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1. Introduction

The origin of the baryon asymmetry of the universe (BAU) is still an open question in

cosmology and particle physics. New measurements of the cosmic microwave background,

combined with large-scale structure data, yield a baryon to entropy ratio of [1]

ηB ≡ nB

s
= (8.7 ± 0.3) × 10−11. (1.1)

Three necessary conditions, stated by Sakharov [2], have to be fulfilled for a dynami-

cal generation of the baryon asymmetry: baryon number violation, C and CP violation,

and departure from thermal equilibrium. In principle the standard model (SM) contains

all these requirements, and the electroweak phase transition (EWPT) provides a natural

mechanism for baryogenesis [3]. The baryon asymmetry is generated during the phase tran-

sition by electroweak sphaleron processes. To avoid subsequent baryon number washout,

the sphaleron rate has to be suppressed after the phase transition. Hence the transition

must be strongly first order, i.e. the expectation value of the Higgs field must be larger

than about the critical temperature. In the SM there is no first-order phase transition for

Higgs masses larger than about 80 GeV [4], far below the current experimental bound of

114 GeV [5]. The SM therefore fails to explain the baryon asymmetry. Moreover, the CP

violation in the CKM matrix is too small to produce a sufficiently large baryon number [6].

Over the years there have been many proposals to realize electroweak baryogenesis

in extended models (see, for instance, ref. [7] for a review). In supersymmetric theories,

for example, a strong first-order PT can occur if the superpartner of the top quark is

lighter than about 175 GeV [8], and the baryon asymmetry can be generated by chargino

transport [9, 10]. Alternatively, the phase transition can be strengthened by the presence

of SM singlets in the Higgs sector [11]. A more general effective field theory approach can
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also be followed; there the Higgs sector is augmented by dimension-six operators to induce

a first order phase transition and to provide additional CP violation [12 – 14].

In this paper we revisit electroweak baryogenesis in the two-Higgs doublet model

(2HDM), paying special emphasis on the computation of the emerging baryon asymmetry.

So far the most detailed study of this issue (for earlier work see ref. [15]) was performed

in ref. [16]. Describing the interaction between the bubble wall and the plasma in terms of

reflection and transmission coefficients, the authors concluded that the 2HDM is at best

marginally capable of generating the observed baryon asymmetry. In contrast, we demon-

strate that the WKB formalism, which is appropriate for thick walls, leads to a positive

result. This is the main result of the present work.

In addition to the SM Higgs, the 2HDM contains two extra neutral and charged Higgs

particles. If these extra states couple sufficiently strongly, their thermal loop corrections

can induce a strong first-order phase transition [17 – 21]. In addition, a complex mass

term, mixing the two Higgs doublets, provides a new source of CP violation, which fuels

baryogenesis.

We examine the EWPT in the 2HDM, including explicit CP violation, using the finite

temperature effective potential at one-loop order. In agreement with ref. [21], we find a

strong phase transition for light Higgs masses of up to at least 200 GeV. The extra Higgses

have to be heavier than about 300 GeV, depending somewhat on the model parameters.

Turning on the CP-violating phase makes the phase transition slightly weaker. We de-

termine the profile of the bubble wall, which separates the broken and symmetric phase.

Except for the case of very strong phase transitions, we typically find thick bubble walls.

The bubble wall is characterized by a varying complex phase between the two Higgs vevs.

CP-violating interactions of the particles in the hot plasma, in particular the top quark,

with the phase boundary then lead to different semiclassical forces acting on particles and

antiparticles. Since we are dealing with thick bubble walls, we can apply the standard

WKB formalism to compute the CP-violating source terms that enter the transport equa-

tions of electroweak baryogenesis [9, 22]. Here we use the formalism recently laid out in

ref. [14], which makes sure that the correct dispersion relations of the Schwinger–Keldysh

formalism [23] are reproduced. Also a finite W -scattering rate is included in the transport

equations, which previously was set to equilibrium.

We find that a wide parameter range allows for the generation the observed baryon

asymmetry. Since the model contains only a single CP-violating phase, we can predict the

electric dipole moments of the neutron and electron. They are typically found to be below

the current experimental bounds, but should be detectable in next-generation experiments.

2. The effective Higgs potential

In its most general form, the 2HDM suffers from flavor changing neutral currents at tree-

level. To avoid this, a discrete symmetry, Φ1 → −Φ1, dc
i → ∓dc

i (the other fields do not

transform), is usually invoked [24], making sure that at most one Higgs doublet couples to

the up- and down-type quarks, respectively. In the “−” case (“type II”), the down-type

quarks couple only to Φ1, while the up-type ones couple to Φ2. In the other case (“type
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I”), Φ1 does not couple to the fermions at all. In the following only the coupling of the top

quark will be relevant, so that we do not need to actually distinguish between types I and

II. In section 4, where we will discuss electric dipole moments, we will focus on the type II

case.

The most general potential is [25]

V0(Φ1,Φ2) = −µ2
1Φ

†
1Φ1 − µ2

2Φ
†
2Φ2 − µ2

3(e
iαΦ†

1Φ2 + h.c.)

+
λ1

2
(Φ†

1Φ1)
2 +

λ2

2
(Φ†

2Φ2)
2 + λ3(Φ

†
1Φ1)(Φ

†
2Φ2)

+λ4|Φ†
1Φ2|2 +

λ5

2

(
(Φ†

1Φ2)
2 + h.c.

