
mathematics

Article

BARRAKUDA: A Hybrid Evolutionary Algorithm for
Minimum Capacitated Dominating Set Problem

Pedro Pinacho-Davidson 1 and Christian Blum 2,*
1 Department of Computer Science, Faculty of Engineering, Universidad de Concepción,

Concepción 4070409, Chile; ppinacho@udec.cl
2 Artificial Intelligence Research Institute (IIIA-CSIC), Campus of the UAB, 08193 Bellaterra, Spain
* Correspondence: christian.blum@iiia.csic.es

Received: 14 September 2020; Accepted: 15 October 2020; Published: 23 October 2020
����������
�������

Abstract: The minimum capacitated dominating set problem is an NP-hard variant of the well-known
minimum dominating set problem in undirected graphs. This problem finds applications in the
context of clustering and routing in wireless networks. Two algorithms are presented in this work.
The first one is an extended version of construct, merge, solve and adapt, while the main contribution
is a hybrid between a biased random key genetic algorithm and an exact approach which we labeled
BARRAKUDA. Both algorithms are evaluated on a large set of benchmark instances from the literature.
In addition, they are tested on a new, more challenging benchmark set of larger problem instances.
In the context of the problem instances from the literature, the performance of our algorithms is
very similar. Moreover, both algorithms clearly outperform the best approach from the literature.
In contrast, BARRAKUDA is clearly the best-performing algorithm for the new, more challenging
problem instances.

Keywords: minimum capacitated dominating set problem; hybrid evolutionary algorithm; biased
random key genetic algorithm

1. Introduction

Dominating set problems are difficult combinatorial optimization problems from the family of
set covering problems. Over the last two decades, they have attracted research interests due to their
applications to both clustering and routing in wireless networks [1–3]. The most basic dominating set
problem is the classical minimum dominating set (MDS) problem. Given an undirected graph G with
vertex set V (where |V| = n), a set D ⊆ V is called a dominating set if and only if each vertex v ∈ V
either forms part of D or has at least one neighbor v′, which is a member of D. In the latter case, we say
that v′ dominates v. Each dominating set is a feasible solution to the MDS problem. The optimization
goal of the MDS problem is to find a smallest dominating set in G. In the case of the MDS problem,
given a valid solution D, each vertex v ∈ D is said to dominate all its neighbors that do not form part
of D themselves.

1.1. Literature Review for the CapMDS Problem

In this work, we focus on an NP-hard variant of the MDS problem known as the minimum
capacitated dominating set (CapMDS) problem. The difference to the MDS problem is that the
CapMDS problem restricts the number of vertices that each vertex from a solution D can dominate.
The CapMDS problem is relevant in the field of wireless communications, and for this reason,
several approaches have been found in the literature in recent years. Even though the CapMDS problem
has been demonstrated to be NP-hard [4], some researchers have focused on the development of exact
approaches. Cygan et al. [5] presented an algorithm based on maximum matching that runs inO(1.89n)

Mathematics 2020, 8, 1858; doi:10.3390/math8111858 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-9324-284X
https://orcid.org/0000-0002-1736-3559
http://dx.doi.org/10.3390/math8111858
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/11/1858?type=check_update&version=3

Mathematics 2020, 8, 1858 2 of 26

time. The performance of the algorithm was further improved by considering dynamic programming
over subsets [6] with a time complexity of O(1.8463n). A distributed approximation scheme was
developed in [7]. This algorithm achieves a O(log4)-approximation in O(log3n+log(n)/ε) time,
where n represents the number of vertices and4 denotes their maximal degree. Finally, the CapMDS
problem has been subject to a few research studies focused on heuristics and metaheuristic approaches.
Potluri and Singh [8] carried out a performance comparison between three greedy heuristics.
They showed that the best heuristic is the one that selects, at each step, the vertex that maximizes the
minimum between the vertex capacity and the number of uncovered neighbors. The neighboring
vertices dominated by this vertex (in case the neighborhood is larger than the capacity of the vertex) are
chosen randomly. This greedy heuristic has been used as the basis for the design of two metaheuristic
approaches: one based on ant colony optimization (named ACO) and the other one based on genetic
algorithms (named SGA) [9]. Lately, Li et al. [10] developed an iterated local search approach labeled
LS_PD, showing a significantly better performance than ACO and SGA when applied to general
graphs with uniform and variable capacity. LS_PD adopts a penalization strategy in the context
of the vertex-scoring scheme. Moreover, it makes use of a two-mode dominated vertex selection
strategy taking into account both random and greedy decisions for the choice of the neighbors that
a chosen vertex should dominate. This is done for the purpose of achieving a balance between the
intensification and the diversification of the search process. Recently, Pinacho-Davidson et al. [11]
developed a construct, merge, solve and adapt (CMSA) approach for the CapMDS. CMSA is a hybrid
proposal that integrates a heuristic algorithm and an exact solver to accelerate the solution process,
especially thought for the application to large-scale problem instances. Moreover, they applied—for
the first time—a high-performance integer linear programming (ILP) solver, namely CPLEX, to all
problem instances from the literature. They showed that both CMSA and CPLEX outperform LS_PD.

1.2. Literature Review on Related Problems

Apart from the CapMDS, various other computationally hard variants of the MDS problem can
be found in the related literature. One of them is the so-called minimum connected dominating set
(MCDS) problem, which has the additional restriction that a solution D must induce a connected
sub-graph of the input graph. Recent algorithmic approaches for the MCDS problem include different
local search algorithms [12,13] and a hybrid algorithm combining ant colony optimization with
reduced variable neighborhood search [14]. Another example of an extension of the classical MDS
problem is the minimum independent dominating set problem in which a solution D must be
an independent set of the input graph in addition to being a dominating set. Recent algorithmic
approaches tailored to this problem include a two-phase removing algorithm [15] and a memetic
algorithm [16]. The node-weighted versions of these problems are also often considered. The latest
algorithms for the minimum weight (vertex) independent dominating set problem include a local
search approach that makes use of a reinforcement learning based repair procedure [17] and a memetic
algorithm [18]. Next, it is worth mentioning the so-called minimum total dominating set problem,
which was solved by means of a hybrid evolutionary algorithm in [19]. Finally, it is also worth
mentioning that high-quality algorithms for the CapMDS problem can also be useful for solving
problems, such as the capacitated vertex k-center problem; see [20].

1.3. Literature Review on Similar Techniques

In this paper we develop heuristic algorithms for the CapMDS problem that are based on solving a
sequence of reduced sub-instances of the original problem instance. Historically, this general idea was
first been exploited in the context of problem decomposition by techniques from the field of Operations
Research, such as Dantzig–Wolfe decomposition (column generation) and Benders decomposition
(row generation) [21]. However, more recently, these ideas have also been applied in the context of
heuristic optimization algorithms that make use of mathematical programming techniques, known as
matheuristics [22]. Large neighborhood search (LNS) [23], respectively, very large-scale neighborhood

Mathematics 2020, 8, 1858 3 of 26

search [24], are among the most popular matheuristic techniques. These algorithms function as local
searches. However, they make use of mathematical programming to find an improving solution of
the incumbent solution at each iteration in a large-scale neighborhood of the incumbent solution.
Many LNS approaches are based on the principle of ruin-and-recreate [25], also sometimes found as
destroy-and-recreate or destroy-and-rebuild . Alternative ways of defining large neighborhoods are
local branching [26], the corridor method [27], and POPMUSIC [28].

In this work we present two algorithms from the field of matheuristics for the CapMDS problem.
The first one is a version of construct, merge, solve and adapt (CMSA) whose general idea was first
presented in [29]. In CMSA, the sub-instance that is solved at each iteration by a mathematical
programming technique is assembled from a set of heuristically constructed solution. In the second
algorithm proposed in this work, BARRAKUDA, the intention is to enhance the idea of CMSA with the
learning component present in evolutionary algorithms.

1.4. Organization of The Paper

The remainder of the paper is organized as follows. The considered optimization problem is
introduced in Section 2, while the proposed algorithms are described in Section 3. Finally, a comprehensive
experimental evaluation is provided in Section 4, and conclusions, as well as indications on future lines of
work, are presented in Section 5.

2. The Capmds Problem

We recall some preliminary definitions before describing the CapMDS problem. Let G = (V, E)
be an undirected graph on a set of n vertices V = {v1, v2, . . . , vn} and a set of edges E. We assume
that G neither contains edges from a vertex v ∈ V to itself (loops) nor multi-edges. Two vertices
are neighbors (also called adjacent to each other) if and only if there exists an edge between them,
that is, v ∈ V and u ∈ V are said to be neighbors if and only if (v, u) ∈ E. For a vertex v,
let N(v) := {u ∈ V | (v, u) ∈ E} denote the set of neighbors known as the open neighborhood (or simply
neighborhood) of v in G. Furthermore, the closed neighborhood of a vertex v ∈ V, denoted by N[v] and
contains the vertices adjacent to v in addition to v itself, that is, N[v] := N(v)∪ {v}. The degree deg(v)
of v is the cardinality of the set of neighbors of v, that is, deg(v) = |N(v)|. As already mentioned
above, a dominating set of G is a (sub)set S ⊆ V such that each vertex v ∈ V \ S must be adjacent
to at least one vertex in S. Each vertex in S is called a dominator. Otherwise, it is called dominated.
A dominator dominates itself and some or all of its neighbors.

A problem instance of the CapMDS problem is a tuple (G, Cap) that consists of an undirected
graph G = (V, E)—without loops nor multi-edges—and a capacity function Cap : V → N.
This function assigns a positive integer value Cap(v) to each vertex v ∈ V representing the maximum
number of adjacent vertices this vertex is allowed to dominate. Any dominating set S ⊆ V is a potential
solution to the CapMDS problem. Such a dominating set S is a valid solution, if it is possible to identify a
set {C(v) | v ∈ S}) that (1) contains for each dominator v ∈ S the (sub-)set C(v) ⊆ N(v) \ S containing
those neighbors of v that are chosen to be dominated by v, and (2) fulfills the following conditions:

1. S ∪ (
⋃

v∈S C(v)) = V, that is, all vertices from V are either chosen to be a dominator, or are
dominated by at least one dominator.

2. |C(v)| ≤ Cap(v) for all v ∈ DS, that is, all chosen dominators v ∈ DS dominate at most Cap(v) of
their neighbors.

Finally, the objective function value (to be minimized) is defined as f (S) := |S|.
Figure 1 presents an illustrative example of the CapMDS problem. While Figure 1a displays an

example graph, Figure 1b shows an optimal solution (black vertices) considering a uniform capacity of
2 for each vertex. Notice that the sets of dominated neighbors of each node in S are indicted by bold
edges. Vertices v5 and v9, for example, form set C(v6). More specifically, S = {v2, v3, v6, v7, v12} and
C(v2) = {v1, v4}, C(v3) = {v8}, C(v6) = {v5, v9}, C(v7) = {v14, v13}, C(v12) = {v11, v10}.

Mathematics 2020, 8, 1858 4 of 26

v2v1 v3

v4 v8v5

v6 v11 v7 v14

v9 v10 v12 v13

(a) CapMDS problem instance, considering a
uniform capacity Cap(v) = 2, ∀v ∈ V.

v2 v3v1

v4 v8v5

v6 v7

v12

v11 v14

v9 v10 v13

(b) Solution S = {v2, v3, v6, v7, v12}.

Figure 1. An example of the CapMDS problem. Note that the bold edges in (b) indicate the domination
relations. Vertices v1 and v4, for example, are dominated by vertex v2 which forms part of the solution.

An ILp Formulation for the Capmds Problem

The CapMDS can be modeled in terms of the following ILP model [11]:

minimize ∑
vi∈V

xi (1)

subject to ∑
vj∈N(vi)

yji ≥ 1− xi ∀vi ∈ V (2)

∑
vj∈N(vi)

yij ≤ Cap(vi) ∀vi ∈ V (3)

yij ≤ xi ∀vi ∈ V, vj ∈ N(vi) (4)

xi, yij ∈ {0, 1} (5)

This model can be seen as an improvement of the model originally presented in [10], because it
has fewer binary variables. First, a binary variable xi is associated to each vertex vi ∈ V indicating
whether or not vi is chosen to be included in the solution. Secondly, for each edge (vi, vj) ∈ E the
model contains binary variables yij and yji. Hereby, variable yij takes values one if vertex vi dominates
vertex vj. Likewise, variable yji takes value one if vj dominates vi.

