Barriers:

Stephen M Blackburn
Department of Computer Science
Australia National University
Canberra, ACT, 0200, Australia

Steve.Blackburn@anu.edu.au

ABSTRACT

Modern garbage collectors rely on read and write barrieposed
on heap accesses by the mutator, to keep track of refererees b
tween different regions of the garbage collected heap, ausgr-
chronize actions of the mutator with those of the collectohas
been a long-standing untested assumption that barrieesiengig-
nificant overhead to garbage-collected applications. Assail,
researchers have devoted effort to development of opttinizap-
proaches for elimination of unnecessary barriers, or pegmew
algorithms for garbage collection that avoid the need faribes
while retaining the capability for independent collectiohheap
partitions. On the basis of the results presented here, speldihe
assumption that barrier overhead should be a primary niotifar
such efforts.

Friend or Foe?

Antony L Hosking
Department of Computer Sciences
Purdue University
West Lafayette, IN 47907, USA

hosking@cs.purdue.edu

1. Introduction

Modern garbage collectors rely heavily on mechanisms taiimon
tor accesses by the mutator to objects in the garbage-tadléeap.
Commonly referred to aead or write barriers they encapsulate
actions to be performed whenever the mutator reads/writefea
encefrom/to some field of a heap object. Typical actions include
recording the accessed object or object field, perhaps tonalily
with respect to the object/field and the reference itself.e T
formation recorded by a barrier can be used to partition taph
into separately-collected regions, and to synchronizersbf the
mutator and the garbage collector. A general overview af f1ac-
riers and their use in garbage collection can be found insland
Lins [20].

The impact of different barriers ogarbage collectorperfor-

We present a methodology for precise measurement of mutatormance and on overall application performance has been idel

overheads for barriers associated with mutator heap azxes¥e
provide a taxonomy of different styles of barrier and meagbe
cost of a range of popular barriers used for different gaebag-
lectors within Jikes RVM. Our results demonstrate thatibegtim-
pose surprisingly low cost on the mutator, though resulty g
architecture. We found that the average overhead for amabt®
generational write barrier was less than 2% on average, esd |
than 6% in the worst case. Furthermore, we found that the aver
age overhead of a read barrier consisting of just an undondit
mask of the low order bits read on the PowerPC was only 0.85%,
while on the AMD it was 8.05%. With both read and write basier
we found that second order locality effects were sometimesem
important than the overhead of the barriers themselvedingdo
counter-intuitive speedups in a number of situations.

Categories and Subject Descriptors
D.3.4 [Programming Language§: Processors-memory manage-
ment (garbage collection), run-time environments

General Terms
Languages, design, performance, algorithms

Keywords

Write barriers, memory management, garbage collectio, Ja

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ISMM’'04, October 24-25, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-945-4/04/001055.00.

studied [30, 12, 26, 31, 2, 16, 15, 14, 4, 29, 9]. Questionartigg

the form of the barrier (e.g., conditional, inlined) and the impact
of such decisions on mutator code quality and compile tinee® h
also been studied [6]. There have been scattered measuseofien
direct barrier overheads: Zorn reported write barrier bgads of
2-6% and read barrier costs of up to 20%; Bacon et al. [5] tepor
the cost of their Brooks-style [11] indirection-based rédxdrier

as 4% on average and 10% maximum for SPECjvm98. Thus, it
has been widely assumed that barriers impose significanhead

on the mutator. This assumption has led to efforts to redace b
rier overheads using approaches based on static analysoan
piler optimization [10, 17, 33, 5]. Others have cited bardest to
justify the development of new garbage collection algonighthat
eliminate the need for barriers while preserving garbadjecion
properties such as partitioned collection of the heap [13].

What has been lacking is a comprehensive and comparatile eva
uation of precise barrier costs on modern processors. Jtaet-
ing the costs of the barriers is important for implementsiace
barriers impact aspects of the compiler, optimizer, andtime
system. Barrier costs are also important to algorithm desig
since the style of barrier can directly influence algoritbmésign
choices (e.g., copying, generational, concurrent, pejallThe re-
sults we report here reveal that, depending on the hardwate p
form, carefully engineered read and write barriers typjcabn-
sume a minimal fraction of total execution time. Our reshise
two-fold impact: language implementors can choose amont ba
ers depending on their target platform and the GC algorithey t
must support, while algorithm designers can judiciouskoinpo-
rate barrier requirements into their algorithms withowrfef un-
necessarily expensive mutator overheads. Moreover, tigation
methodology we use is one that other implementors shouldhbe e
couraged to replicate for evaluation of barriers withinirttavn
systems.

1.1 Our contributions
Our specific contributions include:

e An evaluation methodology allowing meaningful compari-
son of the precise overheads of different barrier implemen-
tations. We supplement the reachability information con-
tained in remembered sets with exact reachability informa-
tion, thus allowing us tagnoreremembered sets while hold-
ing all other elements of program behavior constant. This
allows us to include or exclude barriers without impacting
the correctness of the collector.

e Implementation of this methodology for MMTk and Jikes
RVM.

e Evaluation of a range of barriers for standard Java bench-
marks on a number of platforms, revealing that certain barri
ers have overheads that are a minimal fraction of total execu
tion time. We implement standard write barriers and a num-
ber of read barriers that are representative of broad dadse
read barrier.

2. Related work

There are three broad areas of prior work related to the stedy
present here. The most direct precursors are studies ofonbta-
rier overheads. Zorn [34] gathered heap access profileeferal
large Lisp programs, in the form of counts for the accessteven
to which barriers need to be applied. Based on these coumds, a
by timing the cost of postulated barriers within a tight lampthe

Several of these consider use of hardware-supported t=(feig.,
using virtual memory protection primitives supported bg tper-
ating system), but find such approaches generally too ei@ens
both because of the coarse granularity of virtual memorgpand
the high cost of fielding the protection traps using useellgignal
handlers. Here, we focus solely on software barriers, whate
of these prior studies have accurately measured as a frasftiou-
tator time. Other work looks at the impact of barriers on cidenp
times and code quality [6].