)
(2.1)

and the Yukawa interactions read

Ly = yΦ2Q3t
c + h.c. + . . . (2.2)

Without loss of generality the couplings λi and the mass parameters µi can taken to

be real. The mass term µ2
3e

iα breaks the aforementioned Z2 symmetry softly, without

reintroducing tree-level flavor violation [26]. It can be complex, in which case the Higgs

potential breaks CP. In total, the Higgs potential contains 9 parameters, which are 3

squared masses, 5 couplings, and 1 phase. One parameter is fixed by the Z-boson mass,

leaving an 8-dimensional parameter space. The potential has to be bounded from below,

which at tree-level translates into the constraints [20]

λ1 > 0, λ2 > 0,
√

λ1λ2 + λ3 > 0,
√

λ1λ2 + λ3 + λ4 ± λ5 > 0. (2.3)

Let us first consider the case α = 0, i.e. the Higgs potential without CP violation. It

has been shown that in this case no charge breaking minima exist, provided the charged

Higgs mass squared is positive [27]1. Later on we will assume that this result generalizes to

the one-loop level, including a small CP-violating phase. We can therefore restrict ourselves

to the neutral fields, which we parameterize as ReΦ0
1 = h1 and ReΦ0

2 = h2. The potential

then reads

V0(h1, h2) = −µ2
1h

2
1 − µ2

2h
2
2 − 2µ2

3h1h2 +
λ1

2
h4

1 +
λ2

2
h4

2 + (λ3 + λ4 + λ5)h
2
1h

2
2. (2.4)

In the following we focus on the somewhat simpler case

µ2
1 = µ2

2, λ1 = λ2. (2.5)

Moreover, this choice is favorable to generate large Higgs expectation values in the broken

phase [17]. The Yukawa interaction (2.2) does not preserve these relations at the loop-level.

At tree-level, eq. (2.5) implies the symmetry

Φ1 ↔ Φ†
2, (2.6)

1A study of symmetry breaking in a general 2HDM has recently been presented in ref. [28].
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so that the minimum is at tan β ≡ 〈h2〉/〈h1〉 = 1. With 〈h1〉 = 〈h2〉 = h = 123 GeV the

extremal condition is then given by

−µ2
1 − µ2

3 + (λ1 + λ3 + λ4 + λ5)h
2 = 0. (2.7)

The mass matrix is block-diagonal and we obtain, besides 3 massless Goldstone bosons, 5

physical Higgs bosons. They consist of a pair of charged Higgses H±, 2 neutral scalars h0

and H0, and a pseudoscalar A0, with the corresponding squared masses as follows:

m2
H± = 2µ2

3 − 2(λ4 + λ5)h
2, (2.8)

m2
A0 = 2µ2

3 − 4λ5h
2, (2.9)

m2
H0 = 2µ2

3 − 2(−λ1 + λ3 + λ4 + λ5)h
2, (2.10)

m2
h0 = 2(λ1 + λ3 + λ4 + λ5)h

2. (2.11)

These relations can be used to define the model in terms of µ2
3 and the 4 Higgs masses.

In the case of non-vanishing α, CP is broken. We now parametrize the neutral Higgs

fields as

Φ0
1 = h1e

−iθ1 , Φ0
2 = h2e

iθ2 . (2.12)

Note that the potential only depends on the combination θ = θ1 + θ2. In the minimum we

can always choose the gauge such that θ1 = θ2 = θ/2. Still assuming the relations (2.5),

the potential of the neutral fields reads

V0(h1, h2, θ) = −µ2
1(h

2
1 + h2

2) − 2µ2
3h1h2 cos(θ + α) +

λ1

2
(h4

1 + h4
2)

+(λ3 + λ4 + λ5 cos(2θ))h2
1h

2
2. (2.13)

Using the notation 〈θ〉 = ϑ, we obtain two extremal conditions,

−µ2
1 − µ2

3 cos(ϑ + α) + (λ1 + λ3 + λ4 + λ5 cos(2ϑ))h2 = 0

µ2
3 sin(ϑ + α) − λ5 sin(2ϑ)h2 = 0. (2.14)

The squared Higgs boson masses take the form

m2
H± = −2µ2

1 + 2(λ1 + λ3)h
2,

m2
H3

= −µ2
1 + 2(λ1 + λ3 + λ4)h

2 +
√

µ4
1 + 4λ5 cos(2ϑ)µ2

1h
2 + 4λ2

5h
4,

m2
H2

= −2µ2
1 + 4λ1h

2,

m2
H1

= −µ2
1 + 2(λ1 + λ3 + λ4)h

2 −
√

µ4
1 + 4λ5 cos(2ϑ)µ2

1h
2 + 4λ2

5h
4. (2.15)

Note that the neutral Higgs states are now mixtures, with scalar and pseudoscalar contents.

Again, these relations can be inverted to parameterize the model in terms of the Higgs

masses, µ2
3 and α.

At zero temperature the one-loop contribution to the effective potential is given by

V1(Φ1,Φ2) =
∑

i

± ni

64π2
m4

i ln
m2

i

Q2
, (2.16)
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where m2
i = m2

i (Φ1,Φ2) are field dependent mass eigenvalues, ni is the corresponding

number of degrees of freedom, and ”+(−)” applies to bosonic (fermionic) contributions,

respectively. We choose Q = 246/
√

2 GeV for the renormalization scale. We take only the

heaviest bosons, i.e. mi = mH± ,mH2
,mH3

(nH± = nH2
= nH3

= 1), and the fermion with

the largest Yukawa coupling, i.e. mi = mt (nt = 12), into account. For the top quark mass

we have m2
t = y2

t Φ
†
2Φ2. All other particles can be safely neglected, owing to their small

contributions to the one-loop effective potential.

We add counter-terms to the potential, such that the tree-level minimum and Higgs

masses are preserved at the one-loop level. This can be achieved by

VCT(Φ1,Φ2) = −δµ2
1(Φ

†
1Φ1 + Φ†

2Φ2) − δµ2
3(e

iαΦ†
1Φ2 + h.c.)

+
δλ1

2
(Φ†

1Φ1)
2 +

δλ2

2
(Φ†

2Φ2)
2 + δλ3(Φ

†
1Φ1)(Φ

†
2Φ2)

+δλ4|Φ†
1Φ2|2 +

δλ5

2

(
(Φ†

1Φ2)
2 + h.c.

)
. (2.17)

In the following all Higgs masses are understood as being one-loop values. As already

mentioned, the symmetry (2.6) no longer holds at the one-loop level, which we take care

of by using δλ1 6= δλ2. Three renormalization conditions are evidently given by

∂(V1 + VCT)

∂h1

∣∣∣∣
h1=h2=h

θ=ϑ

=
∂(V1 + VCT)

∂h2

∣∣∣∣
h1=h2=h

θ=ϑ

=
∂(V1 + VCT)

∂θ

∣∣∣∣
h1=h2=h

θ=ϑ

= 0, (2.18)

meaning that the minimum of the potential V = V0+V1+VCT does not change with respect

to the tree-level case. Preserving the values of the Higgs masses, which we compute from

the second derivatives of V , provides another four conditions. So the coefficients of VCT

are fixed. Since the conditions related to Higgs masses include non-linearities, the resulting

equations for the counter-terms have to be solved numerically.

