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Abstract— Barrier coverage of wireless sensor networks
has been studied intensively in recent years under the
assumption that sensors are deployed uniformly at random
in a large area (Poisson point process model). However,
when sensors are deployed along a line (e.g., sensors
are dropped from an aircraft along a given path), they
would be distributed along the line with random off-
sets due to wind and other environmental factors. It is
important to study the barrier coverage of such line-
based deployment strategy as it represents a more realistic
sensor placement model than the Poisson point process
model. This paper presents the first set of results in this
direction. In particular, we establish a tight lower-bound
for the existence of barrier coverage under line-based
deployments. Our results show that the barrier coverage of
the line-based deployments significantly outperforms that
of the Poisson model when the random offsets are relatively
small compared to the sensor’s sensing range. We then
study sensor deployments along multiple lines and show
how barrier coverage is affected by the distance between
adjacent lines and the random offsets of sensors. These
results demonstrate that sensor deployment strategies have
direct impact on the barrier coverage of wireless sensor
networks. Different deployment strategies may result in
significantly different barrier coverage. Therefore, in the
planning and deployment of wireless sensor networks, the
coverage goal and possible sensor deployment strategies
must be carefully and jointly considered. The results
obtained in this paper will provide important guidelines
to the deployment and performance of wireless sensor
networks for barrier coverage.

Keywords: coverage, wireless sensor networks, deploy-
ment strategies.

I. INTRODUCTION

Coverage problems, including point coverage, area
coverage, and barrier coverage, are important problems
in wireless sensor networks. Differing from point cover-
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age that covers specific points of interest and from area
coverage that covers the entire region, barrier coverage
aims at detecting intruders that attempt to cross the
network. It requires a chain of sensors across the de-
ployed region with the sensing areas of adjacent sensors
overlapping with each other [1]. Each independent chain
of sensors is referred to as a barrier, acting as a “trip
wire” to detect intruders attempting to cross the network.

Fig. 1. A line-base deployed wireless sensor network. Actual landing
points of sensors may deviate from their targeted locations because
of environment factors.

Sensor deployment strategies have direct impact on
barrier coverage. Placing sensors side by side regularly
along straight lines across the region is the best one
would hope to achieve [2], for it is simple and offers the
most efficient possible barrier coverage. But it is infea-
sible to achieve in most applications. When deploying
sensors to monitor boundaries of battlefields, country
borders with complex terrains, or other hard-to-reach
areas, we may have to rely on other deployment methods.
These methods may include dropping a large number of
sensors from vehicles such as aircrafts along predeter-
mined routes [3], [4], as illustrated in Figure 1. When
dispersed from an aircraft, sensors will most likely land
at locations deviating from their targeted landing points
with random offsets because of mechanical inaccuracy,
wind, terrain characteristics, and other environmental
factors.



Most of the early research on barrier coverage assumes
that the sensor locations follow a Poisson point process,
where sensors are uniformly distributed in a vast region
[2], [5], [6]. While it may be appropriate for certain
deployment strategies, this model of uniform distribu-
tion does not capture the sensor distributions under the
airdrop deployment strategy. Consequently, analytical
results derived from such models are not applicable to
line-based sensor deployments. Sensors deployed from
aircrafts tend to be concentrated along the deployment
line with some random offsets. We assume that the
random offset of each sensor from its target landing point
follows a normal distribution. For convenience, we refer
to this type of distribution as line-based normal random
offset distribution (LNRO) hereafter.

The existence and number of sensor barriers depends
on a number of factors, including the number of sensors,
sensing range of each sensor, and the variance of the
normally distributed random offsets. Using mathematical
analysis we first establish a tight lower bound for the
existence of barrier coverage under LNRO. We then
compare the quality of barrier coverage of sensor deploy-
ment under LNRO with that under Poisson point process.
Our results show that the barrier coverage under the
two deployment strategies are significantly different from
each other, with LNRO outperforming Poisson point pro-
cess when the variance of the random offset in LNRO is
relatively small compared to the sensor’s sensing range.
This is because, in LNRO, sensors are concentrated along
the deployment lines rather than uniformly distributed as
in a Poisson point process, providing a better chance for
barriers to be formed. Finally, we study the multiple-
line deployment scenario and investigate how barrier
coverage depends on the distance between adjacent lines
and the random offsets of sensors.