Finally, we also mention that the spectre of high barrietshas
driven diverse work on elimination of barriers through calenop-
timization [10, 17, 33, 5] or synthesis of new collector altfons
that forgo reliance on barriers [13]. Our results questf@moti-
vation for such efforts (if their point is only to avoid baricosts),
since we show such costs to be surprisingly low.

3. Methodology

Perhaps the reason why write barrier performance has been th
subject of so much speculation rather than evaluation itattieof
a suitable methodology. The only prior attempt to measurgdsa
performance we are aware of [34] used a combination of simula
tion and measurement of barriers in tight loops. By contrast
methodology allowsn vivo measurement of the barrier. This is
significant, because as we shall show, the interplay betWwageter
code, its surrounding context, and the compiler can be eaottl
unexpected.

Note that we do not measure the impact of different barriars o
the compiler (see Blackburn and McKinley [6]), nor do we mgas

SPARC, MIPS, and MC68020 processors, Zom was able to come the indirect impact a choice of barrier may have on collectime

up with an estimate of the total cost of the barriers per appibn
and platform. By measuring total execution time for the henc
marks on each platform (without the overhead of profilingiaes
able to calculate the barrier overhead as a fraction of éxtution
time. We note that this measure is not necessarily accisitee

it does not consider the in-place effects of the barriersm®@dern
processors, these are magnified by secondary compilewhezd
effects such as register pressure, branch prediction eclacal-
ity, etc. We do measure these effects. Zorn’s measured exdsh
range from 2-6% for inlined fast-path write barriers aad20%
for read barriers. Since Lisp is untyped, his barriers mlsst fil-
ter for non-pointer stores. Our results for Java reveal timgaict
of static disambiguation of non-pointer stores from pairsteres,
showing that a reasonable generational barrier can havagere
mutator overhead under 2%. Interestingly, our worst caseh@ad
is just under 6%, so the maximum bound is consistent with Zorn
However, we are operating infally compiledsetting (Jikes RVM),
whereas Zorn's work was based on Franz Lisp which features in
terpretation. Moreover, ouaverageoverhead is 2%, while some
benchmarks experience almost no overhead.

Bacon et al. [5] report the overhead of their Brooks-stylg] [1
indirection-based read barrier as 4% on average and 10%- maxi
mum for SPECjvm98. Note that to achieve this result Bacon et
al. apply a number of optimizations including those natyrgér-
formed by the Jikes RVM compiler (e.g., common subexpressio
elimination), as well as special-purpose optimizatioks barrier-
sinking, in which the barrier is moved to its point of use, @i
allows the null-check required by the read access to be qwdbi
with the null-check required by the barrier. Our results doin-
clude any special-purpose optimizations other than tHosdikes
RVM compiler already applies.

A broader area of related work includes studies of the pymar
effects of different barriers: that is, on the collector,oor over-
all performance itself [30, 12, 26, 31, 2, 16, 15, 14, 4, 29, 9]

(some barriers trade barrier simplicity for extra work afextion
time). Our focus is solely on the mutator performance of the b
riers themselves. We now describe garbage collector angiterm
configurations that allow us to measure this.

3.1 Ignoring remembered sets

To achievein vivo measurement, we want to be able to remove
a barrier from its natural environment and then compare thiam
tor performance with and without the barrier in place. Ouwufis
on generational collectors, where write barriers are usédkentify
and remember pointers into the nursery so that the nurséliaceo
tion can be performed in isolation. Pointer sources can inene
bered with a variety of different mechanisms, with varyiregcees
of precision, including rememberirggrds(regions of memory that
may contain pointers into the nurseryghjects(objects that may
contain pointers into the nursery), astbts (addresses that may
contain a pointer into the nursery).

Our approach is simple. We augment nursery collection with a
trace of the entire heap so that we can identify those obijedte
nursery that are live (via reachability rather than via rerbered
sets). This allows us to dispense with the remembered datator
use a barrier at all, and still correctly collect the nursery

We onlytracefor liveness at nursery collections, we do not ac-
tually collect the entire heap. We perform full heap collections
according to the usual regime (e.g., when the heap is ful}he
space utilization and movement of objects is as faithful@ssible
to the original generational collector. The only point ofelience
is that in the original generational collector mature spalogcts
are conservatively assumed to be live, so excess retenticur
when a nursery object is pointed to by a dead (but uncoll@cbed
ture space object. There is no excess retention in our ¢otlec

Lincidentally, our collector could therefore be used to difathe
extent of excess retention.

Of course this collector has a substantial overhead atatite
time, undermining the very purpose of a generational ctultec
However, our goal here is not to produce an efficient collebtn
to develop a methodology for measuring mutator performasce
this overhead of no consequence. A potential source of cornse
the effect major collections might impart on the mutatootigh
their impact on the memory hierarchy through purging of each
However, consistent with previous results [8] we did not aeg
such effect

Because we are only concerned wittutator performance, we
perform all of our experiments at a single large heap siz6NIE).
We use a bounded nursery of 4MB. The survival rates of ourlbenc
marks are not sufficient to trigger a full heap collection emnithese
circumstance. Since there is never pressure on the heagptsize
nursery always remains at its upper bound of 4MB.

This mechanism is publicly available as part of MMTk, allogi
the research community to apply our methodology easily aiev
ating other barriers.

3.2 Pseudo-adaptive compilation

The compiler is a key factor in barrier performance, althoug
measuring the impact of different compilers on barrier penfance
is beyond the scope of this work. Instead our goal is to meztar
impact of barriers in a realistic setting within one highfpemance
virtual machine€® We use Jikes RVM and a deterministic variant of
its adaptive optimizing compiler [1]. As with most modermtual
machines, the Jikes RVM compiler focuses its effort, apgthe
heaviest optimizations to the most frequently executededail
While it is possible to fully optimize all code in Jikes RVM,ew
focus on an adaptive compilation mix on the grounds thatritase
realistic. We measured both and found that while full optiation
leads to measurable overall improvements in code perfacedhe
relative impact of the various barriers was not signifioadifferent
from that in the adaptive compilation setting.

