riddick, T., Roberts, M., Sanchez, C., Selwood, P., Stirling,

A., Smith, C., Suri, D., Tennant, W., Vidale, P. L., Wilkinson,

J., Willett, M., Woolnough, S., and Xavier, P.: The Met Office

Unified Model Global Atmosphere 6.0/6.1 and JULES Global

Land 6.0/6.1 configurations, Geosci. Model Dev., 10, 1487–

1520, https://doi.org/10.5194/gmd-10-1487-2017, 2017a.

Walters, D., Baran, A., Boutle, I., Brooks, M., Earnshaw, P., Ed-

wards, J., Furtado, K., Hill, P., Lock, A., Manners, J., Morcrette,

C., Mulcahy, J., Sanchez, C., Smith, C., Stratton, R., Tennant,

W., Tomassini, L., Van Weverberg, K., Vosper, S., Willett, M.,

Browse, J., Bushell, A., Dalvi, M., Essery, R., Gedney, N., Hardi-

man, S., Johnson, B., Johnson, C., Jones, A., Mann, G., Milton,

S., Rumbold, H., Sellar, A., Ujiie, M., Whitall, M., Williams,

K., and Zerroukat, M.: The Met Office Unified Model Global

Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations,

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-

291, in review, 2017b.

Wang, Z., Siems, S. T., Belusic, D., Manton, M. J., and Huang, Y.:

A climatology of the precipitation over the Southern Ocean as

observed at Macquarie Island, J. Appl. Meteorol. Climatol., 54,

2321–2337, https://doi.org/10.1175/JAMC-D-14-0211.1, 2015.

Williamson, D. L.: The effect of time steps and time-scales on

parametrization suites, Q. J. Roy. Meteorol. Soc., 139, 548–560,

https://doi.org/10.1002/qj.1992, 2013.

Wilson, D. R. and Ballard, S. P.: A microphysically based

precipitation scheme for the UK Meteorological Office Uni-

fied Model, Q. J. Roy. Meteorol. Soc., 125, 1607–1636,

https://doi.org/10.1002/qj.49712555707, 1999.

Wood, N., Staniforth, A., White, A., Allen, T., Diamantakis, M.,

Gross, M., Melvin, T., Smith, C., Vosper, S., Zerroukat, M., and

Thuburn, J.: An inherently mass-conserving semi-implicit semi-

Lagrangian discretization of the deep-atmosphere global non-

hydrostatic equations, Q. J. Roy. Meteorol. Soc., 140, 1505–

1520, https://doi.org/10.1002/qj.2235, 2014.

Zhao, M., Zhang, H.-Q., and Dharssi, I.: Impact of land-

surface initialization on ACCESS-S1 and comparison with

POAMA, Bureau of Meteorology Research Report No.

023, available at: http://www.bom.gov.au/research/publications/

researchreports/BRR-023.pdf (last access: 17 May 2019), 2017.

Zhu, H. and Dietachmayer, G.: Improving ACCESS-C convec-

tion settings, Bureau Research Report No. 008, available at:

http://www.bom.gov.au/research/publications/researchreports/

BRR-008.pdf (last access: 17 May 2019), 2015.

Ziese, M., Rauthe-Schöch, A., Becker, A., Finger, P., Meyer-

Christoffer, A., and Schneider, U.: GPCC full data daily

version.2018 at 1.0◦: Daily land-surface precipitation

from rain-gauges built on GTS-based and historic data,

https://doi.org/10.5676/DWD_GPCC/FD_D_V2018_100, 2018.

Zick, S. E. and Matyas, C. J.: Tropical cyclones in the North Amer-

ican Regional Reanalysis: An assessment of spatial biases in lo-

cation, intensity, and structure, J. Geophys. Res.-Atmos., 120,

1651–1669, https://doi.org/10.1002/2014JD022417, 2015.

Geosci. Model Dev., 12, 2049–2068, 2019 www.geosci-model-dev.net/12/2049/2019/

https://doi.org/10.5194/essd-6-185-2014
https://doi.org/10.1002/qj.32
https://www.metoffice.gov.uk/binaries/content/assets/mohippo/pdf/o/4/frtr583.pdf
https://www.metoffice.gov.uk/binaries/content/assets/mohippo/pdf/o/4/frtr583.pdf
http://www.uerra.eu/
https://doi.org/10.1175/JCLI-D-11-00648.1
https://doi.org/10.1016/j.renene.2016.03.028
https://doi.org/10.1175/JCLI3809.1
https://doi.org/10.1175/2008JHM1052.1
https://doi.org/10.1002/met.177
https://doi.org/10.1029/2011JG001708
https://doi.org/10.1002/jgrd.50818
https://doi.org/10.1175/2009BAMS2858.1
https://code.metoffice.gov.uk/trac/home
https://doi.org/10.5194/gmd-10-1487-2017
https://doi.org/10.5194/gmd-2017-291
https://doi.org/10.5194/gmd-2017-291
https://doi.org/10.1175/JAMC-D-14-0211.1
https://doi.org/10.1002/qj.1992
https://doi.org/10.1002/qj.49712555707
https://doi.org/10.1002/qj.2235
http://www.bom.gov.au/research/publications/researchreports/BRR-023.pdf
http://www.bom.gov.au/research/publications/researchreports/BRR-023.pdf
http://www.bom.gov.au/research/publications/researchreports/BRR-008.pdf
http://www.bom.gov.au/research/publications/researchreports/BRR-008.pdf
https://doi.org/10.5676/DWD_GPCC/FD_D_V2018_100
https://doi.org/10.1002/2014JD022417

	Abstract
	Introduction
	The BARRA-R reanalysis
	Forecast model
	Land surface
	Soil moisture
	Boundary conditions

	Data assimilation system
	Observations

	Preliminary evaluation
	Surface
	Point-scale evaluation of 2m temperature, 10m wind speed, and surface pressure
	Comparison with gridded analysis of observed 2m temperature

	Pressure levels
	Precipitation
	Mean annual precipitation and frequency of rain days
	Comparison of monthly totals


	Discussion and outlook
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Acknowledgements
	Review statement
	References

