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Abstract Abstract 
©Hassan Khader Y Almathami, Khin Than Win, Elena Vlahu-Gjorgievska. Originally published in the 
Journal of Medical Internet Research (http://www.jmir.org), 20.02.2020. BACKGROUND: Health care 
providers are adopting information and communication technologies (ICTs) to enhance their services. 
Telemedicine is one of the services that rely heavily on ICTs to enable remote patients to communicate 
with health care professionals; in this case, the patient communicates with the health care professional 
for a follow-up or for a consultation about his or her health condition. This communication process is 
referred to as an e-consultation. In this paper, telemedicine services refer to health care services that use 
ICTs, which enable patients to share, transfer, and communicate data or information in real time (ie, 
synchronous) from their home with a care provider-normally a physician-at a clinical site. However, the 
use of e-consultation services can be positively or negatively influenced by external or internal factors. 
External factors refer to the environment surrounding the system as well as the system itself, while 
internal factors refer to user behavior and motivation. OBJECTIVE: This review aims to investigate the 
barriers and the facilitators that influence the use of home consultation systems in the health care 
context. This review also aims to identify the effectiveness of Home Online Health Consultation (HOHC) 
systems in improving patients' health as well as their satisfaction with the systems. METHODS: We 
conducted a systematic literature review to search for articles-empirical studies-about online health 
consultation in four digital libraries: Scopus, Association for Computing Machinery, PubMed, and Web of 
Science. The database search yielded 2518 articles; after applying the inclusion and exclusion criteria, the 
number of included articles for the final review was 45. A qualitative content analysis was performed to 
identify barriers and facilitators to HOHC systems, their effectiveness, and patients' satisfaction with 
them. RESULTS: The systematic literature review identified several external and internal facilitators and 
barriers to HOHC systems that were used in the creation of a HOHC framework. The framework consists 
of four requirements; the framework also consists of 17 facilitators and eight barriers, which were further 
categorized as internal and external influencers on HOHC. CONCLUSIONS: Patients from different age 
groups and with different health conditions benefited from remote health services. HOHC via video 
conferencing was effective in delivering online treatment and was well-accepted by patients, as it 
simulated in-person, face-to-face consultation. Acceptance by patients increased as a result of online 
consultation facilitators that promoted effective and convenient remote treatment. However, some 
patients preferred face-to-face consultation and showed resistance to online consultation. Resistance to 
online consultation was influenced by some of the identified barriers. Overall, the framework identified the 
facilitators and barriers that positively and negatively influenced the uptake of HOHC systems, 
respectively. 
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Secure Remote User Authenticated Key
Establishment Protocol for Smart Home

Environment

Mohammad Wazid, Student Member, IEEE, Ashok Kumar Das, Member, IEEE, Vanga Odelu,

Neeraj Kumar, Member, IEEE, and Willy Susilo, Senior Member, IEEE

Abstract—The Information and Communication Technology (ICT) has been used in wide range of applications, such as smart living,

smart health and smart transportation. Among all these applications, smart home is most popular, in which the users/residents can

control the various smart sensor devices of home by using the ICT. However, the smart devices and users communicate over an

insecure communication channel, i.e., the Internet. There might be the possibility of various types of attacks, such as smart device

capture attack, user, gateway node and smart device impersonation attacks and privileged-insider attack on a smart home network. An

illegal user, in this case, can gain access over data sent by the smart devices. Most of the existing schemes reported in the literature

for the remote user authentication in smart home environment are not secure with respect to the above specified attacks. Thus, there is

need to design a secure remote user authentication scheme for a smart home network so that only authorized users can have access

to the smart devices. To mitigate the aforementioned isses, in this paper, we propose a new secure remote user authentication scheme

for a smart home environment. The proposed scheme is efficient for resource-constrained smart devices with limited resources as it

uses only one-way hash functions, bitwise XOR operations and symmetric encryptions/decryptions. The security of the scheme is

proved using the rigorous formal security analysis under the widely-accepted Real-Or-Random (ROR) model. Moreover, the rigorous

informal security analysis and formal security verification using the broadly-accepted Automated Validation of Internet Security

Protocols and Applications (AVISPA) tool is also done. Finally, the practical demonstration of the proposed scheme is also performed

using the widely-accepted NS-2 simulation.

Index Terms—Smart home, user authentication, key agreement, provable security, AVISPA, NS2 simulation.

✦

1 INTRODUCTION

The advancement of ICT and the Internet have provided the sup-
port for rapid growth in smart home environments. A smart home
contains the advanced automation systems for monitoring and
controlling of various smart devices. In a smart home, the residents
can control various smart sensing devices such as temperature
monitoring sensors, lighting equipments sensors, or occupancy
sensors, etc. [1], [2], [3], [4]. The smart home environment
provides a high level of comfort with reduced operational costs
to provide safety and security to its residents [5]. One of the
major advantages of this type of environment is for the elderly and
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disabled people in which these people get assistance in estimating
their body parameters using smart gadgets [6]. A smart home is
equipped with a number of smart devices (SDjs), such as low-
cost sensors, smart light controllers, smart window shutters, smart
AC controllers various and surveillance cameras. Most of the
SDjs are resource-constrained having limited computational and
communication power, and limited battery backup [5]. A smart
home network can be implemented with the help of these SDjs
in which all SDjs communicate over wireless channels using
the home gateway node (GWN). The GWN acts as a bridge
between SDjs and smart home user (Ui). The GWN provides
interoperability and control for the SDjs and connects them to
the external world using the Internet. This facilitates the Uis to
operate the smart home appliances remotely using the Internet-
enabled smartphones, tablets, etc. anytime from anywhere in the
world [5], [7].

1.1 Network Model

The network model depicted in Fig. 1 consists of the smart home
users Uis who want to access smart devices SDjs as per their
requirements. Suppose there is a user Ui, who wants to access
certain SDj (e.g. temperature & humidity sensor). To access
that SDj , Ui first needs to register himself/herself at the trusted
registration authority RA. Similarly, all SDjs and the gateway
node GWN (which acts as the bridge between the SDj and
Ui, and connects SDj to the external world using the Internet)
are also registered at the RA. The GWN is thus a special node
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that takes responsibility of controlling the network data, device
and network interoperability and secure management [5]. The
registration authority (RA) is a trusted server and it is responsible
for registering all the smart devices, users Ui’s and the GWN
securely. After the successful registration of Ui, SDj and GWN
securely, the RA stores this useful information in the memory
of smart phone SPi of Ui, and also in the memory of SDj and
GWN , which are further used at the time of authentication and
key establishment process. Ui, who wants to access a SDj , sends
an authentication request directly to the GWN as both of them
have already performed the registration phase at the RA. Three
categories of mutual authentications happen: 1) between Ui and
GWN , 2) between GWN and SDj and 3) between Ui and
SDj . Moreover, Ui and SDj establish a secret session key SKij

between them to protect the exchanged messages.

Fig. 1. Smart home environment (Adapted from [5])

1.2 Motivation

Consider the following scenario in smart home environment [8].
Recently, it is noticed that the major trend throughout Europe is the
aging society, which is affected by an increasing life expectancy
and decreasing birth rates. A large proportion of the European
society will be not only from the group of people over 65, but
also from a significant increase in the number of people over 80.
The proportion of population aged over 65 and over is rising in all
countries, however differences can be observed. It is also reported
that “the ratio for Iceland, Ireland, Slovak Republic and Turkey lie
well below the average for Europe, whereas the ratio for Finland,
Germany, Greece, Italy and Sweden lie far above the average for
Europe” [8].

The SDjs in smart homes communicate over the insecure
communication channels. There might be the possibility of various
attacks in a smart home network. An illegal user (attacker), who
can monitor the activities in a smart home, can break the security,
and also can gain access over the SDjs and other smart home
appliances. For example, the attacker can watch the activities in
the home by accessing the surveillance camera illegally where
disabled people live in the smart home. Most of the existing
authentication schemes reported in the literature in a smart home
environment are not secure against various known attacks, such

as smart device capture attack, user, gateway node and smart
device impersonation attacks, and privileged-insider attack. Most
of those schemes also fail to preserve traceability and anonymity
properties of the users, the GWN as well as of the smart
devices SDjs. Moreover, using the smart phone stolen attack,
it is possible that an adversary A can capture a user’s secret
credentials, such as identity, password and biometrics key with
the help of the extracted information stored in the smart phone.
In addition, with the help of the user, gateway node and smart
device impersonation attacks, A can create valid messages on the
behalf of a user Ui, GWN and smart device SDj , respectively,
and can send the corresponding messages to Ui, GWN and SDj

so that these messages are treated as valid by Ui, GWN and
SDj , respectively. In a privileged-insider attack, an insider user
of the RA can act as an adversary. The privileged-insider of the
RA being an adversary can use the registration information of the
users sent to the RA by a legal Ui during the registration phase
and derive user’s secret credentials, such as identity, password
and biometrics key. However, the GWN registration is usually
performed in offline mode securely by the RA, and hence, an
adversary can not compromise the sensitive information stored in
the tamper-resistant GWN device. Considering various possible
attacks in a smart home environment, there is a great need to
design a secure remote user authentication scheme suitable for a
smart home network so that only authorized users can access the
information collected by the deployed SDjs.

1.3 Threat Model

• We have used the Dolev-Yao threat model [9] in our
scheme. According to this model, any two communicating
parties communicate over an insecure channel and the end-
point entities such as Ui and SDj are not considered as
trusted entities. An adversary, say A, can eavesdrop the
exchanged messages, and also can modify or delete the
message contents during transmission.

• It is assumed that an adversary can physically capture
some smart devices equipped at the smart home which
are not tamper-resistant, and can extract all the sensitive
data stored in those devices.

• As in [5], we also assume that the GWN is fully trusted
and can not be compromised by an adversary. Otherwise,
the whole network is compromised if the GWN is com-
promised. For this purpose, as in Bertino et al.’s scheme
[10], we also assume that the GWN is equipped with the
tamper-resistant device so that all the sensitive information
including the cryptographic keying materials stored in it is
protected from A. Hence, the use of a tamper-resistant
GWN makes the security of the proposed scheme is
strong enough. Though the attacks on tamper-resistant
devices are possible, the attacker A needs a special equip-
ment to perform attacks to extract the information. Since it
is cheaper to install the GWN than the special equipment,
so A does not have economic incentives to mount such
an attack [10]. Moreover, the GWN can be physically
secured by putting it under a locking system inside the
smart home of a user so that the physical capture of the
GWN can be much difficult as compared to that for the
smart devices.

• The RA is also fully trusted and can not be compromised
by an adversary.
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1.4 Contributions

Based upon the above discussion, the following contributions are
presented in this paper:

• We propose a new remote user authentication scheme for
securing a smart home network. The proposed scheme
allows three types of mutual authentications: 1) between a
user Ui and the GWN , 2) between the GWN and a smart
device SDj , and 3) a user Ui and a smart device SDj . At
the end, a symmetric session key is established between Ui

and SDj , and they can use the established symmetric key
for their future secure communications using a symmetric
cipher (for example, the stateless CBC (Cipher Block
Chaining) mode of the Advanced Encryption Standard
(AES-128), known as AES-CBC [11], [12], [13]).

• The proposed scheme is suitable and efficient for resource-
constrained SDjs with limited resources as it uses only
hash invocations, simple bitwise XOR operations and
symmetric encryption/decryption operations.

