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ABSTRACT

We measure the imprint of primordial baryon acoustic oscillations (BAOs) in the correlation function of Lyα absorption in quasar
spectra from the Baryon Oscillation Spectroscopic Survey (BOSS) and the extended BOSS (eBOSS) in Data Release 14 (DR14) of
the Sloan Digital Sky Survey (SDSS)-IV. In addition to 179 965 spectra with absorption in the Lyman-α (Lyα) region, we use Lyα
absorption in the Lyman-β region of 56 154 spectra for the first time. We measure the Hubble distance, DH, and the comoving angular
diameter distance, DM, relative to the sound horizon at the drag epoch rd at an effective redshift z = 2.34. Using a physical model of
the correlation function outside the BAO peak, we find DH(2.34)/rd = 8.86±0.29 and DM(2.34)/rd = 37.41±1.86, within 1σ from the
flat-ΛCDM model consistent with CMB anisotropy measurements. With the addition of polynomial “broadband” terms, the results
remain within one standard deviation of the CMB-inspired model. Combined with the quasar-Lyα cross-correlation measurement
presented in a companion paper, the BAO measurements at z = 2.35 are within 1.7σ of the predictions of this model.

Key words. cosmology: observations – cosmological parameters – dark energy

1. Introduction

Since the first observations of the imprint of primordial baryonic
acoustic oscillations (BAOs) as a peak in the galaxy correlation
function (Eisenstein et al. 2005) or as a periodic modulation
in the corresponding power spectrum (Cole et al. 2005), the
BAO signal has led to significant constraints on cosmological
parameters. The BAO peak in the radial direction at a redshift z
yields DH(z)/rd = c/(rdH(z)), where H(z) is the Hubble param-
eter and rd is the sound horizon at the drag epoch (Eisenstein &
Hu 1998). The transverse measurement constrains the quantity
DM(z)/rd = (1 + z)DA(z)/rd, where DA(z) is the angular diame-
ter distance. Because of its sensitivity to both the distance and the
expansion rate, the ensemble of BAO measurements yields tight
constraints onΛ cold dark matter (ΛCDM) parameters (Aubourg
et al. 2015) even without the use of cosmic microwave back-
ground (CMB) data.

Most BAO measurements have employed discrete objects
like galaxies (Percival et al. 2010; Reid et al. 2010; Beutler et al.

2011; Blake et al. 2011; Anderson et al. 2012, 2014a,b; Ross
et al. 2015; Alam et al. 2017; Bautista et al. 2018) or quasars
(Ata et al. 2018; Gil-Marín et al. 2018; Hou et al. 2018; Zarrouk
et al. 2018). An alternative tracer of the density is the intergalactic
medium (IGM), itself traced by Lyα absorption in quasar spec-
tra. Such measurements at z≈ 2.4 were suggested by McDonald
(2003) and McDonald & Eisenstein (2007). The first detections
of a BAO peak in the Lyα auto-correlation function (Busca et al.
2013; Slosar et al. 2013) used data from the Baryon Oscilla-
tion Spectroscopic Survey (BOSS) in the Sloan Digital Sky Sur-
vey (SDSS) data-release 9 (DR9), at an effective redshift of z =
2.3. Delubac et al. (2015), using BOSS in SDSS-DR11, con-
firmed the detection of a BAO acoustic peak in the Lyα auto-
correlation function at the 5σ level. Most recently, Bautista et al.
(2017; B17 hereafter) used Lyα forests from BOSS DR12 data
and provided a measurement of DH/rd at 3.4% precision level (or
of the optimal combination D0.7

H D0.3
M /rd at the 2.5% level). The

results were within 1σ of the prediction of the flatΛCDM model
favored by CMB anisotropies (Planck Collaboration XIII 2016).
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However, when combined with the BAO imprint on the cross-
correlation of the Lyα forest with BOSS DR12 quasars (du Mas
des Bourboux et al. 2017), the values of DH/rd and DM/rd at z ∼
2.3 differ by 2.3σ from this model. This mild tension was already
present in the combined constraints of the cross-correlation mea-
surement of Font-Ribera et al. (2014) and the auto-correlation of
Delubac et al. (2015).

