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Abstract. The design and analysis of efficient approximation schemes is of fun-
damental importance in stochastic programming research. Bounding approximations
are particularly popular for providing strict error bounds that can be made small by
using partitioning techniques. In this article we develop a powerful bounding method
for linear multistage stochastic programs with a generalized nonconvex dependence on
the random parameters. Thereby, we establish bounds on the recourse functions as
well as compact bounding sets for the optimal decisions. We further demonstrate that
our bounding methods facilitate the reliable solution of important real-life decision
problems. To this end, we solve a stochastic optimization model for the management
of non-maturing accounts and compare the bounds on maximum profit obtained with
different partitioning strategies.
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1 Introduction

Multistage stochastic programs arise whenever sequential decisions have to be
taken under incomplete information about some decision-relevant parameters.
The general setup is as follows: a decision maker observes some random param-
eter and selects a decision based on this first observation. Next, a new random
parameter is observed, in response to which a recourse decision is taken. The
second decision may depend on both previous observations (and on the first de-
cision, which adds no extra information, however, since it is merely a function
of the first observation). This basic scheme of alternating observations and de-
cisions is continued until the end of the planning horizon. Typically, decisions
cannot be chosen freely but are subject to constraints of physical or regulatory na-
ture. Moreover, rationality requires decision makers to select utility maximizing
actions. When formulating a stochastic optimization model, thus, a suitable ob-
jective criterion must be specified. In order to simplify prose, we will henceforth
assume that the objective is to maximize expected profit.

A stochastic optimization problem is said to be linear if the objective and
constraint functions are linear affine in the decision variables, which will always



be assumed in the remainder of this article. Linear two- and multistage stochastic
programs were first studied by Dantzig [9] and Beale [3] in 1955. Their immense
popularity originates from a rich variety of applications in the fields of manage-
ment, engineering, finance, and logistics, etc. If the underlying random variables
are finitely supported, the extensive form [5] of a given stochastic program rep-
resents a large-scale linear program, which can in principal be solved by using
Dantzig’s simplex algorithm [10]. However, if the supports of the underlying ran-
dom parameters are very large or (un)countably infinite, a stochastic program
will in most cases allow only for an approximate solution.

The present article addresses an approximation scheme based on discretiza-
tion. Concretely speaking, we will establish two auxiliary stochastic programs
which emerge from the original problem by replacing the true distribution of the
random parameters by two finitely supported approximate distributions. After a
suitable transformation offsetting possible nonconvexities in the random param-
eters, the optimal values of the auxiliary stochastic programs can be shown to
provide bounds for the optimal value of the original problem. Moreover, repeated
solution of the auxiliary problems under different parameter settings will allow
us to construct compact bounding sets for the true optimal decisions. Further
emphasis will be put on convergence issues.

Our approximation scheme belongs to the class of bounding methods, which
have a long tradition in stochastic optimization; see, e.g., [5, Chap. 9] for a
textbook introduction. In developing so-called bounding probability measures,
one typically exploits structural properties of the recourse functions (profit-to-
go functions) associated with the underlying stochastic program. Frequently,
bounding measures may be interpreted as solutions of generalized moment prob-
lems [7, 19, 20, 25, 41]. This idea is credited to Dupacova [16] and has fruitful
applications also in models where the underlying probability distribution is only
known in limited manner [13, 14, 15].

When the recourse functions are convex in the random parameters, a lower
bound is found via Jensen’s inequality [40], while an upper bound arises from
the Edmundson-Madansky inequality.! Edmundson [21] treats the univariate
case, whereas Madansky [44, 45] and Frauendorfer [24] consider the multivariate
setting, given that the components of the random parameters are independent and
dependent, respectively. Elaborate extensions are due to Gassmann and Ziemba
[35] and Birge and Wets [6, 7]. Note that these bounds are based only on first-
order moment information. One way of tightening them is by inclusion of higher
order information in the construction of bounding measures. Edirisinghe [17]
was the first to develop second order lower bounds, which were later extended
by Dokov and Morton [12]. Birge and Duld [4], Dupacova [16], and Kall [42]
propose second order upper bounds. Higher order upper bounds are suggested
in [11]. For more information on higher order bounds, see also the chapter in

'In the presence of concave recourse functions upper and lower bounds switch roles.



this book by Edirisinghe [|. All bounds discussed so far can be improved to an
arbitrary degree of precision by applying them on increasingly small subsets of
the underlying domain. This so-called partitioning technique is documented in
6, 30, 39].

Similar bounding methods are also available for problems whose recourse func-
tions are convex-concave saddle functions. First order bounds closely related to
those of Jensen and Edmundson-Madansky are proposed by Frauendorfer [25]
and Edirisinghe and Ziemba [19, 20]. Second order bounds on saddle functions
are due to Edirisinghe [17], and generalized bounds for specific problems with
nonconvex recourse functions are developed by Kuhn [43]. Furthermore, suitable
partitioning schemes are discussed in [18, 25, 43].

The present article reviews some cornerstone results related to bounding tech-
niques in stochastic linear programming and presents an illustrative application
to finance. Our theoretical exposition follows the lines of [25, 26, 27, 43]. Sec-
tion 2 formally introduces the class of optimization problems to be studied, while
Sect. 3 elaborates a set of regularity conditions ensuring well-definedness of our
mathematical models. In Sect. 4 we sketch the construction of discrete approx-
imate distributions for the random parameters; these so-called barycentric mea-
sures facilitate the calculation of bounds on the expectations of subdifferentiable
saddle functions. The theoretical main results are presented in Sect. 5. Most im-
portantly, we will demonstrate the construction of tight bounds on the recourse
functions and establish compact bounding sets for the optimal decisions of linear
stochastic programs. Furthermore, we will report on convergence results. In or-
der to illustrate the practical implementation of the theoretical concepts, Sect. 6
discusses the problem of reinvesting money from non-maturing accounts (for ex-
ample savings products), which is a major concern for financial institutions. This
particular decision problem is formulated as a linear multistage stochastic pro-
gram and can be analyzed with our bounding methods. Numerical experiments
show that the bounds on the optimal objective value can be made tight with
affordable computational effort. In a series of test calculations, we investigate
the convergence of the bounds for different families of scenario trees.

2 Problem Formulation

In this article we consider a class of constrained profit maximization problems
under uncertainty. We assume that decisions may be selected at several time
points t = 1,...,T. At the outset, we must establish a probabilistic model
for the underlying uncertainty. All random objects are defined on an abstract
probability space (£2,%, P). Adopting the standard terminology of probability
theory, we will refer to €2 as the sample space. Furthermore, we use the following
definition of a stochastic process.



Definition 2.1 (Stochastic Process). We say that & is a stochastic process with
state space Z if € = (&1, ..., &p) and = = x| =, such that each random vector &,
maps (€, %) to the Borel space (24, B(Z;)) and each Z; is a convex closed subset of
some finite-dimensional Fuclidean space. Moreover, we define combined random
vectors €& = (&,,...,&,) valued in =t := x!_ =, forallt=1,...,T.2

As a notational convention, throughout this article, random objects will be
represented in boldface, while their realizations will be denoted by the same
symbols in normal face. We will frequently encounter stochastic processes with
compact state spaces. Then, the corresponding random vectors are bounded,
thus having finite moments of all orders.

Let m and & be two stochastic processes in the sense of definition 2.1 with
state spaces © and =, respectively. These processes are assumed to describe the
random data which is revealed sequentially in the decision-making process. Thus,
the information F*! available at stage ¢ amounts to the o-algebra generated by
the random variables observed in stages 1 through t, i.e., ! = o(n, £"). With
these conventions, the space of non-anticipative decision processes® is defined as

N = {x is a stochastic process with state space X such
that ¢, € L>2(Q, F', P; X;) for each t = 1,...,T}.

Throughout this article we will assume that X = R”™ and X; = R™. Then,
consistency requires that n = ny + --- + nyp. In order to simplify notation, we
introduce @ as a fictitious fixed decision of the past. The static version of a
linear multistage stochastic program can now be formulated as

maximize £ [i@(nt), ) } (2.1)

pUS
t=1
S.t. Wt(st)wt + E(Et)wt_l ~ ht(ét) P—a.s. t = ]_, P ,T.