Unfortunately Jikes RVM'’s adaptive compilation is not dete
ministic, as it uses timer-based sampling to identify hothuds.
We circumvent this with th@seudo-adaptivelriver for the Jikes
RVM compiler, which applies the optimizing compiler to coale
cording to an advice file generated ahead of tfn€he pseudo-
adaptive compiler thus mimics the adaptive compiler in &det
ministic manner. We generate advice by running each bermthma
five times while logging compiler decisions. We then use tiee |
from the fastest of the five runs as advice during timing rurtbe
benchmarks.

Because we are only interested in the impact of the barriers o
the mutator performance, not their impact on the compilenwant
to exclude compilation costs from our measurements. Weether
fore perform two iterations of each benchmark, measurirtyg thre
second iteration (both timers and performance counterstared
only at the beginning of the second iteration).

4. Barrier implementations

We have implemented a range of popular write barriers that va
in what information they record, and in what in-line filtagithey
apply to each store to decide whether it generates new iaform
tion of interest to the collector. We also consider repregem (if
not comprehensive) read barrier variants: one that untondily

2We determined this by comparing mutator performance with an
without full heap traces at nursery collection time.

3Jikes RVM has, at various times, been shown to be competitive
with the IBM product JVM for the x86 architecture.

4Xianglong Huang and Narendran Sachindran jointly impleteen
the pseudo-adaptive compilation mechanism.

masks out low-order tag bits from references as they aressede
and the other that conditionally tests whether any tag lsiets All
of the write barriers except for the card marking approaebord
their pertinent information into a sequential store bu®8B) [2].
The SSB is updated out-of-line in a sub-routine when a giteres
passes its in-line filter. We use the tefest-pathto refer to the
the in-line portion of the barrier, including the filter butabuding
the code to dispatch the call. The testow-pathrefers to both the
in-line dispatch code, and the called method. The fast-pite-
sents the primary mutator overhead of any barrier. The &gy
of slow-path execution directly impacts secondary oveithea

MMTk has recently implemented an optimized array copy bar-
rier that significantly improves performance on benchmaatksh
as_202_jess which perform a substantial number of array copies.
All of our write barriers exploit that optimization.

We now detail the various barriers and their relative achges
and disadvantages. Figure 1 shows the code skeleton forMEM
write barrier, while Figure 4 shows the code skeleton forréed
barrier. Note that this code is the barrier fast-path, geteerin-line
by the Jikes RVM optimizing compiler (which the Jikes RVM id-
iom VMPragmalnline enforces). The parameters to the write
barrier include the source object being modifisdc(), the loca-
tion within that object to which the store occusddt), the target
reference being storett), and an integer parametengde) in-
dicating what kind of store is being performed. Note alsd tha
write barrier is what we call aubstitutingbarrier: the barrier itself
is responsible for effecting the store to the appropriatation. The
read barrier is also a substituting barrier with a similaeiface.

4.1 \Write barriers

The various write barrier implementations we evaluate lagee
given in Figure 2, showing the Java code that implements pach
ticular barrier (i.e., to be inserted at line 3 in the skat¢t@long
with the assembly code generated by the optimizing comfiler
the PowerPC and Intel x86 platforms.

Boundary. The boundary barrier is the current default barrier
for MMTk generational collectors. It tests whether the seuand
target lie on different sides of a static boundary addressrecords
the source location (or objestot) to which the target reference is
stored. Such a barrier is useful for copying generationbécitors
to record references from older objects to younger objerdig

a bounded nursery at a fixed virtual memory location. Reogrdi
the slot holding the reference is most precise for GC, sindg o
pointers of definite interest need to be processed at GC time.

Object. The object barrier was used in the original Jikes RVM
collectors prior to adoption of MMTk. When a target referens
stored into any field of a source object, the source objeefisrs
ence is recorded in the SSB. To avoid multiple entries of #mees
source object, the object barrier filters duplicates byirsgth flag
in the object’'s header when it is first entered in the SSB, &edic
ing this flag in the fast-path. The object barrier has the athge
of concisely recording pointer updates to multiple field&iof ob-
jects, at the expense of interpreting object pointer ma@&Catime
to find the pointers of interest to GC.

Hybrid. Thehybrid barrier uses thboundary barrier for arrays
and theobject barrier otherwise; the distinction is made statically at
each store site based on the type of the source object. Thidsav
object barrier GC overhead incurred to scan large arrays looking
for interesting pointers. The Java code fragment for theibydar-

rier is given in Figure 3. The choice of barrier is staticallyosen

at compile time by passing a literal constant asittuele parameter
and relying on constant folding to eliminate the unreacheah¢h

1 public final void writeBarrier(VM Addr ess src, VM Address slot,
2 VM Address tgt, int mode) throws VM_Pragmalnline {
3 I/l insert wite barrier code here
4 VM_Magic.setMemoryAddress(slot, tgt);
5}
Figure 1: Write barrier skeleton code
Java PowerPC x86
boundary
3 if (slot.LT(NURSERY_START) 1 liu R3,0x6el0 1 cnp edi 0xa0200000
4 && tgt.GE(NURSERY_START)) 2 cnpl W c¢rl,R30,R3 2 jlge 0
5 remSlots.insert(slot); 3 bge 1 54 3 cmp ebx 0xa0200000
4 liu R3,0x6el0 4 jlge O
5 cnmplW cr1,R31,R3
6 bge 1 7c
object
3 i f (getHeader(src) 1 Iwz R4,-8(R5) 1 nov ecx -8[edx]
4 .and(LOGGING_MASK) 2 rlinm R4,R4,0x0,0x1d,0x1d 2 and ecx 4
5 .EQ(UNLOGGED)) 3 cnpi W crl,R4,0x4 3 cnmp ecx 4
6 rememberObject(src); 4 beq 1 78 4 jeq O
zone
3 i f (slot.xor(tgt) 1 xor R3,R30,R31 1 nmov edi eax
4 .GE(ZONE_SIZE)) 2 liu R5,0x40 2 nmov eax edi
5 remSlots.insert(slot); 3 cnmpl W cr1,R3,R5 3 xor eax ebx
4 bge 1 74 4 cnp eax 0x400000
5 jlge O
card
3 int card = src.rshl(LOG_CARD_SIZE); 1 Iwz R5,0x1664(JT) 1 nov ebx [0x290279a]
4 VM_Magic.setByteAtOffset 2 rlinm R6,R3,0x16,0xa,0x1f 2 shr eax 10
5 (cardTable, card, (byt e) 1); 3 lil R7,0x1 3 nov [O+ebx+eax<<0] 1
4 stbx R7,R5R6
Figure 2: Write barrier code
3 if (mode == AASTORE_WRITE_BARRIER) {
4 if (slot.LT(NURSERY_START) && tgt.GE(NURSERY_START))
5 remSilots.insert(slot);
6 } else {
7 i f (getHeader(src).and(LOGGING_MASK).EQ(UNLOGGED))
8 rememberObject(src);
9 }
Figure 3: Hybrid write barrier code
of the conditional. The fast-path result is compiled cods thoks locations in the card. The index in the card table for a gieeation
exactly like that of theobject or boundary barrier. is obtained by a simple shift operation. At GC time the dirdyds

