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Barren plateaus in quantum neural network training
landscapes
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Many experimental proposals for noisy intermediate scale quantum devices involve training a

parameterized quantum circuit with a classical optimization loop. Such hybrid quantum-

classical algorithms are popular for applications in quantum simulation, optimization, and

machine learning. Due to its simplicity and hardware efficiency, random circuits are often

proposed as initial guesses for exploring the space of quantum states. We show that the

exponential dimension of Hilbert space and the gradient estimation complexity make this

choice unsuitable for hybrid quantum-classical algorithms run on more than a few qubits.

Specifically, we show that for a wide class of reasonable parameterized quantum circuits, the

probability that the gradient along any reasonable direction is non-zero to some fixed pre-

cision is exponentially small as a function of the number of qubits. We argue that this is

related to the 2-design characteristic of random circuits, and that solutions to this problem

must be studied.

DOI: 10.1038/s41467-018-07090-4 OPEN

1 Google Inc., 340 Main Street, Venice, CA 90291, USA. Correspondence and requests for materials should be addressed to
J.R.M. (email: jmcclean@google.com) or to S.B. (email: boixo@google.com) or to V.N.S. (email: smelyan@google.com)

NATURE COMMUNICATIONS |          (2018) 9:4812 | DOI: 10.1038/s41467-018-07090-4 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-1090-7584
http://orcid.org/0000-0002-1090-7584
http://orcid.org/0000-0002-1090-7584
http://orcid.org/0000-0002-1090-7584
http://orcid.org/0000-0002-1090-7584
mailto:jmcclean@google.com
mailto:boixo@google.com
mailto:smelyan@google.com
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Rapid developments in quantum hardware have motivated
advances in algorithms to run in the so-called noisy
intermediate scale quantum (NISQ) regime1. Many of the

most promising application-oriented approaches are hybrid
quantum–classical algorithms that rely on optimization of a
parameterized quantum circuit2–8. The resilience of these
approaches to certain types of errors and high flexibility with
respect to coherence time and gate requirements make them
especially attractive for NISQ implementations3,9–11.

The first implementation of such algorithms was developed in
the context of quantum simulation with the variational quantum
eigensolver2,3. This algorithm has been successfully demonstrated
on a number of experimental setups with extensions to excited
states and other forms of incoherent error mitigation2,9,12–16.
Since then, the quantum approximate optimization algorithm was
developed in a similar context to address hard optimization
problems5,17–19. This algorithm has also been demonstrated on
quantum devices20. These approaches have even been extended to
both quantum machine learning and error correction6,7,20–23.

While the precise formulation of these methods and their
domains of applicability differ considerably, they typically tend to
rely upon the optimization of some parameterized unitary circuit
with respect to an objective function that is typically a simple sum
of Pauli operators or fidelity with respect to some state. This
framework is reminiscent of the methodology of classical neural
networks23,24. As with any non-linear optimization, the choice of
both the parameterization and the initial state is important. In
quantum simulation, there is often a choice inspired by physical
domain knowledge3,17,25–29. However, in all domains of applic-
ability, there have been implementations that utilize parametrized
random circuits of varying depth7,13,21,23,30. Within quantum
simulation that approach has been referred to as a “hardware
efficient ansatz”13. This is in contrast to the previous proposals,
such as the variational quantum eigensolver2,3,9, which used
parametrized structured circuits inspired by the problem at hand,
such as unitary coupled cluster.

When little structure is known about the problem, or constraints
of the existing quantum hardware may prevent utilizing that
structure, choosing a random implementable circuit seems to pro-
vide an unbiased choice. One might also expect, based on recent
experimental designs for “quantum supremacy”, that random
quantum circuits are a powerful tool for such a task31. Also, despite
concerns about gradient-based methods in classical deep neural
networks32–34, they are successful24, even if using random

initialization33,35. However, in the quantum case one must
remember that the estimation of even a single gradient component
will scale as O(1/εα) for some small power α36 as opposed to
classical implementations where the same is achieved in O(log(1/ε))
time, where ε is the desired accuracy in the gradient that is inevi-
tably tied to its magnitude.