• The security of the proposed scheme is proved using
the formal security analysis under the widely-accepted
ROR model [14], and also using the rigorous informal
security analysis. The formal security discussed in Section
5.1 proves the semantic security of the proposed scheme
against an adversary to get the session key between a user
and a smart device in the smart home environment. On the
other hand, using the informal security analysis, we have
shown that the proposed scheme is secure against other
possible known attacks, which are discussed in detail in
Section 5.3.

• The formal security verification of the proposed scheme in
Section 5.2 is done using the broadly-used AVISPA tool
[15] and the simulation results show that it is also secure
against replay and man-in-the-middle attacks.

• Finally, the practical demonstration of the proposed
scheme is provided through the widely-accepted NS-2
simulation [16].

1.5 Roadmap of the Paper

The rest of the paper is structured as follows. We briefly discuss
the relevant mathematical preliminaries in Section 2. A brief
survey of various existing schemes proposed in the literature is
given in Section 3. A new user authentication and session key
agreement scheme for smart home environment is presented in
Section 4. The rigorous formal and informal security analysis are
given in Section 5. In addition, the formal security verification
using the popular AVISPA tool is also given in this section. The
practical demonstration of the proposed scheme using widely-
accepted NS-2 simulation is given in Section 6. The performance
comparison with the existing relevant schemes is given in Section
7. Finally, Section 8 concludes the article.

2 MATHEMATICAL PRELIMINARIES

In this section, we briefly discuss the one-way cryptographic hash
function and its properties, and also the indistinguishability of
encryption under chosen plaintext attack (IND-CPA), which are
necessary to analyze the security of the proposed scheme.

2.1 One-way Cryptographic Hash Function

A one-way cryptographic hash function h: {0, 1}∗ → {0, 1}l

takes an arbitrary-length input, say x ∈ {0, 1}∗, and outputs a
fixed-length (say, l-bits) message digest h(x) ∈ {0, 1}l.

Definition 1. As defined in [17], the formalization of an adversary

A’s advantage in finding hash collision is given by AdvHASH
A (t)

= Pr[(a, b) ←R A: a 6= b and h(a) = h(b)], where Pr[X]
denotes the probability of an event X , and (a, b) ←R A denotes

the pair (a, b) is randomly selected by A. In this case, A is

allowed to be probabilistic and the probability in the advantage is

computed over the random choices made by A with the execution

time t. By an (ǫ, t)-adversary A attacking the collision resistance

of h(·), it is meant that the runtime of A is at most t and that

AdvHASH
A (t) ≤ ǫ.

2.2 Indistinguishability of Encryption Under Chosen

Plaintext Attack

The indistinguishability of encryption under chosen plaintext
attack (IND-CPA) is formally defined as follows [18], [19]:

Definition 2. Let SE/ME be the single/multiple eavesdropper

respectively, and ORek1
, ORek2

, . . ., ORekN
be N different

independent encryption oracles associated with encryption keys

ek1, ek2, . . . , ekN , respectively. The advantage functions of SE
and ME are defined, respectively, as AdvIND−CPA

Ω,SE (k) =
|2Pr[SE ← ORek1

; (p0, p1 ←R SE); δ ←R {0, 1};

β ←R ORek1
(pδ) : SE(β) = δ]−1|, and AdvIND−CPA

Ω,ME (k) =
|2Pr[ME ← ORek1

, . . ., ORekN
; (p0, p1 ←R ME);

δ ←R {0, 1}; β1 ←R ORek1
(pδ), . . ., βN ←R ORekN

(pδ):

ME(β1, . . ., βN ) = δ] − 1|, where Ω is the encryption scheme.

We call Ω is IND-CPA secure in the single (multiple) eavesdropper

setting if AdvIND−CPA
Ω,SE (k) (respectively, AdvIND−CPA

Ω,ME (k))
is negligible (in the security parameter k) for any probabilistic,

polynomial time adversary SE (ME).

A deterministic encryption scheme means the same message,
when it is encrypted twice, yields the same ciphertext. Thus,
any deterministic encryption scheme is not IND-CPA secure [13].
There are five modes of symmetric encryption: Electronic Code-
book (ECB), Cipher Block Chaining (CBC), Cipher Feedback
(CFB), Output Feedback (OFB) and Counter (CTR). Out of these
modes, ECB is not IND-CPA secure [13]. Since the adversary
knows the Initialization Vector (IV ), CBC is essentially reduced
to ECB, and hence, the stateful CBC is IND-CPA insecure [13].
On the other hand, in the stateless CBC, the IV value is chosen
at random for each message, and due to this property, the stateless
CBC is IND-CPA secure [13]. If the stateless CBC of AES-128
symmetric encryption scheme is used for encryption/decryption
purpose, it then becomes IND-CPA secure.

3 RELATED WORK

Jeong et al. [20] presented a one-time password based user authen-
tication scheme using smart card for smart home networks. Their
scheme is lightweight as it uses one-way hash function operations.
Their scheme does not provide mutual authentication between
GWN and smart device as well as between user and smart device.
Their scheme does not provide traceability, and user anonymity
properties as the user identity is sent in plaintext and also the
messages can be easily traced by an adversary. Furthermore, their



1545-5971 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2017.2764083, IEEE

Transactions on Dependable and Secure Computing

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

scheme is insecure against stolen smart card attack and privileged-
insider attack as the adversary can derive secret credentials of a
user from the extracted information stored in the smart card. In
addition, their scheme is not resilient against smart device physical
capture attack.

Vaidya et al. [21] proposed a password based remote user
authentication scheme for digital home network. Their scheme is
also based upon lightweight computation modules such as hashed
one-time password and hash-chaining methods. Similar to Jeong
et al. [20], their scheme does not provide mutual authentication
between GWN and smart device as well as between user and
smart device. Kim and Kim [22] analyzed Vaidya et al.’s scheme
[21] and identified that it is vulnerable to password guessing
attack and does not provide forward secrecy with lost smart card.
They also proposed a new scheme which withstands the security
weaknesses observed in Vaidya et al.’s scheme [21]. Vaidya et

al.’s scheme [21] scheme is insecure against stolen smart card
attack and privileged-insider attack as the adversary can derive
secret credentials of a user from the extracted information stored
in the smart card. In addition, their scheme is not resilient against
smart device physical capture attack. Later, Vaidya et al. [23]
also proposed an elliptic curve cryptography (ECC) based device
authentication technique for smart energy home area network
which requires more overheads as compared to the scheme in
[21]. Kim-Kim’s scheme [22] is however not resilient against
privileged-insider attack, user impersonation attack and password
guessing attack. In addition, Kim-Kim’s scheme [22] also fails to
preserve traceability and anonymity of user and smart device.

Hanumanthappa et al. [24] proposed a secure three-way
authentication mechanism for user authentication and privacy
preservation. In their mechanism, the users or service providers
can check whether the device is compromised or not by the help
of their proposed encrypted pass-phrases mechanism.

Santoso and Vun [25] proposed ECC based user authentication
scheme for a smart home system. In their scheme, the mobile
user can authenticate with the devices deployed in the smart
home using a central node, called the home gateway. Similar to
the schemes of Jeong et al. [20], Vaidya et al. [21], and Kim
and Kim [22], their scheme does not provide traceability, and
user anonymity properties. Furthermore, their scheme is insecure
against stolen smart card attack and privileged-insider attack. In
addition, their scheme is not resilient against smart device physical
capture attack.

Chang and Le [26] recently proposed a two-factor user au-
thentication scheme in wireless sensor networks (WSNs), which
uses a user’s password and smart card. Their scheme has two
protocols: P1 and P2. While P1 is based on bitwise XOR and
hash functions, P2 uses ECC along with bitwise XOR and hash
functions. However, Das et al. [27] proved that both P1 and P2

are insecure against session specific temporary information attack
and offline password guessing attack, while P1 is also insecure
against session key breach attack. Moreover, they pointed out that
both P1 and P2 are inefficient in authentication and password
change phases. To erase the security limitations in P1 and P2,
a new authentication and key agreement scheme using ECC in
WSNs is presented [27].

Kumar et al. [5] presented a lightweight and secure session
key establishment scheme for smart home network. To establish
the mutual trust, each smart device control unit establishes a
session key with the GWN by using a short authentication token.
However, their scheme does not preserve the GWN anonymity

and also the traceability properties. In addition, their scheme does
not provide mutual authentication between user and smart device
as well as between user and the GWN .

Li et al. [28] proposed an ECC based key establishment
scheme for smart home energy management systems. Through the
implementation, it is shown that their scheme is efficient with
respect to execution time and memory usage. Han et al. [29]
presented a secure key agreement scheme for ubiquitous smart
home systems, which is particularly applicable to the consumer
electronics devices in a smart home. The security and functionality
features of the existing schemes summarized in Table 4 are also
discussed in detail in Section 7.

TABLE 1
Notations used

Notation Description
RA Registration authority
GWN Gateway node
SDj jth smart device in the home
Ui ith user
SPi Ui’s smart phone
IDi Ui’s identity
IDSDj

SDj ’s identity
PWi, BIOi Ui’s password & personal biometrics, respectively
Ti Current timestamp
∆T Maximum transmission delay
KGWN−Ui

Secret key of GWN for Ui

KGWN−SDj
Secret key of GWN for SDj

EK(·)/DK(·) Symmetric encryption/decryption (for example,
AES-CBC (128 bits) [12]) using key K

σi Biometric secret key of Ui

τi Public reproduction parameter of Ui

t Error tolerance threshold used in fuzzy extractor
Gen Fuzzy extractor probabilistic generation procedure
Rep Fuzzy extractor deterministic reproduction procedure
h(·) One-way collision-resistant cryptographic hash function
||, ⊕ Concatenation and bitwise XOR operations, respectively

4 THE PROPOSED SCHEME

We propose a new user authenticated key establishment scheme
for the smart home environment. In the proposed scheme, we have
a registration authority, several smart sensing devices, a gateway
node (GWN) and several users, who want to access the smart
devices. First of all, the secure offline registration of each smart
device and GWN is done at the registration authority (RA).
Then a user, who wants to access the smart devices, needs to
register at the registration authority providing his/her necessary
information. Each user has a smart phone, which is capable
to read the credential information such as the user’s identity,
password and biometric (fingerprint scanning etc.) provided by
that user. The GWN acts as an intermediary node. The legal
user’s authentication request goes to the GWN and then the
GWN forwards the request to the requested smart device. The
smart device sends response to the GWN accordingly and then
the GWN forwards the response to the user. As discussed in
the threat model provided in Section 1.3, the GWN is fully
trusted and all the sensitive informations stored in the GWN
are protected from an adversary [5]. Moreover, we assume that
all the heterogeneous devices (i.e., GWN , users (smart phones)
and smart devices) are synchronized with their clocks, and agree
(mutually) on a maximum transmission delay (∆T ) to protect
replay attacks in the proposed scheme [5].
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Our scheme has six phases: 1) offline smart device and gate-
way registration, 2) user registration, 3) login, 4) authentication
and agreement, 5) biometric and password update, and 6) dynamic
smart device addition. The notations presented in Table 1 are
used in the proposed scheme. We assume that there are m users
and n smart devices in the smart home environment. In addition,
we assume that n′ additional smart devices can be added in the
network through the dynamic smart device addition phase, where
n′ << n. We also use the fuzzy extractor to verify the biometrics.
The fuzzy extractor is a tuple 〈M, l, t〉, which is composed of the
following two algorithms [30], [31]:

Gen: It is a probabilistic algorithm, which takes a biometric
template Bi from a given metric space M as input, and then
outputs a biometric key σi ∈ {0, 1}l and a public reproduction
parameter τi, that is, Gen(Bi) = {σi, τi}, where l denotes the
number of bits present in σi.