Our results demonstrate that sensor deployment strate-
gies have direct impact on the barrier coverage of wire-
less sensor networks. Different deployment strategies
can result in significantly different barrier coverage.
Therefore, in the planning and deployment of wireless
sensor networks, the coverage goal and possible sensor
deployment strategies must be carefully examined. The
results obtained in this paper will provide important
guidelines to the deployment and performance of wire-
less sensor networks for barrier coverage.

The rest of the paper is organized as follows. Section
IT reviews previous work on barrier coverage of sensor
networks. In Section III we describe the network model
and define barrier coverage. In Section IV we derive the
probability of the existence of a barrier under LNRO.

We also provide a comparison between the theoretical
lower-bound results and the actual simulation results.
In Section V we compare the barrier coverage quality
achieved by sensors deployed under LNRO with that
under Poisson point processes. In Section VI we present
a multiple-line deployment strategy, and simulate large-
scale multiple-line deployment scenarios to show its
properties. We conclude the paper in Section VII.

II. RELATED WORK

The notion of barrier coverage, first introduced in
the context of robotic sensors [1], concerns a sensor
network’s capability to detect intruders crossing from
one side of the network region to the opposite side. There
are a number of different barrier coverage measures that
have been studied.

Path coverage is defined in [7] and efficient algorithms
are proposed to find the maximum breach path between
two end points that are least or most likely to be detected
by sensors. The notion of path exposure is introduced in
[7] to measure the likelihood that an intruder is detected
when moving along a given path. A centralized algorithm
is proposed to find minimum exposure paths, where the
probability of an intruder being detected is minimized.
These path coverage problems are further studied in
[8], [9] and efficient distributed algorithms are devised.
In [10], T. Clouqueur et al. investigated the detection
of intruders traversing the region using collaborative
detection schemes among sensors. In [11], E. Amaldi
et al. proposed an optimization framework for selecting
sensor positions to detect mobile targets traversing a
given area.

Liu and Towsley [12] first studied the barrier coverage
of two-dimensional plane and two-dimensional strip sen-
sor networks using percolation theory. The barrier cov-
erage of a two-dimensional plane network is related to
the existence of a giant sensor cluster that percolates the
network. For a two dimensional strip network of finite
width, they prove that there always exists a crossing path
along which an intruder can cross the strip undetected.
They also characterize the probability that an intruder
can be detected when crossing a strip.

Kumar, Lai, and Arora [2] introduced the notion of
weak coverage, devised a centralized algorithm to deter-
mine whether a region is weakly k-barrier covered, and
derived the critical conditions for weak barrier coverage
in a randomly deployed sensor network. Chen, Kumar,
and Lai [5] later devised a localized algorithm that
guarantees the detection of intruders whose trajectory is
confined to a slice of the belt region of deployment. In



[13], Balister, Bollobas, Sarkar, and Kumar introduced
new techniques for deriving reliable density estimates
to achieve barrier coverage in finite regions. Recently,
Liu, Dousse, Wang, and Saipulla [6] derived the criti-
cal conditions for strong barrier coverage and devised
efficient algorithms to construct strong sensor barriers.
In [14], Chen, Lai, and Xuan studied how to measure
and guarantee the quality of barrier coverage in wireless
sensor networks.

III. NETWORK MODEL

We assume that sensors are deployed in a two-
dimensional rectangular area of length / and width &
(see Figure 2), where sensors do not move after they
are deployed. We assume that each node knows the
coordinates (x,y) of its own location. This may be
done using an on-board GPS unit or other localization
mechanisms.

Deployment Lines

A Barrier /

Fig. 2. Sensors are deployed in a rectangular area of [ x h. The
distance between adjacent deployment lines is A.

Let f(x,y) denote the probability density function
(pdf) of the sensor location. Then

5 0<x<[,0<y<h,

fe={ &

0, otherwise.

For the line-based deployment strategy, we assume
that there are m > 1 horizontal deployment lines along
the length of the rectangle. When m > 1, we assume
that these lines are evenly spaced, with a distance A
between each pair of adjacent lines. Let y; denote the

vertical coordinates of the j-th deployment line, where
0 < j < m. We have

yj =Yoo+ JA.

