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Abstract—Barrier coverage is a critical issue in wireless sensor
networks for security applications (e.g., border protection) where
directional sensors (e.g., cameras) are becoming more popular
and advantageous than omni-directional scalar sensors for the
extra dimensional information they provide. However, barrier
coverage can not be guaranteed after initial random deployment
of sensors, especially for directional sensors with limited sensing
angles. In this paper, we study how to efficiently achieve barrier
coverage in hybrid directional sensor networks by moving mobile
sensors to fill in gaps and form a barrier with stationary sensors.
In specific, we introduce the notion of directional barrier graph to
model the barrier coverage formation problem. We prove that the
minimum number of mobile sensors required to form a barrier
with stationary sensors is the length of the shortest path from
the source node to the destination node on the directional barrier
graph. We then formulate the problem of minimizing the cost
of moving mobile sensors to fill in the gaps on the shortest path
as a minimum cost bipartite assignment problem, and solve it in
polynomial time using the Hungarian algorithm. Both analytical
and experimental studies demonstrate the effectiveness of the
proposed algorithm.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been widely used as

an effective surveillance tool for security applications, such as

battlefield surveillance, border protection, and airport intruder

detection. To detect intruders who penetrate the regions of

interest (ROI), we need to deploy a set of sensor nodes

that can provide coverage of the ROI, a problem that is

often referred to as barrier coverage [11], where sensors

form barriers for intruders. When only stationary sensors are

used, however, after the initial random or manual deployment,

it is possible that sensors could not form a barrier due to

gaps in their coverage, which would allow intruders to cross

the ROI without being detected. In fact, it is difficult if

possible at all to improve barrier coverage for sensor networks

consisting of only stationary sensors. Fortunately, with recent

technical advances, practical mobile sensors (e.g., Robomote

[6], Packbot [18]) have been developed, which provides us

a way to improve barrier coverage performance after sensor

networks have been deployed.

Directional sensors (e.g., camera, radar) have been widely

used for security applications. For example, the FREEDOM

system [1], deployed on the border between Mexico and

United States, uses cameras to detect illegal intruders (e.g.,

drug dealers and illegal immigrants). The SBInet project

[2] uses cameras, radar, and ground sensors to construct a
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Fig. 1. An example of a strong barrier formation for hybrid directional sensor
networks. Mobile sensors 1 and 2 fill in the gaps between stationary sensors
and form a strong barrier for the ROI.

virtual fence to detect illegal intruders. Different from omni-

directional scalar sensors, although directional sensors provide

extra dimensional information, they usually have limited angle

of views and facing directions, which therefore decrease the

probability of barrier formation after initial random deploy-

ment.

In this paper, we study the barrier coverage formation

problem in hybrid directional sensor networks which consist

of both stationary and mobile sensors with directional sensing

model. In particular, we consider a two-phase deployment:

in the first phase, after stationary sensors are deployed, their

barrier gaps are identified and the number of mobile sensors

needed can be calculated; in the second phase, mobile sensors

are deployed and move to desired locations to fill in these

gaps to form a barrier. Figure 1 shows an example of forming

a strong barrier using mobile sensors. Mobile sensors 1 and 2
fill in the gaps between stationary sensors and form a strong

barrier with pre-existing stationary sensors for the ROI.

A lot of work has been done on barrier coverage. However,

most of existing work mainly focus on critical condition

analysis and barrier construction for stationary sensors with

omni-directional sensing model [11], [4], [13], [16], little effort

has been made to explore how to efficiently use mobile sensors

to form barrier coverage with stationary sensors, especially for

directional sensors. Saipulla et al. [15] used mobile sensors

with limited mobility to form a barrier for omni-directional

sensors. Our work is different from their’s in the following

aspects. First, we study the barrier coverage formation problem

on directional sensors rather than on omni-directional sensors.

Second, we want to find the minimum number of mobile

sensors needed to form a barrier. To the best of our knowledge,

we are the first to study how to efficiently form barrier

coverage in hybrid directional sensor networks.



There are lots of challenging issues in the barrier coverage

formation problem of hybrid sensor networks. First, how to

determine whether two sensors overlap with each other and

calculate the distance between sensors is complicated due to

the limited angle of views and variation of facing directions

of directional sensors. Second, sensors are randomly deployed,

therefore, it is challenging to determine whether the sensors

already form a barrier after initial deployment or not. Third,

the manufacturing cost of mobile sensors is much higher

than the stationary sensors [6], which motivates us to use

as few mobile sensors as possible. It is therefore challenging

to find the minimum number of mobile sensors required to

form barrier coverage with the deployed stationary sensors.

Finally, mobile sensors should move to expected locations to

fill in the gaps between stationary sensors. However, sensor

movement costs a lot of energy and mobile sensors are often

power limited. Therefore, another challenging issue is how to

schedule and move mobile sensors to expected locations so

that the total moving cost is minimized.