Rep: This is a deterministic algorithm, which takes a noisy
biometric template B′

i ∈ M and a public parameter τi and t
related to Bi, and then it reproduces (recovers) the biometric key
σi. In other words, Rep(B′

i, τi) = σi provided that the Hamming
distance between Bi and B′

i is less than or equal to a predefined
error tolerance threshold value t.

4.1 Offline Smart Device and Gateway Registration

Phase

The offline smart device (SDj) and GWN registration is done by
the registration authority (RA) in offline securely (for example,
in person). For each SDj (j = 1, 2, . . . , n), the RA selects a
unique identity IDSDj

and also generates a unique random 1024-
bit secret key KGWN−SDj

of GWN for SDj , and computes the
corresponding temporal credential h(IDSDj

||KGWN−SDj
), and

stores {IDSDj
, h(IDSDj

||KGWN−SDj
)} into the memory of

SDj . The RA further randomly generates the unique GWN ’s
identity IDGWN and a unique random 1024-bit secret key
KGWN−Ui

of GWN for each user Ui (i = 1, 2, . . . ,m), and
also selects the temporary identity TIDi corresponding to each
user Ui’s identity IDi into the memory of the GWN after Ui’s
successful registration phase described in Section 4.2. Finally,
the GWN and SDj contain the information 〈{(TIDi, IDi,
KGWN−Ui

)|i = 1, 2, . . . ,m}, {(IDSDj
, KGWN−SDj

)|j =
1, 2, . . . , n}〉, and 〈IDSDj

, h(IDSDj
||KGWN−SDj

)〉 for each
user Ui and smart device SDj , respectively.

4.2 User Registration Phase

To access the services from a particular smart device SDj , a user
Ui first needs to register with the RA securely (for example, in
person). The following steps are required for the Ui’s registration,
which are also summarized in Fig. 2:

Step REG1. Ui chooses a unique identity IDi and a password
PWi, and generates 160-bit random secrets a and r. Ui also
imprints his/her biometrics BIOi to the sensor of SPi. The
SPi applies the fuzzy extractor probabilistic generation function
Gen(·) to generate secret biometric key σi and public parameter
τi as Gen(BIOi) = (σi, τi) [31], [32], [33]. The SPi of Ui

calculates the masked password RPWi = h(PWi||σi||a) ⊕ r,
and sends the registration request 〈IDi, RPWi〉 to the RA
using a secure channel. Note that a privileged-insider user of
the RA being an adversary knows the registration information
{IDi, RPWi} to mount the privileged-insider attack.

Step REG2. After receiving 〈IDi, RPWi〉 from SPi, the RA
first generates a 1024-bit secret key KGWN−Ui

of GWN for
Ui, and calculates Ai = h(IDi||KGWN−Ui

) ⊕RPWi. RA also
generates a temporary identity TIDi corresponding to IDi for Ui

as discussed in the GWN registration phase (Section 4.1). Finally,
RA sends the registration reply with information {Ai, T IDi} to
Ui securely. Note that the privileged-insider user of the RA being
an adversary does not know the information {Ai, T IDi} as these
information are computed online by the RA.

Step REG3. After receiving 〈Ai, T IDi〉 from the RA, SPi

of Ui computes parameters Bi = h(IDi||σi) ⊕a, RPW ′
i =

RPWi⊕ r = h(PWi ||σi ||a), Ci = h(IDi ||RPW ′
i ||σi)

and A∗
i = Ai ⊕ r = h(IDi ||KGWN−Ui

) ⊕RPW ′
i = h(IDi

||KGWN−Ui
) ⊕h(PWi ||σi ||a). Finally, SPi stores the infor-

mation 〈TIDi, A∗
i , Bi, Ci, τi, h(·), Gen(·), Rep(·), t〉 in its

memory, where t is the error tolerance parameter used by the fuzzy
extractor Rep(·) function.

At the end of this phase, the user Ui erases Ai from his/her
smart phone SPi in order to avoid the privileged-insider attack as
explained in Section 5.3.3. In addition, the RA also deletes Ai

and RPWi from its database.

User (Ui)/ Smart phone (SPi) Registration authority (RA)

Choose IDi, PWi, and imprint BIOi.
Generate 160-bit random secrets a, r. Select 1024-bit KGWN−Ui

.
Compute Gen(BIOi) = (σi, τi), Compute
RPWi = h(PWi||σi||a) ⊕ r. Ai = h(IDi||KGWN−Ui

) ⊕ RPWi.
〈IDi, RPWi〉
−−−−−−−−−→

Generate temporary identity TIDi

(via a secure channel) corresponding to IDi.
〈Ai, T IDi〉
←−−−−−−−

Compute Bi = h(IDi||σi) ⊕ a, (via a secure channel)
RPW ′

i = RPWi ⊕ r = h(PWi||σi||a),
Ci = h(IDi||RPW ′

i ||σi), A∗
i = Ai ⊕ r

= h(IDi||KGWN−Ui
) ⊕ RPW ′

i .
Delete Ai from SPj’s memory.
Store {TIDi, A

∗
i , Bi, Ci, τi, h(·), Store {IDi, T IDi} in GWN ’s database.

Gen(·), Rep(·), t} in SPj’s memory. Delete Ai and RPWi from its database.

Fig. 2. User registration phase

4.3 Login Phase

The login process of Ui is performed as per the following steps:
Step UL1. Ui first provides his/her identity IDi and password

PW ∗
i into the interface of the smart phone SPi, and also provides

his/her biometrics BIO∗
i to the sensor of SPi. SPi extracts the

biometric key σ∗
i as σ∗

i = Rep(BIO∗
i , τi) with the constraint

that the Hamming distance between the original biometrics BIOi

at the time of registration and entered current BIO∗
i is less than

or equal to t. SPi further computes a∗ = Bi⊕ h(IDi||σ
∗
i ),

RPW ∗
i = h(PW ∗

i || σ∗
i ||a∗) and C∗

i = h(IDi||RPW ∗
i ||σ

∗
i ).

SPi then checks whether C∗
i = Ci. If it is valid, Ui passes both

password and biometric verification. Otherwise, the session is
terminated immediately.

Step UL2. SPi calculates M1 = A∗
i ⊕ RPW ∗

i = h(IDi

||KGWN−Ui
). Then SPi generates a random nonce rUi

and the
current timestamp T1, and calculates parameters M2 = M1 ⊕ rUi

and M3 = h(M2||T1|| IDi||TIDi|| rUi
). Finally, SPi sends

the login request message 〈TIDi, M2, M3, T1〉 to GWN via an
open channel.

4.4 Authentication and Key agreement Phase

On receiving the login request 〈TIDi, M2, M3, T1〉 from SPi,
following steps are performed by Ui/SPi, GWN and an accessed
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User (Ui)/Smart phone (SPi) Gateway node (GWN) Smart device (SDj)
〈TIDi, A∗

i , Bi, Ci, τi, 〈{(TIDi, IDi, KGWN−Ui
)|i = 1, 2, . . . ,m}, 〈IDSDj

, h(IDSDj
||KGWN−SDj

)〉
h(·), Gen(·), Rep(·), t〉 {(IDSDj

, KGWN−SDj
)|j = 1, 2, . . . , n}〉

Input IDi, PW ∗
i & BIO∗

i . Check if |T1 − T ∗
1 | ≤ ∆T ? Check if |T2 − T ∗

2 | ≤ ∆T ?
Compute σ∗

i = Rep(BIO∗
i , τi), If so, extract IDi and KGWN−Ui

If so, decrypt M7 to retrieve
a∗ = Bi ⊕ h(IDi||σ

∗
i ), corresponding to TIDi. Compute (IDi, IDGWN , r∗Ui

, rGWN , h(M4))
RPW ∗

i = h(PW ∗
i ||σ

∗
i ||a

∗), M4 = h(IDi||KGWN−Ui
)(= M1) using = Dh(IDSDj

||KGW N−SDj
)[M7].

C∗
i = h(IDi||RPW ∗

i ||σ
∗
i ). extracted IDi & KGWN−Ui

, r∗Ui
= M2 ⊕ M4, Compute M9 = h[h(IDSDj

||KGWN−SDj
)

Check if C∗
i = Ci? If so, compute M5 = h(M2||T1||IDi||TIDi||r

∗
Ui

). ||T2||IDi||IDSDj
||IDGWN ||rGWN ].

M1 = A∗
i ⊕ RPW ∗

i = h(IDi||KGWN−Ui
). Check if M5 = M3? Check if M9 = M8?

Generate rUi
& T1, and calculate If matches, generate rGWN & T2. If so, generate rSDj

& T3, and
M2 = M1 ⊕ rUi

, Compute M6 = h(IDSDj
||KGWN−SDj

), compute SKij = h[IDi||IDSDj
||

M3 = h(M2||T1||IDi||TIDi||rUi
). M7 = EM6

[IDi, IDGWN , r∗Ui
, rGWN , h(M4)], IDGWN ||r∗Ui

||rGWN ||rSDj
||h(M4)

〈TIDi,M2,M3, T1〉
−−−−−−−−−−−−−−→

M8 = h(M6||T2||IDi||IDSDj
||IDGWN ||rGWN ). ||h(h(IDSDj

||KGWN−SDj
))],

(via open channel) 〈M7,M8, T2〉
−−−−−−−−−→

M10 = h(h(IDSDj
||KGWN−SDj

)||T3) ⊕rSDj
,

(via open channel) M11 = h(SKij ||T3),
M12 = h(rSDj

||rGWN ||IDSDj
||IDGWN ||T3).

〈M10,M11,M12, T3〉
←−−−−−−−−−−−−−−

Check if |T3 − T ∗
3 | ≤ ∆T ? (via open channel)

If so, compute r∗SDj
= M10⊕

Check if |T4 − T ∗
4 | ≤ ∆T ? h[h(IDSDj

||KGWN−SDj
)||T3],

If so, decrypt M13 = h(r∗SDj
||rGWN ||IDSDj

||IDGWN ||T3).

DM1
[M14] = (r∗Ui

, r∗GWN , r∗SDj
, Check if M13 = M12?

IDSDj
, IDGWN , h(M6)). If so, compute M14 = EM4

[r∗Ui
, rGWN , r∗SDj

,

Check if r∗Ui
= rUi

? IDSDj
, IDGWN , h(M6)].

If so, compute SK ′
ij = h[IDi||IDSDj

Generate T4, select TIDnew
i and compute

||IDGWN ||rUi
||r∗GWN ||r∗SDj

M15 = TIDnew
i ⊕ h(TIDi||M4||T3||T4),

||h(M1)||h(M6)], M16 = h(M11||T4||r
∗
Ui

).
M17 = h(h(SK ′

ij ||T3)||T4||rUi
). 〈M14,M15,M16, T3, T4〉

←−−−−−−−−−−−−−−−−−
Check if M17 = M16? If so, Ui and SDj (via open channel)
establish session key SK ′

ij(= SKij).

Compute TIDnew
i = M15 ⊕ h(TIDi

||M1||T3||T4).
Replace TIDi with TIDnew

i .