We assume that along each line, sensors are to be
evenly distributed. Let n be the number of sensors to

be distributed along a given line. Let {=1/(n+1). The
horizontal coordinates of the i-th target landing point is
il

on+1

Because of mechanical inaccuracy, wind, terrain con-
straints, and other environmental factors, the actual land-
ing point of each sensor will deviate from its target by a
random offset. Denote by &' and &, the offset of sensor
s; in the horizontal and vertical directions, respectively.
On the j-th dropping line, the actual landing point of
sensor s; is thus (x;+ &7,y;+9}).

In practice, the random offsets of nearby sensors are
usually correlated. To simplify the analysis and provide
insight, we assume that the random offsets are indepen-
dently and identically distributed (i.i.d.) with a normal
distribution of zero mean and variance G2, i.e.,

&,8! ~ N(0,02).

=i, 1<i<n.

Xi

Note that our later analysis can be easily generalized
to the case where &' and & does not share the same
standard deviation ©.

We adopt the widely-used binary disk sensing model.
Each sensor has a sensing range r and can detect any
intruders within its sensing range. Let s be a sensor that
has been deployed. For convenience, we also use s to
denote the sensor’s location, which is the center of its
sensing range. Two nodes are said to be connected if
their sensing areas overlap. In other words, node s; is
connected to node s; if and only if |s; —s;| < 2r, where
|si —s;| represents the Euclidean distance between the
two sensors. A sensor barrier is formed by a set of
connected sensors that intersect both of the left and right
boundaries of the rectangular. Obviously no intruders can
cross such a sensor barrier without being detected.

A crossing path is a path that connects one side of
the region to the opposite side, where the ingress point
and the egress point reside on two opposite sides of the
region. We assume that the intruders attempt to cross the
region along the width of the rectangular area.

We measure the strength of the barrier coverage in a
sensor network by the number of disjoint barriers in the
network. A path is said to be k-covered if it is intercepted
by at least k distinct sensors. We say that an event on n
sample points occurs with high probability (w.h.p.) if its
probability tends to 1 as n — oo. We now formally define
strong barrier coverage.

Definition 1: A sensor network is strongly k-barrier
covered if

P(any crossing path is k-covered) = 1 w.h.p. (1)



Kumar, Lai, and Arora [2] introduced the notion of
weak barrier coverage, which guarantees detections of
intruders moving along congruent crossing paths. But it
does not guarantee detection of intruders moving along
arbitrary crossing paths as guaranteed by strong barrier
coverage. We will focus on strong barrier coverage in this
paper. For convenience, we will use barrier coverage to
refer to strong barrier coverage.

IV. PROBABILITY ANALYSIS OF BARRIER COVERAGE

In this section we first present the assumptions and
the corresponding analytical results for the probability
of barrier coverage under LNRO. We then validate our
analysis via simulations.

A. Assumptions and Results

We first consider the probability that a single line
deployment constitutes a barrier. That is, we consider a
single line of n nodes s; with coordinates (x; + 8,8’ ),
1 <i<n, where x; =i and & and & are random
variables in a normal distribution with the same standard
deviation 6. Our analysis can be adapted to the case
where 6* # ¢” in a straightforward manner. Recall that
twg nodes are connected if their distance is less than
p = 2r. Also notice that, without loss of generality, we
assume that y; = 0 for all the nodes for convenience.

We make the following assumptions:

1) Nodes are deployed so that the distance between
adjacent targeted positions is within the sensing
range of the two sensors. This means that p > xC,
for some factor ¥ > 1 that we will specify later.
Intuitively, we want to avoid the case where p is
too close to //(n+ 1), for otherwise only small per-
turbation could create breaches in the barrier. We
expect this assumption to be reasonable for many
application scenarios as typical barrier coverage
applications use sensors with large sensing ranges.
For example, for MSP410CA wireless security
system by XBow [15], the magnetic field sensors
and infrared sensors have a sensing range of about
60 feet and 80 feet, respectively.