The objective and constraint functions are linear in the decision variables. How-
ever, linearity in the stochastic parameters is not required. Note that the process
1 exclusively appears in the objective function, whereas & only affects the dy-
namic constraints (but both 1 and € influence the set A accounting for the
so-called non-anticipativity constraints). As argued in [25, Sect. 5], a distinc-
tion between m and & is always possible. However, some components of 1 and
& may represent the same random parameter and must therefore be modelled as
perfectly correlated random variables.*

2Sometimes, notation is simplified by further introducing a deterministic dummy random
variable £ of the past.

3Decision processes will also be referred to as strategies or policies.

4Random variables appearing both in the objective function and the constraints of the
stochastic program must be duplicated. The first copy of such a random variable is appended
to m, while the second copy is appended to £&. Note that the two copies will be discretized
differently.



We choose to work explicitly with inequality (less-or-equal, greater-or-equal)
and equality constraints. Thus, for every stage we introduce an r;,-dimensional
‘vector’ ~; of binary relations, each of whose entries is either ‘<’ or ‘>’ for in-
equalities, or ‘=" for equalities. Of course, the stochastic program (2.1) can be
brought to the standard form with only ‘less-or-equal’ constraints if the equality
constraints are replaced by two opposing inequality constraints, and the ‘greater-
or-equal’ constraints are multiplied by —1. Notice that the constraints in (2.1)
only couple neighboring decision stages. This can always be enforced, i.e., depen-
dencies across more than one decision stage can systematically be eliminated by
introducing additional decision variables. For every ¢t = 1,...,T, the r, X n; ma-
trix W, is termed recourse matriz and may generally depend on £'. The r, X n;_;
matrix 7T, is referred to as technology matrixz in literature. Obviously, the tech-
nology matrix determines the intertemporal coupling and may also depend on &£
Moreover, the right hand side (rhs) vector h, and the vector of objective function
coefficients ¢f may depend on &' and 7', respectively.

For both theoretical and practical purposes it is sometimes more comfortable
to work with the dynamic version of a given multistage stochastic program which
relies on a backward recursion scheme. Setting ®7,.; = 0, the optimal value

functions or recourse functions of stages t =T, ..., 1 are defined as
(™', &) = max (] (n), w0) + (Ei®ia) (27", €) (2:2)

st. Wi()ae + T(E)mimn ~ ha(€h).

Thereby, the expected recourse functions or expectation functionals are given by

(th)tﬂ)(l’tﬂfaft) :/(I)t+1($t>77t+laft+l)dB+1(77t+1>€t+1|77ta§t)> (2-3)

and P, denotes a regular conditional probability distribution of the random
parameters observed at stage t+1 given the realizations of the random parameters
observed at stages 1 through ¢. In real-life applications it is usually assumed that
1, and &, are deterministic, i.e., they represent degenerate random vectors with
a Dirac distribution (as was assumed for the fictitious past decision @g). Then,
the first stage recourse function ®; needs be evaluated only at one point, where
it coincides with the optimal value of the underlying stochastic program.

To facilitate the formulation of precise statements about dynamic stochastic
programs, it proves useful to introduce specific subsets of parameter space. For
eacht =1,...,T we define

Zt={(a"" ) e X x O x B [Ws=1,...,t—1:
Wi(€%)ws + To(§7) 51 ~s hs(€7) T (2.4)

Points in the complement of Z! correspond to impossible realizations of the ran-
dom parameters or to forbidden decisions. Thus, only the restriction of ®; to



Z' has physical meaning, and we will refer to Z' as the natural domain of the
recourse function of stage ¢.

Without suitable regularity conditions, it is not clear whether the static and
dynamic versions of a given multistage stochastic program are well-defined and
solvable (as is suggested by the use of the ‘max’-operators). In particular, mea-
surability of the integrands in (2.1) and (2.3) must be ensured. To this end,
the next section will elaborate and discuss a set of suitable regularity conditions
which guarantee well-definedness, solvability, and equivalence of the static and
dynamic versions of a linear multistage stochastic program.

3 Regularity Conditions

In order to establish a set of concise regularity conditions which ensure that the
linear stochastic program given by representation (2.1) or (2.2) is well-behaved,
we have to introduce some terminology. A major concern is usually the func-
tional dependence of the objective and rhs vectors on the stochastic parameters.
Modelling ¢} and h; as differences of convex functions turns out to be particularly
advantageous. Let us therefore state the following formal definition.

Definition 3.1. Let = be a convex subset of a finite-dimensional Fuclidean space.
A function f:Z — R" is called d.c. (abbreviation for difference of convex func-
tions) if there are two componentwise convex functions k™ and k= such that

fEO) =rT(6) —r(§) VEEE.

Notice that the decomposition of a d.c. function is never unique. In fact, by
adding the same convex mapping to both k™ and k™, one obtains a valid al-
ternative decomposition. Recently, d.c. functions have experienced considerable
attention in the field of global optimization [22, 38, 46]. A survey of their prop-
erties is provided in [37]. Here, we recall only a few properties relevant in our
context. First, the class of twice continuously differentiable functions is a linear
subspace of the space of d.c. functions. This can easily be proved if = is compact.
However, the statement remains true for = open or unbounded, as pointed out
by Hartman [36]. Moreover, if = is compact, the d.c. functions are dense in the
space of continuous mappings from = to R” endowed with the topology of uniform
convergence with respect to the Euclidean norm in R”. This follows directly from
the Stone-Weierstrass theorem and the fact that all vector-valued polynomials
are d.c. functions.

Well-definedness of the integrands in (2.1) and (2.3) not only depends on the
properties of the objective and rhs vectors (and the constraint matrices), but also
essentially on the properties of the stochastic data process.

Definition 3.2. We say that the random data (n, &) follows a block-diagonal au-
toregressive process if it is driven by two serially independent stochastic processes



g’ and € with state spaces £° and E”, respectively. Moreover, for each t there
are two matrices HY and H; with appropriate dimensions such that

[ZZ}:{%@ }(I);} {Z::ll}jL[Z} t=1,...,T.

Block-diagonal autoregressive processes exhibit a linear dependence on his-
tory. Moreover, the AR coefficient matrices of all stages are block-diagonal. Note
that definition 3.2 allows the noise processes €° and €' to be correlated. In the
extreme case where the same random processes affect the objective and the con-
straint functions, we are obliged to set €® = &" (thereby doubling the dimension of
the relevant state space, which is computationally expensive but not necessarily
prohibitive).

In the remainder of this article we will study linear multistage stochastic
programs of the form (2.1) which satisfy the following regularity conditions:

(C1) the marginal spaces ©, and =, are compact regular simplices, t = 1,..., T

(C2) the vector of objective function coefficients ¢ is continuous and d.c. on a
convex neighborhood of ©%, t =1,...,T;

(C3) the rhs vector h; is continuous and d.c. on a convex neighborhood of Zf,
the matrices W, and T; are independent of the random parameters, and the
recession cone {z;|Wyx; ~; 0} is given by {0}, t =1,...,T;

(C4) the random data (n, &) follows a block-diagonal autoregressive process;

(C5) at any reference point in Z* the parametric maximization problem (2.2) has
a feasible point where the gradients of the active constraint functions are
linearly independent, t =1,...,T.

The first condition requires the state spaces of the random parameters to be com-
pact, which implies the data processes to have finite moments of all orders. Con-
sequently, (C1) constitutes a restrictive condition. Assumption (C2), however,
is nonrestrictive since the set of d.c. functions is dense in the set of continuous
functions. Therefore, we have much flexibility in modelling the functional form
of ¢f. Analogously, condition (C3) offers considerable flexibility in choosing the
rhs vector h;, but it is restrictive in that it requires the recourse and technology
matrices to be nonrandom and the feasible sets of the parametric maximization
problems (2.2) to be compact. Assumption (C4) is certainly restrictive as it only
allows for linear dependencies between random parameters of different stages.
But this is not a serious deficiency. In fact, it is frequently possible to absorb
all nonlinearities in the definition of the functions ¢; and h;. However, requiring
these functions to be linear affine, as is frequently done, and, at the same time,

7



assuming the random parameters to follow a block-diagonal autoregressive pro-
cess, would severely limit the scope of our methodology. Assumption (C5) has the
character of a generalized Slater condition and implies non-anticipativity of the
constraint multifunction in the sense of Rockafellar and Wets [47]. This condition
is nonrestrictive, since any constraint multifunction can be made non-anticipative
by explicitly introducing the so-called induced constraints, see, e.g., [48, 51]. No-
tice that, as opposed to popular strict feasibility conditions, our assumption (C5)
is not in conflict with the presence of equality constraints.