The 2HDM is subject to a number of experimental constraints. In the considered

parameter range, the lightest Higgs boson is SM-like, and therefore its mass has to obey

the lower LEP bound of 114 GeV [5]. The 2HDM does not respect the custodial sym-

metry of the SM. So there is the danger of large corrections to the electroweak precision

observables. These corrections can be approximately described in terms of contributions

to the self-energies, the so called “oblique” corrections. The relevant expressions for the

2HDM with CP-violation can be found in ref. [29]. To be consistent with observations,

the mass splittings between the extra Higgs states should not be much larger than the

W-mass. Later on we will set these masses equal to reduce the number of parameters.

Oblique corrections then are automatically small. Another important constraint comes

from b → sγ, which in the type II model requires mH± >∼ 200 GeV [30]2. Constraints from

the muon anomalous magnetic moment [32] and from tau decays [33] are not relevant for

the low values of tan β, which we consider.

At finite temperature the one-loop contribution to the effective potential is given by

V T
1 = T 4

∑

B

nB fB

(mB

T

)
+ T 4

∑

F

nF fF

(mF

T

)
, (2.19)

2One can also consider constraints from B
0

d − B̄
0

d mixing [31].
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where nB(F ) counts the positive degrees of freedom for bosons (fermions). In the high

temperature limit, m/T ¿ 1, one obtains [34]

fHT
B

(m

T

)
≈ −π2

90
+

m2

24T 2
− m3

12πT 3
− m4

64π2T 4
ln

(
m2

cBT 2

)
(2.20)

fHT
F

(m

T

)
≈ −7π2

720
+

m2

48T 2
+

m4

64π2T 4
ln

(
m2

cF T 2

)
, (2.21)

with cF = π2 exp(3/2 − 2γe) ≈ 13.94 and cB = 16cF , and in the low temperature limit,

when m/T is large,

fLT
(m

T

)
≈ −

( m

2πT

)3/2
exp

(
−m

T

) (
1 +

15m

8T

)
. (2.22)

In this low temperature limit the contributions from bosons and fermions have the same

asymptotic behavior.

We use these approximations because they are much more convenient to handle than

the full integral expressions of ref. [34]. It turns out, however, that these limiting cases are

not sufficient since some states cross from the high temperature to the low temperature

regime. For an expression to be valid in the whole temperature range, we therefore use a

smooth interpolation between the low- and high-T limits. For bosons we use eq. (2.20) for

m/T < 1.8 and eq. (2.22) for m/T > 4.5, and for fermions eq. (2.21) for m/T < 1.1 and

eq. (2.22) for m/T > 3.4. The interpolations are made in such a way that the functions

as well as their derivatives match at the connecting points. The deviation between our

approximation and the exact solution is less than 4%. Finally, the effective potential is

given by

Veff = V0 + V1 + VCT + V T
1 . (2.23)

In V T
1 we also take into account the contributions of W -bosons (nW = 6) and Z-bosons

(nZ = 3). In perturbation theory the strength of a strong phase transition would be

underestimated by resummation of the gauge boson contributions [35]. Therefore we do not

resum these corrections to compensate for non-perturbative effects. In ref. [21] the thermal

contributions of the heavy Higgs bosons have been resummed, using the high temperature

approximation for the thermal Higgs masses. We find that in the broken minimum the high

temperature approximation is often not justified for the heavy Higgs states. Ignoring this

fact, and nevertheless resumming the Higgs contributions by using thermal masses instead

of the bare masses in eq. (2.19), we find a phase transition less than 15% weaker than

in unresummed case. The effect is marginal for large heavy Higgs masses and becomes

stronger for smaller ones. Including the light Higgs and the Goldstone bosons has an even

smaller effect. In the results we present below, the Higgs contributions are not resummed.

3. The phase transition

The dynamics of the EWPT is governed by Veff(h1, h2, θ, T ). The critical temperature, Tc,

of a first-order phase transition is defined by the condition that the effective potential has

– 6 –
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two degenerate minima, the symmetric minimum at 〈h1〉T = 〈h2〉T = 0 and the broken

minimum at 〈h1〉T = v1 > 0 and 〈h2〉T = v2 > 0, which are separated by an energy barrier.

The total Higgs expectation value we define by vc =
√

2
√

v2
1 + v2

2 , where the factor
√

2

is due to our normalization of the Higgs fields. Somewhat below Tc, at the nucleation

temperature Tn, bubbles of the broken phase start to nucleate and expand. Baryogenesis

takes place outside the bubbles in the symmetric phase while, inside the bubbles, the

sphaleron rate that provides (B + L)-violating processes has to be switched off. Otherwise

the baryon asymmetry will be washed out after the phase transition. In order to preserve

the created baryon asymmetry, the washout criterion [36]

ξ =
vc

Tc
& 1 (3.1)

must hold, i.e. the phase transition has to be sufficiently strong.

In the following we analyze the parameter space with respect to the strength ξ of the

phase transition. We focus on the case of degenerate heavy Higgs masses, which reduces

the dimension of the parameter space. As noted in the previous section, this choice has the

additional benefit to keep oblique corrections automatically small. At tree-level this means

that λ1(= λ2) = λ3 and λ4 = λ5. As input parameters we take µ2
3, α,mh = mH1

, and

mH = mH2
= mH3

= mH± . One finds that for larger values of α (α = 0.4 for example) the

first-order phase transition can change into a two-stage transition if the heavy Higgs mass

is sufficiently small. The potential then shows an additional local minimum. The phase

transition proceeds by a second-order phase transition from the symmetric phase to this

extra minimum, followed by a first-order phase transition to the low temperature broken

phase3. We exclude these values from the parameter space and only define the strength ξ

in the case of a pure first-order PT.

Another important property that enters the transport equations discussed in section

5 is the wall profile of the expanding bubbles. If the nucleating bubbles have reached

a sizable extent and expand with constant velocity, we can boost into the rest frame of

the bubble wall and assume a planar wall. In principle one has to numerically solve the

field equations of the Higgs fields, using an algorithm such as the one recently proposed in

ref. [37]. To achieve a sufficiently strong phase transition we are led to m2
H À m2

h. The

effective potential is then characterized by a valley, corresponding to the single light Higgs

field. During the phase transition the fields will follow this valley very closely, in order not

to feel the heavy Higgs masses. So we can approximate the phase transition by single field

dynamics. Numerically we determine the valley by minimizing the thermal potential at Tc

with respect to h2 and θ at fixed values of h1 between the symmetric and broken phase.