In this paper, we systematically address the aforementioned

problems, and the main contributions of this paper are sum-

marized as follows:

• To the best of our knowledge, we are the first to study

the barrier coverage problem in hybrid directional sensor

networks with both stationary and mobile sensors.

• We introduce a directional barrier graph to model the

barrier coverage problem. We prove that determining the

minimum number of mobile sensors required to form a

barrier is equivalent to finding the shortest path from the

source node (left boundary) to the destination node (right

boundary) on the directional barrier graph.

• We formulate the problem of relocating mobile sensors to

form a barrier while minimizing the total moving cost as

a minimum cost bipartite assignment problem, and solve

it in polynomial time using the Hungarian algorithm.

The remainder of the paper is organized as follows. We

give a brief discussion about the literature of barrier coverage

in Section II. We present the network model and the sens-

ing model in Section III. The barrier coverage problem for

directional sensor networks is formulated in Section IV. We

present our directional barrier coverage algorithm in Section

V. The performance evaluation of our algorithm is presented

in Section VI. Finally, we conclude the paper in Section VII.

II. RELATED WORK

Kumar et al. [11] firstly defined the notion of k-barrier

coverage for WSNs and proposed an efficient algorithm to

determine whether a belt region is k-barrier covered or not.

They also introduced two notions of probabilistic barrier

coverage - weak barrier coverage and strong barrier coverage.

Chen et al. [4] introduced the notion of local barrier coverage

and devised localized sleep-wakeup algorithms that provide

near-optimal solutions. Liu et al. [13] devised an efficient

distributed algorithm to construct multiple disjoint barriers for

strong barrier coverage in a randomly deployed sensor network

on a long irregular strip region. Saipulla et al. [16] studied the

barrier coverage of the line-based deployment rather than the

Poisson distribution model, and a tight lower-bound for the

existence of barrier coverage was established. Li et al. [12]

proposed an energy efficient scheduling algorithm for barrier

coverage with probabilistic sensing model.

Recently, barrier coverage in directional sensor networks

has gradually received more and more attention. Zhang et

al. [22] studied the strong barrier coverage problem for

rotationally directional sensors. A novel full-view coverage

model was introduced in [21] for camera sensor networks.

With the full-view coverage model, Wang et al. [20] further

proposed a novel method to select camera sensors from an

arbitrary deployment to form a camera barrier. The minimum

camera barrier coverage problem was studied in camera sensor

networks [14]. Tao et al. [19] investigated the problem of

finding appropriate orientations of directional sensors such that

they can provide strong barrier coverage.

With the development of mobile sensors, node mobility is

exploited to improve barrier coverage. Shen et al. [17] studied

the energy efficient relocation problem for barrier coverage in

mobile sensor networks. Keung et al. [9] focused on providing

k-barrier coverage against moving intruders in mobile sensor

networks. Ban et al. [3] studied the problem on how to relocate

mobile sensors to construct k grid barriers with minimum

energy consumption. He et al. [8] studied the cost-effective

barrier coverage problem when there are not sufficient mobile

sensors and designed sensor patrolling algorithms to improve

barrier coverage. Saipulla et al. [15] proposed a greedy al-

gorithm to find barrier gaps and moved mobile sensors with

limited mobility to improve barrier coverage.

Compared to these aforementioned works on barrier cover-

age, this paper is the first to study barrier coverage problem in

hybrid directional sensor networks. With the unique features

of directional sensing, we explore how to take advantage of

mobile sensors to form a barrier.

III. SYSTEM MODEL

In this section, we present system model including the net-

work model and the sensing model for directional sensors, and

introduce several terminologies related with barrier coverage.

We assume that the ROI is a two-dimensional rectangular

belt area and n stationary sensors are randomly deployed in

the belt region. τ mobile sensors are deployed further after the

minimum number of mobile sensors required is calculated. We

assume that stationary and mobile sensors are the same type

of sensors except that mobile sensors have the ability to move.

Let S = {s1, s2, · · · , sn} denote the set of stationary sensors.

As shown in Figure 2, the area with the length of L and

the width of H is generally a long and thin strip. A crossing

path is a path that crosses the complete width of the area

from the lower boundary to the upper boundary. A congruent

crossing path is a crossing path that is orthogonal to the

two boundaries. The path a and path b shown in Figure 2

demonstrate a congruent crossing path and a random crossing

path, respectively. An intruder may attempt to penetrate the

area along any crossing path.
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Fig. 2. An illustration of belt region (the square area), crossing paths, and
directional sensors.