In the above formulation, constraints (2) enforce that all vertices that are not part of the solution
are dominated by at least one neighbor. Constraints (3) make sure that the total number of vertices
dominated by a given particular vertex vi is limited by Cap(vi). In this way, a vertex vi can dominate
at most Cap(vi) vertices from its neighborhood. The constraints in (4) ensure that a vertex vi can
dominate a neighbor vj if and only if vi is part of the solution.

3. Proposed Algorithms

In this paper, we present the application of two hybrid algorithms for the CapMDS problem.
Both proposals can be seen as algorithms from the category ”Hybrid Algorithms Based on Problem Instance
Reduction [30]”. The main goal of this type of hybridization is to allow the application of an exact
solver to large problem instances for which the direct use of the exact solver would not be possible or
efficient given the instance size. For this purpose, this class of algorithms provides functionalities for
the intelligent reduction in instances of a problem in order to obtain smaller sub-instances.

The first algorithm, labeled CMSA++, is a revised and extended version of the
construct, merge, solve and adapt (CMSA) technique presented in prior work [11]. The second algorithm
is a new proposal, called BARRAKUDA, which makes use of the algorithmic framework of a biased
random key genetic algorithm (BRKGA) [31]. In Figure 2, we present a high-level overview of
both techniques, especially for pointing out the two separated levels of operation. In the original

Mathematics 2020, 8, 1858 5 of 26

problem instance level of operation, CMSA++ and BARRAKUDA deal with the full-size problem instance
and generate a set of solutions needed for the construction of sub-instances. In this context,
CMSA++ performs the generation of independent solutions through a constructive probabilistic heuristic.
Meanwhile, BARRAKUDA makes use of BRKGA as a generator of solutions. In contrast to CMSA++,
BARRAKUDA makes use of learning for the generation of solutions. This is because it uses the natural
learning mechanism of BRKGA, based on the selection of good solutions for acting as parents in order
to produce offspring for the next iteration. This aspect will be explained in detail in Section 3.2.1. In the
reduced problem instance level of operation, both algorithms make use of an ILP solver to deal with the
incumbent sub-instance. If this sub-instance is small enough, the solver obtains good results providing
over time high-quality solutions to the original problem instance.

Constructive probabilistic
heuristic

BRKGA

ILP Solver ILP Solver

Set of solutions

Add the set of solutions
to the subinstance

Subinstance

High quality solution High quality solution

Build a subinstance from
the set of solutions

Subinstance
Maintenance

Solution
Encoding

High quality chromosome

Original problem Instance level of operation

Reduced problem Instance level of operation

Set of solutions

Subinstance

Figure 2. High-level overview of the two proposed hybrid algorithms.

The main difference between both proposals is the strategy for the creation and maintenance of
the reduced sub-instances. CMSA++ produces sub-instances by using solution components found in
the solutions produced by the constructive probabilistic heuristic, keeping the sub-instance size small
enough through a sub-instance maintenance process. This process uses information about the utility
of solution components, which is used to eliminate seemingly useless solution components from the
sub-instances. On the other hand, BARRAKUDA does not make use of such a maintenance mechanism.
In contrast, it creates sub-instances from scratch at each iteration. For this purpose, BARRAKUDA uses
the solution components from a set of solutions selected from a subset of the chromosomes of the
incumbent BRKGA population. After the application of the ILP solver to the sub-instance, BARRAKUDA

implements a solution encoding process in order to be able to add the high-quality solution produced
by the ILP solver to the incumbent population of the BRKGA.

Finally, the main reason for choosing BRKGA—instead of another evolutionary algorithm from
the literature—as the main algorithm framework of BARRAKUDA is the following one. A BRKGA is
usually very easy to apply, as it only requires to find a clever way of translating the individuals of
BRKGA (which are kept as random keys) into feasible solutions to the tackled problem. All other
components, such as mutation and crossover, are the same for any BRKGA. In this way, it is possible
to focus all efforts on the hybridization aspect.

3.1. CMSA++: An Extension of CMSA

As mentioned above, CMSA++ is a revised and extended version of the CMSA algorithm from [11].
The extensions concern the following aspects:

Mathematics 2020, 8, 1858 6 of 26

• Incorporation of a set of new features concerning successful variations used in other
CMSA implementations.

• Exploration of different constructive probabilistic heuristics for the probabilistic generation of
solutions at each iteration.

• Testing of two different sub-instance maintenance mechanisms, going beyond the original CMSA.
• Making the algorithm more robust concerning the parameter values. Note that, in [11], we had to

conduct a very fine-grained tuning process in order to achieve a good algorithm performance for
all problem instances.

Nevertheless, keep in mind that the original CMSA from [11] can be obtained by setting the
parameter values of CMSA++ in a specific way. In other words, the parameter tuning process may
choose this option, if it results better than the newly introduced variations.

A high-level description of CMSA++ for the CapMDS problem is provided in Algorithm 1.
The algorithm maintains, at all times, an initially empty subset V′ of the set of vertices V of the
input graph. This set is henceforth called the sub-instance. Vertices are added to sub-instance
V′ by means of a probabilistic solution construction process, which is implemented in function
ProbabilisticSolutionGeneration (drate∗ , lsize, gopt) (see line 10 of Algorithm 1). In particular, all dominator
vertices found in the solutions generated by this function are added to V′—if not already in V′—and
their so-called “age value” age[] is initialized to zero (see lines 12 and 13 of Algorithm 1). Moreover,
solving the sub-instance V′ refers to the application of the ILP solver CPLEX in order to find—if
possible within the imposed time limit of tsolver seconds—the optimal solution to sub-instance V′;
that is, the optimal CapMDS solution in G that is limited to only contain dominators from V′. This is
achieved by adding the following set of constraints to the ILP model from the previous section:

xi = 0 ∀xi ∈ V \V′ (6)

The process of solving the sub-instance V′ is done in function ApplyExactSolver(V′, tsolver); see line
16 of Algorithm 1.

Algorithm 1 CMSA++ for the CapMDS problem

1: input: a problem instance (G, Cap)
2: input: values for agemax, na, tsolver, lsize (original CMSA parameters)
3: input: values for drateL , drateU , Atype, gopt (additional parameters)
4: Sbsf := ∅
5: V′ ← ∅
6: age[v] := 0 for all v ∈ V
7: while CPU time limit not reached do
8: drate∗ := DeterminismAdjustment(drateL , drateU)
9: for i = 1, . . . , na do

10: S← ProbabilisticSolutionGeneration(drate∗ , lsize, gopt)
11: for all v ∈ S and v /∈ V′ do
12: age[v] := 0
13: V′ ← V′ ∪ {v}
14: end for
15: end for
16: S′opt ← ApplyExactSolver(V′, tsolver)
17: if f (S′opt) < f (Sbsf) then Sbsf ← S′opt
18: Adapt(V′, S′opt, agemax, Atype)
19: end while
20: output: Sbsf

Mathematics 2020, 8, 1858 7 of 26

The algorithm takes as input the tackled problem instance (G, Cap), and values for eight required
parameters. The first four of them—see line 2 of Algorithm 1—are inherited from the original CMSA
proposal, while the remaining four parameters—see line 3 of Algorithm 1—are in the context of the
extensions that lead to CMSA++. The eight parameters can be described as follows:

1. agemax: establishes the number of iterations that a vertex is allowed to form part of sub-instance
V′ without forming part of the solution to V′ returned by the ILP solver (S′opt).

2. na: defines the number of solutions generated in the construction phase of the algorithm at each
iteration; that is, the number of calls to function ProbabilisticSolutionGeneration().

3. tsolver: establishes the time limit (in seconds) used for running the ILP solver at each iteration.
4. lsize, drateL , drateU : these three parameters determine the greediness of the solution construction

process in function ProbabilisticSolutionGeneration(), which we described in more detail in the
following subsection.

5. gopt: indicates the variant of the solution construction process.
6. Atype: chooses between two different behaviors implemented for the sub-instance maintenance

mechanism implemented in function Adapt().

As mentioned above, CMSA++ is—like any CMSA algorithm—equipped with a sub-instance
maintenance mechanism for discarding seemingly useless solution components from the sub-instance
V′ at each iteration. The original implementation of this mechanism works as follows. First, the age
values of all vertices in V′ are incremented. Second, the age values of all vertices in S′opt are re-initialized
to zero. Third, the vertices with age values greater than agemax are erased from V′. In particular, this
original implementation is used in case Atype = 0. In the other case—that is, when Atype = 1—a
probability age[v]/agemax for being removed from V′ is assigned to each vertex v ∈ V′ with agemax > 0.
Note that these probabilities linearly increase until reaching probability 1 for all vertices with an age
value greater than agemax. Both mechanisms are implemented in function Adapt(V′, S′opt, agemax, Atype)
(see line 18 of Algorithm 1). Their aim is to maintain V′ small enough in order to be able to solve the
sub-instance (if possible) optimally. If this is not possible in the allotted computation time, the output
S′opt of function ApplyExactSolver(V′, tsolver) is simply the best solution found by CPLEX within the
given time.

One of the new features of CMSA++ (in comparison to the original version from [11]) is a dynamic
mechanism for adjusting the determinism rate (drate∗) used during the solution construction at each
iteration. The mechanism is the same as that described in [32]. In the original CMSA, this determinism
rate was a fixed value between 0 and 1, determined by algorithm tuning. In contrast, CMSA++ chooses
a value for drate∗ at each iteration in function DeterminismAdjustment(drateL , drateU) from the interval
[drateL , drateU] where 0 ≤ drateL ≤ drateU ≤ 1. This is done under the hypothesis that CMSA++ can
escape from local optima, increasing the randomness of the algorithm. Whenever an iteration improves
Sbsf, the value of drate∗ is set back to its upper bound (drateU). Otherwise, the value of drate∗ is decreased
by a factor determined by subtracting the lower bound vale from the upper bound value (drateU) and
dividing the result by 3.0. Finally, whenever the value of drate∗ falls below the lower bound, it is set
back to the upper bound value. Adequate values for drateL and drateU must be determined by algorithm
tuning. Note that the behavior of the original CMSA algorithm is obtained by setting drateU = drateL .

Finally, note that CMSA++ iterates while a predefined CPU time limit is not reached.
Moreover, it provides the best solution found during the search, Sbsf, as output.

Probabilistic Solution Generation

The function used for generating solutions in a probabilistic way (in line 10 of Algorithm 1) is
presented in Algorithm 2. Note that there are three ways of generating solutions that are pseudo-coded
in this algorithm. They are indicated in terms of three options: opt1, opt2, and opt3. Line 18 of
Algorithm 2, for example, is only executed for options opt1 and opt3. Note that option opt1 implements
the solution construction mechanism of the original CMSA algorithm for the CapMDS problem

Mathematics 2020, 8, 1858 8 of 26

from [11]. In the following section, first, the general solution construction procedure is described.
Subsequently, we outline the differences between the three options mentioned above.