Some basic consequences of the above regularity conditions are summarized
in the following theorem.

Theorem 3.3. Under the assumptions (C1)-(C5) the static and dynamic ver-
sions of a linear multistage stochastic program are both well-defined and solvable,
and the optimal values coincide. Moreover, the recourse functions are finite and
continuous on their natural domains.

Proof. The assumptions (C1)—(C5) imply the weaker conditions used by Rock-
afellar and Wets [47]. Thus, the claim follows from [47, Theorem 1]. Alternatively,
see [43, Proposition 2.5 and Theorem 2.6]. O

4 Barycentric Probability Measures

The solution of stochastic programs poses severe difficulties, especially in the mul-
tistage case. If the underlying probability measure is absolutely continuous with
respect to Lebesgue measure, the static version of a stochastic program repre-
sents an optimization problem over an infinite-dimensional function space. Then,
analytical solutions are available only for simple models of questionable practical
relevance. Analytical treatment of the dynamic version of a stochastic program is
no less challenging. Instead of a single optimization problem over a function space
one faces a sequence of nested optimization problems over finite-dimensional Eu-
clidean spaces. Evaluation of the expectation functionals is particularly involved:
it requires multivariate integration of a function which is only known implicitly
as the result of a subordinate parametric optimization problem.

Numerical solutions are usually based on discretization of the underlying prob-
ability space. The standard approach is to solve the stochastic program with
respect to a finitely supported auxiliary measure instead of the original measure.
Thereby, one effectively approximates the original stochastic program by an aux-
iliary optimization problem over a finite-dimensional space, which is numerically
tractable. The auxiliary probability measure should approximate the original
measure in a specific sense, i.e., it should be designed so as to guarantee that the
optimal value and the solution set of the auxiliary problem are close to the op-
timal value and the solution set of the original stochastic program, respectively.
Thereby, distance of optimal values is measured with respect to the Euclidean



metric on the real line, while distance of the solution sets is measured, e.g., with
respect to the Pompeiu-Hausdorff metric. In this sense, proximity of the auxil-
iary and the original probability measures depends on the underlying stochastic
program.

The selection of an appropriate discrete probability measure is referred to
as scenario tree construction and represents a primary challenge in the field of
stochastic programming. Our scenario tree construction method is based on
the following procedure, which stems from [27, Sect. 3]. As usual, we let P
be a regular conditional probability distribution of the stochastic parameters
observed at stage t given the history of the stochastic parameters observed at
stages 1 through ¢ — 1. Suppose that for each history of realizations (n'~!,£71) €
O x =71 a discrete measure P2A(-|n!~t, £171) approximates the true conditional
probability measure P,(-|n'~t £71) on B(©; x Z;). Furthermore, assume that the
assignment

pd . B(O; x Zy) x Ot x =1 — [0, 1]
L BTLET) = BB T E )

characterizes a transition probability, i.e., it satisfies the following conditions:

(i) P2(-|n*~1,&71) is a probability measure on B(©; x Z;) for any fixed outcome
history (p=!, &) € ©F1 x =L

(ii) PA(BJ) is a Borel measurable function on ©~! x Z=1 for every fixed Borel
subset B of ©; x =,.

By the product measure theorem [1, Sect. 2.6], the transition probabilities P? of
all stages can be nested to form a unique probability measure P? on the measur-
able space (O x Z, B(O x =)). Under suitable conditions, the discrete measure P4
then approximates the original measure P with respect to the underlying stochas-
tic optimization problem. The above reasoning implies that we should first focus
on the discretization of the conditional distributions P,(-|n'~!, £71). In a second
step, the transition probabilities must be combined to form a discrete scenario
tree.

In any efficient scenario tree construction method, the choice of discrete tran-
sition probabilities should account for the structural properties of the underlying
stochastic program. Our approach exploits distinct convexity properties of the
recourse functions (2.2), which follow from the prevailing regularity conditions.
In fact, the assumptions (C1)—(C5) imply that the recourse functions are con-
cave in the decisions and d.c. in the stochastic variables on a neighborhood of
their natural domains [43, Chap. 5|. By adding suitable correction terms, which
may depend on the random parameters but not on the decision variables, the
recourse functions can be transformed to saddle functions being convex in n and



jointly concave in z and £.° Thus, evaluation of the expectation functionals is
intimately related to calculating the expected value of a saddle function on a
compact domain.

Approximating the conditional distributions of the random parameters in a
multistage stochastic program is basically equivalent to approximating the un-
conditional distribution of the random parameters in a one-stage problem. There-
fore, we may temporarily omit time indices and suppress any dependencies on
the outcome and decision history. Our task now reduces to approximating the
joint distribution P of two random vectors n and £ by a discrete probability
measure P?. Recall also that 17 and & are valued in compact simplices © and Z,
respectively. Having in mind the remarks of the previous paragraph, we try to
establish a definite relation between the expectations of some (a priori unknown)
saddle function ®(n, &) with respect to the complementary measures P and P¢,
assuming only that ® is convex in 7, concave in £, and subdifferentiable. This
problem has been extensively studied in the monograph [25]; see also the related
work in [17, 18, 19, 20]. A promising approach is via moment problems, as will
be outlined below. Let P(m) be the set of all Borel probability measures on
© x = which have the same first-order and second-order cross-moments m as the
original measure P, i.e.,

we L[] e

Next, choose a measure P! from the minimizer set of

wf [ 8.9 dQ0.0) (4.1)

QeP(m)
Note that P! exists since ® is subdifferentiable and saddle-shaped [25, Chap. 3].

Furthermore, choose a measure P" from the maximizer set of the symmetric
problem

sup / (1,€) dQ(1, €), (4.2)
Ox=E

QeP(m)

which is solvable for the same reasons as (4.1). By construction, we find the
following chain of inequalities for the expected values of the saddle function ®
with respect to the three measures under consideration.

/ B(1.€) dP'(5,€) < / D(1,€) AP, €) < / B(.€)dP"(n.€) (4.3)
Ox=E Ox=E

OxXE

5If the objective function coefficients and the rhs vectors are linear affine functions of the
stochastic parameters, then the recourse functions exhibit a saddle shape themselves, and no
correction terms are needed. This situation is investigated in [26, 27].
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An elegant duality argument shows that P! and P* can be chosen to be discrete,
while depending solely on the matrix m of cross-moments and the geometry of
the state space © x Z.5 This implies that for fixed distributions P, P', and P*,
the estimate (4.3) is universally valid for all subdifferentiable saddle functions,
and not just for the specific function ®. Universality is a very useful feature, since
the recourse functions of a given multistage stochastic program are a priori un-
known. Note that universality may be lost if we naively attempt to match higher
order moments in the semi-infinite linear programs (4.1) and (4.2). However,
universality can be restored if one changes the shape of the underlying domain
of the random variables, see [17, 18].

Loosely speaking, the discrete measure P' concentrates probability mass at the
barycenter of © and at the extreme points of =, while P* concentrates probability
mass at the barycenter of = and at the extreme points of ©. Therefore, we will
refer to P! and P* as lower and upper barycentric probability measures. Although
we have established a definite relation between the original and the barycentric
probability measures, it is not clear whether the inequalities in (4.3) are tight.
If not, the probability measure P can be partitioned into smaller pieces, i.e.,
it may be represented as a convex combination of specific probability measures
with smaller supports. Then, the barycentric measures are constructed for each
component separately, and their convex combinations provide improved estimates
in (4.3). By successively increasing the number of components in a partition, one
can construct two sequences of refined barycentric probability measures { P!} jen,
and { P} jen,, where the integer J indices the current partition and will be called
the refinement parameter. It can be shown that both sequences converge weakly
to the original measure P if the supports of all components become uniformly
small for large J. This will always be assumed in the reminder of this article; for
details see [27, 43].