Unlike an omni-directional sensor, a directional sensor has a

limited angle of view and an orientation. Therefore, as shown

in Figure 3(a), a sector is commonly adopted to represent

the sensing model of directional sensors. Let si denote the

directional sensor i, then it can be represented by a 5-tuple

<xi, yi, r, α, βi>, where li = (xi, yi) is the two-dimensional

location of the center of sensor i, r is the sensing range

and α is half of the sensing angle of a sensor. We assume

that each sensor has the identical sensing range and sensing

angle. Based on the ground truth data in [7], the sensing angle

of directional sensors, 2α, is usually less than π. βi is the

orientation or the facing direction of sensor i. We assume that

βi is uniformly distributed in [0, 2π), e.g., βi ∼ U(0, 2π).
Note that omni-directional sensing model is a special case of

directional sensing model when 2α = 2π.

αα β i

li=(xi,yi) x

r

(a)

li=(xi,yi) x

p(x,y)

(b)

Fig. 3. (a) The sector sensing model for directional sensors; (b) A point p
is covered by the sensor si.

Definition 1. A two-dimensional point p = (x, y) is said to

be covered by a directional sensor si =<xi, yi, r, α, βi> if

and only if the following two conditions are satisfied.

• (x− xi)
2 + (y − yi)

2 ≤ r2,

• ang(
−→
lip) ∈ [βi − α, βi + α], where ang(·) denotes the

angle of (·).

The largest coverage range of a directional sensor, denoted

by lr, is the longest line in its sensing sector. Since the longest

line is either the sensing radius or the longest chord of the

sector, then we have

lr =

{

max(r, 2r sinα) for 0 ≤ α < π
2 ,

2r for π
2 ≤ α ≤ π.

A. Terminologies

Two types of barrier coverage: weak barrier coverage and

strong barrier coverage, were introduced in [11]. Weak barrier

coverage requires that the union of sensors form a barrier

in the horizontal direction from the left boundary to the

a

Fig. 4. An example of weak barrier coverage formed by sensors in grey
color. A weak barrier can detect intruders following congruent crossing paths,
however, can not guarantee the detection of intruders following any crossing
path (e.g., path a).

right boundary, so that every intruder moving along congruent

crossing paths can be detected. Figure 4 shows an example of

weak barrier coverage. However, weak barrier coverage can

not guarantee the detection of intruders following any crossing

path (e.g., path a). In contrast, strong barrier coverage requires

that the union of sensors forms a barrier from the left boundary

to the right boundary so that every intruder can be detected

no matter what crossing path it takes. An example of strong

barrier coverage is shown in Figure 1. In this paper, we address

the barrier coverage formation problem for both weak and

strong barrier coverage.

IV. PROBLEM FORMULATION AND ANALYSIS

In this section, we present the formulation and analysis

of the barrier coverage problem for hybrid directional sensor

networks.

A. Preliminaries

The fundamental problem for weak barrier coverage is

to decide whether two directional sensors overlap in the

horizontal direction or not, while the fundamental problem for

strong barrier coverage is to decide whether two directional

sensors overlap at all or not. This problem is easy to answer

for omni-directional sensors of disk sensing model. However,

it is much harder for directional sensors due to their different

orientations and limited angle of views. For example, we can

claim that two omni-directional sensors overlap with each

other if the Euclidean distance between their centers is smaller

than or equal to 2r. However, two directional sensors might not

overlap even when they are very close to each other, e.g., two

cameras can be side by side but looking at opposite directions.

Therefore, using only distance information would not work for

directional sensors.

In the following, we first provide some preliminaries con-

cerning weak barrier coverage. Considering a directional sen-

sor si =<xi, yi, r, α, βi>. Let [xL
i , x

R
i ] denote the coverage

region of si in the horizontal direction, where xL
i and xR

i are

the x-coordinates of the leftmost point and the rightmost point

of the sector, respectively.

Definition 2. Directional sensors si and sj are said to be

weakly connected directly if xL
i ≤ xL

j ≤ xR
i or xL

j ≤ xL
i ≤

xR
j . Directional sensors si and sk are said to be weakly

connected through intermediate sensor sj if si and sk are



not weakly connected directly but both of them are weakly

connected directly to sj .

As shown in Figure 5(a), sensor b are weakly connected

directly with sensor a and sensor c. Although sensor a and

sensor c are not weakly connected directly, they are weakly

connected through sensor b.

Definition 3. A weakly connected cluster is the union of a set

of directional sensors where each sensor is weakly connected

with the rest of sensors in the set either directly or through

one or multiple intermediate sensors.

Lemma 1. Given a belt region with length L, a weak barrier is

formed if there is a weakly connected cluster whose coverage

region in the horizontal direction is [0, L].

The proof is straightforward and omitted due to space

limitation.

The following preliminaries are related to strong barrier

coverage. For two strongly connected sensors, they overlap

with each other if there exists a point covered by both sensors.

However, there are many points in each sensing sector. There-

fore, checking the coverage for each point is computationally

prohibitive. Observing that a sector is uniquely characterized

by its two radii and the arc, we propose the following lemma

to efficiently detect overlaps between two sensors.