We will present results related to random quantum circuits in
the context of the exponential dimension of Hilbert space and
gradient-based hybrid quantum–classical algorithms. A cartoon
depiction of this is given in Fig. 1. We show that for a large class
of random circuits, the average value of the gradient of the
objective function is zero, and the probability that any given
instance of such a random circuit deviates from this average value
by a small constant ε is exponentially small in the number of
qubits. This can be understood in the geometric context of con-
centration of measure37–39 for high-dimensional spaces. When
the measure of the space concentrates in this way, the value of any
reasonably smooth function will tend towards its average with
exponential probability, a fact made formal by Levy’s lemma40. In
our context, this means that the gradient is zero over vast reaches
of quantum space. The region where the gradient is zero does not
correspond to local minima of interest, but rather an exponen-
tially large plateau of states that have exponentially small devia-
tions in the objective value from the average of the totally mixed
state. We argue that the depth of circuits which achieve these
undesirable properties are modest, requiring only O(n1/d) depth
circuits on a d dimensional array, and numerically evaluate the
constant factors one expects to encounter for small instances of
this kind. While our results highlight the importance of avoiding
random initialization in parametric circuit approaches, they do
not discount the value of random quantum circuits in other
applications such as information security or demonstrations of
quantum supremacy. We close with an outlook on how this result
should shape strategies in ansatz design for scaling to larger
experiments.

Results
Gradient concentration in random circuits. We will discuss
random parameterized quantum circuits (RPQCs)

UðθÞ ¼ Uðθ1; :::; θLÞ ¼
YL
l¼1

UlðθlÞWl; ð1Þ

where Ul(θl)= exp(−iθlVl), Vl is a Hermitian operator, and Wl is
a generic unitary operator that does not depend on any angle θl.
Circuits of this form are a natural choice due to a straightforward
evaluation of the gradient with respect to most objective functions
and have been introduced in a number of contexts already26,41.
Consider an objective function E(θ) expressed as the expectation
value over some Hermitian operator H,

EðθÞ ¼ h0jUðθÞyHUðθÞj0i: ð2Þ

When the RPQCs are parameterized in this way, the gradient
of the objective function takes a simple form:

∂kE � ∂EðθÞ
∂θk

¼ i 0 Uy
� Vk;U

y
þHUþ

h i
U�

��� ���0D E
; ð3Þ

where we introduce the notations U� � Qk�1
l¼0 UlðθlÞWl ,

Uþ � QL
l¼k UlðθlÞWl , and henceforth drop the subscript k from

Vk →V for ease of exposition. Finally, we will define our RPQCs U
(θ) to have the property that for any gradient direction ∂kE
defined above, the circuit implementing U(θ) is sufficiently
random such that either U−, U+, or both match the Haar

x

f (x )

U(θ)

�<f >

Fig. 1 Cartoon of concentration of quantum observables. The sphere depicts
the phenomenon of concentration of measure in quantum space: the
fraction of states that fall outside a fixed angular distance from zero along
any coordinate decreases exponentially in the number of qubits40. This
implies a flat plateau where observables concentrate on their average over
Hilbert space and the gradient is exponentially small. The fact that only an
exponentially small fraction of states fall outside of this band means that
searches resembling random walks will have an exponentially small
probability of exiting this “barren plateau”
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distribution up to the second moment, and the circuits U− and
U+ are independent.

Our results make use of properties of the Haar measure on the
unitary group dμHaar(U)≡ dμ(U), which is the unique left- and
right-invariant measure such thatZ

UðNÞ
dμðUÞf ðUÞ ¼

Z
dμðUÞf ðVUÞ ¼

Z
dμðUÞf ðUVÞ; ð4Þ

for any f(U) and V∈U(N), where the integration domain will be
implied to be U(N) when not explicitly listed. While this property
is valuable for proofs, quantum circuits that exactly achieve this
invariance generically require exponential resources. This moti-
vates the concept of unitary t-designs42–44, which satisfy the
above properties for restricted classes of f(U), often requiring only
modest polynomial resources. Suppose {pi, Vi} is an ensemble of
unitary operators, with unitary Vi being sampled with probability
pi. The ensemble {pi, Vi} is a t-design ifX

i

piV
�t
i ρðVy

i Þ�t ¼
Z

dμðUÞU�tρðUyÞ�t : ð5Þ

This definition is equivalent to the property that if f(U) is a
polynomial of at most degree t in the matrix elements of U and at
most degree t in the matrix elements of U*, then averaging over
the t-design {pi, Vi} will yield the same result as averaging over the
unitary group with the respect to the Haar measure.