must be scanned to discover pointers of interest. The wecis
of the card barrier varies with the size of the cards: smaleds
give more precision at the cost of maintaining and procestie
correspondingly larger card table [16].

Zone. Thezonebarrier assumes the heap is divided into fixed-
size X-byte logicalzones aligned on 3-byte address boundaries,
and captures pointers that cross from one region to anatoand-
ing the source slot into which such target reference is dtd@ech a
barrier is useful for collectors that partition the heaintore than ;

two regions. Examples of such collectors include MOS [1§, 25 4.2 Read barriers
generalized age-based collectors [29], and Beltway [9fragroth-
ers. The zone barrier has the same precision as the bounglary b Read unconditional. The unconditional form of the read barrier
rier, remembering precisely which locations hold intéregpoint- simply masks out low-order address bits of references asate
ers. We use a zone size of 4MB, matching the nursery size, andloaded from a source object field. Such a barrier is usefuitin s
thus avoiding the slow path for any intra-nursery pointers. ations that need to tag object references transparenthetmuta-

Card. Thecard barrier has long been promoted for the fact that (©F» SUch as memory managers that rely on marking unique-refe
it is entirely in-line and unconditional. Like the zone bary the ences [24].

card barrier assumes a heap divided into fixed-s¥zby2e logical Read conditional. The conditional read barrier includes a test
cards[26, 32], where typically K k < 10. Each card maps to an whether the tag bits are set. Such a barrier is needed anyatime
entry in an array ocard tablethat records whether the card has mutator must perform some action conditionally on readingra
beendirtied by stores of target references into any of the source get reference from a source object field. Note that this iageér’

Figure 5 shows the code for the read barriers.

1 public final VM Address readBarrier(VM Address obj, VM Address slot,
2 int mode) throws VM_Pragmalnline {
3 VM _Addr ess value = VM_Magic.getMemoryAddress(slot);
4 return value; Il replace with barrier code
5}
Figure 4: Read barrier skeleton code
Java PowerPC x86
unconditional
4 return value.and("3); 1 rlinm R3,R3,0x0,0x0,0x1d 1 and eax -4
conditional
4 if (value.and(1).NE(1)) 1 rlinm R4,R3,0x0,0x1f,0x1f 1 nmov edx eax
5 return value; 2 cnmpi W crl,R4,0x1 2 and edx 1
6 el se 3 bne 1 3c 3 cnp edx 1
7 return O; 4 mov edx O
5 cnovne edx eax
6 nov eax edx

Figure 5: Read barrier code

read barrier, using the terminology of Bacon et al. [5]. WhHey
used a Brooks-style unconditional read barrier, our go&b isx-
pose the cost of any conditional associated with the readebar
and so implement a more general barrier here.

4.3 Discussion

There are aspects of our barrier implementations that doeild
improved, depending on hardware platform. Given sufficiegis-
ters, the card barrier could devote a register to hold the hddress
of the card table, so avoiding the need to load it from a globe&t
able. Moreover, on certain RISC platforms the literal cans®
is available in a ‘zero’ register hard-wired to the value Dcléan
cards are represented by a non-zero card table entry thgimdia
card can be achieved by clearing it: a store of 0 to the entinys T
eliminates the need to load a non-zero immediate operanigeto t
store. Together, these changes can eliminate 2 instrscfiom
the sequence. Unfortunately, on the PowerPC the ‘zerostegis
only available to arithmetic instructions, not to storesysthout a
devoted card table base register our instruction sequergdimal.

We also plan to compare other specialized barriers to the mor
general ones we consider here. In particular, there is atdiral
alternative to the zone barrier that records referencetspbiat

and the optimizing compiler and turn off assertion checkjtip
Fastbuild-time configuration).

5.2 Experimental platform

We perform our experiments on three architectures: Attham-
tium 4, and Power PC.

We use a 1.9GHz AMD Athlon XP 2600+. It has a 64 byte L1
and L2 cache line size. The data and instruction L1 caches are
64KB 2-way set associative. It has a unified¢clusive512KB 16-
way set associative L2 cache. The Athlon has 1GB of dual adann
333MHz DDR RAM configured as % 512MB DIMMs with an
nForce2 K7N2G motherboard and 333MHz front-side bus.

The 2.6GHz Pentium 4 has hyperthreading disabled. It has a 64
byte L1 and L2 cache line size, an 8KB 4-way set associative L1
data cache, a 12ips L1 instruction trace cache, and a 512KB uni-
fied 8-way set associative L2 on-chip cache. The machine@8&s 1
of dual channel 400MHz DDR RAM configured asx2512MB
DIMMs with an Intel i865 motherboard and 800MHz front-side
bus.

We also use an Apple Power Mac G5 with a 1.6HGz IBM Pow-
erPC 970. It has a 128 byte L1 and L2 cache line size, a 64KB
direct mapped L1 instruction cache and 32KB 2-way set agsoci

from one zone to another zone at a higher (or lower) address intive L1 data cache, and a 512KB unified 8-way set associatde L

the heap [29]. Other barriers of interest include the varitbavors
used by reference counting collectors [7].