Lemma 2. Directional sensors si and sj overlap with each

other if and only if there exists at least one intersection

between the two radii and the arc of si and the two radii

and the arc of sj .

Proof: ⇒. If there exists an intersection between the two

radii and the arc of si and the two radii and the arc of sj , there

must exist one point covered by both si and sj . Therefore, si
and sj overlap with each other.

⇐. If si and sj overlap with each other, there exists at

least one point covered by both si and sj . Since the point is

bounded by the two radii and the arc of each sensor, there

must exist at least one intersection between the two radii and

the arc of si and the two radii and the arc of sj .

Based on Lemma 2, the problem of deciding whether two

sensing sectors overlap or not can be simplified to check the

intersections between line-line, line-circle, and circle-circle.

Definition 4. Directional sensors si and sj are said to be

strongly connected directly if they overlap with each other.

Directional sensors si and sk are said to be strongly connected

through intermediate sensor sj if si and sk are not strongly

connected directly but both of them are strongly connected

directly to sj .

As shown in Figure 5(b), sensor f are strongly connected

directly with sensor e and sensor g. Although sensor e and

sensor g are not strongly connected directly, they are strongly

connected through sensor b.

Definition 5. A strongly connected cluster is the union of a set

of directional sensors where each sensor is strongly connected

a b

c
wc1 wc2

d

e g

f

h

i j

k l

(a) Weakly connected clusters

a b
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f

h

i j

k l
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sc2 sc4

sc3 sc5

(b) Strongly connected clusters

Fig. 5. An example of connected clusters for directional sensor networks

with the rest of sensors in the set either directly or through

one or multiple intermediate sensors.

Lemma 3. A strong barrier is formed if there is a strongly

connected cluster overlapping with both the left boundary and

the right boundary of the belt region.

The proof is straightforward and omitted due to space

limitation.

Figure 5 shows an example of weakly connected clusters

and strongly connected clusters for the same sensor network.

Two weakly connected clusters, wc1 and wc2, can be identi-

fied. Sensors a, b, c and d form wc1, while the rest of sensors

form wc2. Meanwhile, five strongly connected clusters can be

identified, as represented by sc1 to sc5.

B. Minimizing the Number of Mobile Sensors Needed

Due to random deployment and directional sensing features,

sensor networks might not form barrier coverage after initial

deployment, especially for strong barrier coverage. The usage

of mobile sensors can potentially fill in the coverage holes and

help achieve barrier coverage. However, the cost of mobile

sensors is usually much higher than that of stationary sensors.

Therefore, the problem is how to use the minimum number of

mobile sensors to reduce the deployment cost.

According to Lemma 1 and 3, forming a barrier actually

is equal to forming a connected cluster. Denote the set of

connected clusters by C = {c1, c2, · · · , ck}. Depending on the

application requirement, this could be either a set of weakly

connected clusters or a set of strongly connected clusters.

Here, we propose the notion of “directional barrier graph” to

help us solve the barrier coverage problem, where we consider

each connected cluster as a vertex, and the weight of an

edge between two vertices as the minimum number of mobile

sensors required to connect the two disjoint clusters into a

new connected cluster. Further, we denote the left boundary

and right boundary of the belt region by virtual vertices s and

t, respectively. s is called the source node and t is called the

destination node.
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Fig. 6. Directional barrier graph representation for: (a) weak barrier coverage
of Figure 5(a); (b) strong barrier coverage of Figure 5(b).

Definition 6. A directional barrier graph G = (V,E,W ) of a

sensor network is constructed as follows. The set V consists

of vertices corresponding to the left boundary (s), connected

clusters (C) and the right boundary (t) of the belt region, that

is, V = {v1, v2, · · · , vk+2} = {s ∪ C ∪ t}. E = {e(vi, vj)}
is the set of edges between any pair of vertices. W : E → R

is the set of weights of each edge, where the weight w(vi, vj)
of edge e(vi, vj) is the minimum number of mobile sensors

required to connect vi and vj .

Let dw(vi, vj) denote the weak distance between two ver-

tices vi and vj for weak barrier coverage. When none of vi and

vj is a boundary, dw(vi, vj) = vLj − vRi given the assumption

that vLj > vRi . While if vi is a boundary, dw(vi, vj) = 0 if

vj intersects the boundary; otherwise, dw(vi, vj) = vLj if vi
is the left boundary s and dw(vi, vj) = L − vRj if vi is the

right boundary t. When vi is the left boundary s and vj is

the right boundary t, dw(vi, vj) = L. xL
i and xR

i is the left

coverage boundary and the right coverage boundary of vi in

the horizontal direction. Therefore, the weight w(vi, vj) in the

directional barrier graph for weak barrier coverage is:

w(vi, vj) = ⌈
dw(vi, vj)

lr
⌉ (1)

Figure 6(a) shows the directional barrier graph for weak bar-

rier coverage, which is constructed based on weakly connected

clusters shown in Figure 5(a). The weight of edge (s, wc1) is

0 because wc1 intersects the left boundary.