Algorithm 2 Function ProbabilisticSolutionGeneration(drate∗ , lsize, gopt)

1: input: a problem instance (G, Cap)
2: input: parameter values for lsize, drate∗ , gopt
3: S := ∅
4: W := V
5: Vuncov := V
6: ComputeHeuristicValues(W)
7: while Vuncov 6= ∅ do
8: Choose a random number δ ∈ [0, 1]
9: if δ ≤ drate∗ then

10: Choose v∗ ∈ V such as h(v∗) ≥ h(v) for all v ∈W
11: else
12: Let L ⊆W contain the min{lsize, |W|} vertices from W with the highest heuristic values
13: Choose v∗ uniformly at random from L
14: end if
15: S := S ∪ {v∗}
16: Vuncov := Vuncov \ (C(v∗) ∪ {v∗})
17: if gopt = opt1 or gopt = opt3 then
18: W := W \ (C(v∗) ∪ {v∗})
19: else
20: W := W \ {v∗}
21: end if
22: if gopt = opt1 or gopt = opt2 then
23: ComputeHeuristicValues(W)
24: end if
25: end while
26: output: S

The procedure takes as input the problem instance (G, Cap), as well as values for the parameters
lsize, drate∗ and gopt. The two first parameters are used for controlling the degree of determinism of the
solution construction process. Meanwhile, gopt indicates one of the three options. The process starts
with an empty partial solution S := ∅. At each step, exactly one vertex from a set W ⊆ V is added to
S, until the set of uncovered vertices (Vuncov) is empty. Note that both W and Vuncov are initially set
to V. Next we explain how to choose a vertex v∗ from W at each step of the procedure. First of all,
vertices from W are evaluated in function ComputeHeuristicValues(W) by a dynamic greedy function
h(), which depends on the current partial solution S. More specifically:

h(v) := 1 + min{Cap(v), degS(v)} ∀v ∈W (7)

Hereby, Cap(v) refers to the capacity of v and degS(v) := |Nuncov(v)|,
where Nuncov(v) := N(v)∩Vuncov is the set of currently uncovered neighbors of v. The h()-value
of a vertex is henceforth called its heuristic value. The choice of a vertex v∗ is then done as follows.
First, a value δ ∈ [0, 1] is chosen uniformly at random. In case δ ≤ drate∗ , v∗ is chosen as the vertex that
has the highest heuristic value among all vertices in W. Otherwise, a candidate list L containing the
min{lsize, |W|} vertices from W with the highest heuristic values is generated, and v∗ is chosen from L
uniformly at random. Thus, the greediness of the solution construction procedure depends on the
values of the determinism rate (drate∗) and the candidate list size (lsize). Note that, when degS(v

∗) is
greater than Cap(v∗), we have to choose which vertices from the N(v∗) ∩Vuncov vertex v∗ is going to

Mathematics 2020, 8, 1858 9 of 26

cover. In our current implementation, the set of Cap(v∗) vertices is simply chosen from N(v∗) ∩Vuncov

uniformly at random and stored in C(v∗). Finally, W and Vuncov are updated at the end of each step.
When gopt = opt1, the solution construction procedure is the same as that used in the original

CMSA algorithm for the CapMDS problem. In particular, W is updated after each choice of a vertex
v∗ in line 18 by removing the newly covered vertices. This concerns the chosen vertex v∗ and the
vertices from C(v∗) that were chosen to be covered by v∗. Moreover, the greedy function values are
always updated according to the current partial solution S (see line 23 of Algorithm 2). In contrast,
when gopt = opt2 the update of W (see line 20) is done by only removing the chosen vertex v∗ from the
options. The rationale behind this is as follows. Consider the example in Figure 3. In case gopt = opt1,
nodes v1 and Cv1 = {v2, v3, v4, v5} are removed from W for the next construction step. This removes
node v2 from the set of selectable vertices, although choosing v2 in the next step would lead to the
construction of the optimal solution in this example.

v1v4

v3

v5

v2 v7

v6

v8

Figure 3. Example problem instance after the first step of generating a solution. Let us assume that
the capacity of each node is 4. Vertex v1 was chosen in the first step. As the capacity of v1 is 4, all its
neighbors are placed in C(v1) and covered by v1.

Finally, with gopt = opt3 the solution construction is the same as with gopt = opt1, just that the
greedy function values are not recalculated in line 23. The rationale behind this way of constructing
solutions is to gain speed. On the negative side, this proposal possibly overestimates the heuristic
values of the vertices and generally favors the hubs (vertices with a high degree) in the input graph.

3.2. BARRAKUDA: A Hybrid of Brkga with an ILp Solver

As mentioned before, the main algorithm proposed in this work is a hybrid between the
well-known biased random key genetic algorithm (BRKGA) [31] and an ILP solver. Roughly, the solution
components of (some of the solutions in the) population of the BRKGA are joined at the end of each
iteration and the resulting sub-instance is passed to the ILP solver. Afterwards, the solution returned
by the ILP solver is fed back into the population of BRKGA. As in CMSA, the main motivation for this
proposal is to take profit from the ILP solver even in the context of problem instances that are too large
in order to apply the ILP solver directly. The advantage of BARRAKUDA over CMSA is the learning
component of BRKGA, which is not present in CMSA.

3.2.1. Main Algorithmic Framework

The main algorithm framework of BARRAKUDA, which is pseudo-coded in Algorithm 3, is that of
the BRKGA. In fact, the lines that turn the BRKGA into BARRAKUDA are lines 12–15, which are marked
by a different background colors. In the following section, we first outline all the BRKGA components
of our algorithm before describing the additional BARRAKUDA components.

BRKGA is a steady-state genetic algorithm which consists of a problem-independent part and
of a problem-dependent part. It takes as input the tackled problem instance (G, Cap), and the values
of four parameters (psize, pe, pm and probelite) that are found in any BRKGA. The algorithm starts
with the initialization of a population P composed of psize random individuals (line 4 of Algorithm 3).
Each individual π ∈ P is a vector of length established by 2 ∗ |V|, where V is the set of vertices of
G. In order to generate a random individual, for each position π(i) of π (i = 1, . . . , 2|V|) a random

Mathematics 2020, 8, 1858 10 of 26

value from [0, 1] is generated. In this context, note that values π(i) and π(i + |V|) are associated
to vertex vi of the input graph G. Then, the elements of the population are evaluated (see line 5 of
Algorithm 3). This operation, which translates each individual π ∈ P into a solution Sπ (set of vertices)
to the CapMDS problem, corresponds to the problem-dependent part described in the next subsection.
Note that, after evaluation, each individual π ∈ P has assigned the objective function value f (Sπ) of
corresponding CapMDS solution. Henceforth, f (π) will refer to f (Sπ) and vice versa.

Algorithm 3 BARRAKUDA for the CapMDS problem

1: input: a problem instance (G, Cap)
2: input: values for psize, pe, pm and probelite (BRKGA parameters)
3: input: values for na, exmode, tsolver (additional BARRAKUDA parameters)
4: P← GenerateInitialPopulation(psize)
5: Evaluate(P)
6: while computation time limit not reached do
7: Pe ← EliteSolutions(P, pe)
8: Pm ← Mutants(P, pm)
9: Pc ← Crossover(P, Pe, probelite)

10: Evaluate(Pm ∪ Pc){NOTE: Pe is already evaluated}
11: P := Pe ∪ Pm ∪ Pc
12: Pilp ← ChooseSolutions(P, exmode, na)
13: V′ :=

⋃
S∈Pilp

S
14: S′opt ← ApplyExactSolver(V′, tsolver)
15: P← IntegrateSolverSolution(P, S′opt)
16: end while
17: output: Best solution in P

Then, at each iteration of the algorithm, a set of genetic operators are executed in order to produce
the population of the next iteration (see lines 7–11 in Algorithm 3). First, the best max{bpe · psizec, 1}
individuals are copied from P to Pe in function EliteSolutions(P′, pe). Then, a set of max{bpm · psizec, 1}
mutant individuals are generated and stored in Pm. These mutants are produced in the same way as
individuals from the initial population. Next, a set of psize − |Pe| − |Pm| individuals are produced by
crossover in function Crossover(P′, Pe, probelite) and stored in Pc. Each such individual is generated as
follows: First, an elite parent π1 is chosen uniformly at random from Pe. Then, a second parent π2 is
chosen uniformly at random from P \ Pe. Finally, an offspring individual πoff is produced on the basis
of π1 and π2 and stored in Pc. In the context of the crossover operator, value πoff(i) is set to π1(i) with
probability probelite, and to π2(i) otherwise. After generating all new offspring in Pm and Pc, these new
individuals are evaluated in line 10. A standard BRKGA operation would now end after assembling
the population of the next iteration (line 11).

3.2.2. Evaluation of an Individual

The problem-dependent part of the BRKGA concerns the evaluation of an individual,
which consists of translating the individual into a valid CapMDS solution and calculating its objective
function value. For this purpose, the solution generation procedure from Algorithm 2 is applied with
option gopt = opt2. The only difference is in the choice of vertex v∗ ∈ W at each step (lines 8–14
of Algorithm 2), and the choice of the set of neighbors C(v∗) to be covered by v∗. Both aspects are
outlined in the following section. Moreover, the resulting pseudo-code is shown in Algorithm 4.

Instead of choosing a vertex v∗ ∈ W at each iteration of the solution construction process in a
semi-probabilistic way as shown in lines 8–14 of Algorithm 2, the choice is done deterministically

Mathematics 2020, 8, 1858 11 of 26

based on combining the greedy function value h(vi) with its first corresponding value in individual
π(i). (Remember that function h() is defined in Equation (7).) More specifically,

v∗ := argmax{h(vi) · π(i) | vi ∈W} (8)

Algorithm 4 Evaluation of an individual in BARRAKUDA

1: input: an individual π

2: Sπ := ∅
3: W := V
4: Vuncov := V
5: ComputeHeuristicValues(W)
6: while Vuncov 6= ∅ do
7: v∗ := argmax{h(vi) · π(i) | vi ∈W}
8: Sπ := Sπ ∪ {v∗}
9: C(v∗) = ∅

10: N := Nuncov(v∗)
11: r := min{|Nuncov(v∗)|, Cap(v∗)}
12: while |C(v∗)| < r and ∃vi ∈ N s.t. π(i + |V|) > 0 do
13: v′ := argmax{|Nuncov(vi)| · π(i + |V|) | vi ∈ N}
14: C(v∗) := C(v∗) ∪ {v′}
15: N := N \ {v′}
16: end while
17: Vuncov := Vuncov \ (C(v∗) ∪ {v∗})
18: W := W \ {v∗}
19: ComputeHeuristicValues(W)
20: end while
21: output: S

This is also shown in line 7 of Algorithm 4. In this way, the BRKGA algorithm will produce—over
time—individuals with high values π(i) for vertices vi that should form part of a solution,
and vice versa. The greedy function h() is only important for providing an initial bias towards
an area in the search space that presumably contains good solutions. Finally, note that the first |V|
values of an individual (corresponding, in the given order, to vertices v1, . . . , vn}) are used for deciding
which vertices are chosen for the solution.

As mentioned above, the second aspect that differs when comparing the evaluation of an
individual with the construction of a solution in Algorithm 2 is the choice of the set of neighbors
C(v∗) to be covered by v∗ at each step. Remember that, in Algorithm 2, min{|Nuncov|, Cap(v∗)},
vertices are randomly chosen from Nuncov(v∗) and stored in C(v∗). In contrast, for the evaluation
of a solution, vertices are sequentially picked from Nuncov(v∗) and added to C(v∗) until either
min{|Nuncov|, Cap(v∗)} vertices are picked or no further uncovered neighbor vi of v∗ exists with
π(i + |V|) > 0. Assuming that we denote the set of remaining (still unpicked) uncovered vertices of
v∗ by N, at each step the following vertex is picked from N:

v′ := argmax{|Nuncov(vi)| · π(i + |V|) | vi ∈ N} (9)

This is also shown in line 13 of Algorithm 4. Note that, as a greedy function for choosing
from the uncovered neighbors of v∗, we make use of the number of uncovered neighbors of these
vertices, preferring those with a large number of uncovered neighbors. Note also that, for selecting
the vertices that are dominated by a chosen node v∗, the second half of an individual is used, that is,

Mathematics 2020, 8, 1858 12 of 26

values π(|V|+ 1), . . . , π(2|V|). In other words, with the second half of an individual, the BRKGA
learns by which node a non-chosen node should be covered.

3.2.3. From Brkga to BARRAKUDA

Finally, it remains to describe lines 12–15 of Algorithm 3 that are an addition to the standard
BRKGA algorithm and that convert the algorithm into BARRAKUDA. This part makes use of three
BARRAKUDA-specific parameters:

• Parameter tsolver is used for establishing the time limit given to the ILP solver in function
ApplyExactSolver(V′, tsolver).

• Parameter exmode is used for determining the way in which individuals/solutions are chosen
from the current BRKGA population for building a sub-instance V′. This is done in function
ChooseSolutions(P, exmode, na).

• Parameter na refers to the number of individuals that must be chosen from P for the construction
of the sub-instance.

The BARRAKUDA-specific part of the algorithm starts by choosing exactly na < psize individuals
from the current population P and storing their corresponding solutions (which are known,
because these individuals are already evaluated) in a set Pilp. Parameter exmode indicates the way
in which these na solutions are chosen. In case exmode = ELITIST, the na best individuals from
P are chosen. Otherwise (when exmode = RANDOM), the best individual from P in addition to
(na − 1) randomly chosen solutions are added to Pilp. Subsequently, the vertices of all solutions
from Pilp are merged into set V′, and CPLEX is applied in function ApplyExactSolver(V′, tsolver) in
the same way as in the case of CMSA++. Finally, the solution S′opt returned by the solver is fed back
to BRKGA in function IntegrateSolverSolution(P, S′opt). More specifically, S′opt is transformed into an
individual π, which is then added to P. Finally, the worst individual is deleted from P in order
to keep the population size constant. The integration process is quite straightforward, because it
only considers information about the vertices (dominators) used in the solvers’ solution and not the
domination relationships (edges). More specifically, BARRAKUDA creates a new individual π where
π(i) := 0.5, ∀i ∈ {|V|+ 1, |V|+ 2, . . . , 2|V|}. Moreover, for each dominating vertex vi in the solution
of the solver π(i) := 1.0, whereas for each remaining vertex vj, the value of π(j), is set to zero.