2) o << L. This assumption means that we still exert
some control over the position of the nodes. The
perturbation of the node position stays relatively
small with respect to the gap between two nodes.
We will see in the evaluation that our analysis stays
valid with a standard deviation ¢ equal to 20% of
the targeted gap between two sensors (.

We can now state our result:
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Fig. 3. Probability of Barrier Coverage for various area lengths with
9 nodes and p = 200. From left to right, ¢ = 30,25,20, 15, 10.

Theorem 4.1: When assumption 1) and 2) are satis-
fied, the probability that barrier coverage exists for a
single line by covered by n sensors with coordinates
(i€ +N(0,6%),N(0,6%)),1 <i < n, and sensing range
r=p/2 is given by

E p

(n+1)
P(BarrierCoverage) 2 [1 -0 (\@G, \@Gﬂ , 2)

where

2,2 2

ois.)=¢ Y (2) i)

k=0

3)

and J; is the k-th order modified Bessel function of
the first kind.

The proof of the theorem is presented in the appendix.
In the next section we will show that, through a large
number of numerical experiments, the lower bound given
in inequality (2) is tight.

B. Probability of Barrier Coverage: Analysis vs. Simu-
lation

Figure 3 plots the probability of barrier coverage for a
single line deployment with a two-dimensional Gaussian
perturbation with standard deviation 6. In the simulation,
the length [ is varied from 1,000 to 1,800 meters for
a single line deployment. Nine nodes of sensing range
r = 100 meters are deployed along the line. Thus the
connectivity radius is p =200 meters, and the distance
between adjacent target positions, {, varies between 100
and 180 meters, satisfying Assumption 1). We vary the
standard deviation ¢ between 10 and 30, which meets
the requirement of Assumption 2). The curves from left
to right correspond to the reversed order of the chosen
standard deviations, i.e., o = 30. 25, 20, 15, and 10.
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Fig. 4. Probability of Barrier Coverage for various area lengths with
99 nodes and p = 40. From left to right, c =8§,5,3.

It can be observed that there is a good match between
the simulation results and our analysis. The match im-
proves as the variance decreases. One can also verify
that the analysis is indeed a lower bound as long as
Assumption 1) is satisfied, i.e., as long as p stays larger
than k€, where ¥ is in the range of 1.05 for 6 = 10 to
1.33 for ¢ = 30.

The good match between the analysis and the simu-
lation is insensitive to the number of nodes, as can be
observed from Figure 4, where the number of nodes has
been increased to 99, and p reduced to 40 meters. The
corresponding { varies between 11 and 30. Recall that
Assumption 2) requires that the standard deviation be a
relatively small fraction of {. For the leftmost pair of
curves in Figure 4, C varies between 11 and 22, and the
standard deviation is ¢ = 8. This breaks Assumption 2),
and indeed, the match is poor between the analysis and
the simulation. However, when we decrease ¢ to 5 and
3, simulation and analysis starts to track each other very
well again.

V. COMPARISON WITH POISSON MODEL

Most previous studies on barrier coverage consider the
nodes distributed according to a Poisson process or a
uniform distribution in the area to be covered. We now
compare our results with the barrier coverage probability
for a Poisson process.

A. Comparison with Two-dimensional Poisson Model

In the case of uniform distribution, each sensor has
the equal likelihood to be located at any point in the
rectangle. Thus, the sensors are spread out rather evenly
in the area. It has been proved in [6] that in the
asymptotic case, barriers exist if and only if the width of
the rectangle is larger than the logarithm of the length

and at the same time the sensor density A is greater
than some critical value. In the line-based deployment
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Fig. 5. 200 Sensors deployed based on uniform distribution and
line-based normal distribution, and the corresponding sensor density
on y-axis. (a)Uniform distribution, A = 0.02; (b)Single-line LNRO,
c = 10.

strategy with normally distributed random offsets, sen-
sors are concentrated along the deployment line. The
node density in the vertical direction forms a “bell”
curve whose shape is determined by the variance of the
normal distribution. Figure 5 illustrates the deployment
layouts of the uniform distribution and line-based normal
distribution, and the corresponding sensor densities in the
vertical direction.