5. Experimental methodology
We now describe the experimental context in MMTk and Jikes

on-chip cache. The machine has 768MB of 333MHz DDR RAM
with an Apple motherboard and 800MHz front-side bus.

All three platforms run the same configuration of Debian kinu
with a 2.6.0 kernel. We run all experiments in a standalondano
with all non essential daemons and services (including ¢twark

RVM, the machines we use, the benchmarks measured, and thdhterface) shut down. We instrument MMTK and Jikes RVM to

significance and accuracy of our measurements.

5.1 MMTk and Jikes RVM

We use MMTK in Jikes RVM version 2.3.2+CVS [1], patched to
support performance countensseudo-adaptiveompilation, our
ignore remset$3C configuration, andead barriers® MMTK is
a flexible high performance memory management toolkit uged b
Jikes RVM [8]. Jikes RVM is a high-performance VM written in
Java with an aggressive optimizing compiler. We use cordigur
tions that precompile as much as possible, including kewaiibs

5The ignore remsetdunctionality is now integrated into MMTk.
All of our other patches are publicly available from the fasthor’s
web pages.

use the AMD and Intel performance counters to measure gycles
retired instructions, L1 cache misses, L2 cache misses;TaBd
misses of both the mutator and collector, separately. Bscati
hardware limitations, each performance counter requiseparate
execution. We use version 2.6.5 of tperfctr Intel/x86 hardware
performance counters for Linux with the associated keragthp
and libraries [23]. At the time of writing, perfctr was undahle

for the PowerPC 970.

5.3 Benchmarks

Table 1 shows key characteristics of each of our benchmbvks.
use the eight SPECjvm98 benchmarks, and pseudojbb, awafian
SPECjbb2000 [27, 28] that executes a fixed number of traiosect

Allocation [[Write barrier |
benchmark || alloc | MSmin [alloc:MS || total [rem set |
_202_jess 403MB 16MB 25:1 || 28.63 | 0.16%
_213_javac 593MB 26MB 23:1 || 20.78 | 2.41%
_228_jack 307MB 14MB 22:1 || 1044 | 7.23%

_205_raytrace 215MB 18MB 12:1 7.35 0.98%
_227_mtrt 224MB 21MB 11:1 8.49 1.00%
_201_compress 138MB 17MB 8:1 153 | 0.71%
pseudojbb 339MB 46MB 7:1 || 23.31| 3.66%
_209_db 119MB 20MB 6:1 || 35.03| 0.52%
_222_mpegaudio 51MB 12MB 4:1 9.79 0.23%
mean 265MB 21MB 13:1 16.15 | 1.74%
geometric mean || 216MB 20MB 11:1 11.89 | 0.98%

Table 1: Benchmark allocation statistics and write bareiegnts
(in millions)

to perform comparisons under a fixed garbage collection [dhd
alloc column in Table 1 indicates the total number of megabytes
allocated. Thenin column shows the minimum heap size in which
the benchmark can run to completion with a generational copy
ing mark-sweep hybrid (GenMS). Tladloc:mincolumn quantifies
garbage collection load as the ratio of total allocationh® min-
imum heap size in which GenMS executes. Tl column in-
dicates the dynamic count of write barrier invocationst(fzeth).
Therem setcolumn indicates the frequency with which the write
barrier leads to a remembered set entry for the boundariebarr

5.4 Significance and accuracy

To assess the significance of our results we: 1) measuredtie v
ation in timing data, and 2) compared instruction countshenR4
and AMD. Since only one performance metric could be gathered
at a time, it was necessary to run each experiment four times o
the AMD and P4 (recall that each ‘experiment’ takes the fsié
five invocations of the second iteration of the benchmarl®.thi¢én
compared the variation across each set of four results,urezhas
the standard deviation divided by the mean for that set. Wado
that the variation ranged from 0.04% to 0.8%, with a georoetri
mean across all benchmarks of 0.1%. When we compared instruc
tion counts between P4 and AMD, we found that they were almost
identical, despite wide variations in running time and mist.
This gives us a high degree of confidence in the measurements.

6. Results

In this section we examine the mutator performance of the rea
and write barriers. It is important to remember that our rodth
ology measures mutator overhead only. The choice of baraier
have a significant impact on garbage collection overheadsyb
do not measure that here. Furthermore, the contributiorudétor-
time overheads reported here to total time will be dilutedépbage
collection.

6.1 Write barrier performance

Figure 6 shows the performance overhead of each of the write
barriers on the three platforms. The overhead is generalite q
low, on average 2% or less for most of the barriers. Surpgigim
some cases the addition of barriémgprovesperformance. Hard-
ware performance counters reveal that these improvementiua
to better locality. (As we would hope, the performance cetst
also show that the addition of the barrier doex reduce the in-
struction count!). At this stage we can only speculate on sy
addition of the barrier would improve locality.

We now examine the results for each barrier in more detail.

overhead (%)

overhead (%)

overhead (%)

overhead (%)

overhead (%)

4 f —
. | II I IHI |
0 I\ HI\ HI\I | H-}lﬂl} | m I\I I

W
|| S

P = e & R o3° o oSt e 2O
W& @3 N P 34 o S 25 o o
*&”CU z }Qa,‘ 2 s » « . s e @
(a) Boundary
12
10 H PPC
O P4
8 B AMD
6
. o | |
) | I | I | (i | =
0 \I I\ (m] | HI\I I\I \IHI\IHI\ I\IHI
‘ I T T I - T T T T T T
.24 |
o5 o & ® 3 S ¥ o ©
W& @S N P 34 o S 25 o o
oL 7 Jd - > 2557 ¥ * @
(b) Object
12
10 H PPC
O P4
8 B AMD
6
. | |
a1
)|
s

& o @ o ® . RIS 3 ° ©
o @S oo o mfb}b “\Qe“P e P o &
o P @ 2 25 b 5 @
(c) Hybrid
12
10 B PPC
~ M O P4
8 H AMD

=)

NS
[
[

o
—_—

PR o &» o RS = W ©
o @S @ w5 «Qe@ a0 8 Qg_,w\" < ©
e 2 2 25 2 2 @
(d) Zone
12
10 B PPC
O P4
8 B AMD
6 | |
4 I 1
o _
OI ! I\ H-\ H \I‘ F=EEE Sl ! | Il |
‘ I T T T T T T T T T
2 J i