Let ds(vi, vj) denote the strong distance between two

vertices vi and vj for strong barrier coverage. When none

of vi and vj is a boundary, ds(vi, vj) = min(d(pi, pj)) where

pi and pj are points on vi and vj , respectively, and d(pi, pj)
is the Euclidean distance between pi and pj . When any of

vi and vj is a boundary, ds(vi, vj) = dw(vi, vj). Therefore,

the weight w(vi, vj) in the directional barrier graph for strong

barrier coverage is:

w(vi, vj) = ⌈
ds(vi, vj)

lr
⌉ (2)

Figure 6(b) shows the directional barrier graph of strong

barrier coverage, which is constructed based on those strongly

connected clusters shown in Figure 5(b).

Theorem 4. The minimum number of mobile sensors re-

quired to form a barrier with stationary sensors, denoted

by γ, is exactly the length of the shortest path from s
to t on the directional barrier graph G. That is, γ =
∑

e(vi,vj)∈sp(G,s,t) w(vi, vj), where sp(G, s, t) denotes the

shortest path from s to t on the graph G.

Proof: According to the definition of directional barrier

graph G, if we want to form a barrier, we only need to choose a

path from s to t, and put exactly the number of mobile sensors

needed on each edge of the path. That is, for a chosen path,

the number of mobile sensors required to form a barrier is

equal to the sum of weights of all edges on the path, which

is the length of the path. Therefore, the minimum number of

mobile sensors required to form a barrier is the length of the

shortest path from s to t on graph G.

Theorem 5. A region is barrier covered if and only if the

length of the shortest path from s to t on the directional barrier

graph is 0.

Proof: ⇒. If the length of the shortest path from s to t
on the directional barrier graph is 0, there exists at least one

connected cluster that overlaps with both the left boundary and

the right boundary of the belt region. Therefore, the region is

barrier covered.

⇐. If the region is barrier covered, there exists one con-

nected cluster that overlaps with both the left boundary and

the right boundary of the belt region. Then weights are 0 from

s to the connected cluster and from the connected cluster to

t. Therefore, there exist one path from s to t with a length of

0, which obviously is also the shortest path.

The following Theorem provides an upper bound for the

number of mobile sensors deployed to form a barrier.

Theorem 6. Given a belt region with length L, the minimum

number of mobile sensors required to form a barrier is upper

bounded by ⌈ L
lr
⌉, where lr is the largest coverage range of a

sensor.

Proof: The edge e(s, t) means to deploy mobile sensors

directly from the left boundary to the right boundary of the

belt region. The optimal way to deploy sensors is to deploy

them continuously in a horizontal straight line. Therefore, the

minimum number of mobile sensors required to connect the

left boundary and the right boundary directly is ⌈ L
lr
⌉, that

is w(s, t) = ⌈ L
lr
⌉. The path containing only the edge e(s, t)

could either be the shortest or not. If it is not the shortest

path, according to Theorem 4, the minimum number of mobile

sensors required is smaller than ⌈ L
lr
⌉; otherwise, the minimum

number of mobile sensors required is equal to ⌈ L
lr
⌉. Therefore,

the minimum number of mobile sensors required to form a

barrier is always upper bounded by ⌈ L
lr
⌉.

Theorem 4 proves that the minimum number of mobile

sensors required to form a barrier is exactly the length of



the shortest path from s to t on graph G, which can be

found by the classical Dijkstra’s algorithm [5]. The shortest

path shown in Figure 6(a) for weak barrier coverage is

s → wc1 → wc2 → t, the length of which is 0 + 1 + 1 = 2.

Therefore, the region is not weak barrier covered after initial

deployment, and at least 2 mobile sensors are needed to form a

weak barrier. As for strong barrier coverage, the shortest path

shown in Figure 6(b) is s→ sc1 → sc2 → sc4 → t, the length

of which is 0+2+1+1 = 4. That is, the region is not strong

barrier covered after initial deployment, and at least 4 mobile

sensors are needed to form a strong barrier. There are three

gaps on the shortest path: sc1 → sc2, sc2 → sc4, and sc4 → t,
which requires 2, 1 and 1 mobile sensors, respectively.

C. Minimum Cost Barrier Formation (MCBF)

In order to fill in the gaps and form a barrier, the mobile

sensors need to be dispatched to the desired locations along the

shortest path, which also consumes a lot of energy. In general,

the energy consumed by mobile sensors is proportional to the

moving distance. In order to prolong the lifetime of mobile

sensors, the total moving distance should be minimized. In

the following, we formulate the problem of how to assign a

set of mobile sensors to fill in barrier gaps and form a barrier

while minimizing the total moving cost. We refer to it as the

minimum cost barrier formation (MCBF) problem.