For a simple ϕ4 model, with one real scalar field ϕ and a broken minimum at vc, the wall

profile is exactly described by a kink solution,

ϕ(z) =
vc

2

(
1 − tanh

z

Lw

)
, (3.2)

3The second-transition is in general too weak to avoid baryon number washout. Also, the non-zero Higgs

vev outside the bubbles would lead to a suppression of the sphaleron rate and therefore also of the baryon

asymmetry. So the two-stage transition does not allow us to generate the baryon asymmetry.
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with a wall thickness Lw =
√

v2
c/(8Vb), where Vb is the height of the potential barrier and z

is the coordinate orthogonal to the wall. We use this approximation for Lw, determining Vb

as the maximal height of the potential barrier along the valley connecting the two minima.

Let us now briefly discuss the behavior of Lw and ξ with the input parameters. We

require mh ≥ 115 GeV to be consistent with the LEP bound on the Higgs mass. For

increasing mH and keeping the other parameters fixed, the wall thickness decreases, while

the PT becomes stronger. This somewhat counter-intuitive result is due to the fact that

the larger Higgs masses (2.15) come from larger quartic couplings. So this limit actually

does not lead to the decoupling of the heavy states. At some point perturbation theory

will finally break down. Later on, when computing the baryon asymmetry, we will face

another constraint. The gradient expansions is justified only for thick bubble walls, so we

will require LwTc > 2. In practice this leads to an upper bound on mH similar to the

perturbativity constraint.

In figures 1–3 constant lines of ξ and Lw are shown in the dependence of mh and mH

for different values of µ2
3 and α. The influence of the CP-violating phase α on ξ and Lw

is rather small, as can be seen from figures 1 and 2. For small values of ξ, or large values

of Lw, the lines are marginally shifted upwards. This behavior continues for increasing

α. If we choose α = 0.4 the effect is negligible above ξ ≈ 1.5, but below ξ ≈ 1.3 the PT

changes into a two-stage one. The effect of increasing µ2
3 is a shift to higher values for mH .

The comparison of µ2
3 = 10000 GeV2 and 20000 GeV2, e.g. figures 2 and 3, shows that the

range of mH is moved to higher values, while the extent shrinks by around 20 GeV. Using

a larger value of µ2
3 means that the same quartic couplings lead to heavier Higgses. The

strength of the phase transition is more governed by the size of the quartic couplings than

by the actual value of mH . Notice that here the bound on the charged Higgs mass from

b → sγ, which we discussed above, is automatically satisfied in the case of a strong phase

transition.

As stated in the previous section, in this analysis we neglect the lightest Higgs boson

due to its small contribution to the effective potential. This a conservative prescription,

as including the lightest Higgs state, the phase transition turns out be slightly stronger.

The influence of the lightest Higgs depends on the strength of the phase transition and

is almost independent of mh. For ξ ∼ 1, including the lightest Higgs state enhances the

strength of the phase transition, i.e. ξ by about 9%. For a stronger phase transition of

ξ ∼ 2 the increase drops to about 3%. This behavior is expected, as in the latter case the

dynamics is much more dominated by the heavy Higgs states. In any case the effect of the

lightest Higgs state is within the errors of the one-loop approximation.

In figures 1 and 2 the one-loop corrections ∆ = max |δλi/λi| to the quartic couplings,

i.e. the size of the counter-terms with respect to the tree-level terms, range from 15% for

mH = 300 GeV to 50% for mH = 440 GeV. This means that in the case of a very strong

phase transition, perturbation theory starts to break down and sizable corrections to our

results have to be expected. For ξ ∼ 1 higher-order corrections are well under control.

These results agree with the findings of ref. [21]. In conclusion, we find that a wide range

of parameters fulfills the requirements of electroweak baryogenesis.

Up to now we have only discussed observables involving the fields h1 and h2. However,
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also the CP-violating phase θ, which varies along the bubble wall from θsym to θbrk, is

essential for baryogenesis. According to the above discussion, we compute the θ-profile

approximately by minimizing the thermal potential at Tc with respect to h2 and θ at fixed

values of h1 between the symmetric and broken phase. As a representative example we

show in figure 4a the θ-profile parametrized by h1 for the set µ2
3 = 10000 GeV2 and α = 0.2.

There, θ changes from θsym = −0.29 to θbrk = −0.06, which is indicated by the dotted

lines. In a simplified manner, we describe the θ-profile by a kink ansatz, i.e.

θ(z) = θbrk −
∆θ

2

(
1 + tanh

z

Lw

)
, (3.3)

using the derived wall thickness Lw and ∆θ = θbrk − θsym. The CP violation in the Higgs

sector gives rise to complex fermion masses, which change while the particles pass through

the bubble wall. We only take into account the top quark as the heaviest fermion. With

our parametrization (2.12) of the neutral Higgs components, one finds for the complex top

mass

Mt(z) = yth2(z) eiθ(z)/2 = yt
h(z)√

2
sinβT eiθ(z)/2 = mt(z) eiθt(z), (3.4)

where βT is the angle between h1 and h2 at Tc, i.e. tan βT = v2/v1, which is less, but

rather close to 1. The top Yukawa coupling yt is chosen such that the top mass at zero

temperature is 173 GeV. In general, the change in θ2(= θt) along the bubble wall is given

by ∆θ2 = ∆θ/(1 + tan2 βT ), assuming that tan βT is constant along the wall [38]. So

there is an additional suppression for ∆θ2 for large tan β. Mt enters the computation of

the baryon asymmetry; in particular, the derivative of θt(z) induces the CP-violating the

source term. Therefore a large value of ∆θ enhances the baryon asymmetry. As shown in

figure 4b, ∆θ strongly depends on mh. Raising mh or mH does increase the change in θ.

We also find that ∆θ depends almost linearly on the coupling α, whereas the influence of

µ2
3 is small. Notice that ∆θ can be larger than the input phase α.