Compared to the uniform distribution, sensors are
concentrated along deployment lines in the line-based
deployment strategy, providing a better chance for bar-
riers to be formed. To compare the barrier coverage of
LNRO with that of the Poisson point process, we note
that 99.7% of the sensors fall within the distance of 3¢
from the deployment line in LNRO, and so we choose
the width of the rectangle for the uniform distribution to
be 66 for comparison.

For the Poisson point process deployment, the prob-
ability that the nodes provides barrier coverage is given
by [13]. We repeat here the key result of [13]. Define
a strip of width & and length /. Nodes are distributed
according to a Poisson process with density A and have
a connectivity radius p. To make the comparison between
the LNRO distribution and the Poisson point process fair,
we set i to be equal to a multiple of ©.

Define the break density to be [, 3. With the proper
definition, breaks in the coverage can be shown to follow
a Poisson distribution as well, and thus the density of this
Poisson process is I . The probability that the strip
provides barrier coverage is thus equal to the probability
that there is no break, which is equal to:

C))

P(Barrier Coverage) = e /o3



I, 55, can be approximated by:

Tnpo \/th\/ip\/i where
Ly, = e %P and
0 = a—1.12794a"% —0.20a 3
By = —%log(b)—|—1.05116+0.27b’% (5)

One requirement to study the barrier coverage with
a Poisson process is to assume that A > A., where A,
is the critical density for percolation. In other words,
A should be in the supercritical regime. For a network
of size [ X h, we have A = % If we set h = 60, with
6 = 10, then A = 0.00015. The critical density, when
p =200, is A, =0.0772. (The critical density depends on
the connectivity radius in such manners that the average
number of neighbors is equal to 4.5118 for the Gilbert
model [16]). One would need to narrow down the strip
to a width 2 = 6/86 to achieve super-criticality of the
Poisson process. And indeed, either using Equation (5)
or simulating the deployment according to a Poisson
process with A = 0.00015, h =66, 6 =10, n =9 and
[ = 1000 shows that barrier coverage is achieved with a
negligible probability.

Even in the supercritical regime, the probability of
barrier coverage is very small for the Poisson process
compared to that of the LNRO deployment. Figure 6
compares the LNRO and Poisson process in an area of
length varying between 1500 and 5000m. The LNRO
deployment, with 99 nodes, p = 100 and a standard
deviation of ¢ = 10 ensures barrier coverage with prob-
ability close to one, both in the analytical model and
the simulated model, across the whole range of /. The
Poisson process, in a strip of size / X 6 (note that the
LNRO deployment is 97% contained within a strip of
size [ X 60, thus in a much wider strip), has on average
99 nodes with p = 100. The parameters are chosen so
that A is firmly supercritical (in the Gilbert model) for all
values of /. Figure 6 shows both simulation and analysis
from equation (5) for the Poisson deployment, with a
much lower probability of barrier coverage, despite the
favorable parameters.

B. Comparison with One-dimensional Poisson Model

In LNRO, sensors are concentrated along the deploy-
ment line with random offsets. Thus, it is also interesting
to compare the barrier coverage of LNRO with that of a
strict line deployment where all sensors fall on the same
line (¢” = 0).

Figure 7 compares the probability of barrier coverage
of LNRO with that of a line distribution according to
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a uniform line distribution. For a given line segment of
length [, the corresponding probability density function
(pdf) of a node location in the strict line deployment
is P(x) = 1/1, when x € [0,]], and O otherwise. In the
simulation, we set p = 100, 6 =20, n =50, and !/ from
1000 to 5000. It can be observed that the barrier coverage
of LNRO consistently outperforms that of single line
uniform case. Reducing the variance in the y-dimension
(oy) in LNRO will further increase the barrier coverage
probability of LNRO, resulting in better performance
over the single line uniform distribution. Simulations
show a relatively similar probability of barrier coverage
for a Poisson point process and for a uniform distribution
with the same average number of nodes.