Qee
&N
5
o

o

N
o ¢
5

©
55 ¢
P

= o 0 ot v
Z &0
}g» b & g :[;e B &

W\

A
@

o

(e) Card
Figure 6: Write barrier running time overheads

)

hea

[
>
ST il = |
| I I | Hl HI
OIHI\I ! I\ HI\I = | (1l HI\ -
f S | f f f = f f f
5 e S 5© ~ 0y))
5@ ¢ @ & N o N o N 5©
o @S & P S & S pF &°
S / o> i ¥ a5 P - < o
z / » o

(a) Read unconditional

35 B PPC
= ‘ 0O P4
30 B AMD
§ 25 =
220 il = [| w
[
£, | - |
2 | | | T
10 - — T 1
ESEEE i SR AL SRR SR BN SR Il IR R R MRS MM B
(& ¢ @ 3 R & oot 5° ©
o I, ol P S “\Qe“? a2 8> Qee\l‘\o A ¢
o - « - 5 - - N

y, 7) «
(b) Read conditional
Figure 7: Read barrier running time overheads

Boundary. The boundary barrier costs on average 2.15%, 1.31%,
and 2.49% for the AMD, P4 and PPC architectures, respegtivel
This barrier shows the biggest variation in results, witleatlzase
improvemenbf 2.58% on_201_compress on the P4 and a worst
case degradation of 10.30% on the PPC. The actual increase i
retired instructions is 2.33% on average, with increases.@8%
and 4.43% on202_jess and_213_javac, and an increase of only
0.0007% on_201_compress. The miss rates explain the perfor-
mance win on.201_compress, decreasing consistently with the
running time. Somehow the boundary barrier leads to immtove
locality on that benchmark, with very little increase inimed in-
structions (Table 1 shows th2201_compress executes very few
write barriers). Improvements ir222_mpegaudio (AMD) and
_209_db (P4) are also due to lower miss rates. Without access to
performance counters, we can only speculate on the reasbirgb
the substantial slowdown a202_jess (10.30%) and speedups on
_205_raytrace (0.23%) and.209_db (0.82%) on the PPC.

Object. The object barrier costs on average 1.76%, 1.23%, and
1.56% for the AMD, P4 and PPC architectures, respectiveigse
numbers are all slightly better than those for the boundany b
rier. The worst case is substantially better (5.45%202_jess for
the AMD), and minor improvements are seen_@01_compress
(2.85 % AMD, 2.65% P4),205_raytrace (0.09% AMD, 1.06%
PPC), and209_db (0.28% PPC). This barrier shows lower muta-
tor overheads than the boundary barrier, but it is less pee@nd
must therefore perform more work at collection time. In thse
of large, sparsely updated objects (e.g., arrays), thisheael could
be substantial.

Hybrid. The hybrid barrier uses an object barrier for scalar ob-
jects (which are typically small and dense), and the boyntar-
rier for arrays (which may be large and sparse). The average m
tator costs for this barrier are roughly between those fertio
barriers from which it is composed: 1.82%, 1.33%, and 1.9@f% f
AMD, P4 and PPC architectures, respectively. The worst tase
relatively low (5.57% on202_jess for PPC), and similar small im-

provements are seen QB01_compress, _222_mpegaudio, and
_209_db. This barrier is designed to balance the trade-off between
mutator and collection costs in the boundary and objecidrarr

Zone. The zone barrier is the first where we see a marked ar-
chitectural dependency. The average costs are 5.10%, 48136
1.77% for the AMD, P4 and PPC, respectively. The x86 archi-
tectures thus find this barrier significantly more expentis the
other barriers, while on the PPC this barrier is among thepbst.
The dynamic instruction count on the x86 architecturesdesiased

by 4.65%. Unfortunately, we don’t know how the PPC instrocti
count is impacted. However, Figure 2 shows that, staticéty
PPC uses about the same number of instructions for the zahe an
object boundaries and sees similar run-time performangeoB-
trast, the x86 needs quite a long instruction sequence &zdhe
barrier. We are unsure to what extent this is an artefacteok86
backend of the Jikes RVM optimizing compiler, however weenot
that the zone barrier uses an arithmetic instructian), which
must use theaax register, further increasing pressure on the few
available x86 registers.

Card. The card barrier also shows a strong architectural differ-
ence, this time the PPC is substantially slower. The avectagts
are 1.01%, 0.80%, and 4.59% for the AMD, P4 and PPC, respec-
tively. The x86 results are somewhat consistent with cotiweal
wisdom; however, it is debatable as to whether they are giftly
lower than the other barriers to warrant the extra GC timereff
of scanning the cards, and the space overhead of the cag$tabl
Also, we do not include here the allocation time work that nings
performed to ensure that the card offset table is kept ctamgisin
short, it is not a decidedly better choice. We are unsure \uhy t
PPC results are so poor, however we are investigating trelles

ity that the PPC does not perform stores of bytes very effilgielt

nmay be necessary to use a word store on the PPC, trading eff tim

for space a little further.

These results indicate a number of conclusions. Firstidyazosts
have often been overstated. We show that a reasonable genera
tional barrier (the hybrid) has an average mutator overhesttr

2%, with a worst case of less than 6%. Sometimes the barrésr ov
head is less important than noise due to second order effects
locality. This is encouraging for those designing GC alionis,

and should give pause to those who dismiss write barrierar@su
sonably expensive. Second, barrier costs are very artinisdly
dependent. We have seen that both the ISA (PPC v. x86) and
the implementation (AMD v. P4) can have a significant impact o
barrier performance. Implementers should consider thisfaby
when choosing their collector and associated barriersrdT ke
often stated view that card marking is the cheapest form ofdra

is questionable. Our card marking implementation is apabig
slower on the PPC, and the performance difference on x86 may b
overwhelmed by the secondary costs associated with cakdmgar
such as maintaining the card offset table and scanning tids ea

GC time.