Let us now return to the multistage case. The recipe of the previous paragraph
can be used to approximate the conditional probability measure Py(-|n'~1, £071)
by lower and upper barycentric measures P} (-|n"~!,&~1) and Py, (-[n'~!, &),
which may depend on the refinement parameter, the stage index, and the outcome
history. We assume that all lower (upper) barycentric measures have the same
number of atoms for fixed values of J and ¢. This is no major restriction since any
atom can be viewed as a group of collapsed single atoms. If the probability masses
and the coordinates of the discretization points are measurable functions of the
outcome history (n'~',£~'), then P}, and P}, satisfy the defining conditions
of a transition probability. By the product measure theorem [1, Sect. 2.6], the
barycentric transition probabilities {P},}_; ({P},}/2;) can be combined to form
a unique barycentric probability measure P! (P%) on the joint state space of
the stochastic processes n and €. It can be shown that the inequalities (4.3)

6 Analytical formulae for the masses and coordinates of the atoms of P! and P* are provided
n [25]; cf. also [26, 27, 43].
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still hold in the multistage case for any subdifferentiable saddle function ® being
convex in n = (ny,...,nr) and concave in £ = (§1,...,&r). Moreover, the overall
barycentric measures converge weakly to the true probability measure P as the
refinement parameter J tends to infinity [43, Proposition 4.4].

For each fixed J € Ny, the barycentric transition probabilities can be used
to establish two sequences of auxiliary recourse functions, which will be shown
to approximate the true recourse functions (2.2). Set ®;, , = ®4,,, = 0, and
define

(@'t §) = maxg,epn (cf (71), 20) + (B3, @Y 440) (20", ")

st W)+ Ty~ i) )

Ge(@ ' €)= maxg,erne (c; (1), 1) + (B, 25,402, 7", )
s.t. Wt(gt)l’t + Tt(gt)xt_l ~¢ ht(é-t)
in a backward manner for ¢t = T,...,1. Thereby, the (auxiliary) expectation

functionals are constructed in the obvious way with the help of the transition
probabilities Pf,,t 41 and Py, .

(4.4b)

(ELl],tq)f],t-i-l)(xtv nta gt) = / (I){],t—‘rl(xt’ 77t+17 £t+1) dPgl],t-i-l(nt-i-lv é-t—l-l |77t7 gt)

(E;,tq){],t+1)(xtvnt7£t) = /(I)z,t+1(xta77t+laft+l)dP}L,t+1(77t+17§t+1|77taft)

Note that the set Z! defined in Sect. 3 can be interpreted as the natural domain of
both @, and ®%,. Moreover, unlike the true recourse function ®,, the auxiliary
recourse functions are numerically computable. Their calculation either relies on
the solution of a finite-dimensional linear program, which can, e.g., be solved by
using the classical simplex algorithm [10], or on some specialized decomposition
schemes [5, Sect. 7.1].

5 Bounds for Stochastic Programs

In this section we will argue that — after a suitable transformation — the auxil-
iary recourse functions provide bounds on the true recourse functions and can be
used to construct bounding sets for the optimal decisions. Furthermore, we will
discuss convergence issues.

As usual, assume the regularity conditions (C1)—(C5) to hold. If, beyond that,
the objective coefficients and the rhs vectors are linear functions of the random
parameters, then the recourse functions are subdifferentiable and saddle-shaped
26, Sect. 2], while the auxiliary recourse functions can be shown to bracket the
true recourse functions on their natural domains. Mathematically speaking, this
translates to

), <o <Py, onZzt=1,....T, JeN. (5.1)
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Frauendorfer proved the inequalities (5.1) by backward induction with respect
to t [26, Theorem 4.1 and Lemma 4.2], using subdifferentiability and the saddle
structure of the recourse functions and the universal bounding property (4.3)
of the barycentric transition probabilities. If linearity of the objective and rhs
vectors is abandoned, as is necessary in certain applications, the relation (5.1)
fails to hold in general. Therefore, we will present a stronger result in this article,
which remains applicable if ¢; and h, are generic d.c. functions. In fact, we will
argue that bounds on ®; can generally be expressed in terms of the auxiliary
recourse functions shifted by specific correction terms, which have an intuitive
structure and are numerically accessible.

In order to characterize these correction terms, we have to introduce some
additional notation. Recall first that, by assumption (C2), the vector-valued
function ¢} is d.c. Thus, there are two convex mappings ;" and x;~ on a closed
convex neighborhood of ©! such that

c=rtT—xK", t=1,....,T. (5.2)
Similarly, condition (C3) stipulates that h, is d.c. We may thus suppose that
there are two convex mappings ;" and x; on a closed convex neighborhood of
=t with

he =kt —r;, t=1,...,T. (5.3)

Next, let us return to the dynamic version (2.2) of the given multistage stochastic

program. It should be emphasized again that this representation explicitly deals

with inequality (less-or-equal, greater-or-equal) and equality constraints. Let
Xopt,t(xt_l, nt, §t) cR™ and Df

opt,t

(Zlft_l, ’T]t, gt) C th

be the primal and dual solution sets associated with the parametric optimiza-
tion problem (2.2), respectively. The dual solutions correspond to the Lagrange
multipliers associated with the explicit constraints in (2.2). We will interpret
Xopt,t and Dy, as multifunctions on the underlying parameter space. Under
the given regularity conditions it can be proved that both X, and D7 , are
non-empty-valued, bounded, and Berge upper semicontinuous on a neighborhood
of the natural domain Z*; see [43, Chap. 5]. Thus, there are nonnegative finite
bounding vectors X;", X;” € R™ and D", D;~ € R" such that

—X; <z <X, uniformly for all x; € X,p4(Z") (5.4a)
and
—D;” <df < D;" uniformly for all  d; € D}, (Z"). (5.4b)

Due to the assumption about the recession cone in (C3), the primal bounding
vectors are usually easy to find. As for the dual bounding vectors, recall that
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Lagrange multipliers are nonnegative for less-or-equal constraints and nonpositive
for greater-or-equal constraints; no a priori statement about the sign of Lagrange
multipliers is available for equality constraints. Thus, given that ~; only contains
less-or-equal relations, we may choose D;~ = 0. Conversely, if ~; is exclusively
made up of greater-or-equal relations, we will set D;t = 0. These basic rules
persist on a componentwise level if ~; represents a heterogeneous mixture of
inequality relations. Apart from that, there are no universal a priori guidelines
for how to determine the dual bounding vectors. To find them, however, a good
understanding of the decision problem at hand and a physical interpretation of
the involved Lagrange multipliers are usually sufficient.

By means of the d.c. components of the objective and rhs vectors on one hand
and the bounding vectors for the primal and dual solutions on the other hand, it
is possible to define appropriate correction terms of and o, respectively.

ay(n') =+ (), X") + (T (n'), X)) (5.5a)
ap(§) = (D" k() — (D7, Ky (€D) (5.5b)

These definitions reflect the intrinsic primal-dual symmetry of linear (stochastic)
programs. Obviously, the correction term af associated with the nonconvexities
in the objective function has the same general structure as the correction term
ay corresponding to the nonconvexities in the constraints. Concretely speaking,
(5.5a) pairs the bounding vectors of the primal solutions with the d.c. components
of the objective function coefficients, whereas (5.5b) pairs the bounding vectors
of the dual solutions with the d.c. components of the rhs vector. Next, for all
t=1,...,T we define a combined correction term as

a(n', &) = af(n') + o4 (&) (5.6)

By construction, «; is a continuous saddle function on a neighborhood of ©* x =!
being convex in 7' and concave in . Let us now introduce three sequences of
additional functions. Set Ay = A}, = A4, = 0and define fort =T,...,1

At(nt,ft) = O‘t(ntaft) + /At+1(77t+1>ft+l) dPt+1(77t+l>€t+l|77ta§t)a
A{],t(ntv gt) = at(ntv gt) + /A{],t+1(nt+17 £t+1) dPLl],t—i-l(nt-l-lv £t+1|nt7 gt)’ (57)
3,t(77tv§t) = O‘t(ntagt) +/ 3,t+1(77t+1a§t+1) dpjt+1(nt+17£t+l|nt7£t>'

The functions (5.7) will be referred to as conditional correction terms below. It
is important to notice that the conditional correction terms are computationally
accessible. Evaluation of A, and AY, requires calculation of a finite sum, while
A; can usually be evaluated by means of numerical integration techniques. Since
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oy is continuous for every ¢, A, A{Lt, and AY, are continuous’ and bounded
on O©! x Zt. Moreover, by the saddle structure of the correction terms and the
properties of the barycentric measures, we find Ath < A < Aj, on ot x =,

Using the above definitions, we are now ready to state our main result.