Fig. 3. Summary of login, and authentication and key agreement phases

smart device SDj to establish a session key between Ui and SDj

for later secure communication:

Step AUKA1. GWN first checks the timeliness of T1 by
condition |T1 − T ∗

1 | ≤ ∆T , where the maximum transmission
delay is denoted by ∆T and T ∗

1 is the reception time of the
message 〈TIDi,M2,M3, T1〉. If the condition matches, the
GWN searches the received TIDi in its database and if it is
found in the database, the GWN extracts IDi and KGWN−Ui

corresponding to TIDi from its database, and calculates M4 =
h(IDi||KGWN−Ui

) (= M1) using the extracted IDi and
KGWN−Ui

, r∗Ui
= M2 ⊕ M4 = M2 ⊕M1, M5 = h(M2||T1||

IDi|| TIDi|| r∗Ui
).

Step AUKA2. GWN checks if M5 = M3 holds. If it does
not match, it terminates the authentication process. Otherwise
GWN generates a random nonce rGWN and timestamp T2, and
calculates parameters M6 = h(IDSDj

||KGWN−SDj
), M7 =

EM6
[IDi, IDGWN , r∗Ui

, rGWN , h(M4)], M8 = h(M6|| T2||
IDi|| IDSDj

||IDGWN ||rGWN ). For computing M7, if we use
the stateless CBC of AES-128 (AES-CBC) symmetric encryption
scheme, then the GWN needs to set the IV of CBC as IV =
h(M6||T1) so that it is random for each message in a particular
session. Then GWN sends the authentication request message
〈M7,M8, T2〉 to SDj via an open channel.

Step AUKA3. After receiving the message 〈M7,M8, T2〉
from GWN , SDj checks the timeliness of T2 by the criteria
|T2 − T ∗

2 | ≤ ∆T , where T ∗
2 is the reception time of the message

〈M7,M8, T2〉. If condition holds, SDj decrypts M7 using the
stored key h(IDSDj

||KGWN−SDj
) as (IDi, IDGWN , r∗Ui

,
rGWN , h(M4)) = Dh(IDSDj

||KGW N−SDj
) [M7]. For decrypt-

ing M7, SDj also needs to set the IV of CBC as IV =

h(h(IDSDj
||KGWN−SDj

)||T1) (= h(M6||T1)).

Step AUKA4. SDj calculates M9 = h[h(IDSDj
||

KGWN−SDj
) ||T2 ||IDi ||IDSDj

||IDGWN ||rGWN ] and
checks the condition M9 = M8. If it does not match, it ter-
minates the authentication process. Otherwise, SDj generates a
random nonce rSDj

and the current timestamp T3, and com-
putes the session key as SKij = h[IDi ||IDSDj

||IDGWN

||r∗Ui
||rGWN || rSDj

||h(M4)|| h(h(IDSDj
|| KGWN−SDj

))].
After that, SDj computes parameters M10 = h(h(IDSDj

||KGWN−SDj
) ||T3)⊕ rSDj

, M11 = h(SKij ||T3) and M12 =
h(rSDj

||rGWN ||IDSDj
||IDGWN ||T3). Then SDj sends the

authentication reply message 〈M10, M11, M12, T3〉 to the GWN
via an insecure channel.

Step AUKA5. Upon receiving authentication request message,
GWN checks the timeliness of T3 by applying the criteria
|T3 − T ∗

3 | ≤ ∆T , where T ∗
3 is the reception time of the message

〈M10, M11, M12, T3〉. If condition matches, GWN computes
r∗SDj

= M10⊕ h[h(IDSDj
||KGWN−SDj

) ||T3] and M13 =
h(r∗SDj

||rGWN ||IDSDj
||IDGWN ||T3). The GWN checks

the condition M13 = M12. If it does not match, the GWN aborts
the message. Otherwise, GWN computes M14 using previously
computed M4 = h(IDi||KGWN−Ui

) as M14 = EM4
[r∗Ui

,
rGWN , r∗SDj

, IDSDj
, IDGWN , h(M6)]. For encrypting the

information in M14 using the key M4, we also use the stateless
CBC of AES-128 (AES-CBC) symmetric encryption scheme and
thus, the GWN needs to set the IV of CBC as IV = h(M4||T4)
so that it is random for each message in a particular session.
The GWN chooses current timestamp T4 and generates a new
temporary identity TIDnew

i corresponding to IDi. The GWN
further computes M15 = TIDnew

i ⊕h(TIDi ||M4 ||T3 ||T4)
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and M16 = h(M11 ||T4 ||r∗Ui
). The GWN sends the message

〈M14, M15, M16, T3, T4〉 to Ui via insecure channel.
Step AUKA6. After receiving the message 〈M14, M15, M16,

T3, T4〉, SPi of Ui first checks the timeliness of T4 with the
condition |T4 − T ∗

4 | ≤ ∆T , where T ∗
4 is the reception time of

the message. If condition matches, Ui decrypts M14 using pre-
computed M1 as DM1

[M14] = (r∗Ui
, r∗GWN , r∗SDj

, IDSDj
,

IDGWN , h(M6)). For decrypting M14, SDj also needs to set
the IV of CBC as IV = h(M1||T4) (= h(M4||T4)).

Then SPi checks if r∗Ui
= rUi

. If they do not match, SPi

terminates the authentication process. Otherwise, it computes the
session key SK ′

ij = h[IDi ||IDSDj
||IDGWN ||rUi

||r∗GWN

||r∗SDj
||h(M1) ||h(M6)] and M17 = h(h(SK ′

ij ||T3) ||T4

||rUi
), and then matches if M17 = M16. If it does not match,

SPi terminates the session and discards the computed session
key. Otherwise, message comes from the valid source and the
computed session key SK ′

ij is authentic. Finally, SPi computes
the new temporary identity as TIDnew

i = M15⊕ h(TIDi ||M1

||T3 ||T4) and replaces TIDi with TIDnew
i in its memory.

The login, and authentication and agreement phases are sum-
marized in Fig. 3.

4.5 Password and Biometric Update Phase

The proposed scheme provides password and biometric update
facility through which a legitimate user Ui can update his/her
password and biometrics for security reasons at any time after
user registration phase without further involving the RA. Note
that the biometric information of a given user Ui is unique and
unchanged as compared to the chosen password by that user Ui.
However, we suggest the user Ui to update his/her biometric
information in the proposed scheme, if he/she desires to do so.
This is required to protect strongly the offline password guessing
attack to be considered in this phase as described by Huang et al.

[34], which is discussed in detail in Section 5.3.11. This phase
needs the following steps:

Step PBU1. Ui provides his/her identity IDi, old password
PW old

i to interface of the SPi and current his/her biometrics
BIOold

i to the sensor of the SPi. SPi then computes σold
i =

Rep(BIOold
i , τi), a′ = Bi⊕ h(IDi||σ

old
i ), RPW old

i =
h(PW old

i ||σold
i ||a′) and Cold

i = h(IDi|| RPW old
i ||σold

i ).
SPi checks the condition Cold

i = Ci. If it matches, Ui is the
actual user; otherwise, the phase is terminated immediately.

Step PBU2. SPi asks Ui to enter a new password PWnew
i and

also imprint new biometrics BIOnew
i . The SPi then calculates

Gen(BIOnew
i ) = (σnew

i , τnew
i ), RPWnew

i = h(PWnew
i

||σnew
i ||a′), Bnew

i = h(IDi||σ
new
i ) ⊕a′, Cnew

i = h(IDi

||RPWnew
i ||σnew

i ) and Anew
i = A∗

i⊕ RPW old
i ⊕RPWnew

i ,
= h(IDi|| KGWN−Ui

) ⊕RPWnew
i = h(IDi|| KGWN−Ui

)
⊕h(PWnew

i ||σnew
i ||a′).

Step PBU3. Finally, SPi replaces τi, A∗
i , Bi, and Ci with

τnew
i , Anew

i , Bnew
i , and Cnew

i in its memory, respectively.
The password and biometric update phase is also summarized

in Fig. 4.

4.6 Dynamic Smart Device Addition Phase

To deploy a new smart device SDnew
j in the existing smart home

network, the RA performs the following steps in offline:
Step DA1. RA first assigns a unique new identity IDnew

SDj
and

also generates a new secret key KGWN−SDnew
j

of GWN for
SDnew

j . RA further computes the temporal credential of SDnew
j

User (Ui) Smart phone (SPi)
〈TIDi, A∗

i , Bi, Ci, τi, h(·), Gen(·), Rep(·), t〉

Provide IDi, PW old
i Compute σold

i = Rep(BIOold
i , τi),

& BIOold
i . a′ = Bi ⊕ h(IDi||σ

old
i ),

RPW old
i = h(PW old

i ||σold
i ||a′),

Cold
i = h(IDi||RPW old

i ||σold
i ).

Check if Cold
i = Ci?

If so, ask Ui to provide new
password & biometrics.

Provide
PWnew

i & BIOnew
i . Compute Gen(BIOnew

i ) = (σnew
i , τnew

i ),
RPWnew

i = h(PWnew
i ||σnew

i ||a′),
Bnew

i = h(IDi||σ
new
i ) ⊕ a′,

Cnew
i = h(IDi||RPWnew

i ||σnew
i ),

Anew
i = A∗

i ⊕ RPW old
i ⊕ RPWnew

i ,
= h(IDi||KGWN−Ui

) ⊕ RPWnew
i .

Finally, SPi replaces τi, A∗
i , Bi and Ci with

τnew
i , Anew

i , Bnew
i and Cnew

i , respectively.

Fig. 4. Summary of password and biometric update phase

as h(IDSDnew
j

||KGWN−SDnew
j

).

Step DA2. RA stores the information {IDSDnew
j

,

h(IDSDnew
j

||KGWN−SDnew
j

)} into the memory of SDj before
its deployment in the smart home. RA also sends the information
{IDSDnew

j
, KGWN−SDnew

j
} to the GWN securely, which are

then stored in the database of the GWN .
Finally, RA also needs to inform the existing users in the

network about the deployment of new smart device SDnew
j so

that they can access the services from SDnew
j , if needed.

5 SECURITY ANALYSIS

In this section, we analyze the security of the proposed scheme
using both formal and informal analysis.

5.1 Formal Security Analysis using Real-Or-Random

Model

The widely-accepted Real-Or-Random (ROR) model [14] is used
for formal security analysis of the proposed scheme.

5.1.1 ROR Model

We follow the Abdalla et al.’s ROR model [14] for formal security
analysis as done in [26]. According to our scheme, we have three
participants in the smart home: smart device SDj , user Ui and
GWN .

Participants. Let Πt
SDj

, Πu
Ui

and Πv
GWN be the instances t,

u and v of SDj , Ui and GWN , respectively. These are called
oracles [26].

Accepted state. An instance Πt is known to be accepted, if
upon receiving the last expected protocol message, it goes into an
accept state. The ordered concatenation of all communicated (sent
and received) messages by Πt forms the session identification
(sid) of Πt for the current session.

Partnering. Two instances Πt1 and Πt2 are said to be part-
nered if the following three conditions are fulfilled simultaneously:
1) both Πt1 and Πt2 are in accept state; 2) both Πt1 and Πt2

mutually authenticate each other and share the same sid; and 3)
Πt1 and Πt2 are mutual partners of each other.

Freshness. The instance Πu
Ui

or Πt
SDj

is fresh, if the session
key SKij between Ui and SDj has not revealed to an adversary
A using the Reveal(Πt) query given below [26].