6.2 Read barrier performance

Figure 7 shows the performance overhead of each of the read

barriers on the three platforms. The overhead varies Sutisty

and is extremely architecturally sensitive. On the PPC tto®ndi-
tional barrier actually showed performance improvementsame
benchmarks, which we ascribe to locality affects, thougtheuit
hardware performance counters we cannot be sure. Unfoetyna
our read barriers are not as robust as the write barriersjraad
number of cases we were unable to produce complete results.

We now examine the results for each barrier in more detail.

Unconditional. The average costs for the unconditional barrier

are 8.05%, 5.04%, and 0.85% for the AMD, P4 and PPC, respec-

tively. The results tend to be somewhat more consistent tian
write barrier results with the worst case of 13.03% on the AMD
(less than Z the average on the AMD). Most strikingly, the barrier
is extremely cheap on the PPC, about half the price of thepgsta
write barrier on that architecture, and nearly an order ajmitade

Acknowledgments

This work is supported by the National Science Foundatiateun
grant No. CCR-0085792, the Australian Research Councieund
grant No. DP0452011, by the Defense Advanced Research Pro-
gram Agency, and by IBM. Any opinions, findings and conclasio
expressed herein are the authors and do not necessaritt thiise

of the sponsors.

cheaper than on the AMD. There are a number of speedups onthe \ye are grateful to Kathryn S. McKinley for her encouragement

PPC, which we guess are due to locality effects (in the alesehc
hardware performance counters this is hard to show).

Conditional. Unsurprisingly, the conditional barrier is substan-
tially more expensive than the unconditional barrier, vaterage
overheads of 21.24%, 15.91%, and 6.49% for the AMD, P4 and
PPC, respectively. Once again, we see a striking archisdate-
pendency, with the PPC much better able to absorb the owkrhea
Interestingly, the read-intensiv@09_db benchmark is barely af-
fected by this barrier on the PPC (0.67%). It is possible inanch
prediction is playing a significant role in these resultsth&scon-
ditional we have used will always evaluate to true (althotigh is

not something the compiler can determine statically).

We draw two strong conclusions from these results. Firad twar-
rier costs are very architecturally dependent. If readibarare
known to be cheap, then this opens a number of algorithmie pos
sibilities that may otherwise have been ruled out as tooresipe.
This invites consideration by architects. It also suggtsisgreat
care should be taken in a) interpreting published resulistwére
architecture-specific, and b) in collector design for palgarun-
times. Second, the nature of the read barrier substantiappcts
on its overhead. An unconditional read barrier can be exhem
cheap and should be considered as a viable approach in cases w
it might be useful. A conditional barrier will be moderatelypen-
sive, although the predictability of the branch may gretiijuence
just how expensive itis.

7. Conclusions

Read and write barriers are algorithmically powerful metsias
with significant application to garbage collection and otappli-
cations. In this paper we evaluate the untested assumpgtain t
barriers impose a significant overhead. We present a mdtmdo
for measuring barrier costa vivo, and evaluate a range of com-
mon write barriers and two read barriers on three platformig
9 standard Java benchmarks.

We show that the overhead of a reasonable write barrier for a
generational collector is low on average (less than 2%), lassl
than 6% in the worst case. We also show that this is architttu
sensitive. We also show that read barriers can be very low cos
(0.85% on average on the PPC), and that this is extremeljtisens
to the style of barrier and the underlying architecture.

Our methodology is publicly available as part of MMTk. We
hope that this will encourage systematic empirical studgasfier
performance within the community, rather than allowing kéyo-
rithmic decisions to be determined by untested assumptibost
the cost of the underlying mechanisms. We also hope thawnliis
invite further creativity and more aggressive exploitataf the al-
gorithmic power of barriers by the memory management commu-
nity. This work should encourage implementors to carefatip-
sider the choice of barrier in light of the workload, theinwailer,
and the underlying architecture. Finally, architecturahstivity
to this key mechanism for garbage collected languages nvitg in
some interest from the architecture research community.

and numerous helpful suggestions that improved this paper.
8. REFERENCES

[1] ALPERN, B., ATTANASIO, C. R., BARTON, J. J., ®CCHI,
A., HUMMEL, S. F., LEBER, D., NGO, T., MERGEN, M.,
SHEPHERD, J. C.,AND SMITH, S. Implementing Jalapefio
in Java. In OOPSLA'99 [22], pp. 314-324.

[2] APPEL A. W. Simple generational garbage collection and
fast allocation Software—Practice and Experience, 29
(Feb. 1989), 171-183.

[3] ARNOLD, M., FINK, S. J., QROVE, D., HIND, M., AND
SWEENEY, P. F. Adaptive optimization in the Jalapefio JVM.
In Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications
(Minneapolis, Minnesota, Oct /ACM SIGPLAN Notices 35
10 (Oct. 2000), pp. 47—65.

[4] AzAGURY, A., KOLODNER, E. K., PETRANK, E.,AND

Y EHUDAI, Z. Combining card marking with remembered

sets: How to save scanning time. In ISMM’98 [19],

pp. 10-19.

BACON, D. F., CHENG, P.,AND RAJAN, V. T. A real-time

garbage collector with low overhead and consistent

utilization. InConference Record of the ACM Symposium on

Principles of Programming Languagésew Orleans,

Lousiana, Jan.ACM SIGPLAN Notices 38 (Jan. 2003),

pp. 285-298.

BLACKBURN, S.,AND McKINLEY, K. S. In or out?:

Putting write barriers in their place. Proceedings of the

ACM International Symposium on Memory Management

(Berlin, Germany, Jun., 2002ACM SIGPLAN Notices 3@

(Feb. 2003), pp. 281-290.

BLACKBURN, S.,AND MCKINLEY, K. S. Ulterior

reference counting: fast garbage collection without a long

wait. In OOPSLA03 [21], pp. 344—-358.

BLACKBURN, S. M., CHENG, P.,AND MCKINLEY, K. S.

Myths and reality: The performance impact of garbage

collection. INACM International Conference on

Measurement and Modeling of Computer Systéesv

York, New York, June). 2004, p. To appear.