Theorem 5.1 (Bounds on the Recourse Functions). Consider a linear stochastic
program satisfying the regularity conditions (C1)—(C5), and define the conditional
correction terms as in (5.7). Then, we find

O+ A, - A<D <Py, + Ay, —A omZt=1,....T, JEN.

As the refinement parameter J tends to infinity, the conditional correction terms
Al and AY, converge to Ay uniformly on ©' x E', while the auziliary recourse
functions <I>(i]7t and @Y, converge to ®, uniformly on Z* fort=1,...,T.

Proof. The claim follows from Theorems 5.16 and 5.17 as well as the discussion
at the end of Sect. 5.4 in [43]. O

This theorem tells us how to approximate the unknown original recourse func-
tions by known quantities (i.e., quantities which can at least principally be eval-
uated, given sufficient computer power), and provides a nonprobabilistic error
estimate as the difference of the two bounds. In particular, the theorem points
out a possibility to construct numerically calculable and arbitrarily tight bounds
on the optimal objective value. A decision-maker, however, is not only interested
in an accurate estimate of maximal expected reward, but also in the correspond-
ing optimal policy. Thus, we will demonstrate below that bounds on the recourse
functions also entail bounding sets for the optimal decisions.

Consider again the stochastic program (2.1) subject to the regularity con-
ditions (C1)—(C5). For notational convenience we introduce the extended-real-
valued functional

(ci(n'), z) for Wimy + Thay—q ~¢ ('),
—00 else,

pt(xt> 77t’ gt) = {

which penalizes infeasible decisions with an infinite loss and can thus be viewed
as the effective profit earned at stage t. Moreover, define

Ft(xt> nta gt) = pt($ta 77t> gt) + (th)t-i-l)(xt? nta gt)’
FLl],t(xt7 77t7 é‘t) = pt(xt7 ntv é‘t) + (Ef],tq)t+1)(xt7 nta gt) + Af],t(nta gt) - At(nta gt)’
F;,t(xtv ntv gt) = pt(xtv ntv gt) + (E}L,tq)t-l-l)(xtv ntv ft> + qu,t(ntu gt) - At(nta g)

Given sufficient CPU speed and storage capacity, the functionals F Ll],t and F7,
can be numerically evaluated, whereas, in general, F; remains computationally

"Continuity of A; follows inductively form the dominated convergence theorem.

15



untractable. In the sequel, we will interpret these extended-real-valued mappings
as functions of z;, while the arguments z!=%, n’, and & are interpreted as param-
eters. Theorem 5.1 implies that F', < F, < Fy, for all (feasible and infeasible)
decisions z; as well as for all parameters in Z!. As a consequence, the optimal
stage t decisions are necessarily contained in the polyhedron®

CJ,t(xt_17 ntv gt) = {xt

Pt €) 2 max Pyl € b (58)
Ty
This set depends parametrically on the outcome and decision history, thus defin-
ing a multifunction C;;. Notice that the evaluation of C;; at any fixed point,
though possibly time consuming, is numerically feasible as it is only based on
knowledge of the functionals F' Ll],t and F77,. The most important properties of the
multifunction Cj,, all of which can be deduced from Theorem 5.1, are summa-
rized in the following statement.

Theorem 5.2 (Bounding Sets for the Optimal Decisions). Consider a linear mul-
tistage stochastic program subject to the reqularity conditions (C1)—-(C5). Then,
the multifunction Cjy is compact-convez-valued, and we find

Xopt,tCCJ,t OTLZt,tzl,...,T,JEN.

As the refinement parameter J tends to infinity, Cjy converges to Xopy pointwise
on Z' in the sense of set convergence.’

Proof. The claim is an immediate consequence of [43, Theorem 5.22]. U

Let X!, 5, (=1 n', &%) and X2, 5, (2", 7", €") be the solution sets of the aux-
iliary parametric optimization problems (4.4a) and (4.4b), respectively. As usual,
we may interpret X <l>pt, g+ and X0, 5, as multifunctions valued in R™. Using this
new terminology, we may state the following corollary to Theorem 5.2.

Corollary 5.3. Let 2%, be a selector of X, ;,UXY ;. on Z', and assume that
x%, converges pointwise to xy as the refinement parameter J tends to infinity.
Then, x} is a selector of Xopryr on Z* fort=1,...,T.

Proof. The assertion follows immediately from the inclusion
Xépt7j,tUXgpt,J7t C CJ’t, t: 1,...,T, JGN,

and the fact that {C;}jen converges pointwise to Xopy ¢ on Z°. O

8Notice that F} and F* are concave polyhedral functions of x; for all fixed parameter values
since we are dealing with linear stochastic programs and since the barycentric measures have
finite supports.

9For a survey of the theory of set convergence see [49, Chap. 4].
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Corollary 5.3 asserts that if J tends to infinity, all accumulation points of
solutions to the auxiliary stochastic programs (4.4) solve the true recourse prob-
lem (2.2). In [25, Sect. 18] this qualitative convergence result is derived for
the two-stage case by using the concept of epi-convergence due to Attouch and
Wets [2]. The approach presented here, however, is more quantitative in nature
as the bounding sets (5.8) additionally provide non-probabilistic error estimates
for the true solutions.

6 Application in Financial Risk Management

As an illustration of the functionality and performance of bounding methods, we
now present a practical example from financial risk management. It is a simplified
version of a model that was developed for a major Swiss bank (for details, see
(23, 33, 34]) to solve the following problem: A significant portion of a typical
bank’s balance sheet consists of liability positions with no contractual maturity
like savings deposits. Their characteristic feature is that bank clients may freely
add or withdraw investments anytime at no penalty. On the other hand, the
bank is allowed to adjust the rate paid on these investments at all times as a
matter of policy. As a consequence, the total volume of such a position may
fluctuate heavily as clients react to changes in the offered deposit rate or the
relative attractiveness of alternative investment opportunities. The uncertainty
of the future volume complicates the task of the financial managers who have to
reinvest the money on the market or internally for the funding of credits: The
generation of sufficient income requires an allocation of larger amounts in long-
term instruments which, on the other hand, increases the risk that a substantial
portion of the savings volume is withdrawn, and the bank runs into liquidity
problems (if a drop in volume cannot be compensated by maturing investments).
Given the large volumes of such positions, it is obvious that the composition of
the reinvested portfolio has a high impact on the bank’s risk profile and, thus, a
careful analysis of the problem is required.

6.1 Formulation as Multistage Stochastic Program

Assume that investments can be made in fixed-income securities whose maturities
are given by the set D = {1,..., D} (D is the longest available maturity). Let
r(n'; d) denote the interest rate at time ¢ for a given history of risk factors n*. An
investment of $1 in maturity d € D at time ¢t = 1,...,T generates a (discounted)

income of
pin') = S0 ad(t +14)(r(n' d) — 5% (6.1)

over the lifetime of the instrument. Since the objective is the maximization of
the (expected) discounted interest income during the planning horizon, payments
arising after time 7' 4 1 are truncated by setting A := min{7 — ¢ + 1,d}. The
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(deterministic) function a?(7) calculates the discount factor at time 7 from the

initial yield curve or is zero if an instrument with maturity d in which the model
invests in ¢ does not pay a coupon in 7. Transaction costs in terms of a bid spread
are given by s?. If a decrease in the total volume cannot be compensated by the
sum of maturing tranches, the resulting gap must be refinanced in the shortest
maturity. Then, a penalty p is charged in addition to the one-period market rate
that represents the cost for liquidity risk, i.e., the corresponding coefficient in the
objective function is 9;(n') = a}(t + 1)(r(n’;1) + p). The volume v;(£!) in the
account at time ¢ depends on the past realizations of some process €. The specific
form of the processes 7 and € will be introduced in the sequel.