Adversary. It is assumed that A has fully control over all the
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communications in a smart home. A has the ability to read, modify
the exchanged messages, or can fabricate new messages and inject
them into the network. Furthermore, A has access to the following
queries [26]:

Execute(Πu,Πv,Πt): A can execute this query to obtain
the messages exchanged between three legitimate participants Ui,
GWN and SDj , which is further modeled as an eavesdropping
attack.

Reveal(Πt): This query reveals the current session key SKij

generated by Πt (and its partner) to an adversary A.
Send(Πt,msg): A runs this query to send a message, say

msg, to a participant instance Πt, and also receives a response
message. It is modeled as an active attack.

CorruptSmartPhone(Πu
Ui

): It represents the smart phone
SPi lost/stolen attack, which outputs the information stored in
SPi.

CorruptSmartDevice(Πt
SDj

): This represents an attack

in which secret h(IDSDj
||KGWN−SDj

) is disclosed to A,
which is applied to verify the security of the proposed
scheme. As mentioned in [26], both CorruptSmartPhone
and CorruptSmartDevice queries ensure the weak-corruption
model in which temporary keys and the internal data of the
participant instances are not corrupted.

Test(Πt): It represents the semantic security of a session key
SKij between Ui and SDj following the indistinguishability in
the ROR model [14]. An unbiased coin b is flipped before start of
the experiment, and its result is only known to A which is used to
decide the output of the Test query. If A runs this query, and the
established session key SKij is also new, then Πt returns SKij

in case b = 1 or a random number for b = 0; otherwise, it outputs
⊥ (null).

Note that we impose a restriction that the adversary A has
access to only limited number of CorruptSmartPhone(Πu

Ui
)

and CorruptSmartDevice(Πt
SDj

) queries, whereas he/she can

access the Test(Πt) query many times. According to the threat
model described in Section 1.3, the GWN is trusted. Thus, A
does not have any access to a corrupt query related to the GWN .

Semantic security of session key. According to the require-
ments of the ROR model [14], A needs to distinguish between an
instance’s real session key and a random key. A can make several
Test queries to either Πt

SDj
or Πu

Ui
. The output of Test query

should be consistent with respect to the random bit b. After the ex-
periment is finished, A returns a guessed bit b′ and he/she can win
the game if the condition b′ = b is met. Let SUCC be an event
that A win the game. The advantage AdvAKE

P of A in breaking
the semantic security of our authenticated key agreement (AKE)
scheme, say P against deriving the session key SKij between Ui

and SDj is given by AdvAKE
P = |2.P r[SUCC] − 1|. In the

ROR sense, P is secure if AdvAKE
P ≤ ψ, where ψ > 0 is a

sufficiently small real number.
Random oracle. As mentioned in [26], all communicating

participants as well as A have access to a collision-resistant
one-way cryptographic hash function h(·). h(·) is modeled by
a random oracle, say HO.

5.1.2 Security Proof

Theorem 1 provides the semantic security of our proposed scheme
under the widely-accepted ROR model [26], [35].

Theorem 1. Let A be an adversary running in polynomial time

t against our scheme P in the random oracle, D a uniformly

distributed password dictionary and l the number of bits present

in the biometrics key σi. The advantage of A in breaking semantic

security of our scheme is estimated as AdvAKE
P ≤

q2

h

|Hash| +
qsend

2l−1.|D|
+ 2AdvIND−CPA

Ω (k), where qh, qsend, |Hash|, |D|

and AdvIND−CPA
Ω,SE (k) or AdvIND−CPA

Ω,ME (k) are the number of

HO queries, the Send queries, the range space of h(·), the size

of D, and the advantage of A in breaking the IND-CPA secure

symmetric cipher Ω (provided in Definition 2), respectively, and

AdvIND−CPA
Ω (k) = AdvIND−CPA

Ω,SE (k) or AdvIND−CPA
Ω,ME (k).

Proof. The proof is similar to that presented in the schemes [26],
[35]. The sequence of five games, say GMi, are defined in the
security analysis, where i = 0, 1, 2, 3, 4. Assume that SUCCi be
an event wherein an adversary A can guess the random bit b in
GMi correctly.

GM0: This game corresponds to a real attack performed by A
against our scheme P in the ROR sense. The bit b is chosen at the
beginning of GM0. Hence, it follows that

AdvAKE
P = |2.P r[SUCC0] − 1|. (1)

GM1: This game represents an eavesdropping attack per-
formed by the single/multiple eavesdropper SE/ME, say A,
where A can query Execute(Πu, Πv, Πt) oracle. At the end
of the game, A makes queries to the Test oracle. The output of
Test oracle determines whether it is the actual session key SKij

or a random number. Note that the session key SKij is calculated
by both Ui and SDj as SKij = h[IDi|| IDSDj

||IDGWN

||r∗Ui
||rGWN ||rSDj

||h(M4) ||h(h(IDSDj
||KGWN−SDj

))],
where M4 = h(IDi ||KGWN−Ui

). To calculate SKij , A must
have M4 and h(IDSDj

||KGWN−SDj
), which further involve

secret keys KGWN−Ui
and KGWN−SDj

. A also requires IDi,
IDSDj

, IDGWN , rUi
, rGWN and rSDj

for calculating SKij ,
which are unknown to him/her. As a consequence, the chance of
winning the game GM1 for A is not increased by eavesdropping
attack. It is then obvious that

Pr[SUCC0] = Pr[SUCC1]. (2)

GM2: By adding the simulations of the Send and HO oracles
are added into GM1, GM1 is transformed into GM2, which
represents an active attack. In this game, the objective of A is
to fool a participant to accept a modified message. A is permitted
to make different HO queries to examine the existence of the
hash collisions. All the exchanged messages 〈TIDi, M2, M3,
T1〉, 〈M7, M8, T2〉, 〈M10, M11, M12, T3〉 and 〈M14, M15,
M16, T3, T4〉 during the login and authentication phase contain
the participant’s identity, random nonce and timestamps. Hence,
there is no collision when the Send oracle is queried by A. The
results of the birthday paradox give

|Pr[SUCC1] − Pr[SUCC2]| ≤ q2
h/(2|Hash|). (3)

GM3: GM2 is transformed into GM3 by adding the sim-
ulation of CorruptSmartPhone oracle. A can choose low-
entropy passwords, and using the information stored into SPi

he/she may try to acquire the user’s password using the dictionary
attack. Again, A may try to acquire the biometrics key σi from
the information stored in SPi. We have used a strong fuzzy
extractor in our scheme P , which is capable to extract at most
l random bits and the guessing probability of σi ∈ {0, 1}l by A
is approximately 1

2l [31]. It is also assumed that the system allows
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the limited number of wrong password inputs. Thus, we have the
following result,

|Pr[SUCC2] − Pr[SUCC3]| ≤ qsend/(2l.|D|). (4)

GM4: GM3 is transformed into GM4, where GM4 is the
last game. It models an attack in which A can physically capture
(compromise) a smart device SDj by adding the simulation of
CorruptSmartDevice oracle. A then knows the information
{IDSDj

, h(IDSDj
||KGWN−SDj

)} which is stored in SDj .
Let A also has all the eavesdropped messages 〈TIDi, M2,
M3, T1〉, 〈M7, M8, T2〉, 〈M10, M11, M12, T3〉 and 〈M14,
M15, M16, T3, T4〉. Then, A tries to retrieve the information
{IDi, IDGWN , rUi

, rGWN , h(M4)} by decrypting M7 us-
ing h(IDSDj

||KGWN−SDj
)} as (IDi, IDGWN , r∗Ui

, rGWN ,
h(M4)) = Dh(IDSDj

||KGW N−SDj
) [M7]. However, A can not

decrypt M14 as M4 is unknown to him/her since as M14 = EM4

[r∗Ui
, rGWN , r∗SDj

, IDSDj
, IDGWN , h(M6)]. This implies that

without having M4 = h(IDi||KGWN−Ui
) (= M1), it is quite

difficult task for A to extract the information {r∗Ui
, rGWN , r∗SDj

,
IDSDj

, IDGWN , h(M6)}. Thus, computation of the session
key SKij = h[IDi ||IDSDj

||IDGWN ||rUi
||rGWN ||rSDj

||h(M1) ||h(M6)] (= SK ′
ij) is difficult as A needs the necessary

information including rSDj
and M1 (= M4) due to the IND-

CPA secure symmetric cipher used in the proposed scheme for
encryption/decryption. This concludes that

|Pr[SUCC3] − Pr[SUCC4]| ≤ AdvIND−CPA
Ω (k). (5)

In GM4, all the random oracles are simulated. A is only left to
guess the bit b for winning the game after querying the Test
oracle. It is clear that Pr[SUCC4] = 1/2.

From Equation (1), we get, 1
2 .AdvAKE

P = |Pr[SUCC0]−
1
2 |.

Using the triangular inequality, we have, |Pr[SUCC1]
−Pr[SUCC4]| ≤ |Pr[SUCC1] − Pr[SUCC2]| +
|Pr[SUCC2]−Pr[SUCC4]| ≤ |Pr[SUCC1]−Pr[SUCC2]|
+|Pr[SUCC2] −Pr[SUCC3]| +|Pr[SUCC3] −

Pr[SUCC4]| ≤
q2

h

2.|Hash| + qsend

2l.|D|
+AdvECDDHP

Gq
(t).

Using Equations (2) – (5), we have,

|Pr[SUCC0] − 1/2| ≤ q2
h/(2.|Hash|) + qsend/(2l.|D|)

+AdvIND−CPA
Ω (k). (6)

Finally, Equation (6) yields the required result:

AdvAKE
P ≤

q2
h

|Hash|
+

qsend

2l−1.|D|
+ 2AdvIND−CPA

Ω (k).

5.2 Formal Security Verification using AVISPA

The proposed scheme is simulated for the formal security verifica-
tion using the broadly-accepted Automated Validation of Internet
Security Protocols and Applications (AVISPA) tool to exhibit that
the proposed scheme withstands replay and man-in-the-middle
attacks.