4. Electric dipole moments

CP violation induces electric dipole moments (EDMs). The latest experimental limits for

the neutron [39] and electron [40] EDMs at 90% confidence level are

|dn| ≤ 3.0 × 10−26 e cm, (4.1)

|de| ≤ 1.6 × 10−27 e cm. (4.2)

In the standard model the only source of CP violation originates from the Kobayashi-

Maskawa matrix in the quark sector. Contributions to the EDMs arise first at the three-

loop level, which results in a natural suppression, several orders of magnitude below current

bounds. EDMs are therefore an ideal probe of new physics.

In the 2HDM, EDMs are induced by scalar–pseudoscalar mixing in the neutral Higgs

sector. The contributions to the EDMs can be computed in terms of parameters Im(Z),

which measure the degree of CP non-conservation and which are the imaginary parts of
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Higgs fields normalization constants [41]. The four CP-violating parameters

Im(Z0i), Im(Z̃0i), Im(Z1i), Im(Z2i), (4.3)

where i indicates each of the four neutral Higgs bosons, enter the calculation of the EDMs.

They can be expressed in terms of components of the neutral Higgs mass matrix eigenvec-

tors. The Goldstone boson does not contribute to these factors, since the corresponding

Z’s are real. Thus, the sum can be restricted to the three massive neutral bosons. Note

that the parameters respect in addition the sum rules [41]

∑

i

Im(Z0i) =
∑

i

Im(Z̃0i) =
∑

i

Im(Z1i) =
∑

i

Im(Z2i) = 0, (4.4)

which means that CP violation vanishes if the masses of the neutral Higgs bosons are

degenerate.

In the 2HDM the dominant contributions to the electron EDM are two-loop ampli-

tudes, which were first computed by Barr and Zee [42]. They demonstrated that the effect

is enhanced with respect to the standard one-loop contributions [43]. Further two-loop

diagrams, including the W-boson, were taken into account in investigations by Gunion and

Vega [44], Chang et al. [45], as well as Leigh et al. [46]. In this work we use the results of

Chang et al., ignoring some minor corrections discussed in ref. [46]. We end up with the

following contributions

de/e = (de/e)
Hγγ
t−loop + (de/e)

HZγ
t−loop + (de/e)

Hγγ
W−loop

+ (de/e)
HZγ
W−loop + (de/e)

Hγγ
G−loop + (de/e)

HZγ
G−loop. (4.5)

When computing the EDM of the neutron one has to deal with hadronic effects, which

make its relation to the partonic EDMs difficult. Various proposals have been made in the

literature how to perform this calculation (see ref. [47] for a recent review). The dominant

contributions to the neutron EDM come from the color EDMs (CEDMs) of the constituent

quarks d̃k, k = u, d [48],

L ⊃ − i

2
d̃kgsψ̄kσµνG

µνγ5ψk =
1

2
d̃kgsψ̄kσµνG̃µνψk, (4.6)

and from Weinberg’s three-gluon operator [41]

L ⊃ 1

3
wfabcGa

µνG̃νβ,bGµ,c
β . (4.7)

The QCD-corrected coefficients d̃u, d̃d and w are given by 2-loop calculations [48 – 51].

Using the results of [47], based on QCD sum rule techniques, the neutron EDM reads

(dn/e)(d̃u, d̃d) = (1 ± 0.5)(0.55d̃u + 1.1d̃d) (4.8)

and

|(dn/e)(w)| = 22 MeV |w|. (4.9)
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Thus there is an error of about 50% in (dn/e)(d̃u, d̃d) and furthermore an error of about

100% in (dn/e)(w). Moreover, it is not possible to determine the sign of (dn/e)(w). For-

tunately, this latter contribution turns out to be small (typically a 1% correction). The

same is true for the contributions of the quark EDMs du and dd (typically a 10% correc-

tion).

Let us now discuss the relevance of the electron and neutron EDMs for the 2HDM.

One finds that in the analyzed parameter region the value of de is about five to thirty

times smaller than the experimental limit of 1.6 × 10−27 e cm. Thus, there emerges no

additional constraint on the parameters. Let us focus on the importance of the different

contributions to de and on the dependence of de on the input parameters. Since an EDM

arises because of CP violation, we expect a larger value for an increasing CP phase α.

Indeed we find that de approximately doubles if we change α from 0.2 to 0.4. Also rais-

ing µ2
3 enhances de. Concerning the single contributions to de the largest ones originate

from the top- and W -loops, with (de)W−loop > 0 whereas (de)t−loop < 0. The absolute

value of (de)t−loop is somewhat smaller, but of similar magnitude as (de)W−loop. So the

sum is a factor of about 5–10 smaller than each individual contribution, and is then of

the same order of magnitude as the Goldstone-loop contribution. Thus, all three parts

are important for the electron EDM. We observe this behavior in the whole analyzed

parameter region. We also investigate the dependence of de on the Higgs masses. For

increasing both, mh and mH , the value of de decreases. This tendency becomes apparent

in figure 5 where we compare lines of constant electron and neutron EDMs in the mh–

mH plane. We find that the larger µ2
3, the weaker is the dependence on the heavy Higgs

mass.

Similar to the electron EDM, the one of the neutron also lies below its experimen-

tal bound of 3.0 × 10−26 e cm in the analyzed parameter region. But in contrast to de

it almost reaches this experimental limit. However, note that dn has quite a large er-

ror of about 50%, as pointed out. The limit of 3.0 × 10−26 e cm is just saturated in

the case of µ2
3 = 20000 GeV2 and α = 0.4, for small Higgs masses. However, since the

error band is large, there actually arises no constraint. For larger values of µ2
3 or α,

the neutron EDM of course increases and may exceed the measured bound in a wider

mass range. The dependence of the neutron EDM on the input parameters is quite

similar to that of the electron EDM. The lines of constant dn run approximately par-

allel to those of de in the mh–mH plane; the slope is just a little flatter. We also

find roughly a doubling for a change in α from 0.2 to 0.4. The dominant contribution

arises from the color EDM of the down-quark, which is about a factor 3.5 larger than

the one due to the up-quark CEDM. The part |dn(w)| arising from the three-gluon op-

erator is roughly an order 1% correction and can therefore be neglected. In summary,

for the considered parameter ranges, both the electron and neutron electric dipole mo-

ments lie below the experimental limits. The value of de is about one order of mag-

nitude below the observational bound, and because of the large error in the theoret-

ical determination of dn, it also does not definitely exceed the bound set by experi-

ments.
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5. Transport equations

In this section we discuss the evolution of the particle distributions during the phase tran-

sition. The CP-violating interactions of particles in the plasma with the bubble wall create

an excess of left-handed quarks over the corresponding antiquarks. This excess diffuses into

the symmetric phase, where the left-handed quark density biases the sphaleron transitions

to generate a net baryon asymmetry.