4. Experimental Evaluation

In this section, we present the comparison of our two algorithmic proposals: CMSA++ and
BARRAKUDA. For this purpose, we employ four different sets of problem instances. Two of them were
presented in [9] and previously used in [11]. The remaining two instance sets are newly generated,
because we noticed that most of the existing problem instances from the first two data sets are too
small—respectively, too easy to solve—in order to be challenging. All four benchmark sets will be
described in the following subsection.

We implemented all algorithms from scratch using ANSI C++ and compiled the code with GCC
8.3.0 (Ubuntu/Linux). Moreover, IBM ILOG CPLEX Optimization Studio V12.8.0 was executed in
one-threaded mode, both as a standalone application (henceforth simply called CPLEX) and within
CMSA++ and BARRAKUDA for solving the generated sub-instances. All experiments were conducted on
the computing cluster of the Engineering Faculty of the University of Concepción (Luthier). Luthier is
composed of 30 computing nodes, which all have the same hardware and software configuration.
In particular, all nodes have an Intel CPU Xeon E3-1270 v6 at 3.8 GHz with 64 GB RAM. The cluster
uses SLURM v17.11.2 for management and job scheduling purposes. The time limit for all experiments
was 1000 CPU seconds per algorithm and per run, for all problem instances.

Mathematics 2020, 8, 1858 13 of 26

4.1. Benchmark Instances

The first two benchmark sets were taken from the literature. They were initially presented
in [9] and later used for the experimental evaluation of the current state-of-the-art method in [10].
The first benchmark set contains 120 unit disk graphs (UDGs) created using the topology generator
from [33]. In these instances, the vertices of each graph are randomly distributed over a Euclidean
square of size 1000 × 1000. Moreover, the graphs are generated with two different range values:
150 and 200 units. Note that with a range value of 150, for example, an undirected edge is introduced
between each pair of vertices whose Euclidean distance is mostly 150 units. Accordingly, graphs on
the same number of vertices become more dense with a growing range value used for generating
them. The second benchmark set consists of 180 general graphs taken from the set of so-called type I
instances originally proposed by Shyu et al. [34] in the context of the minimum weight vertex cover
problem. For each graph size (in terms of the number of vertices) this benchmark set contains graphs
from three different densities as indicted by their number of undirected edges. In both benchmark sets,
the number of vertices of the graphs is from {50, 100, 250, 500, 800, 1000}. Finally, graphs with vertices
of two types of capacities—namely uniform capacities and variable capacities—can be found in these
benchmark sets. In the case of uniform capacity, three different capacities of 2, 5 and α are tested,
where α is graph-specific and is taken as the average degree of the corresponding graph. In the case
of variable capacities, the vertex capacities are randomly chosen from the following three intervals:
(2, 5), (α/5, α/2) and [1, α]. Note that the instance files come with the capacities already explicitly
assigned. Note that for each combination of graph size (number of vertices), density (as determined by
range values, respectively, number of edges) and capacity type/range, the benchmark sets consist of
10 randomly generated problem instances.

As we had already noticed in our preliminary work [11] that many of the problem instances
from the above-mentioned benchmark sets are easily solved by CPLEX, we decided generate more
challenging instances, as follow. The first set is composed of general random graphs with 1000 or
5000 nodes. In this set, the number of edges depends on a parameter called edge probability (ep).
This parameter is used in the construction of the graphs, where each possible edge is generated with
probability ep. The probabilities that we considered are from {0.05, 0.15, 0.25}. Finally, we chose to
generate instances with a uniform capacity of α, and others with a variable capacity for each vertex
randomly chosen from [1, α]. The second one of the new benchmark sets is composed of random
geometric graphs that are generated in a similar way as the unit disc graph instances mentioned above.
All vertices are randomly distributed over the euclidean square—that is, a square of size 1.0× 1.0—and
a connection radius r determines the edges. In particular, all vertices whose Euclidean distance is
at most r are connected by an edge. Note that the radius r determines the density of the resulting
graph. We used radius values from {0.14, 0.24, 0.34}. For this set we also considered instances with
1000 and 5000 vertices, as well as uniform capacity graphs with capacity α assigned to each node
and variable capacity problems with a random capacity from [1, α] assigned to each vertex. In both
cases (general random graphs and random geometric graphs) we generated 10 instances for each
combination of graph size, density, and capacity type/size.

4.2. Tuning Process

As mentioned before, the reason for introducing CMSA++, which is an extension of the CMSA

algorithm presented in preliminary work [11], was that CMSA was not robust at all. Its parameters had
to be tuned separately for many sub-groups of the set of available benchmark instances. Only in this
way, the algorithm obtained very good results. In order to confirm that CMSA++ and BARRAKUDA

are sufficiently robust algorithms, a significantly lower number of algorithm configurations than
those produced in [11] for CMSA are produced for the final evaluation of CMSA++ and BARRAKUDA.
In particular, we produce different algorithm configurations only for 12 subsets of the instances
from the literature. This is in contrast to 36 configurations that were produced for CMSA in [11].
Remember in this context that CMSA++ is—from an algorithmic point of view—a superset of CMSA.

Mathematics 2020, 8, 1858 14 of 26

This means that, if the proposed extensions are not found to be useful, the tuning process would
choose the parameter settings, such that CMSA++ is the same as CMSA.

As outlined in the previous section, CMSA++ requires well-working parameter values for
parameters {agemax, na, tsolver, lsize, drateL , drateU , Atype, gopt }, while BARRAKUDA required values
for parameters {psize, pe, pm, probelite,na, exmode, tsolver}. Please refer to Section 3 for a comprehensive
description of their function. We employ the scientific parameter tuning tool irace [35] for determining
the values of these parameters. The parameters’ value domains for all the tuning runs were chosen
as follows.

CMSA++ parameter domains:

• agemax : {1, 2, 3, 5, 10, 1000}
• na : {1, 2, 5, 10, 30, 50}
• tsolver : {3, 5, 10, 50, 75, 100, 250, 500}
• lsize : {3, 5, 10, 20, 50, 100}
• drateL : [0, 0.9]
• drateU : [0, 0.9]
• Atype : {0, 1}
• gopt : {1, 210, 2}

BARRAKUDA parameter domains:

• psize : {10, 20, 50, 100, 200, 500}
• pe : {0.1, 0.15, 0.2, 0.25}
• pm : {0.1, 0.15, 0.2, 0.25, 0.3}
• probelite : [0.5, 0.9]
• na : {1, 3, 5, 10, 30, 50}
• exmode : {0, 1}
• tsolver : {3, 5, 10, 50, 75, 100, 200, 500}

Hereby, real-valued parameters, such as drateL , for example, are all treated with a precision of two
positions behind the comma—that is, parameter drateL whose domain is [0, 0.9] can take values from
{0.0, 0.01, . . . , 0.89, 0.9}.

Tables 1 and 2 show the parameter value configurations of CMSA++ and BARRAKUDA

for the problem instances from the literature. Note that we distinguish between small problem
instances (marked by S in the first table columns) and large problem instances (marked by L).
Hereby, configuration S is for all instances with {50, 100, 250} vertices, and configuration L for the
remaining (large) problem instances. Moreover, tuning is performed for three different capacity types;
see the second table columns. Parameter values from the rows with {2, (2, 5)} in the second column
are, for example, for all instances with a uniform capacity of 2, and for all instances with a variable
capacity from (2, 5).

Tables 3 and 4 show the parameter values determined by irace for the instances from the new
data set of large random graphs (RGs) and large random geometric graphs (RGGs) for CMSA++ and
BARRAKUDA, respectively. In these cases, the tuning for the uniform capacity problems was done
separately from the variable capacity problems.

Mathematics 2020, 8, 1858 15 of 26

Table 1. CMSA++ parameter values generated by irace for the instances from the literature.

Size Capacity drateL drateU lsize agemax na tsolver Atype gopt

{2, (2, 5)} 0.6 0.9 5 5 1 3 1 10
S {5, (α/5, α/2)} 0.1 0.7 10 2 1 100 0 10

{α, [1, α]} 0.6 0.7 10 1 2 50 0 10

{2, (2, 5)} 0.2 0.2 50 5 2 100 1 10
L {5, (α/5, α/2)} 0.6 0.9 50 3 1 250 0 10

{α, [1, α]} 0.2 0.3 10 3 5 100 1 10

(a) Settings for unit disk graphs.

Size Capacity drateL drateU lsize agemax na tsolver Atype gopt

{2, (2, 5)} 0.3 0.4 50 10 5 10 1 210
S {5, (α/5, α/2)} 0.5 0.8 20 3 30 50 1 2

{α, [1, α]} 0.1 0.2 50 10 30 100 1 2

{2, (2, 5)} 0.4 0.7 3 1 5 100 1 10
L {5, (α/5, α/2)} 0.8 0.9 3 3 5 250 0 10

{α, [1, α]} 0.5 0.9 20 1 5 250 0 10

(b) Settings for general graphs.

Table 2. BARRAKUDA parameter values generated by irace for the instances from the literature.

Size Capacity psize pe pm probelite na exmode tsolver

{2, (2, 5)} 100 0.25 0.15 0.8 1 0 10
S {5, (α/5, α/2)} 100 0.25 0.3 0.8 30 0 10

{α, [1, α]} 200 0.2 0.15 0.9 10 0 75

{2, (2, 5)} 800 0.25 0.2 0.8 2 1 100
L {5, (α/5, α/2)} 20 0.2 0.15 0.5 2 1 50

{α, [1, α]} 500 0.1 0.15 0.6 10 0 75

(a) Settings for unit disk graphs.

Size Capacity psize pe pm probelite na exmode tsolver

{2, (2, 5)} 500 0.15 0.25 0.6 50 1 200
S {5, (α/5, α/2)} 800 0.2 0.15 0.7 30 0 10

{α, [1, α]} 200 0.15 0.15 0.9 30 0 100

{2, (2, 5)} 200 0.2 0.15 0.9 50 0 75
L {5, (α/5, α/2)} 500 0.2 0.15 0.6 30 1 200

{α, [1, α]} 800 0.15 0.15 0.8 30 0 10

(b) Settings for general graphs.

Finally, note that the original BRKGA algorithm can be obtained from BARRAKUDA by a setting of
na = 1, which means that the sub-instance V′ is built from only one solution and that the ILP solver can
therefore not find any better solution in the sub-instance. In fact, the setting of na = 1 was determined
by irace very few times, such as, for example, for the instances of the first row in Table 2a. In other
words, in these cases the original BRKGA algorithm is better than BARRAKUDA. In the overwhelming
majority of the cases, however, BARRAKUDA is significantly better than BRKGA.

Mathematics 2020, 8, 1858 16 of 26

Table 3. CMSA++ parameter values generated by irace for the new data set of large problem instances.

Type n ep/r Capacity drateL drateU lsize agemax na tsolver Atype gopt

ep = 0.05 α 0.19 0.73 20 10 1 75 1 10
RG 1000 ep = 0.15 α 0.43 0.73 3 3 1 75 1 10

ep = 0.25 α 0.1 0.52 20 1 1 75 1 10

ep = 0.05 α 0.73 0.78 5 3 2 500 0 10
RG 5000 ep = 0.15 α 0.32 0.66 5 5 1 250 1 10

ep = 0.25 α 0.32 0.68 3 3 2 500 0 10

ep = 0.05 [1, α] 0.47 0.61 3 1000 1 75 1 10
RG 1000 ep = 0.15 [1, α] 0.02 0.56 3 2 1 100 1 10

ep = 0.25 [1, α] 0.1 0.76 10 3 1 100 1 10

ep = 0.05 [1, α] 0.09 0.21 3 1000 1 500 1 10
RG 5000 ep = 0.15 [1, α] 0.21 0.54 5 1 1 500 0 10

ep = 0.25 [1, α] 0.26 0.8 3 10 2 250 1 10

r = 0.14 α 0.11 0.55 100 3 5 5 1 10
RGG 1000 r = 0.24 α 0.48 0.81 3 3 5 75 0 10

r = 0.34 α 0.47 0.9 10 3 2 50 1 2

r = 0.14 α 0.7 0.78 10 2 5 500 1 10
RGG 5000 r = 0.24 α 0.46 0.58 10 3 5 250 1 10

r = 0.34 α 0.15 0.89 100 2 10 500 0 10

r = 0.14 [1, α] 0.05 0.6 100 10 2 500 1 10
RGG 1000 r = 0.24 [1, α] 0.12 0.62 100 10 1 250 1 210

r = 0.34 [1, α] 0.36 0.73 5 10 50 10 0 2

r = 0.14 [1, α] 0.11 0.16 20 5 2 500 1 10
RGG 5000 r = 0.24 [1, α] 0.55 0.62 50 3 5 500 1 10

r = 0.34 [1, α] 0.65 0.89 20 10 5 500 1 2

Table 4. BARRAKUDA parameter values generated by irace for the new data set of large problem instances.