For the uniform distribution along a single line, a
similar analysis to that of Theorem 4.1 shows that, under
the Assumptions 1) & 2), the barrier coverage probability
for the Poisson case is given by

(6)

We also consider a strict line deployment with Nor-
mal perturbation along the line. In this case we have
o, =0, and x; = i{+ N(0,0,). Similar analysis as for
Theorem 4.1 shows that

P(Barrier Coverage) =

(PV(n/1.v20) <))’

P(Barrier Coverage) =

Figure 8 plots numerical results of Equations 6 and 7
with the corresponding simulation results. For reference,
the LNRO case is also included. It can be observed that
for both cases the analysis matches the simulation results
very well. Also, the barrier coverage of LNRO and the
line deployment with Normal perturbation are close to
each other, both outperforming the line deployment with
Poisson distribution.

VI. BARRIER COVERAGE OF MULTIPLE-LINE
DEPLOYMENTS

Deploying sensors along multiple lines may provide
robustness and multiple lines of defense in the deployed
region. In this part, we consider a two-line deployment
scenario to focus on the effects of two deployment
parameters: the standard deviation () of the deployment
random offset and the distance between the two deploy-
ment lines (A). Figure 9 depicts two-line deployment
scenarios with different A values.

We use a modified Maximum Network Flow algorithm
to calculate the number of disjoint barriers in a network.
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Fig. 9. Sensor distributions of two-line deployment scenarios, and
the corresponding sensor densities in the vertical direction. ¢ = 10
meters. (a) A = 30 meters ; (b) A = 60 meters.

This algorithm can also be used to find disjoint barriers.
Details of the algorithm is provided in the appendix.

In the following experiments, a total number of 10,000
sensors are deployed along two lines of distance A in a
rectangle area of length / = 10,000 meters, according to
the LNRO distribution. The sensors are equally divided
into the two deployment lines. The width of the field
is chosen to be large enough so that all the nodes fall
into the rectangle in the simulations. We consider four
different offset variance values: ¢ =5, 10, 15, and 30.
Each data entry in Figure 10 is an average over 1000
experiments.

Number of Barriers

Fig. 10. Barrier coverage of a two-line deployed sensor network.

Figure 10 plots the number of barriers as a function
of A for the four offset variance values. The A =0
cases correspond to the scenario where the two deploy-
ment lines coincides with each other. Thus the effect
is equivalent to the case when the same number of
sensors are deployed along a single line. We observe
that the number of disjoint barriers decreases as the
distance A increases. This can be explained as follows.
When the two lines are close to each other, there is a
significant overlap between the two groups of sensors,



as shown in Figure 9(a). A sensor in one group can
connect to sensors in its own group as well as sensors in
its neighboring group, increasing the chances of barrier
formation. As A increases, i.e., as the two deployment
lines become farther apart from each other, there is less
overlap between the two groups of sensors, resulting in
a degraded barrier coverage.

In particular, when A increases to roughly (60 + 2r),
the number of barriers levels off to about twice that
of a single line deployment with half of the sensors
(dashed lines). At this distance, there is almost no
overlap between the two groups of sensors, and the
probability of forming barriers using sensors from both
groups diminishes.

VII. CONCLUSION

We study the barrier coverage of a wireless sensor
network where sensors are deployed along lines with
normally distributed random offsets. We establish a tight
lower bound for the existence of barrier coverage under
LNRO. We find that sensor deployment strategies have
direct impact on the barrier coverage of a wireless
sensor network. Different deployment strategies may
yield significantly different barrier coverage. In partic-
ular, when the variance of the random offset in LNRO is
relatively small compared to the sensor’s sensing range,
the barrier coverage of LNRO significantly outperforms
that of the Poisson model. We also study the multiple-
line deployment scenario and investigate how barrier
coverage depends on the distance between adjacent lines
and the random offsets of sensors.

Our results suggest that in the planning and deploy-
ment of wireless sensor networks, the coverage goal and
possible sensor deployment strategies must be carefully
examined. The results obtained in this paper provide
important guidelines to the deployment and performance
of wireless sensor networks for barrier coverage.
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APPENDIX

A. Proof of Theorem 4.1

Consider now the relative positions of nodes s; and
Sit1. Define z* =s¥ , —sf and 2 =5}, —s,. Then 7' =
{+0},, —& and 2 =8, , —&}. Since the &° are Normally
distributed with variance 62, then &7, , — &} and &}, | — &}
are both Normal random variable with variance 2672, i.e.,
7"~ N((,20%) and 2 ~ N(0,202).