AVISPA integrates four back ends that implement different
state-of-the-art automatic analysis mechanisms: (i) OFMC; (ii)
CL-AtSe; (iii) SATMC; and (iv) TA4SP. The detailed description
and functionality of these back ends are available in [15], [35],
[36], [37], [38]. A security protocol requires to be implemented
in the High Level Protocols Specification Language (HLPSL)
[39], which is converted into intermediate format (IF) using the

role user (Ui, RA, GWN, SDj: agent, H : hash_func,
           SKuira : symmetric_key, Snd, Rcv: channel(dy))
played_by Ui
def=     
local State: nat,  IDi, IDsdj, IDgwn, PWi, BIOi, RPWi, A: text,
   R, Kgwnui, Kgwnsdj, Rgwn, Rsdj, T1, M1, Rui, TIDi,TIDinew: text,
   M2, M3, T3, T4, Sigmai: text, Gen, Rep : hash_func
const ui_gwn_t1, ui_gwn_rui, gwn_ui_t4, gwn_ui_tidinew,sr1,sr2: protocol_id
init  State := 0
transition
1. State   = 0 /\ Rcv(start) =|>
% Registration phase
State’ := 1  /\ A’ := new() /\ R’ := new()
             /\ secret({PWi, BIOi, A’, R’}, sr1, Ui)
             /\ Sigmai’ := Gen(BIOi) /\ RPWi’ := xor(H(PWi.Sigmai’.A’), R’)
% Send registration request securely to RA
             /\ Snd({IDi.RPWi’}_SKuira)
% Receive information securely from RA for SPi
2. State = 1/\Rcv({xor(H(IDi.Kgwnui),xor(H(PWi.Sigmai’.A’),R’)).TIDi’}_SKuira)=|>             
% Login phase
State’ := 2 /\ secret({Kgwnui,Kgwnsdj}, sr2, GWN)
% Send login request to GWN via public channel
            /\ Rui’ := new() /\ T1’ := new()/\ M1’ := H(IDi.Kgwnui) 
            /\ M2’ := xor(M1’, Rui’) /\ M3’ := H(M2’.T1’.IDi’.TIDi’.Rui’)
            /\ Snd(TIDi’.M2’.M3’.T1’)
% Ui has freshly generated the values T1 and Rui for GWN
            /\ witness(Ui,GWN,ui_gwn_t1, T1’)/\witness(Ui,GWN,ui_gwn_rui,Rui’)
% Authentication and key agreement phase
% Receive authentication reply from GWN via public channel
3. State = 2 /\ Rcv({Rui’.Rgwn’.Rsdj’.IDi.IDsdj.IDgwn.
                H(H(IDsdj.Kgwnsdj))}_H(IDi.Kgwnui).
                xor(TIDinew’, H(TIDi’.H(IDi.Kgwnui).T3’.T4’)).
                H(H(H(IDi.IDsdj.IDgwn.Rui’.Rgwn’.Rsdj’.
                H(H(IDi.Kgwnui)).H(H(IDsdj.Kgwnsdj))).T3’).T4’.Rui’).T3’.T4’)=|>
% Ui’s acceptance of T4 and TIDinew generated for Ui by GWN
State’ := 3/\request(GWN,Ui,gwn_ui_t4,T4’)/\request(GWN,Ui,gwn_ui_tidinew,TIDinew’) 
end role

Fig. 5. The user Ui’s role in HLPSL

HLPSL2IF translator. The IF is then given as input to one of
the four backends to produce output, which has various sections
highlighting whether the designed scheme is safe or unsafe against
an adversary.

The registration, login, authentication and session key agree-
ment phases of our scheme are implemented in HLPSL. In our
implementation, four basic roles are defined: registration author-

ity, user, gateway node and smart device for representing the RA,
a user Ui, the GWN and a smart device SDj , respectively. The
HLPSL role specification user for Ui is given in Fig. 5. Ui as
an initiator receives the start signal, updates its state from 0 to 1,
and sends the registration request 〈IDi, RPWi〉 to the RA using
Snd( ) channel securely. The RA accepts the registration request
of Ui, and sends information 〈Ai, T IDi〉 to Ui using Snd( )
channel securely. Ui then receives information 〈Ai, T IDi〉 using
Rcv( ) channel securely. Ui sends the login request 〈TIDi, M2,
M3, T1〉 to the GWN using public channel. The GWN further
sends the authentication request 〈M7, M8, T2〉 to SDj using
public channel. The SDj also sends reply message 〈M10, M11,
M12, T3〉 to the GWN using public channel. Finally, the GWN
sends authentication reply 〈M14, M15, M16, T3, T4〉 to Ui using
public channel. Both Snd( ) and Rcv( ) public channels use
Dolev-Yao threat model type [9]. So, an intruder (always denoted
by (i)) can read, modify or delete the contents of exchanged
messages. Similarly, we also have specified the roles for RA,
GWN and SDj in our HLPSL implementation.

In the session role specified in Fig. 6, all the basic roles are
started with concrete arguments. Fig. 6 also consists of top level
environment role, which is the starting point for the execution.
At the end, in the goal section, four authentication goals and two
secrecy goals are specified.

The declaration witness(Ui,GWN, ui gwn t1, T1′) says
that Ui has freshly generated the current timestamp T1 for
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GWN . The declaration request(GWN,Ui, gwn ui t4, T4′)
expresses Ui’s acceptance of timestamp T4 generated for Ui by
GWN . The declaration secret({PWi,A′, R′}, sr1, Ui) also
says that the information PWi, a and r are only known to Ui.
This is specified with protocol id sr1 in the goal section (given in
Fig. 6).

role session (Ui, RA, GWN, SDj: agent, H: hash_func, SKuira: symmetric_key)
def=
  local  S1, R1, S2, R2, S3, R3, S4, R4: channel (dy)
  composition
    user (Ui, RA, GWN, SDj, H, SKuira, S1, R1)
 /\ registrationauthority(Ui, RA, GWN, SDj, H, SKuira, S2, R2)
 /\ gatewaynode (Ui, RA, GWN, SDj, H, SKuira, S3, R3)
 /\ smartdevice (Ui, RA, GWN, SDj, H, SKuira, S2, R2)
end role

role environment()
def=
 const ui, ra, gwn, sdj: agent, h: hash_func, skuira: symmetric_key, 
     kgwnui, kgwnsdj, idi, idsnj, idgwn, t1, t2, t3, t4, tidi, tidinew: text,
     gen, rep: hash_func, ui_gwn_t1, ui_gwn_rui, gwn_sdj_t2, gwn_sdj_rgwn,
     sdj_gwn_t3, sdj_gwn_rsdj, sr1, s2: protocol_id
intruder_knowledge ={t1, t2, t3, t4, h, gen, rep}
composition
 session(ui, ra, gwn, sdj, h, skuira) /\ session(i, ra, gwn, sdj, h, skuira)
/\ session(ui, i, gwn, sdj, h, skuira) /\ session(ui, ra, i, sdj, h, skuira)
/\ session(ui, ra, gwn, i, h, skuira)
end role

goal
  secrecy_of sr1, sr2
  authentication_on ui_gwn_t1, ui_gwn_rui, gwn_sdj_t2
  authentication_on gwn_sdj_rgwn, sdj_gwn_t3, sdj_gwn_rsdj
  authentication_on gwn_ui_t4, gwn_ui_tidinew
end goal
environment()

Fig. 6. The session, goal and environment roles in HLPSL

We have simulated our scheme using the widely-used OFMC
and CL-AtSe backends. The executability check on non-trivial
HLPSL specifications, replay attack check, and Dolev-Yao model
check are verified in the proposed scheme. For more details on
these verifications, one can refer to [31], [40]. The simulation
results shown in Fig. 7 depicts that the proposed scheme is secure
against replay as well as man-in-the-middle attacks.

% OFMC
% Version of 2006/02/13
SUMMARY
  SAFE
DETAILS
  BOUNDED_NUMBER_OF_SESSIONS
PROTOCOL
  C:\progra~1\SPAN\testsuite
    \results\user_auth.if
GOAL
  as_specified
BACKEND
  OFMC
COMMENTS
STATISTICS
  parseTime: 0.00s

  depth: 8 plies

SUMMARY
  SAFE
DETAILS
  BOUNDED_NUMBER_OF_SESSIONS
  TYPED_MODEL
PROTOCOL
  C:\progra~1\SPAN\testsuite
    \results\user_auth.if
GOAL
  As Specified

BACKEND
  CL−AtSe

STATISTICS

  Analysed   : 8 states

  Reachable  : 0 states

  Computation: 0.00 seconds

  visitedNodes: 1432 nodes

  searchTime: 7.75s
  Translation: 0.14 seconds

Fig. 7. The results of the analysis using OFMC and CL-AtSe backends

5.3 Informal Security Analysis

The informal security analysis shows that the following other
possible known attacks are prevented.

5.3.1 Traceability

In many applications, it is desirable that a user authentication
should not allow an adversary to trace a user during login and

authentication phases. Therefore, it also becomes important that
the identity of the user should no be revealed to an adversary to
preserve the privacy of that user in a network, especially in a smart
home environment. The login request 〈TIDi, M2, M3, T1〉 sent
by Ui to the GWN is different each time due to the following
reason. The smart phone SPi of Ui computes M1 = A∗⊕
RPW ∗

i = h(IDi|| KGWN−Ui
), M2 = M1⊕ rUi

and M3 =
h(M2|| T1|| IDi|| TIDi|| rUi

), where T1 is current timestamp
and rUi

random nonce of Ui. The involvement of T1 and rUi

ensures that M2 and M3 are distinct for each session. Moreover,
other exchanged messages 〈M7, M8, T2〉, 〈M10, M11, M12, T3〉
and 〈M14, M15, M16, T3, T4〉 are also different for each session
due to the use of timestamps and random nonces. In addition, our
scheme allows to update old TIDi with a new TIDnew

i for each
session while the message 〈M14, M15, M16, T3, T4〉 is sent to
Ui by the GWN . After receiving the message, SPi of the user
Ui calculates TIDnew

i = M15⊕ h(TIDi ||M1 ||T3 ||T4) and
replaces TIDi with TIDnew

i in its memory. Due to this, TIDi in
the login request messages are distinct for different sessions. Thus,
our scheme avoids traceability of Ui and SDj by an attacker.

5.3.2 Anonymity

Prior to sending the login request 〈TIDi, M2, M3, T1〉 to
the GWN , Ui hides its identity IDi in M1 = A∗ ⊕RPW ∗

i

= h(IDi ||KGWN−Ui
), M2 and M3. The GWN also hides

the identities of Ui and SDj as it computes M6 = h(IDSDj
||

KGWN−SDj
), M7 = EM6

[IDi, IDGWN , rUi
, rGWN , h(M4)]

and M8 = h(M6 ||T2 ||IDi ||IDSDj
||IDGWN ||rGWN )

and M14 = EM4
[rUi

, rGWN , rSDj
, IDSDj

, IDGWN ,
h(M6)]. SDj also hides its own identity by computing M10 =
h(h(IDSDj

||KGWN−SDj
) ||T3)⊕ rSDj

. If an attacker inter-
cepts all the messages during login and authentication phases,
he/she is unable to identify IDi and IDSDj

as these are pro-
tected by symmetric encryption and one-way cryptographic hash
function h(·). Therefore, the user and smart device anonymity are
preserved in our scheme.

5.3.3 Privileged-Insider Attack

Suppose A is a malicious insider user of the RA, who knows
IDi and RPWi, which were sent to RA by Ui during his/her
registration phase. Note that RPWi = h(PWi ||σi ||a) ⊕r.
We assume that A obtains the smart phone SPi of Ui only after
the user registration phase is finished. A can then extract all the
information {TIDi, A∗

i , Bi, Ci, τi, h(·), Gen(·), Rep(·), t}
stored in SPi using the power analysis attacks [41]. Note that the
user Ui already deleted the information Ai from its smart phone
SPi at the end of the user registration phase described in Section
4.2. Hence, without having Ai, it is computationally hard for A to
derive the secret r as r = A∗

i ⊕ Ai. As a result, without r, A can
not derive h(PWi ||σi ||a) = RPWi ⊕ r. Furthermore, without
knowing a, it is computationally infeasible to derive the biometric
key σi as h(IDi||σi) = Bi ⊕ a. As a consequence, without
having a, σi and KGWN−Ui

, it is also computationally hard for
A to guess correctly the password PWi of Ui from Ci = h(IDi

||RPW ′
i ||σi) = h(IDi ||(h(IDi ||KGWN−Ui

) ⊕h(PWi ||σi

||a)) ||σi). In summary, it is computationally hard for A to guess
and verify correctly PWi and σi from RPWi, A

∗
i , Bi and Ci due

to the collision resistant property of h(·). Therefore, our scheme
is secure against the privileged-insider attack.
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5.3.4 Stolen Smart Phone Attack

Suppose the smart phone SPi of Ui is lost or stolen by an attacker
A. A can then extract all information 〈TIDi, A∗

i , Bi, Ci, τi,
h(·), Gen(·), Rep(·), t〉 stored in SPi using the power analysis
attacks [41]. Note that Bi = h(IDi||σi) ⊕a, RPW ′

i = RPWi⊕
r = h(PWi ||σi ||a), Ci = h(IDi ||RPW ′

i ||σi) and A∗
i =

Ai⊕ r = h(IDi ||KGWN−Ui
) ⊕RPW ′

i . To correctly guess
IDi and PWi from Bi and Ci respectively, A needs to know
both a and r. Again, to know a from Bi, A needs both IDi and
PWi. Thus, it is computationally infeasible for A to correctly
guess both IDi and PWi as IDi and PWi are protected by
the one-way hash function h(·). Therefore, our scheme is secure
against such an attack.