Using the semiclassical WKB formalism [9, 14, 22], we obtain different dispersion

relations for particles and antiparticles in the space-time dependent background of the

Higgs expectation values. The dispersion relations then lead to force terms in the transport

equations. The WKB method is justified when the de Broglie wavelength of the particles

in the plasma is much shorter than the bubble wall thickness [22]. Hence the condition

LwT À 1 has to be satisfied to legitimate an expansion in derivatives of the background

Higgs fields. As demonstrated in section 3 we find that a large part of the parameter space

does fulfill this condition.

In the 2HDM, baryogenesis is driven by top transport. So we can focus the discus-

sion on the case of a single Dirac fermion, with a space-time dependent mass ReM(z) +

iγ5ImM(z), where M(z) = m(z)eiθ(z). The dispersion relation to first order in gradients

is given by [14, 23]

E = E0 ± ∆E = E0 ∓ s
θ′m2

2E0E0z
, (5.1)

where E0 =
√

p2 + m2 and E0z =
√

p2
z + m2 in terms of the kinetic momentum. The prime

denotes the derivative with respect to z, and the upper and the lower sign corresponds to

particles and antiparticles, respectively. The spin factor s = 1 (−1) for z-spin up (down)

is related to the helicity λ by s = λ sign(pz). Note that eq. (5.1) is the dispersion relation

in a general Lorentz frame, in contrast to the one derived in ref. [9]. For the group velocity

of the WKB wave-packet one obtains

vgz =
pz

E0

(
1 ± s

θ′

2

m2

E2
0E0z

)
. (5.2)

The semiclassical force acting on the particles,

Fz = −(m2)′

2E0
± s

(m2θ′)′

2E0E0z
∓ s

θ′m2(m2)′

4E3
0E0z

, (5.3)

results from the canonical equations of motion. It was the main result of ref. [14] that the

expressions for the dispersion relation (5.1), the group velocity (5.2), and the semiclassical

force (5.3) agree with the full Schwinger–Keldysh result [23].

In the semiclassical approximation the evolution of the particle distributions fi is

described by a set of classical Boltzmann equations. We assume a planar wall moving with

constant velocity vw. Hence, in the rest frame of the wall, the distributions fi only depend

on z, pz and p = |p|, due to the translational invariance parallel to the wall. For each fluid

of particle type i we have

(vgz∂z + Fz∂pz
)fi = Ci[f ], (5.4)
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without any explicit time dependence, as we are looking for a stationary solution. The

Ci are the collision terms describing the change of the phase-space density by particle

interactions that drive the system back to equilibrium. We introduce perturbations around

the chemical and kinetic equilibrium with the fluid-type truncation in the rest frame of the

wall [9]

fi(z, pz, p) =
1

eβ[γw(Ei+vwpz)−µi] ± 1
+ δfi(z, pz, p) (5.5)

where β = 1/T and γw = 1/
√

1 − v2
w, and plus (minus) refers to fermions (bosons). Here

the chemical potentials µi(z) model a local departure from the equilibrium particle density

and the perturbations δfi describe the movement of the particles in response to the force.

The latter do not contribute to the particle density, i.e.
∫

d3p δfi = 0. To first order in

derivatives the perturbations are CP-even and equal for particles and antiparticles. But to

second order they have CP-even and CP-odd parts, which we treat separately, i.e.

µi = µi,1e + µi,2o + µi,2e, δfi = δfi,1e + δfi,2o + δfi,2e, (5.6)

so that the perturbations to second order for particles differ from those for antiparticles.

In order to compute the asymmetry in the left-handed quark density, we expand the

Boltzmann equation in gradients. In the model under consideration, the most important

particle species are top and bottom quarks, as well as the Higgs bosons. The other quark

flavors and the leptons can be neglected thanks to their small Yukawa couplings. In a

first step we assume baryon number conservation. We take into account W -scatterings,

the top Yukawa interaction, the strong sphalerons, the top helicity flips and Higgs number

violation with rates ΓW , Γy, Γss, Γm and Γh, respectively, where the latter two are only

present in the broken phase. After the left-handed quark asymmetry is computed, the

weak sphalerons, with the rate Γws, convert it into a baryon asymmetry.

We follow the computation and notation presented in ref. [14]. We weight the Boltz-

mann equations with 1 and pz/E0, and perform the momentum average. Accordingly

“plasma velocities” appear in the following, which are defined as ui ≡ 〈(pz/E0)δfi〉. We

end up with the transport equations for chemical potentials of left-handed SU(2) doublet

tops µt,2, left-handed SU(2) doublet bottoms µb,2, left-handed SU(2) singlet tops µtc,2,

Higgs bosons µh,2, and the corresponding plasma velocities

3vwK1,tµ
′
t,2 + 3vwK2,t(m

2
t )

′µt,2 + 3u′
t,2

−3Γy(µt,2 + µtc,2 + µh,2) − 6Γm(µt,2 + µtc,2) − 3ΓW (µt,2 − µb,2)

−3Γss[(1 + 9K1,t)µt,2 + (1 + 9K1,b)µb,2 + (1 − 9K1,t)µtc,2] = 0

3vwK1,bµ
′
b,2 + 3u′

b,2

−3Γy(µb,2 + µtc,2 + µh,2) − 3ΓW (µb,2 − µt,2)

−3Γss[(1 + 9K1,t)µt,2 + (1 + 9K1,b)µb,2 + (1 − 9K1,t)µtc,2] = 0

3vwK1,tµ
′
tc,2 + 3vwK2,t(m

2
t )

′µtc,2 + 3u′
tc,2

−3Γy(µt,2 + µb,2 + 2µtc,2 + 2µh,2) − 6Γm(µt,2 + µtc,2)
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−3Γss[(1 + 9K1,t)µt,2 + (1 + 9K1,b)µb,2 + (1 − 9K1,t)µtc,2] = 0