At each point in time ¢t = 1,...,T, decisions on the amounts zf ,, d € D,
have to be made according to Wthh the sum of maturing tranches, corrected by
a change in the total volume of the position, is reinvested in the available instru-
ments. Any investment xﬁwvt increases the total volume xﬁos,t of the positions with
maturity d. An amount refinanced in the shortest maturity as compensation for
large drops in volume is represented by x,.¢;. Thus, the complete decision vector
at stage t is defined as
1

inv,ty

1 D 2D+1
inv,t» xpos,t? s >$p05,ta xref,t) R .

= (x P
As pointed out in Sect. 2, x; is interpreted as the time ¢ realization of a stochastic
process @ characterizing the entire scenario-dependent decision strategy, and its
subprocesses @, ..., T, T, .., T and s are defined in the obvious way.
With the objective to maximize the expected income on the reinvested portfolio
minus the costs for liquidity risk, our decision problem can be formally represented
as the multistage stochastic program

ma;%mlze E [ Z (Z got Tinyt — ﬁt(’nt) Lref t )]

deD
subject to:

1 2 1 _
wpos,t - mpos,t—l - winv,t + Lref,t = 0 (6 2)

d d+1 d _ _ '
ajpos,t - mpos,t—l - winv,t =0 d= 27 BRI D

2 — (€Y P-a.s.
deD ,t — W —
& Tpost t—=1,....T

O<w1nvt§€ d:].,,D

0< Lref t < El
Herein, xf _ ; are degenerate deterministic random variables and denote positions
with maturity d held in the initial portfolio. Upper limits ¢¢ on the transaction
volumes reflect liquidity restrictions in the Swiss market for certain maturities; in
case of non-standard maturities that are not traded, these limits are set to zero.
We also assume here that the initial values 17, and &, of the underlying stochastic
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processes, which affect the coefficients in the first stage, can be observed in the
market and are thus deterministic.

6.2 Risk Factor Models

It now remains to specify the stochastic processes that drive the evolution of
interest rates and volume. Empirical studies imply that two factors explain most
of the volatility of the term structure, and that these factors can be chosen as
the level 1, of the yield curve, e.g., in terms of the rate for an infinite maturity,
and the spread m, between the instantaneous short rate and the level factor (see
for example [32]). For the ease of exposition, we apply a simplified discrete-time
term structure model, in which the stochastic changes of the factors are given by

MNst = MNsi—1 = a’s(es - ns,t—l) At + é(;t

o t=1,...,T. (6.3)
Me—Myi—1 = W (0 — "71,t—1) At + €t

This process specification incorporates the ‘mean reversion’ property, i.e., there
is a drift term that forces the process n;, i € {s, [}, from its current value towards
the long-term mean 6; at a speed controlled by a;. This reflects the empirical
observation that interest rates fluctuate within a certain range. The disturbances
€;, and &), are conditionally independent of the past given n,,. We further
assume that they are conditionally normally distributed given n, ,, i.e.,

20 20 o o O-g QO’SO'ITIZt
€01 E0 My ~N(0,57) where X7 = <Q<Ts<7ﬂ7;ft 0127712,;{ )At. (6.4)
Parameter values v > 0 are used to reflect a possible heteroscedasticity that may
be found in historical interest rate data. For v = 0, in contrast, heteroscedasticity
is lost, and the disturbances €, and &, become serially independent. Note that
all parameters in the above model are annualized.
A very simple approach to obtain the interest rates of the maturities relevant
for investment is to model the yield curve at time ¢ by some exponential function:

7’(77; 77;; d) = (ns,t + ﬁld) e P2l + Mg - (65)

Note that the constants (31, (3> control the shape of the yield curve while the rates
r(nt,nt;d), d € D, themselves are linear in the factors. The parameters of (6.3)
and (6.4) can easily be estimated when the factors are approximated by observed
interest rates, e.g., the five-year rate for ), and the difference between the one-
month rate and the latter for n,. Then, estimates of 3 and (35 in the yield curve
function (6.5) are derived in a second step by minimizing the differences between
the rates implied by the model and those of a historical sample.

Remark: In contrast to the simplified example considered here, the more
general formulation of our optimization model, which is used for ‘real-world ap-
plications’, contains also variables for short sales (negative investments). This
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extended model uses a term structure model which precludes arbitrage opportu-
nities in combination with very low bid-ask spreads. If arbitrage opportunities
occurred in the scenarios, the optimization model would try to exploit them by
refinancing at the cheapest and investing at the highest interest rate, which would
lead to unrealistic investment decisions. However, we avoid a detailed discussion
of this case here for the ease of exposition.

For obvious reasons, the volume of the non-maturing account cannot become
negative since clients are not allowed to withdraw higher amounts than their
previous investments. We therefore model the volume in ¢ as an exponential
function v,(€") = exp(&;) of a stochastic factor which itself follows a first-order
autoregressive process:

& =a,+b€, +&, E~N(00), t=1,..T (6.6)

The random variables &, are assumed to be serially independent but may be
correlated with the noise factors €7, and €7, of the interest rate model. This can
reflect a possible dependency between the volume and the yield curve, as is often
observed for non-maturing accounts.

In order to facilitate comparison with our theoretical results of the previous

sections, we define for each t = 1,...,T the AR(1) coefficient matrices
o [(1—asAt 0 .
m= (0N ) e

and introduce two random vectors

o _ as 05 At n € &g
¢ a; Ql At é?,t ’ ¢ v t

Using these conventions, the risk factor processes can be recast as

N, =Hin,_, +e and & =H& | +¢. (6.7)

6.3 Check of Regularity Conditions

Let us first assume that v = 0 in (6.4) precluding heteroscedasticity in the in-
terest rate model. Then, the risk factors n, and &, are normally distributed and
have infinite support. In order to satisfy condition (C1), it is thus required that
the distributions of € and €} are truncated outside some regular simplices which
are large enough to contain most of the probability mass. For simplicity, consider
the case of a one-dimensional standard normal distribution (s.n.d.). A simplex
that contains a given percentage p of the mass of the s.n.d. reduces to the interval
[—6, 6], where § = ®(1 — 2), and ® denotes the standard normal distribution
function. In the two-dimensional case, the corresponding simplex is an equi-

lateral triangle with an inner circle of radius 0 which represents a d-confidence
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region for the s.n.d. in R?. The vertices of this triangle may be chosen, e.g., as
ug = (—v/38,9),u; = (v/36,6) and uy = (0, —26). Simplicial coverages in higher
dimensions are discussed in [29].

To determine the simplicial support of the stochastic factor ey influencing
the objective, we transform the vertices of a simplex constructed for an un-
correlated two-dimensional s.n.d. according to u§ + I'yu;, @ € {0,1,2}, where
w1 = (as0sAt, a;0;At) and I'; is the Cholesky transformation of the covariance
matrix X9 in (6.4). Analogously, the simplicial support of the risk factor €}, that
controls the coefficients on the rhs, is given by the interval [a, —do., a,+d0.]. For
the calculations presented below, we assume 6 = 2 so that any outcome within
a range of at least two standard deviations around the expectation will be taken
into account.

Consequently, more extremal events than a, + do. are ignored. This is con-
sistent with the fact that in reality the decision maker would accept that with a
certain (sufficiently small) probability a drop in volume cannot always be compen-
sated by maturing instruments. Otherwise, he or she had to invest the complete
amount into the shortest maturity and, thus, give away potential return which
is not consistent with the usual practice of investing balance sheet items without
contractual maturity. In this spirit, a specific choice of d reflects the decision
maker’s tolerance towards liquidity risk.

Condition (C2) is satisfied since the objective function coefficients are linear
in 1 according to (6.1) and (6.5). The rhs functions of the constraints in the opti-
mization problem (6.2) are constant or convex in £ and, a fortiori, d.c. Moreover,
all constraint matrices are deterministic, and the feasible sets of the dynamic
version of (6.2) are uniformly compact in each stage due to the bounds on the
transaction volumes. This implies that condition (C3) is satisfied. It can easily
be seen from (6.7) that (n, &) follows a block-diagonal autoregressive process if
v = 0, i.e., the conditional covariance matrix of 1, is independent of the current
level of the risk factor n,. Regularity condition (C4) is thus fulfilled.