The distance between s; and s;,1 is equal to:

d; = [sip1 —si| = /(@2 + (@)? ()



This implies that d; follows a Ricean distribution.
Since the distribution is identical for all i, we drop the
index and denote the distance between two consecutive
nodes as d.

In particular, the probability that d < p is given by
(see for instance [17], Chapter 2):

&
V26 V26

where Q) is the Marcum’s Q-function of the first order,
defined by:

C P \_ ey <§>k (Zﬁ’)
Ql(ﬁc,ﬂc)—e kgo 5 ) Il 5z ) 10
and I; is the k-th order modified Bessel function of the
first kind.

Thus, two sensors s; and s;;; provide barrier coverage
with probability P(d < p). If each pair of sensors s;
and s;;1 is within p of each other and within p of the
boundary, then the sensor deployment provides barrier
coverage over the all width of the area. For all 1 <
i <n—1, denote by W; the event that d; < p. Denote
by WY the event that s; is within distance p of the
boundary x =0, and Wnb that s, is within distance p of the
boundary x = [. Since this is not the only configuration
that provides barrier coverage, we have

P(d <p)=1-0i( ) )

n—1
P(Barrier Coverage) > P (WobﬂWnbﬂ(ﬂ W,)) . (11)
i=1

Assumption 1) allows us to consider Wob ,Wnb and W,,
1 <i<n-—1, as independent events and approxi-
mate P(W¢ (VW2 (N1 W) with P(WE)P(W?)(P(d <
)"~V Indeed, if assumption 1) was violated, and p
was almost equal to , then a perturbation which brings
node s; close to s;_; would also create a gap between
s; and s;1. W; happening thus implies that W, ; would
not happen, and that both events are conditioned on each
other, not independent. However, by choosing the right
parameter X, the approximation by independent events is
appropriate, as we confirm in the evaluation section.

We can also easily verify that P(WY) > P(d <
p) and symmetrically, P(W?) > P(d < p), so that
P(Barrier Coverage) > P(d < p)"*!.

Assumption 2) ensures that the gap between
P(BarrierCoverage) and P((\_,W;) stays limited, and
that the most likely configuration to provide coverage is
indeed by having each s; and s;,; within p of each other.
Other configurations are possible, and a gap between
s; and s;11 could be filled by having a third sensor

out of position in the sequential ordering along the x-
axis. However, assumption 2) ensures that such other
configurations have a low likelihood. Simulation will
show that, under assumption 2) the lower bound is
actually tight.

Note that we do not put an explicit dependency of £
on n, but as n — oo, the probability of barrier coverage
goes to 1 as { — 0, all other parameters being constant.
B. Barrier Construction Algorithm

We now present the algorithm to compute the number
of barriers in a sensor network. We assume that the
location of each sensor is collected prior to computation.
We first construct a graph based on the senor location
information, then compute the maximum flow of the
graph.

Algorithm to Construct Barriers:

1) Construct a flow graph G(V,E) as follows. Each
vertex in V represents a sensor node. For any two
vertices u and v in V, if their sensing areas overlap,
add edge (u,v) in E.

2) From G(V,E), construct a weighted directional
graph G*(V* E*) as follows. For any node n; in
V, add n; and n! to V*, and an edge (n,n}) to
E*. If edge (n;,n;) exists in E, add edges (n],n’)
and (n7,n) to E*. Add two new vertices s and
d into V*. For any node n; in V, if its sensing
range intersects the left boundary of the area, add
edge (s,n}) to E*; if its sensing range intersects the
right boundary of the area, add edge (n,d). The
capacity of each edge in E* is set to 1. For each
edge in E*, add its reverse edge to £, and set the
capacity of this new edge to 0.

3) Compute the maximum flow from s to d in graph
G*(V*,E*) using a standard algorithm (e.g., Ford-
Fulkerson, Edmond-Karp, or the relabel-to-front
algorithms [18]).

Note that in Step 2, each sensor is mapped to two
graph nodes with one edge between them. This is to
guarantee that each sensor node is only used once in
barrier construction. In Step 3, each augmenting path
forms a barrier in the sensor network. The maximum
flow of grapth G* will give the number of disjoint
barriers in the original sensor network.