4vwK1,hµ′
h,2 + 4u′

h,2

−3Γy(µt,2 + µb,2 + 2µtc,2 + 2µh,2) − 4Γhµh,2 = 0 (5.7)

− 3K4,tµ
′
t,2 + 3vwK̃5,tu

′
t,2 + 3vwK̃6,t(m

2
t )

′ut,2 + 3Γtot
t ut,2 = St

−3K4,bµ
′
b,2 + 3vwK̃5,bu

′
b,2 + 3Γtot

b ub,2 = 0

−3K4,tµ
′
tc,2 + 3vwK̃5,tu

′
tc,2 + 3vwK̃6,t(m

2
t )

′utc,2 + 3Γtot
t utc,2 = St

−4K4,hµ′
h,2 + 4vwK̃5,hu′

h,2 + 4Γtot
h uh,2 = 0. (5.8)

Here the second-order perturbations label the difference between particles and antiparticles,

i.e. µ2 = µ2o − µ̄2o and u2 = u2o − ū2o. On the r.h.s., St denotes the source term of the top

quark,

St = −vwK8(m
2
t θ

′
t)
′ + vwK9θ

′
tm

2
t (m

2
t )

′. (5.9)

The source term of the bottom quark, which is suppressed by m2
b/m

2
t ∼ 10−3, has been

neglected. The Higgs bosons do not have a source term to second order in gradients. The

various thermal averages Ki in eqs. (5.7), (5.8) and (5.9) are defined similarly to ref. [14].

We include the position dependence of the Ki. The damping of ui,2 can be approximated

by the total interaction rate, Γtot
i . In the numerical evaluations we have included a term

3ΓW (ut,2−ub,2) which affects results only at the few percent level. Contrary to the transport

equations in ref. [14] we have doubled the degrees of freedom of the Higgs bosons to account

for the second Higgs doublet in the model.

Using baryon number conservation, the chemical potential of left-handed quarks can

be expressed in terms of the solutions of the transport equations µt,2, µb,2 and µtc,2,

µBL
= µq1,2 + µq2,2 +

1

2
(µt,2 + µb,2)

=
1

2
(1 + 4K1,t)µt,2 +

1

2
(1 + 4K1,b)µb,2 − 2K1,tµtc,2. (5.10)

Now, in a second step, the weak sphalerons convert the left-handed quark number into a

baryon asymmetry.

6. The baryon asymmetry

The baryon asymmetry is obtained by [9]

ηB =
nB

s
=

405Γws

4π2vwg∗T

∫ ∞

0
dz µBL

(z)e−νz . (6.1)

Γws is the weak sphaleron rate, which is only present in the symmetric phase, and g∗ =

106.75 is the effective number of degrees of freedom in the plasma. The exponent ν =
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45Γws/(4vw) accounts for the relaxation of the baryon number in case of a slowly moving

wall.

In our evaluation we use the values Γws = 1.0× 10−6 for the weak sphaleron rate [52],

Γss = 4.9× 10−4T for the strong sphaleron rate [53], Γy = 4.2× 10−3T for the top Yukawa

rate [54], Γm = m2
t (z, T )/(63T ) for the top helicity flip rate [54], and Γh = m2

W (z, T )/(50T )

for the Higgs number violation rate [54]. Furthermore the total interaction rate can be ex-

pressed by the diffusion constant, Γtot
i = (DiK1,i)/K4,i, where the quark diffusion constant

is given by Dq = 6/T [54] and the Higgs diffusion constant by Dh = 20/T [9]. The finite

W -scattering rate we approximate as ΓW = Γtot
h . The bottom quark and the Higgs bosons

are taken as massless.

Figure 6 displays the baryon asymmetry as a function of the wall velocity vw for

one typical parameter set. The solid line indicates the solution when using the full set

of transport equations (5.7) and (5.8). If we resubstitute E0z → E0 in the dispersion

relation (5.1), the group velocity (5.2) and the semiclassical force (5.3), i.e. going back to

these quantities as determined in ref. [9], the resulting baryon asymmetry is substantially

reduced (dashed line). This confirms the recent result that performing the boost back to

a general Lorentz frame has a sizable effect and should not be neglected [14]. In addition

we have improved the transport equations by keeping a finite W -scattering rate. If these

interactions were in equilibrium, ηB would be considerably overestimated for vw . 0.1

(dotted curve). We could also show that taking the Higgs bosons into account or not

does not play a significant role. The same holds for the source terms proportional to the

first-order perturbations µt,1 and ut,1, which we have neglected in the current paper. Their

effect on the total baryon asymmetry is less than 10% in the model under consideration.

Let us finally discuss the dependence of ηB on the Higgs masses. Figure 7 shows

contours of constant baryon asymmetry in the mh–mH plane, where we have fixed the

parameters µ2
3 = 10000 GeV2 and α = 0.2. For each mass combination we determine all

quantities relevant for the phase transition, such as ξ, tan βT , Lw, θsym and θbrk to put

them into the transport equations. There is only a mild vw dependence of the baryon

asymmetry (cf. figure 6), so we consider only one wall velocity, vw = 0.1. In addition, the

(ξ=1)-contour of figure 2 is also shown for orientation. As we increase mH , leaving mh

fixed, the asymmetry becomes larger. This behavior results from the m2
t ∼ ξ2 dependence

of the top source term. Accordingly the baryon asymmetry becomes larger for a stronger

phase transition. If we increase mh, leaving the heavy Higgs mass fixed, ηB becomes

smaller and reaches a minimum at mh ≈ 150–160 GeV, similar to the behavior of Lw. But

in general there is only a minor dependence on the light Higgs mass. In this parameter

setting it is possible to generate the observed baryon asymmetry for a heavy Higgs mass

between 320 and 330 GeV and a light Higgs mass up to 160 GeV. Since ηB is more or

less proportional to the CP-violating phase α, the measured value can also be explained

for other values of the parameters if we adjust α. Then the heavy Higgs mass should be

somewhat larger.

Comparing figures 5 and 7, we can use the baryon asymmetry to predict the EDMs.