Condition (C5) requires that the stochastic program has relatively complete
recourse. Extreme fluctuations in the & process might in principle lead to a
situation where the volume constraint cannot hold in combination with tight
transaction limits. However, this situation does not occur for reasonable parame-
ter values which imply that the support of & is relatively small (partly because of
the inherent ‘mean reversion property’; this might be different for nonstationary
processes). Due to the possibility of borrowing money on a short-term basis, we
can thus take condition (C5) for granted. Note also that a possible remedy to
achieve relatively complete recourse might be the selection of a smaller parameter
0 for the truncation of the original supports.

Since the right hand side of the third equation in (6.2) is nonlinear in &,
we must determine correction terms of the form (5.6) for each stage in order
to employ Theorem 5.1. To this end, we study the dynamic version of (6.2).
Considering the stage ¢ subproblem, we must find an upper bound DX, for the

vol,t
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dual variables associated with the constraint

D den Thost = exp(€) (6.8)

uniformly over all outcome and decision histories in Z'. This dual variable can
be seen as the shadow price of the volume in the account. A raise in the volume
v; by $1 will increase at least one of the portfolio positions 2 xl?ost which

pos,ty * " -
can only be achieved by increasing also some of the investments xmvt, d € D.
Therefore, the maximum gain in t per additional unit of currency is
Dih, = max{of(n')|d e D, n' € ©'}. (6.9)

This quantity is finite since ¢¢ is linear in 1 and the domain ©' is bounded. Note
that any increase in the volume at stage ¢t will affect only the objective function
coefficients at this stage because the additional money is invested immediately.
We can thus determine the upper bounds in (6.9) from the maximum values of
nit over ©F i € {s,1}, which are obtained by recursively using (6.3). Thereby,
we assume that v =0 and 1 — a;At > 0.

max 7;; = a;0;At + (1 — a;At) maxn;; 1 + maxéy,, i€ {s,l}, t>1

An obvious choice for the d.c. decomposition of the right hand side in (6.8) is
Ky (€Y) = exp(&;) and k; (€Y) = 0. The correction term (5.5b) then becomes

aj(€') = =Dy exp(é’), t=1,...,T.

Because af(n') = 0 for all stages (no corrections of nonconvexities in the objec-
tive are required), this equals also the combined correction term oy (n', £*). Note
that we do not have to estimate a lower bound Dy, in (5.5b) due to x; = 0.
Based on this information, we can now evaluate the conditional correction terms
defined in (5.7). As mentioned earlier, A, and AY, are calculated by direct
summation, while A; must be evaluated either analytically or via numerical inte-
gration techniques. Notice that the recourse functions as well as the conditional
correction terms of the first stage have to be evaluated only at one point, since x,
1., and &, are deterministic. As a consequence, we will suppress the arguments
Zg, M1, and & below. In the simplified example presented here, we calculate A;
approximately with respect to the unrestricted normal distribution and ignore
the truncation of the state space. To this end, & is rewritten for each ¢t > 1 as a
linear combination of the noise terms, i.e.,

r J—
1t€1 E +1t5T> where H, = .
otherwise.

{Hi,:T H!, fort <t,
1
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Then, the conditional correction term A; becomes

Ay =— ZDVOH exp(&)]

T
1
_ZDvolteXp Hy & +Z Hl q a0+ §(H£+1,t Us)z)]-
T=1

Q

According to Theorem 5.1, the bounds on the optimal value ®; of the multistage
stochastic program (6.2) consist in the optimal values @, ®%, of the discretized
auxiliary stochastic programs (4.4a) and (4.4b) shifted by combinations of the
conditional correction terms Ay, A’ and A4, for the current refinement param-
eter J € Nj.

Remark: We emphasized above that v > 0 in (6.3) allows to reflect het-
eroskedasticity of interest rates. However, this choice is not consistent with defi-
nition 3.2. It is argued in [34] that the saddle property of the recourse functions is
sometimes given also for v = 1, since this specification still entails a linear depen-
dency of 1, on its history of observations. In order to cope with other parameter
values'® v > 0, one has to represent the risk factors as nonlinear combinations
of some serially independent disturbances. Considering these disturbances as the
fundamental data process, and packing all nonlinearities into the definition of
the objective function coefficients, our bounding technique remains applicable.
However, this approach involves a completely different set of correction terms
and will not be further pursued in the present article.

6.4 Numerical Solution

We solved a 4-stage problem with quarterly planning, investment opportunities in
the maturities 3M, 6M, 1Y, 2Y, 3Y, 4Y and 5Y, and parameters estimated from
real data. The barycentric measures were refined by successively partitioning the
simplicial supports £ and &; of the disturbances €f and €}, respectively. Starting
with an initial trivial partition J = 0 that consists of the product & x & for
all stages t = 1,...,T we obtained (uncorrected) objective function values of
®f, = 1011.5718 and ®f, = 1221.7353 (recall that the first index represents
the refinement parameter J). Taking into account the conditional correction
terms A, — Ay and Af, — A;, the bounds become 1011.5712 and 1221.7353,
respectively. This illustrates that the magnitude of the corrections is relatively
small, a result which should not be generalized to other (more complex) problems
where corrections apply also to the objective, or the bounding vectors in (5.4a)
and (5.4b) turn out to be very large. On the other hand, the difference between
the two bounds itself is relatively large here. Furthermore, the corresponding

OFor instance, the well-known Cox, Ingersoll and Ross model [8] involves a ‘square root
process’ with v = 0.5.
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first-stage decisions !, o, and z%, o do not coincide. The solution of the lower
bounding problem recommends to invest the whole amount available at ¢t =1 in
the longest maturity, while the suggestion of the upper bounding problem is to
invest in 3M, and thus the decision maker does not obtain a unique solution.
As outlined in Sect. 4, the accuracy of the approximation can be improved
by increasing the number of components in the existing partitions. This can be
achieved by splitting a £- or a &-simplex (or both) at some stage t =1,...,7.
Here we restrict the procedure to splits of the £P-simplices only since numerical
experiments have shown that this leads to the largest improvements during the
first refinement steps. For our numerical example, we implemented the following

refinement procedure:

(1) Fix an initial partition with N simplices, and set J = 0.

(2) Let 537(;), t=1,..., N+ J, be simplices in the current partition that cover
the support of the distribution of €f, t =1,...,T. Solve the corresponding
lower and upper bounding problems.

(3) If the difference between the objective function values after correction (or

some other measure of accuracy) is sufficiently low, then terminate.

(4) Otherwise, among 537(;), . ,537(tJ+N) determine the simplex with the longest

edge and split the simplex at the midpoint of this edge. Replace it in the
existing partition by the resulting (sub-) simplices.

(5) Set J :=J 4+ 1 and goto step (2).

It can be helpful for the determination of the splitting edge in step (4) to weight
the lengths of all edges by the probabilities of the corresponding simplices. This
is motivated by the fact that the partition of a subcell with low probability mass
will not improve the accuracy. Note that the index J is equivalent to the number
of refinements.

In this way, for N = 1 and with one refinement (i.e., J = 1) we obtain ob-
jective function values of @}, = 1027.9749 and ®}, = 1136.5517 that become
1027.9743 and 1136.5520, respectively, after correction. The relative difference
between the upper and lower bound is only half as large as for the initial calcula-
tion with J = 0. More importantly, the decision vectors :)sf)pt,L1 and zg 1, NOW
coincide, i.e., the first-stage decision of the upper bounding problem switched
also to the investment in the longest maturity. Thus, the decision maker obtains
a unique solution at a sufficiently high accuracy, which was our original intention.