Suppose the minimum number of mobile sensors required

is γ. Then there are γ target locations for γ mobile sensors

to move to. Denote the set of target locations by T =
{t1, t2, · · · , tγ}. In order to form a barrier, τ (τ ≥ γ) mobile

sensors are deployed. Let δij denote a decision variable, where

δij = 1 if mobile sensor mi is assigned to target location tj ,

δij = 0 otherwise. dij is the distance for mobile sensor mi to

move to target location tj . Then the MCBF problem can be

formulated as how to assign γ out of τ mobile sensors to γ
target locations while minimizing the total moving distance.

Minimize

τ
∑

i=1

γ
∑

j=1

dijδij (3)

subject to
∑

i

δij = 1, ∀j = 1, 2, · · · , γ. (4)

∑

j

δij ≤ 1, ∀i = 1, 2, · · · , τ. (5)

δij = 0 or 1, i = 1, 2, · · · , τ ; j = 1, 2, · · · , γ.

The objective function is to minimize the total moving dis-

tance. The first constraint restricts that any target location must

be assigned with one and only one mobile sensor. The second

constraint restricts that each mobile sensor can be assigned to

at most one target location. The formulated problem is indeed

a minimum cost bipartite assignment problem, which can be

solved optimally by the Hungarian algorithm [10].

V. DIRECTIONAL BARRIER COVERAGE ALGORITHM

In this section, we present our solution to the barrier

coverage problem in hybrid directional sensor networks, re-

ferred to as directional barrier coverage (DBC) algorithm. The

algorithm is formally presented in Algorithm 1.

Algorithm 1 Directional Barrier Coverage Algorithm (DBC)

Input: S = {s1, s2, · · · , sn}
Output: The set of target locations T and mobile sensor

assignment vector As

1: identify the set of weakly/strongly connected clusters

2: calculate the distance between any two connected clusters

3: calculate the minimum number of mobile sensors required

to connect any two connected clusters

4: construct the directional barrier graph G
5: find the shortest path sp(G,s,t) using Dijkstra’s algorithm

6: if the length of sp(G,s,t) is larger than 0 then

7: calculate the set of target locations T
8: deploy mobile sensors

9: get sensor assignment vector As by using the Hungarian

algorithm

10: move mobile sensors according to As and T
11: else

12: Region of interest is already barrier covered

13: end if

After sensors are deployed, they report their locations and

facing directions to the server. The server identifies the set of

weakly connected clusters or the set of strongly connected

clusters depending on the application requirement. Then it

calculates the minimum number of mobile sensors required to

connect any two disjoint clusters and constructs the directional

barrier graph G. The shortest path can be found using the

classical Dijkstra’s algorithm. The server uses the Hungarian

algorithm [10] to calculate the optimal assignment of mobile

sensors and informs them to move to corresponding target

locations to fill the gaps on the shortest path.

In the following, we mainly describe the details of two

parts in DBC algorithm: identifying the set of weakly/strongly

connected clusters and calculating the set of target locations.

A. Connected Clusters Identification

We first describe how to identify the set of weakly connected

clusters. Let Cw = {wc1, wc2, · · · } denote the set of weakly

connected clusters. Based on definition 2, two sensors are

weakly connected if they overlap in the horizontal direction.

Therefore, we first calculate the coverage region in the hori-

zontal direction of each sensor, and then sort all the sensors in

the increasing order according to their left coverage boundary.

In this way, we only need to compare the right boundary of

a sensor with the left boundary of the next sensor. Initializing

a cluster with the first sensor, the left boundary and the right

boundary of the cluster are the left boundary and the right

boundary of the first sensor, respectively. Starting from the left

to the right of the ordered set, if the left coverage boundary

of next sensor is smaller than or equal to the right coverage

boundary of the cluster, we put the sensor into the cluster and

update the right coverage boundary of the cluster; otherwise,

we initialize a new cluster with the sensor. The process repeats



until all the sensors are compared. Finally, each sensor must

belong to one and only one cluster.

We formally present the process of identifying Cw in

Algorithm 2. Given n stationary sensors, the running time of

the sorting operation in step 5 is O(n lg n). The running time

of the comparison process from step 7 to the end is O(n).
Therefore, the running time of this algorithm is O(n lg n).