We see that for ξ ∼ 1 and mh = 115 GeV the neutron EDM is a factor of about 2 above the

experimental bound, which including the theoretical uncertainties is marginally tolerable.
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The electron EDM is a factor of about 5 below the experimental bound. Moving along the

(ξ = 1)-contour to the largest Higgs mass of 190 GeV, we find |de| ∼ 0.03 × 10−27e cm

and |dn| ∼ 0.7 × 10−26e cm. Finally, taking mh = 190 GeV and mH = 400 GeV, we find

|de| ∼ 3 × 10−30e cm and |dn| ∼ 0.09 × 10−26e cm. So the experimental bound on the

neutron EDM starts to cut into the parameter space of the model. Improving the bound

by an order of magnitude would probe the larger part of the parameter space. The electron

EDM is typically one to two orders of magnitude below the current bound.

In this paper we focused on the case tan β = 1. As we discussed in the context of

eq. (3.4), larger values of tan β will lead to a smaller value of the baryon asymmetry, since

the change in θ is then mostly due to a change in θ1 rather than θ2. Extrapolating from

the example of figure 7, we estimate that for tan β >∼ 10, successful baryogenesis should in

any case be in conflict with the EDM bounds. It would be interesting to check this issue

by direct evaluations.

So there exists a wide range of realistic parameters where the computation of ηB is

under control, and which yields the observed baryon asymmetry.

7. Conclusions

We have studied electroweak baryogenesis in the 2HDM, focusing on the case of tan β = 1

and degenerate extra Higgs states. Evaluating the thermal Higgs potential in the one-

loop approximation, we find a first-order phase transition, which is strong enough to avoid

baryon number washout. This is achieved by the loop-contributions of the extra Higgs

states, provided they are sufficiently strongly coupled. Taking µ2
3 = 10000 GeV2, this

happens for a heavy Higgs mass mH >∼ 300 GeV. The mass of the light, SM-like Higgs,

mh, can be up to 200 GeV, or even larger. The Higgs potential allows the introduction of

a single CP-violating phase, which has only a minor impact on the strength of the phase

transition. In our example, if mH reaches about 500 GeV, the phase transition becomes

very strong, while the perturbative description starts to break down. These findings are in

agreement with those of ref. [21].

We have computed the properties of the phase boundary. The walls are typically

thick, but the width decreases with larger mH from Lw ∼ 15T−1
c to about 2T−1

c . We

also compute the profile of the relative complex phase between the two Higgs vevs, which

changes by an amount ∆θ between the broken and the symmetric phase.

This phase shift leads to a CP-violating source term for the top quark, which drives

the generation of the baryon asymmetry. We compute the source term in the WKB ap-

proximation and solve the resulting transport equations, using the formalism of ref. [14].

We find that for typical parameter values the baryon asymmetry is in the range of the

observed value. The explicit CP phase in the Higgs potential has to be taken between

10−2 and unity. For larger values of mH the baryon asymmetry increases, as the phase

transition becomes stronger and the wall thinner. Our result differs from those of ref. [16].

There the baryon asymmetry in the 2HDM was computed using the method of reflection

and transmission coefficients. In the regime of thick walls, this method is known not to give

the leading contribution to the baryon asymmetry, which explains the different results.
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We have also computed the EDMs of the electron and neutron. Since there is only

a single complex phase in the model, we can predict |de| and |dn| in terms of the baryon

asymmetry and the Higgs masses. We find that |dn| >∼ 10−27e cm. For the smallest al-

lowed values of mh and mH , |dn| can slightly exceed the experimental bound. Improving

the neutron EDM sensitivity by an order of magnitude would test a substantial part of

the parameter space of the model. The electron EDM is typically one to two orders of

magnitude below the bound. These values are for tan β = 1. Extrapolating our results

suggests that for tan β >∼ 10, the 2HDM cannot produce the observed baryon asymmetry

without being in conflict with the EDM constraints. In any case, the 2HDM can explain

the baryon asymmetry for a considerable range of the model parameters.

It would be interesting to extend our investigations to cover the full parameter space,

in particular the case tan β > 1. Since for larger values of mH higher-order corrections

to the effective potential become more and more important, these contributions should be

studied in more detail, most reliably on the lattice. Our proposal is testable at the LHC

in the sense that at least one Higgs state should be observed. Furthermore, CP violation

may be detectable in top pair production [55, 31]. Stringent tests could be performed at a

future e+e− linear collider, where for instance deviations in the Higgs self-coupling could

be detected [56].

Acknowledgments
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Figure 1: Lines of constant ξ and Lw in the mh-mH -plane for µ2
3 = 10000 GeV2 and α = 0. In

addition, the line of the relative size of the one-loop corrections ∆ = max |δλi/λi| = 0.5 is shown.

The Higgs masses are given in units of GeV.
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Figure 2: The same plot as in figure 1, but for the set µ2
3 = 10000 GeV2 and α = 0.2.
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Figure 3: The same plot as in figures 1 and 2, but for µ2
3 = 20000 GeV2 and α = 0.2

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0 10 20 30 40 50 60 70 80

θ

h1

(a)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

120 130 140 150 160 170 180 190

∆θ

mh

(b)

Figure 4: The phase θ and the difference ∆θ for the set µ2
3 = 10000 GeV2, α = 0.2.

(a) The change of θ during the PT, as a function of h1 (given in GeV), at fixed mh = 150 GeV,

mH = 350 GeV.

(b) ∆θ versus mh (given in GeV) for mH = 330 GeV (solid) and 400 GeV (dashed).
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Figure 5: Lines of constant neutron (solid) and electron EDMs (dashed) for the set µ2
3 =

10000 GeV2, α = 0.2, dn is given in units of 10−26 e cm, de in units of 10−27 e cm, and Higgs

masses in GeV. The lower dotted line indicates the bound ξ = 1, the upper one Lw = 2.
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Figure 6: The solid line represents ηB as a function of the wall velocity for mh = 125 GeV,

mH = 350 GeV, µ2
3 = 10000 GeV2 and α = 0.2. This parameter setting determines Lw = 4.5/T

and ξ = 1.6. The dashed line would be the asymmetry when we substitute E0z → E0 in the

dispersion relations. The dotted curve corresponds to the case where the W -scatterings are in

equilibrium.
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Figure 7: Contours of constant ηB in the mh–mH plane for µ2
3 = 10000 GeV2 and α = 0.2. The

Higgs masses are given in units of GeV and ηB in units of 10−11.
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