Type n ep/r Capacity psize pe pm rhoe na fmode tsolver

ep = 0.05 α 500 0.15 0.15 0.8 10 0 3
RG 1000 ep = 0.15 α 500 0.1 0.15 0.8 2 1 100

ep = 0.25 α 50 0.1 0.25 0.69 2 1 5

ep = 0.05 α 500 0.2 0.3 0.9 50 0 5
RG 5000 ep = 0.15 α 20 0.1 0.2 0.71 1 0 75

ep = 0.25 α 20 0.1 0.15 0.82 2 1 75

ep = 0.05 [1, α] 500 0.15 0.15 0.81 5 0 5
RG 1000 ep = 0.15 [1, α] 500 0.1 0.1 0.53 2 0 100

ep = 0.25 [1, α] 100 0.2 0.2 0.64 1 0 500

ep = 0.05 [1, α] 500 0.2 0.1 0.6 50 1 10
RG 5000 ep = 0.15 [1, α] 50 0.15 0.2 0.9 1 0 75

ep = 0.25 [1, α] 100 0.15 0.3 0.68 1 0 100

r = 0.14 α 50 0.25 0.3 0.56 30 1 100
RGG 1000 r = 0.24 α 500 0.2 0.1 0.68 2 1 75

r = 0.34 α 50 0.25 0.1 0.71 5 0 10

r = 0.14 α 50 0.15 0.1 0.84 30 1 75
RGG 5000 r = 0.24 α 50 0.15 0.15 0.68 50 1 100

r = 0.34 α 50 0.15 0.2 0.68 30 0 500

r = 0.14 [1, α] 50 0.25 0.2 0.69 50 0 75
RGG 1000 r = 0.24 [1, α] 200 0.25 0.25 0.67 10 0 500

r = 0.34 [1, α] 50 0.1 0.1 0.56 5 0 75

r = 0.14 [1, α] 500 0.15 0.2 0.58 5 0 500
RGG 5000 r = 0.24 [1, α] 100 0.1 0.1 0.71 10 0 500

r = 0.34 [1, α] 50 0.25 0.15 0.54 10 0 500

Mathematics 2020, 8, 1858 17 of 26

4.3. Results

In addition to CPLEX, CMSA++ and BARRAKUDA were applied with the corresponding parameter
values from above to all problem instances exactly once. The time limit for each run was set to
1000 CPU seconds for each algorithm. The results for the problem instances from the literature are
presented in numerical form in Tables 5–8. Each table row contains the solution quality (columns with
heading q) and the time at which this result was obtained (columns with heading t) averaged over
10 problem instances for each of the three algorithms. Moreover, we show the results of LS_PD,
which is an algorithm based on a local search that was the state-of-the-art approach for the CapMDS
problem before the publication of CMSA. In addition to solution quality and computation time, in the
case of CMSA++ and BARRAKUDA we also provide the average gap (in percent) over the respective
10 problem instances, either with respect to the optimal solutions obtained by CPLEX, or—if not
possible—with respect to the optimal MDS solutions of the respective problem instances. In the
former case, the gaps are marked by a superscript ‘’a”, and in the latter one by a superscript ‘’b”.
Those cases in which not even the optimal MDS solutions could be computed (due to excessive
computation times) are marked with ‘’– –”. The best results per table row are indicated in bold font.
Moreover, the result of CPLEX is shown with a grey background in case the result is proven optimal.
Finally, results with a preceding asterisk indicate new best-known results. In order to summarize these
results, we additionally generated so-called critical difference (CD) plots for subsets of these problem
instances (see the graphics in Figure 4). For their generation, first, the Friedman test was used to
compare CPLEX, CMSA++ and BARRAKUDA simultaneously. (LS_PD was not included in the critical
difference plots because, unfortunately, the detailed results per instance were not available. In any
case, LS_PD is clearly worse than the other three techniques.) The hypothesis that the techniques
perform equally was rejected. Subsequently, the algorithms were compared pairwise by the Nemenyi
post-hoc test [36]. The obtained results can graphically be shown in the form of the above-mentioned
CD plots in which each algorithm is placed on the horizontal axis according to its average ranking
for the considered subset of problem instances. The performances of those algorithm variants that
are below the critical difference threshold (computed with a significance level of 0.05) are considered
as statistically equivalent. Such cases are shown by additional horizontal bars joining the average
ranking markers of the respective algorithm variants. (The statistical evaluation was conducted using
R’s scmamp package [37], available at https://github.com/b0rxa/scmamp.)

The following observations can be made:

• First of all, CPLEX as well as CMSA++ and BARRAKUDA clearly outperform LS_PD on most
problem instances.

• However, most of the instances from the literature are no challenge, neither for the exact solver
(CPLEX), nor for the heuristic solvers proposed in this work (CMSA++ and BARRAKUDA). In fact,
CPLEX is able to solve most problem instances to optimality; see the cases with a grey background.
Interestingly, CPLEX seems to have more problems with unit disk graphs than with random
graphs. Moreover, instances with variable node capacities seem slightly harder as well. This is
also indicated by the CD plots in Figure 4b–g. In particular, the CD plots in Figure 4b,d,f
show that CPLEX is not significantly worse than the best-performing algorithm. In the case of
medium capacities (Figure 4d) CPLEX even ranks best on average. In contrast, Figure 4c,e,g
show that BARRAKUDA is (apart from the case of medium capacities) significantly better than
CPLEX and CMSA++.

• Even though we can only detect rather small differences between the three best-performing algorithms,
when considering all problem instances from the literature together, BARRAKUDA performs
significantly better than CPLEX, which—in turn—performs significantly better than CMSA.

https://github.com/b0rxa/scmamp

Mathematics 2020, 8, 1858 18 of 26

Table 5. Results for general graphs with uniform capacity.

Capacity n Range CPLEX LS_PD CMSA++ BARRAKUDA

q t q t q t gap (%) q t gap (%)
100 17.0 <0.1 17.0 <0.1 17.0 <0.1 0.0 a 17.0 0.1 0.0 a

2 50 250 17.0 <0.1 17.0 <0.1 17.0 0.1 0.0 a 17.0 0.1 0.0 a

500 17.0 0.1 17.0 <0.1 17.0 0.1 0.0 a 17.0 0.2 0.0 a

100 34.0 0.2 34.0 <0.1 34.0 0.1 0.0 a 34.0 0.1 0.0 a

2 100 250 34.0 0.1 34.0 <0.1 34.0 0.1 0.0 a 34.0 0.2 0.0 a

500 34.0 0.1 34.0 <0.1 34.0 0.1 0.0 a 34.0 0.2 0.0 a

250 84.0 1.7 84.0 3.6 84.0 0.2 0.0 a 84.0 0.4 0.0 a

2 250 500 84.0 0.4 84.0 5.7 84.0 0.3 0.0 a 84.0 0.6 0.0 a

1000 84.0 0.6 84.0 10.0 84.0 0.3 0.0 a 84.0 0.8 0.0 a

500 167.0 10.8 168.6 <0.1 167.0 6.9 0.0 a 167.0 0.7 0.0 a

2 500 1000 167.0 1.7 170.2 55.5 167.0 0.8 0.0 a 167.0 1.2 0.0 a

2000 167.0 1.7 167.5 38.4 167.0 0.8 0.0 a 167.0 1.3 0.0 a

1000 267.0 2.7 274.2 160.9 267.0 1.3 0.0 a 267.0 2.2 0.0 a

2 800 2000 267.0 3.4 272.7 127.1 267.0 2.0 0.0 a 267.0 3.2 0.0 a

5000 267.0 4.6 267.8 44.4 267.0 1.8 0.0 a 267.0 3.5 0.0 a

1000 334.0 145.8 338.4 136.5 334.0 58.4 0.0 a 334.0 2.7 0.0 a

2 1000 5000 334.0 5.7 336.0 126.0 334.0 2.9 0.0 a 334.0 4.9 0.0 a

10,000 334.0 12.6 334.0 4.2 334.0 3.0 0.0 a 334.0 7.1 0.0 a

Avg. 150.5 12.0 151.9 64.8 150.5 4.4 150.5 1.6
100 11.9 0.1 11.9 <0.1 11.9 <0.1 0.0 a 11.9 0.1 0.0 a

5 50 250 9.0 0.2 9.0 <0.1 9.0 0.1 0.0 a 9.0 <0.1 0.0 a

500 9.0 0.2 9.0 <0.1 9.0 0.1 0.0 a 9.0 <0.1 0.0 a

100 33.6 <0.1 33.6 0.2 33.6 <0.1 0.0 a 33.6 0.1 0.0 a

5 100 250 20.0 0.9 20.3 5.9 20.3 0.3 1.5 a 20.0 0.5 0.0 a

500 17.0 0.6 17.0 0.1 17.0 0.2 0.0 a 17.0 0.4 0.0 a

250 83.3 0.2 83.5 11.6 83.3 8.0 0.0 a 83.3 0.5 0.0 a

5 250 500 57.8 9.7 59.9 46.0 58.5 0.1 1.7 a 57.9 12.0 0.2 a

1000 42.0 15.7 45.0 32.6 42.0 1.6 0.0 a 42.0 12.3 0.0 a

500 167.0 0.9 168.3 10.7 167.0 371.7 0.0 a 167.0 1.5 0.0 a

5 500 1000 114.9 821.4 121.5 80.5 115.6 258.9 0.8 b 115.4 540.9 0.6 b

2000 84.1 254.1 92.2 71.3 84.0 0.8 – – 84.0 136.7 – –
1000 242.5 5.8 253.2 101.8 250.4 8.6 3.3 a 242.5 10.2 0.0 a

5 800 2000 164.8 1000.0 176.2 223.6 167.5 616.7 – – 166.2 161.6 – –
5000 134.0 69.3 140.4 131.6 134.0 15.4 0.0 a 134.0 25.1 0.0 a

1000 333.7 3.1 338.7 75.7 333.7 3.8 0.0 a 333.7 4.5 0.0 a

5 1000 5000 167.0 205.6 181.0 140.3 167.0 18.0 0.0 a 167.0 72.0 0.0 a

10,000 167.0 149.7 171.0 62.7 167.0 50.7 0.0 a 167.0 54.6 0.0 a

Avg. 103.3 149.3 107.3 66.3 103.9 75.3 103.4 57.4
100 12.0 0.2 12.0 <0.1 12.0 0.2 0.0 a 12.0 0.1 0.0 a

α 50 250 6.0 0.5 6.0 0.1 6.0 0.1 0.0 a 6.0 0.1 0.0 a

500 3.8 0.9 3.8 <0.1 3.8 0.2 0.0 a 3.8 <0.1 0.0 a

100 34.0 0.2 34.0 <0.1 34.0 <0.1 0.0 a 34.0 <0.1 0.0 a

α 100 250 20.0 1.0 20.2 5.9 20.2 0.3 1.0 a 20.1 0.3 0.5 a

500 12.2 5.5 12.2 2.6 12.2 2.8 0.0 a 12.2 3.0 0.0 a

250 84.0 2.1 84.0 2.1 85.2 0.1 1.4 a 84.0 0.2 0.0 a

α 250 500 58.3 30.6 61.7 17.8 58.4 21.5 0.2 a 58.3 28.5 0.0 a

1000 36.7 999.8 37.9 41.1 36.6 326.6 1.4 b ∗ 36.5 215.3 1.1 b

500 167.0 15.8 168.4 32.3 167.0 0.9 0.0 a 167.0 1.7 0.0 a

α 500 1000 116.2 966.2 126.4 59.0 117.0 628.5 2.0 b 116.3 95.6 1.4 b

2000 75.3 1000.0 78.6 101.0 75.7 553.5 – – 74.3 244.3 – –
1000 267.0 3.6 274.0 120.8 267.0 1.4 0.0 a 267.0 4.8 0.0 a

α 800 2000 164.9 1001.0 178.1 159.2 167.1 589.1 – – ∗ 162.6 265.4 – –
5000 91.1 993.6 92.2 329.4 91.2 575.2 – – ∗ 89.6 569.7 – –
1000 334.0 131.7 338.4 34.7 334.0 5.9 0.0 a 334.0 6.8 0.0 a

α 1000 5000 132.5 951.3 137.4 352.2 133.6 758.5 – – 134.2 711.1 – –
10,000 87.6 993.9 81.3 604.8 83.2 610.6 – – ∗ 80.7 663.6 – –

Avg. 94.6 394.3 97.0 103.5 94.7 226.4 94.0 156.1
Total avg. 116.1 185.2 118.8 78.2 116.4 102.0 116.0 71.7

Mathematics 2020, 8, 1858 19 of 26

Table 6. Results for general graphs with variable capacity.