The average value of the gradient is a concept that requires
additional specification because, for a given point, the gradient
can only be defined in terms of the circuit that led to that point.
We will use a practical definition that leads to the value we are
interested in, namely

h∂kEi ¼
Z

dUpðUÞ∂kh0jUðθÞyHUðθÞj0i; ð6Þ

where p(U) is the probability distribution function of U. A review
on the properties of products of independent random matrices
can be found in ref.45. The assumptions of independence and at
least one of U− or U+ forming a 1-design in our RPQCs implies
that 〈∂kE〉= 0, as shown in the Methods.

Levy’s lemma informs our intuition about the the expected
variance of this quantity through simple geometric arguments. In
particular, Haar random unitaries on n qubits will output states

uniformly in the D= 2n− 1 dimensional hypersphere. The
derivative with respect to the parameters θ is Lipschitz
continuous with some parameter η that depends on the operator
H. Levy’s lemma then implies that the variance of measurements
will decrease exponentially in the number of qubits. This intuition
may be made more precise through explicit calculation of the
variance, which is done in more detail in the Methods. The result
to first order is

Var ∂kE½ � �
� Tr ρ2ð Þ

22n�1ð ÞTr V ; uyHu
� �2D E

Uþ

� Tr H2ð Þ
22n�1ð ÞTr V ; uρuy

� �2D E
U�

1
2 3n�1ð Þ Tr H2ð ÞTr ρ2ð ÞTr V2ð Þ

8>>>><
>>>>:

ð7Þ

where the notation hf ðuÞiUx
indicates the average with u drawn

from p(Ux), and the first case corresponds to U− being a 2-design
and not U+, the second to U+ being a 2-design but not U−, and
the third to both U+ and U− being 2-designs. We emphasize the
fact that this variance depends at most on polynomials of degree 2
in U and polynomials of degree 2 in U*. Whereas a unitary 2-
design will exhibit the correct variance43,46, a unitary 1-design
will exhibit the correct average value, but not necessarily the
variance. As a result, if a circuit is of sufficient depth that for any
∂kE, either U− or U+ forms a 2-design, then with high probability
one will produce an ansatz state on a barren plateau of the
quantum landscape, with no interesting search directions in sight.

From these results, it is clear that only either U+ or U− needs
to be sufficiently random to poison the gradient for the remainder
of the circuit. For example, while it is somewhat unintuitive, even
the first element of a circuit, k= 1, will have a vanishing gradient
due to the circuit following it, U+. Additionally, we see that there
is no detailed dependence on the structure of Vk, other than the
rate at which they help randomize the circuit, determining at
what depth one expects to find an approximate 2-design.

Numerical simulations. The previous section shows that for
reasonable classes of RPQCs at a sufficient number of qubits and
depth, one will end up on a barren plateau. Here we verify this
result for even modest depth one-dimensional (1D) random
circuits with numerical simulations. This helps to clarify the rate
of concentration for realistic circuits and shows the transition as
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Fig. 2 Structure of quantum circuits. a The generic subunit of circuits we study in this work, with a parameterized component Ul(θl) and non-parameterized
unitWl for each layer l. b Example schematic of the 1D random circuits used in our numerical experiments. The circuit begins with RY

π
4

� �
gates applied to all

qubits followed by a specified number of layers of randomly chosen Pauli rotations applied to each qubit and then a 1D ladder of controlled Z gates. The
initial RY

π
4

� �
gates are not repeated in each layer. The indices i and j in θi,j index the layer and qubit, respectively. For each layer and qub it Pi,j ∈ {X, Y, Z}

and θi,j∈[0,2π) are sampled independently
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the circuit grows in length from a single layer to a circuit
demonstrating statistics analogous to a 2-design.

The circuits and objective functions used in our numerical
experiments begin with a layer of RY(π/4)= exp(−iπ/8 Y) gates to
prevent X, Y, or Z from being an especially preferential direction
with respect to gradients. Then, the circuit proceeds by a number
of layers. Each layer consists of a parallel application of single
qubit rotations to all qubits, given by RP(θ) where P∈{X, Y, Z} is
chosen with uniform probability and θ∈[0, 2π) is also chosen
uniformly. This layer is followed by a layer of 1D nearest
neighbor controlled phase gates, as in Fig. 2. Thus, the number of
angles is the number of qubits times the number of layers.