Algorithm 2 Weak-Connected-Cluster Identification (WCCI)

Input: S = {s1, s2, · · · , sn}
Output: Cw = {wc1, wc2, · · · }

1: Cw ← ∅
2: for i = 1 to n do

3: calculate xL
i and xR

i for sensor si
4: end for

5: sort S according to xL
i in the increasing order

6: initialize a queue Q, Q← S, and k ← 0
7: while Q! = ∅ do

8: k ← k + 1
9: sj ← Q.pullF irst

10: wck ← {sj}, wc
L
k ← xL

j , and wcRk ← xR
j

11: for each sensor sp in Q do

12: if xL
p ≤ wcRk then

13: pop(sp)
14: wck ← wck ∪ {sp}, and wcRk ← max(wcRk , x

R
p )

15: else

16: break
17: end if

18: end for

19: Cw ← Cw ∪ {wck}
20: end while

We then describe how to identify the set of strongly con-

nected clusters. Let Cs = {sc1, sc2, · · · } denote the set of

strongly connected clusters. We first initialize a cluster with a

sensor. For each newly added sensor sj in the latest cluster, we

check all the rest sensors and put all sensors that are strongly

connected with sj into the cluster. We call this process as the

neighbor finding process. If no neighbor can be founded in

the neighbor finding process, we initialize a new cluster with

a sensor in the rest sensors and perform the neighbor finding

process again. Finally, the process terminates when no sensor

is left.

We formally present the process of identifying Cs in Algo-

rithm 3. The algorithm performs exactly n rounds of neighbor

finding process and the number of sensors to be checked in

each round is always smaller than n. Therefore, the running

time in the worst case is O(n2).

B. Target Locations Calculation

After finding the shortest path by using Dijkstra’s algorithm,

we can know all barrier gaps and the number of mobile

sensors needed to fill in each gap. The problem that assigning

mobile sensors to fill in barrier gaps while minimizing the total

moving cost has been formulated as a minimum cost bipartite

assignment problem.

Algorithm 3 Strong-Connected-Cluster Identification (SCCI)

Input: S = {s1, s2, · · · , sN}
Output: Cs = {sc1, sc2, · · · }.

1: SC ← ∅, k ← 1
2: initialize a queue Q, Q← S
3: while Q! = ∅ do

4: sck ← Q.pullF irst

5: while new sensors are added into sck do

6: for each new added sensor sj of sck do

7: for each sensor sp ∈ Q do

8: if sj and sp are strongly connected then

9: pop(sp)
10: sck ← sck ∪ {sp}
11: end if

12: end for

13: end for

14: end while

15: Cs ← Cs ∪ {sck}
16: k ← k + 1
17: end while
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Fig. 7. Illustration of different deployment methods for: (a) lr = r when
2α < π; (b) lr = 2r sinα when 2α < π; (c) lr = 2r when 2α ≥ π.

Before assigning mobile sensors using the Hungarian al-

gorithm, we should first calculate the set of target locations

for mobile sensors to move to. Without loss of generality, we

consider the calculation of target locations for strong barrier

gaps. The calculation of target locations for weak barrier gaps

is simply a special case where only the x-coordinates of target

locations for strong barrier gaps are considered.

Given two strongly connected clusters sc1 and sc2, the clos-

est pair of points are pa = (xa, ya) on sc1 and pb = (xb, yb)
on sc2. Thus, the minimum distance between sc1 and sc2 is

d(sc1, sc2) = d(pa, pb) =
√

(xb − xa)2 + (yb − ya)2

Then the minimum number of mobile sensors to fill in the

gap is w(sc1, sc2) = ⌈d(sc1,sc2)
lr

⌉. We evenly deploy mobile

sensors with their largest coverage distance in its sensing

sector along the line segment papb. Therefore, the interval

between two mobile sensors is dv = d(sc1,sc2)
w(sc1,sc2)

. As mentioned

in Section III, the longest line could either be the radius or the

longest chord when 0 ≤ 2α < π, or 2r when π ≤ 2α ≤ 2π.

Corresponding to these three cases, we have three deployment

strategies, as shown in Figure 7.



Let ϕ denote the direction of −−→papb. Let h denote the

height from the center to the longest chord of a sector.

Suppose the target locations are ti = (txi , t
y
i , t

o
i ) for i =

1, 2, · · · , w(sc1, sc2), where txi and tyi are the x-coordinate

and y-coordinate of the target location ti, and toi is the facing

direction of the mobile sensor on ti. The calculations of target

locations for deployments shown in Figure 7(a) and Figure

7(c) are straightforward. Therefore, we mainly describe the

calculation of target locations for the deployment shown in

Figure 7(b).

txi = xa + (i− 1)dv cosϕ+ l̄ cos(ϕ+ λ)

tyi = ya + (i− 1)dv sinϕ+ l̄ sin(ϕ+ λ)

toi = ϕ+ 3π/2

where l̄ =
√

h2 + (dv/2)2, λ = arctan(2h/dv).
We can calculate the target locations for all the gaps on

the shortest path. Thereafter, we use the Hungarian algorithm

to find the optimal assignment of mobile sensors to target

locations and move sensors accordingly to fill in each gap and

form a barrier.

VI. PERFORMANCE EVALUATION

In this section, we conduct simulations using Matlab to

evaluate the performance of our proposed directional barrier

coverage algorithm.