Further refinement steps (i.e., J = 2,3,...) improve the accuracy only margi-
nally, while the corresponding auxiliary optimization problems, that approximate
the original multistage stochastic program, become intractably large: This can
immediately be attributed to the fact that, as outlined in Sect. 4, the approxi-
mation is based on the barycenters and vertices of the simplices in the partition.
The size of the auxiliary problems thus may become too large as J increases.
Numerical experiments have shown that the underlying value functions exhibit a
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Figure 1: Coverages for the uncorrelated and correlated case with barycenters

N\|J <I>f,,1 corr. LB Y4 corr. UB acc.
0 | 1011.5718 -5.45 1011.5712 | 1221.7353 2.89 1221.7356 | 18.82%
1 ]1027.9749 -5.95 1027.9743 | 1136.5517 2.89 1136.5520 | 10.03%
1 12]1029.1618 -6.43 1029.1612 | 1128.2428 2.89 1128.2431 | 9.19%
3 11029.2132 -6.60 1029.2125 | 1127.8974 2.89 1127.8976 | 9.15%
411029.2132 -6.64 1029.2126 | 1127.8856 2.89 1127.8858 | 9.15%
N\|J <I>f,,1 corr. LB DYy corr. UB acc.
0 | 1034.2863 -5.41 1034.2858 | 1067.7401  2.17 1067.7403 | 3.18%
1 ]1037.0787 -5.89 1037.0781 | 1057.9300 2.17 1057.9302 | 1.99%
2 1210372189 -6.19 1037.2183 | 1057.7964 2.17 1057.7966 | 1.96%
3 | 1037.3000 -6.31 1037.2994 | 1057.7764 2.17 1057.7766 | 1.95%
4 11037.3063 -6.38 1037.3057 | 1057.7740 2.17 1057.7742 | 1.95%
N\|J <I>f,,1 corr. LB DYy corr. UB acc.
0 | 1011.5534 -4.75 1011.5529 | 1126.2541 2.30 1126.2544 | 10.73%
1 ]1027.5144 -5.24 1027.5138 | 1087.5954 2.30 1087.5956 | 5.68%
3 1 2]1028.9230 -5.65 1028.9225 | 1086.2739 2.30 1086.2741 | 5.42%
3 | 1028.9583 -5.82 1028.9577 | 1086.1394 2.30 1086.1396 | 5.41%
4 11028.9589 -5.89 1028.9583 | 1086.1340 2.30 1086.1342 | 5.41%

Table 1: Objective function values of the lower and upper auxiliary stochastic programs
before and after correction for nonlinearities. N denotes the number of simplices in the
initial partition that covers the support of €f in each stage ¢ > 1, while the index J
is equivalent to the number of refinements. The columns corr. contain the conditional
correction terms Ale — Ay for the lower and AY | — Ay for the upper bounding problems
multiplied by 10*. LB and UB are the corresponding objective function values <I>f,’1 +
A{m — Ap and oY, + Ajl — Ag, respectively, after correction. The accuracy acc. of the

approximation is defined as %.

25



relatively high degree of convexity with respect to 7,. Loosely speaking, the ver-
tices of a (single) initial simplex £ covering the support of the truncated normal
distribution of &) have geometrically ‘too extreme’ coordinates. Since a split of
a simplex generates only one new point (the midpoint of an edge of one simplex
in the given partition) but the existing vertices remain, the influence of extreme
outcomes in the initial discrete approximation decreases only slowly.

To achieve tighter bounds with less refinement steps, we start from the consid-
eration that the circle which covers the truncated support of a two-dimensional
standard normal distribution can better be approximated by a polygon with a
higher number of vertices. As an example, we consider coverages by tetragons
and pentagons that are themselves partitioned into two or three simplices. Their
vertices are transformed according to the expectations and covariance matrices
of the actual distributions analogously to the procedure described in Sect. 6.3.
The shapes of the resulting partitions are illustrated in Fig. 1. Then, barycentric
measures are derived for each simplex individually.

Results for our exemple investment problem are shown in Table 1 for initial
partitions that consist of triangles (N = 1), tetragons (N = 2), and pentagons
(N = 3). It can be seen from the last columns labelled acc. that the unre-
fined problems in the latter two cases already provide an accuracy which may
be achieved otherwise only after some refinement steps. Moreover, the first-stage
decisions coincide already for J = 0. A suitable selection of the initial partitions
is therefore of utmost importance not only to achieve a sufficient accuracy of the
approximation but also to keep the overall numerical efforts moderate since each
additional refinement step requires the solution of a corresponding (large-scale)
auxiliary optimization problem.

7 Conclusions

This article addresses the approximation of linear multistage stochastic programs.
Thereby, the original optimization problem is approximated by a lower (upper)
auxiliary stochastic program which arises by substituting the true distribution of
the data process by a lower (upper) discrete barycentric measure. After a suitable
transformation offsetting possible nonconvexities in the random parameters, the
optimal value of the lower (upper) auxiliary stochastic program provides a lower
(upper) bound on the optimal value of the original stochastic program. More
generally, we are able to derive arbitrarily tight bounds on the recourse functions
as well as arbitrarily tight bounding sets for the optimal decisions associated with
the original optimization problem.

Applicability of the presented bounding methods relies on a set of regular-
ity conditions requiring that the feasible sets and state spaces are compact, the
constraint matrices are deterministic, the objective function coefficients and rhs
vectors are representable as differences of convex functions, and the random data
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Figure 2: Possible refinements of a scenario tree and simplices

is governed by a block-diagonal autoregressive process. Moreover, relatively com-
plete recourse is stipulated. Focussing on block-diagonal autoregressive processes
is not as restrictive as it might seem, since any absolutely continuous process is
representable as an (inverse) Rosenblatt transformation of a serially independent
noise process [50]. Considering this noise process as the fundamental data pro-
cess, and absorbing the nonlinear Rosenblatt transformation in the definition of
the objective function coefficients and rhs vectors, one usually obtains a regular
reformulation of the stochastic program satisfying all conditions (C1)—(C5).

The theoretical concepts are tested on a real-life decision problem calibrated
to observed data. In this example, which is slightly simplified for didactic rea-
sons, the (conditional) correction terms hardly affect the bounds on the optimal
objective value. The reason for this is that the curvature of the exponential
function is small on the support of the & process. Of course, one could think of
problems with larger correction terms. It is possible, for instance, to construct
models with highly nonconvex objective function coefficients or rhs vectors such
that @Y, occasionally drops below @/, ; especially if the barycentric measures are
poorly refined. In this case, the conditional correction terms will substantially
impact the bounds.

The results presented in Section 6 illustrate that the numerical efforts required
for the solution of a successively refined multistage stochastic program increase
significantly as the partition size N + J grows. For the problem under consid-
eration, the size of the corresponding extensive form with refinement parameter
J =41is 125, 27 or 13 times larger than for the initial state with J = 0, depend-
ing on the coverage setting N = 1,2 or 3, respectively. For this reason, we could
solve problems with a relatively small number of stages (7" = 4) only.

Despite the increasing problem size, the gain in accuracy soon becomes mar-
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ginal as J advances. This must be attributed to the fact that we applied a
rather crude refinement strategy in our example, where the simplices covering
the supports of the (conditional) distributions at each stage were always split
at their midpoints. A more sophisticated strategy would analyze the differences
between the upper and lower bounds for each node of the scenario trees that
are generated as discrete approximations of the underlying stochastic processes.
Then, scenarios will only be added by a split of a simplex in the existing partition
if the approximation error, which may be expressed by the difference between the
bounds, is large for a certain node. On the other hand, an approximation error
close to zero means that the approximation is already exact, and thus further
refinements will not improve the accuracy.

For an efficient implementation of such refinement strategies, the following
aspects must be considered:

(1) In which node should the scenario tree be refined (i.e., what is the threshold
error above which an existing nodal partition is refined; this will have an
immediate impact on the number of scenarios and the problem size, see

Fig. 2 (a)—(c))?
(2) Does splitting & or & provide a higher accuracy, see Fig. 2 (d)?
(3) Which edge of the simplex should be split, see Fig. 2 (e), and
(4) where should this edge be split, see Fig. 2 (f)?

Adding new scenarios only where profitable will keep the increase in problem size
relatively moderate, which in turn allows the solution of problems with a higher
number of stages (see [18] or [31] for a detailed discussion of refinement tech-
niques and their implementation). While each refinement involves the solution of
successively increasing large-scale linear programs, a significant speedup can be
achieved by an algorithmic technique described in [28] where the solution of the
LP in refinement J + 1 is based on the solutions of the previous J steps. This
allows to manage numerous refinement steps (up to several hundred) successfully
with adequate time exposure.

Acknowledgements. Daniel Kuhn thanks the Swiss National Science Foun-
dation for financial support.
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