The objective operator H is chosen to be a single Pauli ZZ
operator acting on the first and second qubits, H= Z1Z2. The
gradient is evaluated with respect to the first parameter, θ1,1. This
simple choice helps to extract the exponential scaling. As complex
objectives can be written as sums of these operators, the results
for large objectives can be inferred from these numbers.
Moreover, it is clear that for any polynomial sum of these
operators, the exponential decay of the signal in the gradient will
not be circumvented.

From Fig. 3 we see that for a single 2-local Pauli term, both the
expected value of the gradient and its spread decay exponentially
as a function of the number of qubits even when the number of
layers is a modest linear function. Empirically for our linear
connectivity, we see that value is about 10n where n is the number
of qubits, following the expected scaling of O(n1/d) where d is the
dimension of the connectivity. For empirical reference, the
expected gate depth in a chemistry ansatz such as unitary coupled
cluster is at least O(n3), meaning that if the initial parameters
were randomized, this effect could be expected on less than 10
orbitals, a truly small problem in chemical terms. We also observe
in Fig. 4 that as the number of layers increases, there is a
transition to a 2-design where the variance converges. This leads

to a distinct plateau as the circuit length increases, where the
height of the plateau is determined by the number of qubits. An
additional example with an objective function defined by
projection on a target state is provided as Supplementary
Figures 1 and 2, showing the rapid decay of variance and similar
plateaus as a function of circuit length. These results substantiate
our conclusion that gradients in modest-sized random circuits
tend to vanish without additional mitigating steps.

Contrast with gradients in classical deep networks. Finally, we
contrast our results with the vanishing (and exploding) gradient
problem of classical deep neural networks32–34,47. At least two
key differences are present in the quantum case: (i) the different
scaling of the vanishing gradient and (ii) the complexity of
computing expected values.

The gradient in a classical deep neural network can vanish
exponentially in the number of layers32,33, while in a quantum
circuit the gradient may vanish exponentially in the number of
qubits, as shown above. In the classical case, the gradient for a
weight in a neuron depends on the sum of all the paths
connecting that neuron to the output, and when the weights are
initialized with random values the paths have random signs
which cancels the signal32. The number of paths is exponential in
the number of layers. In the quantum case, the number of paths is
exponential in the number of gates, and also have random
signs31. The gradient saturates to an exponential in the number of
qubits because the output state is normalized.

The estimation of the gradient for each training batch for a
classical neural network is limited by machine precision and
scales with O(log(1/ε)). Even if the gradient is small, as long as it
is consistent enough between batches, the method may eventually
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predicted, an exponential decay is observed as a function of the number of
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is indicative of the rate of exponential decay as determined by the operator
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Fig. 4 Convergence to 2-design limit. Here we show the sample variance of
the gradient of the energy for the first circuit component of a two-local
Pauli term ∂θ1;1E
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plotted as a function of the number of layers, L, in a 1D

quantum circuit. The different lines correspond to all even numbers of
qubits between 2 and 24, with 2 qubits being the top line, and the rest
being ordered by qubit number. The dotted black lines depict the 2-design
asymptotes for this Hamiltonian as determined by our analytic results. This
shows the convergence of the second moment as a function of the number
of layers to a fixed value determined by the number of qubits
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succeed. On a quantum device, the cost of estimating the gradient
scales as O(1/εα)36. For any number of measurements much lower
than 1/||g||α, where ||g|| is the norm of the gradient, a gradient-
based optimization will result in a random walk. By concentration
of measure, a random walk will have exponentially small
probability of exiting the barren plateau. As a result, gradient
descent without some additional strategy cannot circumvent this
challenge on a quantum device in polynomial time.

Discussion
We have seen both analytically and numerically that for a wide
class of random quantum circuits, the expected values of obser-
vables concentrate to their averages over Hilbert space and gra-
dients concentrate to zero. This represents an interesting
statement about the geometry of quantum circuits and landscapes
related to hybrid quantum–classical algorithms. More practically,
it means that randomly initialized circuits of sufficient depth will
find relatively little utility in hybrid quantum–classical
algorithms.

Historically, vanishing gradients may have played a role in the
early winter of deep neural networks32,34,47. However, multiple
techniques have been proposed to mitigate this problem24,35,48,49,
and the amount of training data and computational power
available has grown substantially. One approach to avoid these
landscapes in the quantum setting is to use structured initial
guesses, such as those adopted in quantum simulation. Another
possibility is to use pre-training segment by segment, which was
an early success in the classical setting48,50. These or other
alternatives must be studied if these ansatze are to be successful
beyond a few qubits.