BLACKBURN, S. M., bNES, R. E., McKINLEY, K. S.,

AND Moss J. E. B. Beltway: Getting around garbage

collection gridlock. InProceedings of the ACM Conference

on Programming Language Design and Implementation

(Berlin, Germany, JuneACM SIGPLAN Notices 356 (May

2002), pp. 153-164.

BRAHNMATH, K., NYSTROM, N., HOSKING, A. L., AND

CuTTS, Q. Swizzle barrier optimizations for orthogonal

persistence in Java. Proceedings of the Third International

Workshop on Persistence and JgWéburon, California,

August 1998), R. Morrison, M. Jordan, and M. Atkinson,

Eds. Advances in Persistent Object Systems. Morgan

Kaufmann, 1999, pp. 268-278.

(5]

(6]

(8]

(9]

[10]

[11] BrROOKS, R. A. Trading data space for reduced time and
code space in real-time garbage collection on stock
hardware. IrProceedings of the ACM Conference on Lisp
and Functional Programmin@Austin, Texas, Aug.). 1984,
pp. 256-262.

[12] CAuDILL, P. J. AND WIRFS-BROCK, A. A third generation
Smalltalk-80 implementation. IRroceedings of the ACM
Conference on Object-Oriented Programming Systems,
Languages, and ApplicatiorfPortland, Oregon, Sept.).
ACM SIGPLAN Notices 2111 (Nov. 1986), pp. 119-130.

[13] HIRZEL, M., DIWAN, A., AND HERTZ, M.
Connectivity-based garbage collection. In OOPSLA03 [21]
pp. 359-373.

[14] HOSKING, A. L., AND HUuDSON, R. L. Remembered sets
can also play cards. IRroceedings of the OOPSLA

Workshop on Memory Management and Garbage Collection

(Washington, DC, Sept.). 1993.

[15] HOSKING, A. L., AND Moss J. E. B. Protection traps and
alternatives for memory management of an object-oriented
language. IrProceedings of the ACM Symposium on
Operating Systems Principl¢asheville, North Carolina,
Dec.).ACM Operating Systems Review, 87Dec. 1993),
pp. 106-119.

[16] HOSKING, A. L., Moss J. E. B.,AND STEFANOVIC, D. A
comparative performance evaluation of write barrier
implementations. IProceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications(Vancouver, Canada, OctACM SIGPLAN
Notices 2710 (Oct. 1992), pp. 92-109.

[17] HOSKING, A. L., NYSTROM, N., CUTTS, Q.,AND
BRAHNMATH, K. Optimizing the read and write barriers for
orthogonal persistence. Rroceedings of the Eighth
International Workshop on Persistent Object Systems
(Tiburon, California, August 1998), R. Morrison, M. Jordan
and M. Atkinson, Eds. Advances in Persistent Object
Systems. Morgan Kaufmann, 1999, pp. 149-159.

[18] HuDsON, R. L.,AND M0OSs J. E. B. Incremental
collection of mature objects. IRroceedings of the
International Workshop on Memory Managemést. Malo,
France, Sept.), Y. Bekkers and J. Cohen, Eds. vol. 637 of
Lecture Notes in Computer Scien&pringer-Verlag, 1992,
pp. 388-403.

[19] Proceedings of the ACM International Symposium on
Memory Managemerfi/ancouver, Canada, Oct., 1998).
ACM SIGPLAN Notices 38 (Mar. 1999).

[20] JONES, R.,AND LINS, R. Garbage Collection: Algorithms
for Automatic Dynamic Memory ManagemeWfiley, May
1996. Chapter on distributed collection by Lins.

[21] Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications
(Anaheim, California, Nov.)JACM SIGPLAN Notices 381
(Nov. 2003).

[22] Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications
(Denver, Colorado, Nov.ACM SIGPLAN Notices 340
(Oct. 1999).

[23] PETTERSSON M. Linux Intel/x86 performance counters,
2003. http://user.it.uu.se/ mikpe/linux/perfctr/.

[24] RoTH, D. J.,AND WISE, D. S. One-bit counts between
unique and sticky. In ISMM’98 [19], pp. 49-56.

[25] SELIGMANN, J.,AND 235-252, S. G. . E. . Incremental
mature garbage collection using the Train algorithm. In
Proceedings of the European Conference on Object-Oriented
Programming(,&arhus, Denmark, Aug.). vol. 952 afcture
Notes in Computer Scienc8pringer-Verlag, 1995,
pp. 235-252.

[26] SOBALVARRO, P. G. A lifetime-based garbage collector for
LISP systems on general-purpose computers, 1988. B.S.
Thesis, Dept. of EECS, Massachusetts Institute of
Technology, Cambridge.

[27] SPEC. SPECjvm98 benchmarks, 1998.
http://www.spec.org/osg/jvm98.

[28] SPEC. SPECjbbh2000 benchmarks, 2000.
http://www.spec.org/jbb2000.

[29] STEFANOVIC, D., MCKINLEY, K. S.,AND Moss J. E. B.
Age-based garbage collection. In OOPSLA99 [22],
pp. 370-381.

[30] UNGAR, D. Generation scavenging: A non-disruptive high
performance storage reclamation algorithmPhaceedings
of the ACM Symposium on Practical Software Development
EnvironmentgPittsburgh, Pennsylvania, Apr.). 1984,
pp. 157-167.

[31] WILSON, P. R.,AND MOHER, T. G. A “card-marking”
scheme for controlling intergenerational references in
generation-based garbage collection on stock hardware.
ACM SIGPLAN Notices 246 (May 1989), 87-92.

[32] WiLsON, P. R.,AND MOHER, T. G. Design of the
opportunistic garbage collector. Rroceedings of the ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applicatiorfblew Orleans, Louisiana,
Oct.).ACM SIGPLAN Notices 24.0 (Oct. 1989), pp. 23-35.

[33] ZEE, K., AND RINARD, M. C. Write barrier removal by
static analysis. IfProceedings of the ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications(Seattle, Washington, NovACM SIGPLAN
Notices 3711 (Nov. 2002), pp. 191-210.

[34] ZoRrN, B. Barrier methods for garbage collection. Tech.
Rep. CU-CS-494-90, University of Colorado at Boulder,
Nov. 1990.