Capacity n Range CPLEX LS_PD CMSA++ BARRAKUDA

q t q t q t gap (%) q t gap (%)
100 13.0 0.1 13.0 0.2 13.0 0.1 0.0 a 13.0 0.1 0.0 a

(2, 5) 50 250 9.0 0.1 9.0 <0.1 9.0 <0.1 0.0 a 9.0 0.1 0.0 a

500 9.0 0.1 9.0 <0.1 9.0 <0.1 0.0 a 9.0 <0.1 0.0 a

100 33.7 0.1 33.7 0.1 33.7 <0.1 0.0 a 33.7 0.1 0.0 a

(2, 5) 100 250 21.9 0.7 22.3 8.9 21.9 0.3 0.0 a 21.9 0.3 0.0 a

500 17.0 0.4 17.2 6.5 17.0 0.2 0.0 a 17.0 0.3 0.0 a

250 83.7 0.7 83.7 6.6 83.7 0.1 0.0 a 83.7 0.4 0.0 a

(2, 5) 250 500 63.2 11.9 66.5 20.7 63.2 1.9 0.0 a 63.2 1.9 0.0 a

1000 43.7 177.1 48.4 20.6 43.9 124.0 21.9 b 43.7 59.1 21.4 b

500 167.0 4.5 168.2 60.4 167.2 9.2 0.1 a 167.0 0.8 0.0 a

(2, 5) 500 1000 125.5 702.0 135.2 104.5 125.8 272.4 9.7 b 125.5 302.0 9.4 b

2000 88.2 725.3 98.9 63.2 87.9 570.4 – – ∗ 87.1 603.4 – –
1000 248.1 23.1 261.7 180.3 259.5 23.0 4.6 a 248.1 18.8 0.0 a

(2, 5) 800 2000 181.2 1000.0 199.1 174.9 * 180.7 641.5 – – ∗ 179.2 643.9 – –
5000 134.1 34.9 144.5 161.5 134.1 9.1 0.0 a 134.1 11.2 0.0 a

1000 333.8 31.0 338.6 139.9 334.0 82.8 0.06 a 333.8 2.9 0.0 a

(2, 5) 1000 5000 169.0 123.7 189.4 175.7 169.0 50.6 0.0 a 169.0 46.2 0.0 a

10,000 167.0 94.8 172.2 207.2 167.0 8.6 0.0 a 167.0 23.7 0.0 a

Avg. 106.0 162.8 111.7 83.2 106.6 99.7 105.8 95.3
100 17.7 <0.1 17.7 0.4 17.7 <0.1 0.0 a 17.7 0.1 0.0 a

(α/5, α/2) 50 250 9.0 0.1 9.0 0.2 9.0 <0.1 0.0 a 9.0 0.1 0.0 a

500 5.0 0.4 5.0 <0.1 5.0 0.1 0.0 a 5.0 <0.1 0.0 a

100 50.0 <0.1 50.0 0.1 50.0 <0.1 0.0 a 50.0 0.1 0.0 a

(α/5, α/2) 100 250 34.3 0.1 34.9 6.7 34.3 <0.1 0.0 a 34.3 0.2 0.0 a

500 17.0 0.4 17.3 6.4 17.0 0.2 0.0 a 17.0 0.3 0.0 a

250 125.0 0.2 125.0 8.9 125.0 0.1 0.0 a 125.0 0.5 0.0 a

(α/5, α/2) 250 500 86.8 0.4 91.4 19.3 86.8 0.2 0.0 a 86.8 0.7 0.0 a

1000 51.4 1.0 54.9 20.2 51.4 0.5 0.0 a 51.4 1.1 0.0 a

500 250.0 0.8 251.1 61.2 250.0 0.4 0.0 a 250.0 1.3 0.0 a

(α/5, α/2) 500 1000 172.9 1.4 183.5 36.5 172.9 0.7 0.0 a 172.9 1.6 0.0 a

2000 101.3 5.7 110.8 59.8 101.3 3.8 0.0 a 101.3 3.0 0.0 a

1000 400.0 2.1 401.6 85.9 400.0 0.9 0.0 a 400.0 3.2 0.0 a

(α/5, α/2) 800 2000 273.4 3.1 292.2 107.6 273.4 2.5 0.0 a 273.4 3.9 0.0 a

5000 115.0 74.3 127.0 101.8 115.0 74.3 0.0 a 115.0 45.4 0.0 a

1000 500.0 3.0 505.6 108.9 500.0 1.4 0.0 a 500.0 5.0 0.0 a

(α/5, α/2) 1000 5000 168.1 131.6 188.0 118.4 168.1 59.5 0.0 a 168.1 39.3 0.0 a

10,000 105.7 841.6 104.7 123.0 ∗ 102.0 254.6 – – 109.8 630.9 – –
Avg. 137.9 66.6 142.8 50.9 137.7 22.2 138.2 40.9

100 13.7 0.1 13.7 0.8 14.9 <0.1 8.8 a 13.7 0.1 0.0 a

[1, α] 50 250 7.2 0.4 7.2 0.6 8.4 <0.1 16.7 a 7.2 0.1 0.0 a

500 3.9 1.2 3.9 <0.1 4.1 <0.1 5.1 a 3.9 <0.1 0.0 a

100 40.1 0.1 40.1 <0.1 40.1 <0.1 0.0 a 40.1 <0.1 0.0 a

[1, α] 100 250 23.3 0.7 23.7 7.4 26.4 <0.1 13.3 a 23.3 0.2 0.0 a

500 13.5 5.7 14.1 5.9 15.7 0.2 16.3 a 13.5 1.9 0.0 a

250 98.9 0.3 99.0 6.6 98.9 0.1 0.0 a 98.9 0.2 0.0 a

[1, α] 250 500 67.3 3.4 71.5 18.7 72.1 0.2 7.1 a 67.3 1.0 0.0 a

1000 40.5 948.8 44.6 27.3 46.8 2.2 30.0 b 40.3 376.2 11.9 b

500 202.7 0.9 203.2 28.3 202.7 0.6 0.0 a 202.7 1.8 0.0 a

[1, α] 500 1000 135.9 51.8 147.7 55.0 137.8 92.8 1.4 a 136.0 25.1 0.07 a

2000 83.1 1000.0 92.6 99.8 83.5 527.2 – – 81.8 164.1 – –
1000 300.2 2.1 310.5 90.1 300.2 2.2 0.0 a 300.2 4.6 0.0 a

[1, α] 800 2000 186.6 1000.0 208.2 124.8 190.2 554.6 – – ∗ 185.8 163.6 – –
5000 100.3 985.7 104.8 227.2 101.6 608.0 – – ∗ 97.3 590.1 – –
1000 400.8 3.6 405.0 146.0 400.8 3.5 0.0 a 400.8 6.8 0.0 a

[1, α] 1000 5000 149.5 949.9 156.4 335.5 147.3 730.8 – – ∗ 142.7 619.9 – –
10,000 132.9 1000.0 92.4 387.0 91.6 644.9 – – ∗ 85.6 670.4 – –

Avg. 111.1 330.8 113.3 86.7 110.2 176.0 107.8 145.9
Total avg. 118.4 186.8 122.6 73.6 118.2 99.3 117.3 94.0

Mathematics 2020, 8, 1858 20 of 26

Table 7. Results for Unit Disk Graphs with uniform capacity.

Capacity n Range CPLEX LS_PD CMSA++ BARRAKUDA

q t q t q t gap (%) q t gap (%)
2 50 150 17.2 <0.1 17.2 0.1 17.2 0.1 0.0 a 17.2 1.8 0.0 a

2 50 200 17.0 0.1 17.0 <0.1 17.0 <0.1 0.0 a 17.0 <0.1 0.0 a

2 100 150 34.0 0.1 34.5 0.1 34.0 0.1 0.0 a 34.0 0.1 0.0 a

2 100 200 34.0 0.2 34.1 <0.1 34.0 <0.1 0.0 a 34.0 0.1 0.0 a

2 250 150 84.0 0.8 86.0 <0.1 84.0 0.2 0.0 a 84.0 0.3 0.0 a

2 250 200 84.0 0.9 85.4 <0.1 84.0 0.2 0.0 a 84.0 0.4 0.0 a

2 500 150 167.0 3.1 171.6 0.2 167.0 0.8 0.0 a 167.0 6.2 0.0 a

2 500 200 167.0 4.4 170.3 0.1 167.0 0.9 0.0 a 167.0 12.1 0.0 a

2 800 150 267.0 8.0 273.9 0.2 267.0 2.2 0.0 a 267.0 25.2 0.0 a

2 800 200 267.0 11.7 272.4 0.1 267.0 2.2 0.0 a 267.0 46.3 0.0 a

2 1000 150 334.0 13.9 342.6 <0.1 334.0 3.0 0.0 a 334.0 45.7 0.0 a

2 1000 200 334.0 19.1 340.4 <0.1 334.0 3.7 0.0 a 334.0 82.4 0.0 a

Avg. 150.5 5.7 153.8 0.1 150.5 1.1 150.5 18.4
5 50 150 12.9 <0.1 12.9 0.1 13.1 <0.1 1.6 a 12.9 <0.1 0.0 a

5 50 200 10.0 0.1 10.0 <0.1 10.1 0.1 1.0 a 10.0 <0.1 0.0 a

5 100 150 18.7 0.3 18.8 <0.1 18.7 0.4 0.0 a 18.7 0.2 0.0 a

5 100 200 17.4 0.4 17.4 0.1 17.4 0.1 0.0 a 17.4 0.2 0.0 a

5 250 150 42.0 3.5 43.7 0.4 42.0 0.2 0.0 a 42.0 1.1 0.0 a

5 250 200 42.0 3.5 43.0 <0.1 42.0 0.2 0.0 a 42.0 1.1 0.0 a

5 500 150 84.0 25.7 86.2 0.2 84.0 0.6 0.0 a 84.0 0.9 0.0 a

5 500 200 84.0 50.7 85.0 <0.1 84.0 0.5 0.0 a 84.0 1.1 0.0 a

5 800 150 134.0 215.9 137.0 1.0 134.0 1.3 0.0 a 134.0 2.3 0.0 a

5 800 200 134.0 387.9 135.7 0.1 134.0 1.8 0.0 a 134.0 3.2 0.0 a

5 1000 150 167.0 459.6 171.0 2.7 167.0 2.1 0.0 a 167.0 3.8 0.0 a

5 1000 200 173.3 787.6 169.6 <0.1 167.0 2.3 – – 167.0 5.3 – –
Avg. 76.6 175.9 77.5 0.7 76.1 0.8 76.1 1.6

α 50 150 14.4 <0.1 14.4 79.4 14.4 <0.1 0.0 a 14.4 <0.1 0.0 a

α 50 200 10.0 0.1 10.0 22.5 10.1 <0.1 1.0 a 10.0 <0.1 0.0 a

α 100 150 18.7 0.3 18.9 <0.1 18.7 0.3 0.0 a 18.7 0.2 0.0 a

α 100 200 11.0 0.4 11.0 <0.1 11.0 0.1 0.0 a 11.0 0.2 0.0 a

α 250 150 18.5 4.5 19.4 8.3 18.5 2.9 0.0 a 18.6 1.5 0.5 a

α 250 200 11.3 6.3 11.5 1.7 11.3 2.0 0.0 a 11.4 0.9 0.9 a

α 500 150 18.6 164.1 20.7 250.1 18.7 72.3 0.5 a 19.1 14.2 2.7 a

α 500 200 11.3 90.9 12.1 129.5 11.3 31.9 0.0 a 11.6 16.0 2.7 a

α 800 150 19.4 906.2 21.3 319.7 ∗ 19.2 239.2 1.6 b 19.4 80.7 2.1 b

α 800 200 12.3 733.4 12.6 21.4 ∗ 11.9 34.6 1.7 b 12.0 30.5 2.6 b

α 1000 150 25.8 942.4 21.5 2.6 ∗ 19.4 259.7 1.6 b 19.6 143.0 2.6 b

α 1000 200 14.7 953.4 12.9 <0.1 12.0 104.9 0.0 b 12.0 99.1 0.0 b

Avg. 15.5 345.6 15.5 92.8 14.7 62.3 14.8 32.2
Total avg. 80.9 175.7 82.3 31.2 80.4 21.4 80.5 17.4

Mathematics 2020, 8, 1858 21 of 26

Table 8. Results for Unit Disk Graphs with variable capacity.