5.3.5 Session Key Security

The session key SKij = h[IDi|| IDSDj
||IDGWN ||rUi

||rGWN ||rSDj
||h(M4) ||h(h(IDSDj

||KGWN−SDj
))] is

calculated by both Ui and SDj . The message {M10, M11,
M12, T3} sent by SDj to GWN contains session key SKij

as M11 = h(SKij ||T3). Suppose an attacker A intercepts
this message and tries to compute the session key SK ′

ij

= h[IDi ||IDSDj
||IDGWN ||rUi

||r′GWN ||r′SDj
||h(M4)

||h(h(IDSDj
||KGWN−SDj

))] by generating the random nonces
r′Ui

, r′GWN , r′SDj
and timestamp T ′

3. However, the computa-

tion of SK ′
ij is not possible for A because he/she does not

know the various identities IDi, IDSDj
, IDGWN , secret key

KGWN−SDj
, M ′

4 = h(IDi ||KGWN−Ui
). Without the knowl-

edge of these parameters, and due to the collision resistance
property of h(·), it is very difficult for A to obtain SK ′

ij .
Therefore, our scheme preserves the session key security.

5.3.6 User Impersonation Attack

Suppose there is an adversary A, who has the lost/stolen smart
phone SPi of a legal user Ui, and knows all the information stored
in SPi by the help of power analysis attacks [41]. Assume that A
intercepts Ui’s login request 〈TIDi, M2, M3, T1〉 and tries to
create another valid login request, say 〈TIDi, M ′

2, M ′
3, T ′

1〉 on
behalf of Ui, using the current timestamp T ′

1 of his/her system. To
compute M ′

2, M ′
1 is required to compute as M ′

1 = A∗⊕ RPW ∗
i

= h(IDi ||KGWN−Ui
). Suppose A generates random nonce r′Ui

.
To calculate M ′

2 = M ′
1⊕ r′Ui

and M ′
3 = h(M ′

2 ||T ′
1|| IDi||

TIDi ||r
′
Ui

), A needs IDi and KGWN−Ui
, which are infeasible

for him/her to obtain them. Due to the one-way hash function h(·),
it is computationally infeasible for A to create valid login request
〈TIDi, M ′

2, M ′
3, T ′

1〉 on behalf of Ui, even he/she knows the
all information from the lost/stolen SPi. So, it is clear that our
scheme is secure against the user impersonation attack.

5.3.7 GWN Impersonation Attack

Suppose an adversary A intercepts the messages 〈M7, M8, T2〉
and 〈M14, M15, M16, T3, T4〉, and attempts to create other valid
messages, say 〈M ′

7, M ′
8, T ′

2〉 and 〈M ′
14, M ′

15, M ′
16, T ′

3, T ′
4〉

on behalf of the GWN , where M7 = EM6
[IDi, IDGWN ,

rUi
, rGWN , h(M4)], M6 = h(IDSDj

||KGWN−SDj
), M4

= h(IDi ||KGWN−Ui
) and M8 = h(M6 ||T2 ||IDi ||IDSDj

||IDGWN ||rGWN ), M14 = EM4
[rUi

, rGWN , rSDj
, IDSDj

,
IDGWN , h(M6)], M15 = TIDnew

i ⊕h(TIDi ||M4 ||T3 ||T4),
M16 = h(M11 ||T4 ||rU ). Suppose T ′

2, T ′
3, T ′

4 and r′Ui
, r′GWN ,

r′SDj
are the current timestamps and different random nonces

generated by A. To compute M ′
7, M ′

6, M ′
4 and M ′

8, the secret key

KGWN−SDj
, and various identities IDi, IDSDj

and IDGWN

are required. To calculate M ′
14, M ′

15 and M ′
16, the secret key

KGWN−Ui
, and various identities TIDi, IDi, IDSDj

and
ID′

GWN are required. Moreover, the messages are protected by
the one-way hash function h(·). Thus, A is not able to create
other valid messages 〈M ′

7, M ′
8, T ′

2〉, 〈M
′
14, M ′

15, M ′
16, T ′

3, T ′
4〉

on behalf of the GWN . Therefore, the proposed scheme is secure
against the GWN impersonation attack.

5.3.8 Smart Device Impersonation Attack

Suppose an adversary A intercepts the message 〈M10, M11, M12,
T3〉 and attempts to create another valid message, say 〈M ′

10, M
′
11,

M ′
12, T ′

3〉 on behalf of the smart device SDj , where T ′
3 is the

current timestamp of A’s system when this message is created.
Note that M ′

10 = h(h(IDSDj
||KGWN−SDj

) ||T ′
3) ⊕r′SDj

,

M ′
11 = h(SK ′

ij ||T ′
3), SK ′

ij = h[IDi ||IDSDj
||IDGWN

||r′Ui
||r′GWN ||r′SDj

||h(M4) ||h(h(IDSDj
||KGWN−SDj

))],
M ′

12 = h(r′SDj
||r′GWN ||IDSDj

||IDGWN ||T ′
3) and M ′

4

= h(IDi ||KGWN−Ui
), where r′Ui

, r′GWN and r′SDj
are the ran-

dom nonces created by A. To calculate M ′
10, M ′

11 and M ′
12, the

secret keys KGWN−SDj
and h(IDi ||KGWN−Ui

), and various
identities IDi, IDSDj

and IDGWN are necessary. Therefore,
A is not able to create another valid message 〈M ′

10, M ′
11, M ′

12,
T ′

3〉 on behalf of SDj . This confirms that the proposed scheme is
secure against this attack.

5.3.9 Resilience against Smart Device Capture Attack

Suppose a smart device SDj is physically captured by an attacker
A. Each SDj contains the information {IDSDj

, h(IDSDj

||KGWN−SDj
)}. Since each KGWN−SDj

is distinct, h(IDSDj

||KGWN−SDj
) is also distinct for each SDj . If A tries to extract

KGWN−SDj
from h(IDSDj

||KGWN−SDj
) using IDSDj

, it is
difficult task for A to compute KGWN−SDj

as KGWN−SDj
is

a long 1024-bit secret key. However, A can know the session key
SKij shared with the legal user Ui, which is stored in SDj’s
memory. Thus, compromise of this particular smart device SDj

in the smart home network does not lead to compromise of the
session keys between that Ui and other non-compromised smart
devices SDl’s as the stored h(IDSDl

||KGWN−SDl
) is distinct

for SDl. The proposed scheme is then unconditionally secure
against this attack.

5.3.10 Gateway Bypass Attack

In our scheme, both Ui and SDj can not bypass the GWN due
to the following argument. Ui can only send the login request
through the GWN , and SDj can send the authentication response
only through the GWN . Both Ui and SDj also establish the
session key SKij through the GWN . When the GWN receives
login request from Ui, it computes M7 = EM6

[IDi, IDGWN ,
r∗Ui

, rGWN , h(M4)] and M8 = h(M6 ||T2 ||IDi ||IDSDj

||IDGWN ||rGWN ) and sends 〈M7, M8, T2〉 to SDj , where M6

= h(IDSDj
||KGWN−SDj

), and T2 is the current timestamp
generated by Ui. Ui can not compute M6 as he/she does not know
KGWN−SDj

and it is only known to the GWN . Therefore, Ui

is not able to compute M7 and M8. When the GWN receives
authentication reply from SDj , it computes M14 = EM4

[r∗Ui
,

rGWN , r∗SDj
, IDSDj

, IDGWN , h(M6)], M15 = TIDnew
i

⊕h(TIDi ||M4 ||T3 ||T4), M16 = h(M11 ||T4 ||r∗Ui
) and sends

the message 〈M14, M15, M16, T3, T4〉 to Ui. SDj can not
compute M4 as he/she does not know KGWN−Ui

. Therefore,
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SDj can not compute M14 and M15. To compute M16, even if
SDj chooses current timestamp T ′

4 to compute M16 = h(M11

||T ′
4 ||r∗Ui

), but he/she does not know the random nonce rUi∗ of
the user Ui. So, SDj can not compute M14, M15 and M16. As a
result, neither Ui nor GWN bypass the GWN in our proposed
scheme.

5.3.11 Offline-Dictionary Attack

We consider an interesting attack scenario in our proposed scheme
as illustrated by Huang et al. [34] to verify whether an adversary
A can derive the password of a legal user Ui or not. As in [34],
we also consider the following attacking scenario as follows.

• At time T1, suppose Ui invokes the password and biomet-
ric update phase to change the password to PWi1. At the
end of this phase, the smart phone SPi of Ui contains
the information 〈TIDi, A∗

i , Bi, Ci, τi, h(·), Gen(·),
Rep(·), t〉, where A∗

i = h(IDi ||KGWN−Ui
) ⊕h(PWi1

||σi1 ||a) and σi1 is the biometric key derived from the
new biometrics BIOi1 entered by Ui at this time.

• At some time later (say, T2), Ui again changes his/her
password PW1 to a new password PW2. At the end of
this phase, the SPi of Ui contains the information 〈TIDi,
A∗∗

i , Bi, Ci, τi, h(·), Gen(·), Rep(·), t〉, where A∗∗
i

= h(IDi ||KGWN−Ui
) ⊕h(PWi2 ||σi2 ||a) and σi2 is

the biometric key derived from the new biometrics BIOi2

entered by Ui at this time T2.
• A passive adversary A with smart phone can obtain the

data stored in the smart phone at time T1 and T2.

Now, given (A∗
i , A

∗∗
i ), A can calculate A∗

i⊕ A∗∗
i = h(PWi1

||σ1 ||a) ⊕h(PWi2 ||σi2 ||a). By testing all password pairs
in the password dictionary, A can try to find at least one pair
(pw1, pw2) such that A∗

i⊕ A∗∗
i = h(pw1 ||σi1 ||a) ⊕h(pw2

||σi2 ||a). However, to satisfy this condition, A further needs to
guess correctly the biometric keys pair (σi1, σi2). In addition, A
also needs the random secret a which is only known to Ui. To
derive a, A requires to guess the biometric key too. Thus, without
having the biometric keys pair (σi1, σi2) and random secret a,
it is computationally infeasible problem for A to verify whether
the guessed passwords pair (pw1, pw2) is correct or not. As a
result, the proposed scheme has the ability to protect the offline-
dictionary attack described in [34].

6 PRACTICAL PERSPECTIVE: NS2 SIMULATION

The proposed scheme is simulated using the widely-accepted
networking simulation tool, NS2 2.35 simulator [16] on Ubuntu
14.04 LTS platform.