The ROI is a belt region of length L = 500m and width

H = 100m. Both stationary sensors and mobile sensors are

uniformly deployed in the belt region. The evaluation mainly

focuses on three performance metrics: minimum number of

mobile sensors required to form barrier coverage, denoted by

γ, total moving distance for mobile sensors to form barrier

coverage, denoted by dm, and the probability that the sensor

network is already barrier covered after initial deployment,

denoted by pb. pb is calculated by the ratio of the number

of sensor networks barrier covered to the number of exper-

iments performed. Evaluation of these performance metrics

is conducted on different parameters, such as the number of

stationary sensors, sensing range and sensing angle (or field

of view). For all the simulation results presented in this paper,

each data point is an average of 100 experiments. According

to Theorem 6, ⌈ L
lr
⌉ of mobile sensors are deployed in each

experiment to guarantee the sensor network will be barrier

covered after movement. Both weak barrier coverage and

strong barrier coverage are studied.

We first explore the effects of the number of stationary

sensors on performance metrics. The number of stationary

sensors changes from 50 to 300. Figure 8 shows the results

when we change the sensing range with α = π/6 fixed. Figure

9 shows the results when we change the sensing angle with

sensing range r = 20m fixed. As shown in Figure 8(a) and

Figure 9(a), the minimum number of mobile sensors required

decreases quickly as the number of deployed stationary sensors

increases. The reason is that more stationary sensors increase

the probability of forming larger connected clusters, which

results in fewer gaps on the shortest path. The total moving

distance, as shown in Figure 8(b) and Figure 9(b), also

decreases as the number of stationary sensors increases. The

probability of barrier covered for the sensor network, shown

in Figure 8(c) and Figure 9(c), increases as the number of

stationary sensors increases.

We then explore the effects of sensing range on performance

metrics. As shown in Figure 8(a) and Figure 8(b), both the

minimum number of mobile sensors required and the total

moving distance decreases when the sensing range increases

for both weak barrier coverage and strong barrier coverage.

The reason is that, larger sensing range increases the proba-

bility of forming connected clusters and also enlarges the cov-

erage region of each connected cluster, which results in fewer

and smaller gaps on the shortest path. The minimum number

of mobile sensors required and the total moving distance for

strong barrier coverage are always larger than those for weak

barrier coverage given the same sensing range, respectively.

An interesting observation is that, even the minimum number

of mobile sensors required for weak barrier coverage when the

sensing range r = 10m is larger than that for strong barrier

coverage when the sensing range r = 20m, a reverse result is

shown for the total moving distance. This is because mobile

sensors only need to move in the horizontal direction for weak

barrier coverage. The probability of barrier covered, as shown

in Figure 8(c), is always higher for larger sensing range. The

probability of weak barrier coverage is always higher than that

of strong barrier coverage for the same sensing range.

We also study the effects of sensing angle on perfor-

mance metrics. As shown in Figure 9(a) and Figure 9(b),

the minimum number of mobile sensors required and the

total moving distance decrease as the sensing angle increases

for both weak barrier coverage and strong barrier coverage.

This is because increasing the sensing angle increases the

probability of overlapping between sensors, which results in

larger connected clusters and less number of gaps on the

shortest path. Given the same sensing angle, the minimum

number of mobile sensors required and the total moving

distance for strong barrier coverage are always larger than

those for weak barrier coverage, respectively. The consistent

result is also observed in Figure 9(c), where the probability

of barrier covered is higher for larger sensing range, and the

probability of weak barrier coverage is always higher than that

of strong barrier coverage.

VII. CONCLUSION AND FUTURE WORK

In this paper, we studied the barrier coverage problem

for hybrid directional sensor networks and explored how to

efficiently achieve barrier coverage by taking advantage of the

mobility feature of mobile sensors. We introduced the notion

of directional barrier graph, and proved that the minimum

number of mobile sensors required to form a barrier is the

length of the shortest path from the source node to the

destination node on the graph. The problem that minimizing

the total moving cost of mobile sensors to form a barrier was

formulated as the minimum cost bipartite assignment problem,
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Fig. 8. Performance evaluation by varying the number of stationary sensors and the sensing range, α = π/6 is fixed: (a) minimum number of mobile sensors
required to form a barrier; (b) total moving distance; (c) probability of barrier covered after initial deployment.
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Fig. 9. Performance evaluation by varying the number of stationary sensors and the sensing angle, sensing range r = 20 is fixed: (a) minimum number of
mobile sensors required to form a barrier; (b) total moving distance; (c) probability of barrier covered after initial deployment.

which can be solved in polynomial time by the Hungarian

algorithm. Our proof showed that our solution is the optimal

for the barrier coverage in hybrid directional sensor networks.

As part of the future work, we plan to seek distributed

solutions to the barrier coverage problem. Besides, we also

plan to explore the k barriers formation problem in hybrid

sensor networks.
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