Methods
We explicitly show the expectation value of the gradient is 0 and that under our
assumptions the variance decays exponentially in the number of qubits. By our
definition of RPQCs, we have that for any specified direction ∂kE, both U− and U+
are independently distributed and either U− or U+ match the Haar distribution up
to at least the second moment (they are a 2-design). The assumption of inde-
pendence is equivalent to

pðUÞ ¼ R
dUþpðUþÞ

R
dU�pðU�Þ

´ δðUþU� � UÞ; ð8Þ

which allows us to rewrite the expression as

h∂kEi ¼ i
Z

dU�pðU�ÞTr ρ� ´
Z

dUþpðUþÞ V;Uy
þHUþ

h i	 

: ð9Þ

We will utilize explicit integration over the unitary group with respect to the
Haar measure, which up to the first moment can be expressed as51

Z
dμðUÞUijU

y
km ¼

Z
dμðUÞUijU

�
mk ¼

δimδjk
N

; ð10Þ

where N is the dimension of the space, typically 2n for n qubits. Using this
expression, one may readily verify that

M ¼
Z

dμðUÞUOUy ¼ TrO
N

I; ð11Þ

which we use in the following. Now, making use of the assumption that either U+
or U− matches the Haar measure up to the first moment (it is a 1-design), we first
examine the case where U− is at least a 1-design and find that

h∂kEi ¼ i
R
dμ U�ð ÞTr ρ� ´ V ;

R
dUþpðUþÞUy

þHUþ
h in o

¼ i
N Tr V;

R
dUþpðUþÞUy

þHUþ
h in o

¼ 0

; ð12Þ

where we have defined ρ� ¼ U�j0ih0jUy
� and used the fact that the trace of a

commutator of trace class operators is zero. In the second case, where we assume

U+ is at least a 1-design,

h∂kEi ¼ i
R
dU�pðU�ÞTr ρ�

R
dμ Uþ

� �
V ;Uy

þHUþ
h in o

¼ i TrHN
R
dU�pðU�ÞTr ρ� V ; I½ �� �

¼ 0:

ð13Þ

An advantage of the explicit polynomial formulas are that they allow an analytic
calculation of the variance as well, which allows precise specification of the coef-
ficient in Levy’s lemma. In cases where the integrals depend on up to two powers of
elements of U and U*, one may make use of the elementwise formula51

R
dμðUÞUi1 j1

Ui2 j2
U�
i′1 j

′
1
U�
i′2 j

′
2
¼

δi1 i′1
δi2 i′2

δj1 j′1
δj2 j′2

þδi1 i′2
δi2 i′1

δj1 j′2
δj2 j′1

N2�1

�
δi1 i′1

δi2 i′2
δj1 j′2

δj2 j′1
þδi1 i′2

δi2 i′1
δj1 j′1

δj2 j′2
NðN2�1Þ

: ð14Þ

The variance of the gradient is defined by

Var½∂kE� ¼ hð∂kEÞ2i; ð15Þ

as we have seen above that 〈∂kE〉= 0. Through use of the above formula for
integration up to the second moment of the Haar distribution, one may evaluate
this expression in 3 separate cases. For simplicity and relevance, we evaluate them
in the asymptotic case including only the dominant contribution as determined by
the inverse dimension.

In the case where U− is a 2-design but not U+,

Var½∂kE� �
2Trðρ2Þ
N2 � 1

Tr H2
uV

2 � ðHuVÞ2 �
Uþ

¼ � Trðρ2Þ
22n � 1

Tr V;Hu½ �2 �
Uþ

; ð16Þ

where Hu ¼ uyHu and we have defined the notation hf ðuÞiUx
to mean the average

over u sampled from p(Ux). In the case where U+ is a 2-design but not U−,

Var½∂kE� �
2TrðH2Þ
N2 � 1

Tr ρ2uV
2 � ðρuVÞ2

 �
U�

¼ �TrðH2Þ
22n � 1

Tr V ; ρu
� �2D E

U�
; ð17Þ

where ρu ¼ uρuy . Finally in the case where both U+ and U− are 2-designs

Var½∂kE� �
1

2ð3n�1Þ Tr H2
� �

Tr ρ2
� �

Tr V2
� �

: ð18Þ

In all cases, the exponential decay of the gradient as a function of the number of
qubits is evident.

Data availability
Data used to generate the above figures are available upon request from the
authors.
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