Capacity n Range CPLEX LS_PD CMSA++ BARRAKUDA

q t q t q t gap (%) q t gap (%)

(2, 5) 50 150 14.5 <0.1 14.5 <0.1 14.9 <0.1 2.8 a 14.5 0.4 0.0 a

(2, 5) 50 200 l11.1 0.1 11.1 <0.1 11.2 <0.1 0.9 a 11.1 0.1 0.0 a

(2, 5) 100 150 21.8 1.1 21.8 3.5 22.0 0.1 0.9 a 21.9 44.7 0.5 a

(2, 5) 100 200 17.6 0.4 17.8 3.7 17.6 0.9 0.0 a 17.6 0.3 0.0 a

(2, 5) 250 150 42.1 2.6 43.0 18.4 42.1 0.4 0.0 a 42.1 0.9 0.0 a

(2, 5) 250 200 42.0 2.3 42.0 36.0 42.0 0.2 0.0 a 42.0 0.3 0.0 a

(2, 5) 500 150 84.0 11.7 84.9 35.7 84.0 0.8 0.0 a 84.0 5.3 0.0 a

(2, 5) 500 200 84.0 15.2 84.0 33.4 84.0 0.8 0.0 a 84.0 9.6 0.0 a

(2, 5) 800 150 134.0 55.4 134.9 251.8 134.0 1.7 0.0 a 134.0 20.5 0.0 a

(2, 5) 800 200 134.0 71.1 134.1 595.3 134.0 2.0 0.0 a 134.0 40.0 0.0 a

(2, 5) 1000 150 167.0 105.1 168.6 235.4 167.0 2.9 0.0 a 167.0 37.2 0.0 a

(2, 5) 1000 200 167.0 119.0 167.5 408.1 167.0 3.3 0.0 a 167.0 70.6 0.0 a

Avg. 76.6 32.0 77.0 135.1 76.7 1.1 76.6 19.2
(α/5, α/2) 50 150 25.4 0.1 25.4 <0.1 25.4 <0.1 0.0 a 25.4 <0.1 0.0 a

(α/5, α/2) 50 200 17.3 <0.1 17.3 0.1 17.3 <0.1 0.0 a 17.3 <0.1 0.0 a

(α/5, α/2) 100 150 29.9 0.2 30.3 6.7 29.9 0.6 0.0 a 29.9 0.1 0.0 a

(α/5, α/2) 100 200 17.8 0.4 17.8 3.4 17.8 0.1 0.0 a 17.8 0.1 0.0 a

(α/5, α/2) 250 150 31.6 4.4 32.4 25.2 31.6 0.5 0.0 a 31.6 0.9 0.0 a

(α/5, α/2) 250 200 18.9 26.3 19.2 13.3 18.9 0.5 0.0 a 18.9 3.6 0.0 a

(α/5, α/2) 500 150 32.0 661.5 32.9 35.9 32.0 2.5 0.0 a 32.0 2.4 0.0 a

(α/5, α/2) 500 200 79.6 602.3 19.4 116.3 19.4 3.1 73.2 b 19.4 1.6 73.2 b

(α/5, α/2) 800 150 732.0 636.5 33.3 91.8 31.7 28.5 66.8 b 31.7 29.0 66.8 b

(α/5, α/2) 800 200 796.6 1000.0 19.8 100.1 19.6 4.7 67.5 b 19.6 4.6 67.5 b

(α/5, α/2) 1000 150 997.8 1000.0 33.5 173.6 32.5 13.3 70.2 b 32.5 7.2 70.2 b

(α/5, α/2) 1000 200 996.0 1000.0 20.0 88.2 19.2 15.2 60.0 b 19.2 9.5 60.0 b

Avg. 314.6 411.0 25.1 54.6 24.6 5.8 24.6 4.9
[1, α] 50 150 16.7 <0.1 16.7 0.1 17.1 <0.1 2.4 a 16.7 <0.1 0.0 a

[1, α] 50 200 12.1 0.1 12.1 0.5 12.6 <0.1 4.1 a 12.1 <0.1 0.0 a

[1, α] 100 150 21.4 0.3 21.4 4.3 22.0 <0.1 2.8 a 21.4 0.1 0.0 a

[1, α] 100 200 12.8 1.5 13.0 0.8 13.1 1.1 2.3 a 12.8 0.2 0.0 a

[1, α] 250 150 20.8 38.0 21.9 6.1 22.1 4.9 1.4 a 20.8 17.4 0.0 a

[1, α] 250 200 12.8 58.2 13.0 5.5 13.9 1.0 8.6 a 12.8 1.9 0.0 a

[1, α] 500 150 21.9 940.6 22.6 55.7 22.8 12.2 18.9 b 21.1 161.3 14.1 b

[1, α] 500 200 13.2 926.1 13.0 53.0 13.5 11.6 20.5 b 12.7 31.5 13.4 b

[1, α] 800 150 22.7 973.2 22.7 163.0 23.0 173.8 21.1 b ∗ 21.0 324.4 10.5 b

[1, α] 800 200 726.9 997.4 13.2 76.5 14.0 70.9 19.7 b ∗ 12.5 94.3 6.8 b

[1, α] 1000 150 909.2 1000.0 22.6 500.4 22.5 191.3 17.8 b ∗ 21.0 495.9 9.9 b

[1, α] 1000 200 1000.0 1000.0 13.0 319.3 13.9 26.4 15.8 b 12.6 162.8 5.0 b

Avg. 232.5 494.6 17.1 98.8 17.5 41.1 16.5 107.5
Total avg. 207.9 312.5 39.7 96.1 39.6 16.0 39.2 43.9

The numerical results for the large problem instances from the new benchmark set are provided
in Tables 9 and 10. Note that the results for uniform capacity instances are shown in sub-tables (a)
and for variable capacity instances in subtables (b). Finally, the corresponding critical difference plots
are shown in Figure 5. Most notably, CPLEX is now clearly worse than CMSA++ and BARRAKUDA.
In fact, in most cases, CPLEX can only find the trivial solutions which contain all nodes of the input
graph. Moreover, it is interesting to note that BARRAKUDA clearly outperforms CMSA++ in the case
of the random graph instances (see Table 9 and Figure 5b), while both methods perform statistically
equivalent in the case of the random geometric graphs (see Table 10 and Figure 5c). Finally, it also worth
mentioning that the MDS-based lower bound could be computed for nearly all random geometric
graphs—apart from the cases with 5000 nodes and a low number of edges (S)—while this was not
possible in the case of the random graphs (due to excessive computation times). Note that when

Mathematics 2020, 8, 1858 22 of 26

the gap (see column with heading ”gap (%)”) is equal to zero, the algorithm’s result is equal to the
MDS-based lower bound, which means that the optimal solutions are obtained in this these cases.

Table 9. Experimental results for the random graphs from the new set of large problem instances.

Capacity n #Edges CPLEX CMSA++ BARRAKUDA

q t g q t gap (%) q t gap (%)

S 1000 1000.7 100 48.3 552.4 – – 46.1 675.8 – –
α 1000 M 1000 1000.8 100 20.1 392.2 – – 19.9 302.8 – –

L 1000 1000.9 100 12.9 241.1 – – 12.9 146.6 – –

S 5000 1018.2 100 79.2 227.7 – – 70.7 777.4 – –
α 5000 M 5000 1021.4 100 31.1 569.7 – – 28.4 328.9 – –

L 5000 1024.8 100 19.1 167.6 – – 17.9 190.6 – –
Avg. 3000.0 1011.1 100 35.1 358.5 32.65 403.7

(a) Uniform capacity problems.

Capacity n #Edges CPLEX CMSA++ BARRAKUDA

q t g q t gap (%) q t gap (%)

S 60 308 30.5 50.8 565.4 – – 49.3 690.3 – –
[1, α] 1000 M 1000 1000.8 100 20.5 438.7 – – 20.0 444.1 – –

L 1000 1001 100 12.9 252.9 – – 12.8 294.6 – –

S 5000 1018.2 100 84.4 481.2 – – 72.3 700.0 – –
[1, α] 5000 M 5000 1022.6 100 31.8 635.8 – – 28.8 197.5 – –

L 5000 1025.6 100 20.2 236.5 – – 18.0 171.6 – –
Avg. 2843.3 896.0 88.4 36.8 435.1 33.5 416.3

(b) Variable capacity problems.

Table 10. Experimental results for the random geometric graphs from the new set of large
problem instances.

Capacity n #Edges CPLEX CMSA++ BARRAKUDA

q t g q t gap (%) q t gap (%)

S 22.7 287.8 10.1 22.1 200.3 0.9 b 22.2 357.2 1.4 b

α 1000 M 10.6 689.3 11.9 9.0 14.0 0.0 b 9.0 91.8 0.0 b

L 10.1 449.4 41.0 4.9 69.0 4.3 b 5.0 8.6 6.4 b

S 4084.9 1018.8 100 26.5 720.3 – – 27.5 736.3 – –
α 5000 M 3926.0 1022.1 100 10.0 298.8 11.1 b 9.1 690.3 1.1 b

L 5000 1032.2 100 5.2 350.6 16.0 b 5.0 477.1 0.0 b

Avg. 2175.7 749.9 60.5 13.0 275.5 13.0 393.6
(a) Uniform capacity problems.

Capacity n #Edges CPLEX CMSA++ BARRAKUDA

q t g q t gap (%) q t gap (%)

S 26.7 321.2 16.7 24.5 225.6 12.4 b 24.5 452.7 12.4 b

[1, α] 1000 M 334.5 875.9 81.7 9.0 120.6 0.0 b 9.0 55.3 0.0 b

L 958.6 951.9 100 7.2 7.3 44.0 b 5.0 51.6 0.0 b

S 5000 1018.2 100 29.4 646.6 – – 32.0 818.5 – –
[1, α] 5000 M 5000 1022.6 100 10.5 598.8 16.7 b 10.8 1229.9 20.0 b

L 5000 1025.6 100 5.8 551.9 16.0 b 5.0 1138.2 0.0 b

Avg. 2720.0 869.2 83.1 14.4 358.5 14.4 624.4
(b) Variable capacity problems.

Mathematics 2020, 8, 1858 23 of 26

1 2 3

(a) All instances from the literature.

1 2 3

(b) Uniform capacity graphs, low capacities.

1 2 3

(c) Variable capacity graphs, low capacities.

1 2 3

(d) Uniform capacity graphs, med. capacities.

1 2 3

(e) Variable capacity graphs, med. capacities.

1 2 3

(f) Uniform capacity graphs, high capacities.

1 2 3

(g) Variable capacity graphs, high capacities.

Figure 4. Critical difference plots concerning the problem instances from the literature.

1 2 3

(a) All instances from this set.

1 2 3

(b) Random graph instances.

1 2 3

(c) Random geometric graph instances.

Figure 5. Critical difference plots concerning the challenging large problem instances.