6.1 Simulation Parameters

The various simulation parameters are given in Table 2. The net-
work coverage area is taken as 400×200 m2. The communication
ranges of the gateway node (GWN) and smart devices (SDj) are
taken as 200m and 50m, respectively. The network simulation
time is taken as 1800 seconds (30 minutes). The traditional Ad
hoc On-Demand Distance Vector (AODV) routing protocol is
used as the routing protocol. Two types of users are taken in
the simulation: first type consists of the static users, who do not
move (for example, some smart home users seat on the chair
and access SDj), while the second type has moving users (for

example, somebody is walking in the garden and accessing SDj ,
or somebody is driving the card and accessing SDj). The speeds
for these smart home users are considered as 2, 10 and 15 mps,
respectively.

6.2 Simulation Environment

We have considered the following three network scenarios in the
simulation. For all the scenarios, we have taken one GWN and
50 SDjs.

Scenario 1. In this case, we have taken two users (Uis): one is
static and other one is moving with 2 mps.

Scenario 2. In this case, we have taken three users (Uis): one
is static and other two are moving with the speeds of 2 mps and
15 mps, respectively.

Scenario 3. In this case, we have taken eight users (Uis): four
are static and other four are moving with the speeds of 2 mps, 2
mps, 10 mps and 15 mps, respectively.

Moreover, we assume that the bit lengths of the identity,
hash output (if we use SHA-1 hash algorithm) and random
number/nonce are 128, 160 and 128 bits, respectively. In each
scenario, we have considered the following messages between
different network entities: 〈TIDi, M2, M3, T1〉, 〈M7, M8, T2〉,
〈M10, M11, M12, T3〉 and 〈M14, M15, M16, T3, T4〉 of sizes
480 bits, 960 bits, 512 bits and 1280 bits, respectively.

TABLE 2
Various simulation parameters

Parameter Description
Platform Ubuntu 14.04 LTS
Network coverage area 400 × 200 m2

Network scenarios 1, 2 and 3
Number of users (Ui) 2, 3, 8 for scenarios 1, 2, 3
Number of gateway nodes (GWN) 1 for all scenarios
Number of smart devices (SDj) 50 for all scenarios
Mobility 2 mps, 10 mps, 15 mps
Simulation time 1800 seconds
Routing protocol AODV
Communication range of GWN 200 m
Communication range of SDj 50 m

6.3 Simulation Results and Discussions

The network performance parameters, such as end-to-end delay
(in seconds) and throughput (in bps) are calculated during the
simulation.

6.3.1 Impact on End-to-end Delay

The end-to-end delay (EED) is calculated as the average time
taken by the data packets to arrive at the destination from the
source. The EEDs of our scheme for different scenarios are
given Fig. 8(a). The EEDs are 0.29832, 0.28687 and 0.28637
seconds for the network scenarios 1, 2 and 3, respectively. Note
that the EED decreases in the scenarios 2 and 3, because in
these scenarios we have considered more number of mobile users
who are traveling towards the gateway node as compared to the
scenario 1. For this reason, the EED reduces as the distance
between the gateway node and mobile users decreases which
affects the reducibility of the EEDs accordingly.
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Fig. 8. (a) End-to-end delay (b) Throughput

6.3.2 Impact on Throughput

The throughput is measured as the number of bits transmitted per
unit time. Fig. 8(b) depicts the network throughput (in bps) of our
scheme under different network scenarios. The throughput values
are 197.56, 303.87 and 793.78 bps for the scenarios 1, 2 and 3,
receptively. Note that the throughput increases with an increase
in the number of users. Due to the large number of users, more
number of messages are exchanged in the network, and as a result,
the throughput also increases.

7 PERFORMANCE COMPARISON

In this section, the proposed scheme is compared with related
existing schemes of Kumar et al. [5], Vaidya et al. [21], Kim and
Kim [22], Jeong et al. [20], and Santoso and Vun [25] during
the login, and authentication and key agreement phases. Since the
registration, and password and biometric update phases are not
frequent, the costs involved in these phases are not discussed.

The communication costs of different existing schemes and our
scheme are compared in Table 3. We have made a reasonable as-
sumption that the identities are 128 bits in length; random nonces
are 128 bits; timestamps are 32 bits; plaintext/ciphertext block in
symmetric encryption/decryption (using AES-CBC algorithm) is
128 bits, and the hash digest is of 160 bits (if we use SHA-1 as
h(·) [42]). By considering these values, the communication costs
for the schemes of Kumar et al., Vaidya et al., Kim-Kim, Jeong
et al., Santoso-Vun and our scheme are 1696, 2272, 4352, 1568,
4416, and 3232 bits, respectively. Note that in our scheme, the
messages MSG1 = 〈TIDi, M2, M3, T1〉, MSG2 = 〈M7, M8,
T2〉, MSG3 = 〈M10, M11, M12, T3〉, MSG4 = 〈M14, M15,
M16, T3, T4〉 are used. The cost of M7 is ⌈(128+ 128+ 128+
128+ 160) /128⌉ ×128 = 768 bits. Similarly, M14 needs ⌈(128
+128 +128 +128 +128 +160) /128⌉ ×128 = 896 bits. So,
the communication costs of different messages MSG1, MSG2,
MSG3 and MSG4 are 480 bits, 960 bits, 512 bits, and 1280
bits, respectively. As a result, the total communication cost of
the proposed scheme turns out to be (480+ 960+ 512+ 1280)
= 3232 bits. Though our scheme requires more communication
cost as compared to that for the schemes of Kumar et al., Vaidya et

al. and Jeong et al., it is justified as our scheme supports additional
functionality and security features (see Table 5).

In Table 4, we have used the notations Texp, TE/TD , Th, Tfe,
Tmac and Thmac to denote the computational time for modular
exponentiation operation, symmetric encryption/decryption, hash
function h(·) (using SHA-1 hashing algorithm), Gen(·)/Rep(·),
message authentication code (MAC) and hashed MAC, respec-
tively. The bitwise XOR operation execution time is negligible,
and we do not consider it as a performance evaluation parameter.
The existing experimental values of these operations are given as
follows in [43], [44]: Texp, Th, TE/TD , and Tfe are 0.0192s,

TABLE 3
Communication cost comparisons

Scheme Total messages Total cost (bits)
Kumar et al. [5] 3 1696
Vaidya et al. [21] 2 2272
Kim-Kim [22] 2 4352
Jeong et al. [20] 2 1568
Santoso-Vun [25] 3 4416
Our 4 3232

0.00032s, 0.0056s and 0.0171s, respectively. It is further as-
sumed that Tmac ≈ Thmac ≈ Th. The computational costs of
various schemes are given in Table 4. The total computational
cost for our scheme is 22Th+ 4TE/TD +Tfe, whereas the
computational cost for a smart device is 7Th+ TD ≈ 7.84ms
only. This indicates that our scheme is suitable for resource-
constrained smart devices. The computation cost of our scheme
is more than that for the schemes of Kumar et al., Vaidya et

al., Kim-Kim and Jeong et al., because we have used the fuzzy
extractor for providing additional security level of the system as
compared to other schemes. However, our scheme provides extra
functionality features and security features, and the cost for a
resource constrained smart device is low.

TABLE 4
Computation costs comparison

Scheme/phase Total cost Rough estimation
Kumar et al. [5] 2Th + Tmac 12.48 ms

+1Thmac + 2TE/TD

Vaidya et al. [21] 20Th + 3TE/TD 23.20 ms
Kim-Kim [22] 30Th + 3TE/TD 26.40 ms
Jeong et al. [20] 10Th + 3TE/TD 20.00 ms
Santoso-Vun [25] 2Th + 3Texp 58.24 ms
Our 22Th + 4TE/TD + Tfe 46.54 ms

Finally, the functionality and security features comparison
among our scheme and other schemes is shown in Table 5. The
scheme of Vaidya et al. is insecure against privileged-insider, pass-
word guessing, and smart device capture attacks, and it does not
have the traceability, user anonymity and smart device anonymity
properties. Moreover, the dynamic smart device addition phase,
offline smart device registration phase, formal security proof under
standard model and formal security verification using AVISPA are
not supported in their scheme. Kim-Kim’s scheme is vulnerable
to password guessing attack, password change attcak, privileged-
insider attack, user impersonation attack through privileged-
insider attack and smart device capture attack, and it does not
have traceability, user anonymity and smart device anonymity
properties. Additionally, the dynamic smart device addition phase,
offline smart device registration phase, formal security proof under
the ROR model and formal security verification using AVISPA are
not available in Kim-Kim’s scheme. Kumar et al. does not support
traceability and gateway anonymity properties and it does not
provide formal security proof under the ROR model. The schemes
of Kumar et al., Jeong et al. and Santoso-Vun also lack the
functionality features, which are shown in Table 5. In summary,
our scheme provides significantly better security and functionality
features as compared to those for other existing schemes.

8 CONCLUSION

This paper presents a new scheme to address the user authenti-
cation issue in a smart home environment. The proposed scheme
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TABLE 5
Security and functionality features comparison

Functionality features [5] [21] [22] [20] [25] Our
SFF1 X × × × × X

SFF2 × × × × X X

SFF3 × X X X × X

SFF4 X X X X X X

SFF5 × × × × × X

SFF6 N/A × × × × X

SFF7 N/A X × × × X

SFF8 X × × × × X

SFF9 N/A × × × × X

SFF10 × × X X × X

SFF11 X × × × × X

SFF12 X X X X X X

SFF13 X × × × X X

SFF14 X X X X X X

SFF15 N/A × X × × X

SFF16 N/A X × × × X

SFF17 X X X X X X

SFF18 X X X X X X

SFF19 X X X X × X

SFF20 X × × × × X

SFF21 X × × × × X

SFF22 N/A X X X × X

SFF23 N/A × × × × X

SFF24 × × × × × X

SFF25 X × × × × X

Note: SFF1: mutual authentication between GWN and smart device; SFF2:
mutual authentication between user and smart device; SFF3: mutual authen-
tication between user and GWN ; SFF4: key agreement; SFF5: traceability
property; SFF6: password guessing attack; SFF7: password change attack;
SFF8: dynamic smart device addition phase; SFF9: user anonymity prop-
erty; SFF10: GWN anonymity property; SFF11: smart device anonymity
property; SFF12: replay attack; SFF13: privileged-insider attack; SFF14:
man-in-the-middle attack; SFF15: stolen smart phone/smart card attack;
SFF16: user impersonation attack; SFF17: smart device impersonation at-
tack; SFF18: GWN bypassing attack; SFF19: DoS attack; SFF20: resilient
against smart device capture attack; SFF21: offline smart device registration
phase; SFF22: password change phase; SFF23: biometric update phase;
SFF24: formal security proof under ROR model; SFF25: formal security
verification using AVISPA.
X: the scheme is secure or supports a particular functionality/security feature;
×: the scheme is not secure or does not support a particular functional-
ity/security feature. N/A: not applicable in the scheme.

provides additional functionality features. The proposed scheme
is secure against several known attacks, which are shown through
random oracle model, informal security and AVISPA tool. The
practical implementation of the proposed scheme is also demon-
strated though the widely-accepted NS-2 simulator. Overall, the
proposed scheme provides a better trade-off between security
and functionality features provided in Table 5, and overheads as
compared to other existing related schemes.
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