Mathematics 2020, 8, 1858 24 of 26

5. Conclusions and Future Work

In this paper we dealt with an NP-hard variant of the family of dominating set
problems—the so-called minimum capacitated dominating set problem. Two algorithms were proposed
to tackle this problem. The first one is an extended version of construct, merge, solved and adapt,
of which a preliminary version was already published [11]. The aim of our extensions was to make the
algorithm more robust with respect to the parameter value settings. The second algorithm that was
proposed is a hybrid between a biased random key genetic algorithm and an exact solver. This solver
was labeled BARRAKUDA. The main idea of Barrakuda is to use, at each iteration, the current population
of individuals in order to generate a sub-instance of the tackled problem instances. This sub-instance
is then solved by the exact solver (CPLEX) and the resulting solution is transformed into an individual
and fed back into the population. The experimental results showed that both algorithms clearly
outperform LS_PD, the currently best approach from the literature in the context of already published
benchmark instances. However, the results also showed that these instances are not really a challenge
for our algorithms. Therefore, we generated a new set of larger and more challenging benchmark
instances. BARRAKUDA clearly outperformed the extended version of construct, merge, solve and
adapt, especially in the context of general random graphs. In contrast, the performance of the two
algorithms was shown to be quite similar for random geometric graphs.

Concerning future work, we want to study the reasons why BARRAKUDA performs (in relation
to construct, merge and adapt) much better for general random graphs, while this difference
does not show for random geometric graphs. Moreover, we believe that BARRAKUDA-type
algorithms—that is, hybrid algorithms that (1) take profit from an exact solver and (2) incorporate a
learning component—can be very successful for other types of combinatorial optimization problems,
and this is something that we would like to study.

Author Contributions: Both authors contributed equally in all aspects of this research. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by project CI-SUSTAIN funded by the Spanish Ministry of Science and
Innovation (PID2019-104156GB-I00).

Acknowledgments: We acknowledge administrative and technical support by the Spanish National Research
Council (CSIC) and the Universidad de Concepción, Chile.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Yu, J.Y.; Chong, P.H.J. A survey of clustering schemes for mobile ad hoc networks. IEEE Commun. Surv. Tutor.
2005, 7, 32–48. [CrossRef]

2. Rajaraman, R. Topology control and routing in ad hoc networks: A survey. ACM SIGACT News
2002, 33, 60–73. [CrossRef]

3. Moscibroda, T. Clustering. In Algorithms for Sensor and Ad Hoc Networks: Advanced Lectures; Wagner, D.,
Wattenhofer, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 37–61.

4. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness;
W. H. Freeman & Co.: New York, NY, USA, 1979.

5. Cygan, M.; Pilipczuk, M.; Wojtaszczyk, J.O. Capacitated Domination Faster Than O(2n). In Algorithm
Theory-SWAT 2010; Lecture Notes in Computer Science; Kaplan, H., Ed.; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 74–80.

6. Liedloff, M.; Todinca, I.; Villanger, Y. Solving Capacitated Dominating Set by Using Covering by Subsets and
Maximum Matching. In Graph Theoretic Concepts in Computer Science; Lecture Notes in Computer Science
Thilikos, D.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 88–99.

7. Kuhn, F.; Moscibroda, T. Distributed approximation of capacitated dominating sets. Theory Comput. Syst.
2010, 47, 811–836. [CrossRef]

http://dx.doi.org/10.1109/COMST.2005.1423333
http://dx.doi.org/10.1145/564585.564602
http://dx.doi.org/10.1007/s00224-010-9271-x

Mathematics 2020, 8, 1858 25 of 26

8. Potluri, A.; Singh, A. A Greedy Heuristic and Its Variants for Minimum Capacitated Dominating Set.
In Contemporary Computing; Communications in Computer and Information Science; Parashar, M.E.T., Ed.;
Springer: Berlin/Heidelberg, Germany, 2012; pp. 28–39.

9. Potluri, A.; Singh, A. Metaheuristic algorithms for computing capacitated dominating set with uniform and
variable capacities. Swarm Evol. Comput. 2013, 13, 22–33. [CrossRef]

10. Li, R.; Hu, S.; Zhao, P.; Zhou, Y.; Yin, M. A novel local search algorithm for the minimum capacitated
dominating set. J. Oper. Res. Soc. 2018, 69, 849–863. [CrossRef]

11. Pinacho-Davidson, P.; Bouamama, S.; Blum, C. Application of CMSA to the Minimum Capacitated
Dominating Set Problem. In Proceedings of the Genetic and Evolutionary Computation Conference;
ACM: New York, NY, USA, 2019; pp. 321–328. [CrossRef]

12. Li, R.; Hu, S.; Liu, H.; Li, R.; Ouyang, D.; Yin, M. Multi-Start Local Search Algorithm for the Minimum
Connected Dominating Set Problems. Mathematics 2019, 7, 1173. [CrossRef]

13. Li, B.; Zhang, X.; Cai, S.; Lin, J.; Wang, Y.; Blum, C. NuCDS: An Efficient Local Search Algorithm for
Minimum Connected Dominating Set. In Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence IJCAI-20, Yokohama, Japan, 11–17 July 2020; Bessiere, C., Ed.; International Joint
Conferences on Artificial Intelligence Organization: Irvine, CA, USA, 2020; pp. 1503–1510.

14. Bouamama, S.; Blum, C.; Fages, J.G. An algorithm based on ant colony optimization for the minimum
connected dominating set problem. Appl. Soft Comput. 2019, 80, 672–686. [CrossRef]

15. Wang, Y.; Li, C.; Yin, M. A two phase removing algorithm for minimum independent dominating set
problem. Appl. Soft Comput. 2020, 88, 105949. [CrossRef]

16. Wang, Y.; Chen, J.; Sun, H.; Yin, M. A memetic algorithm for minimum independent dominating set problem.
Neural Comput. Appl. 2018, 30, 2519–2529. [CrossRef]

17. Wang, Y.; Pan, S.; Li, C.; Yin, M. A local search algorithm with reinforcement learning based repair procedure
for minimum weight independent dominating set. Inf. Sci. 2020, 512, 533–548. [CrossRef]

18. Zhou, Y.; Li, J.; Liu, Y.; Lv, S.; Lai, Y.; Wang, J. Improved Memetic Algorithm for Solving the Minimum
Weight Vertex Independent Dominating Set. Mathematics 2020, 8, 1155. [CrossRef]

19. Yuan, F.; Li, C.; Gao, X.; Yin, M.; Wang, Y. A novel hybrid algorithm for minimum total dominating set
problem. Mathematics 2019, 7, 222. [CrossRef]

20. Cornejo Acosta, J.A.; García Díaz, J.; Menchaca-Méndez, R.; Menchaca-Méndez, R. Solving the Capacitated
Vertex K-Center Problem through the Minimum Capacitated Dominating Set Problem. Mathematics
2020, 8, 1551. [CrossRef]

21. Conejo, A.J.; Castillo, E.; Minguez, R.; Garcia-Bertrand, R. Decomposition Techniques in Mathematical Programming:
Engineering and Science Applications; Springer Science & Business Media: New York, NY, USA, 2006.

22. Boschetti, M.A.; Maniezzo, V.; Roffilli, M.; Bolufé Röhler, A. Matheuristics: Optimization, Simulation and
Control. In Proceedings of HM 2009—6th International Workshop on Hybrid Metaheuristics; Lecture Notes
in Computer Science; Blesa, M.J., Blum, C., Di Gaspero, L., Roli, A., Sampels, M., Schaerf, A., Eds.;
Springer: Berlin/Heidelberg, Germany, 2009; pp. 171–177.

23. Pisinger, D.; Røpke, S. Large Neighborhood Search. In Handbook of Metaheuristics; International Series in
Operations Research & Management Science; Gendreau, M., Potvin, J.Y., Eds.; Springer: New York, NY, USA,
2010; pp. 399–419.

24. Ahuja, R.K.; Orlin, J.B.; Sharma, D. Very large-scale neighborhood search. Int. Trans. Oper. Res.
2000, 7, 301–317. [CrossRef]

25. Schrimpf, G.; Schneider, J.; Stamm-Wilbrandt, H.; Dueck, G. Record breaking optimization results using the
ruin and recreate principle. J. Comput. Phys. 2000, 159, 139–171. [CrossRef]

26. Fischetti, M.; Lodi, A. Local branching. Math. Program. 2003, 98, 23–47. [CrossRef]
27. Caserta, M.; Voß, S. A corridor method based hybrid algorithm for redundancy allocation. J. Heuristics

2016, 22, 405–429. [CrossRef]
28. Lalla-Ruiz, E.; Voß, S. POPMUSIC as a matheuristic for the berth allocation problem. Ann. Math. Artif. Intell.

2016, 76, 173–189. [CrossRef]
29. Blum, C.; Pinacho, P.; López-Ibánez, M.; Lozano, J.A. Construct, Merge, Solve & Adapt: A new general

algorithm for combinatorial optimization. Comput. Oper. Res. 2016, 68, 75–88. [CrossRef]
30. Blum, C.; Raidl, G.R. Hybrid Metaheuristics, Powerful Tools for Optimization; Springer International Publishing:

Cham, Switzerland, 2016.

http://dx.doi.org/10.1016/j.swevo.2013.06.002
http://dx.doi.org/10.1057/s41274-017-0268-6
http://dx.doi.org/10.1145/3321707.3321807
http://dx.doi.org/10.3390/math7121173
http://dx.doi.org/10.1016/j.asoc.2019.04.028
http://dx.doi.org/10.1016/j.asoc.2019.105949
http://dx.doi.org/10.1007/s00521-016-2813-7
http://dx.doi.org/10.1016/j.ins.2019.09.059
http://dx.doi.org/10.3390/math8071155
http://dx.doi.org/10.3390/math7030222
http://dx.doi.org/10.3390/math8091551
http://dx.doi.org/10.1111/j.1475-3995.2000.tb00201.x
http://dx.doi.org/10.1006/jcph.1999.6413
http://dx.doi.org/10.1007/s10107-003-0395-5
http://dx.doi.org/10.1007/s10732-014-9265-y
http://dx.doi.org/10.1007/s10472-014-9444-4
http://dx.doi.org/10.1016/j.cor.2015.10.014

Mathematics 2020, 8, 1858 26 of 26

31. Gonçalves, J.F.; Resende, M.G.C. Biased random-key genetic algorithms for combinatorial optimization.
J. Heuristics 2011, 17, 487–525. [CrossRef]

32. Blum, C.; Gambini Santos, H. Generic CP-Supported CMSA for Binary Integer Linear Programs.
In Hybrid Metaheuristics; Blesa Aguilera, M.J., Blum, C., Gambini Santos, H., Pinacho-Davidson, P.,
Godoy del Campo, J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–15.

33. Mastrogiovanni, M. The Clustering Simulation Framework: A Simple Manual. 2007. Available
online: https://www.researchgate.net/publication/265429652_The_Clustering_Simulation_Framework_
A_Simple_Manual (accessed on 11 March 2020).

34. Shyu, S.J.; Yin, P.Y.; Lin, B.M. An ant colony optimization algorithm for the minimum weight vertex cover
problem. Ann. Oper. Res. 2004, 131, 283–304. [CrossRef]

35. López-Ibánez, M.; Dubois-Lacoste, J.; Cáceres, L.P.; Birattari, M.; Stützle, T. The irace package: Iterated
racing for automatic algorithm configuration. Oper. Res. Perspect. 2016, 3, 43–58. [CrossRef]

36. García, S.; Herrera, F. An Extension on “Statistical Comparisons of Classifiers over Multiple Data Sets” for all
Pairwise Comparisons. J. Mach. Learn. Res. 2008, 9, 2677–2694.

37. Calvo, B.; Santafé, G. Scmamp: Statistical Comparison of Multiple Algorithms in Multiple Problems. R J.
2016, 8, 2073–4859. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10732-010-9143-1
https://www.researchgate.net/publication/265429652_The_Clustering_Simulation_Framework_A_Simple_Manual
https://www.researchgate.net/publication/265429652_The_Clustering_Simulation_Framework_A_Simple_Manual
http://dx.doi.org/10.1023/B:ANOR.0000039523.95673.33
http://dx.doi.org/10.1016/j.orp.2016.09.002
http://dx.doi.org/10.32614/RJ-2016-017
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review for the CapMDS Problem
	Literature Review on Related Problems
	Literature Review on Similar Techniques
	Organization of The Paper

	The Capmds Problem
	Proposed Algorithms
	Cmsa++: An Extension of Cmsa
	Barrakuda: A Hybrid of Brkga with an ILp Solver
	Main Algorithmic Framework
	Evaluation of an Individual
	From Brkga to Barrakuda

	Experimental Evaluation
	Benchmark Instances
	Tuning Process
	Results

	References