In the present paper, we use quasar spectra from the BOSS
survey and from its extended version eBOSS in the SDSS DR14
to study BAO in the Lyα auto-correlation function. The quasar-
Lyα cross-correlation is studied in a companion paper (Blomqvist
et al. 2019). As in previous measurements, we use Lyα absorp-
tion in the “Lyα region” of quasar spectra, that is, quasar rest-
frame wavelengths in the range 104<λRF < 120 nm. We refer
to the auto-correlation function using only this region as the
Lyα(Lyα)×Lyα(Lyα) correlation1. To increase the statistical
power, we also include Lyα absorption in the Lyβ regions of
quasars, 97.4<λRF < 102 nm, correlated with the Lyα absorption
inLyα regions, andrefer to thisas theLyα(Lyα)×Lyα(Lyβ) corre-
lation function. The Lyβ region was previously used by Iršič et al.
(2013) to investigate the flux transmission power spectrum within
individual spectra.

Besides the use of the Lyβ region, the analysis presented
here differs in several ways from that of Bautista et al. (2017)
based on DR12 data. For each quasar, we now use all observa-
tions instead of just the best one and we analyze ∼15% more Lyα
regions. We have refined the modeling of the weights (Sect. 3.2),
thereby taking into account the effect of unmasked high-column-
density (HCD) systems, and the modeling of nonlinearities in the
power spectrum (Sect. 4.1). We have not developed new mock
spectra beyond those used in the DR12 analysis though this is
being done for the final eBOSS analysis.

The layout of the paper is the following. In Sect. 2, we
present the Lyα and Lyβ spectral region samples used in the
present study. We compute correlation function of Lyα absorp-
tion for the DR14 data in Sect. 3 and present our physical model
for this function in Sect. 4. The results of fitting the data are
presented and discussed in Sect. 5. We draw cosmological con-
clusions in Sect. 6 and summarize our results in Sect. 7.

The computations of the correlation functions presented in
this paper have been performed using a dedicated software
package: Package for Igm Cosmological-Correlations Analyses
(picca), developed by our team2.

2. Data sample and reduction

The extended Baryon Oscillation Spectroscopic Survey (eBOSS;
Dawson et al. 2016) is the extension of the BOSS experiment
(Dawson et al. 2013) which aims to measure cosmology with BAO
using optical spectra from quasars, emission line galaxies, and
luminous red galaxies. It is one of the four projects of the fourth
stage of the Sloan Digital Sky Survey (SDSS-IV; Blanton et al.
2017).

The optical spectra are collected from 1000 fibers, attached
to the focal plane of a 2.5 m telescope in Apache Point Observa-
tory (Gunn et al. 2006), by two spectrographs in the wavelength
range [360, 1000] nm (Smee et al. 2013). The spectral resolution
of the spectrographs is ≈2000.

1 We use the notation “absorption(spectral region)” to distinguish the
nature of absorption from the wavelength interval where the absorp-
tion is observed. Hence, the notation Lyα(Lyα)×Lyα(Lyα) denotes Lyα
absorption in Lyα regions correlated with Lyα absorption in Lyα regions.
2 Available at https://github.com/igmhub/picca

In this paper, we use the forests of the high-redshift quasar
sample from the SDSS Data Release 14 (DR14; Abolfathi et al.
2018). This sample contains the first two years of eBOSS data
and the five years of BOSS observations reprocessed using the
eBOSS pipeline. It also includes data from the ancillary pro-
grams Time-Domain Spectroscopic Survey (TDSS) and SPec-
troscopic IDentification of ERosita Sources (SPIDERS). The
quasar target selection is presented in Myers et al. (2015). We
note that eBOSS also targets quasars at low redshifts (where the
Lyα region is not observable) to be used in other programs (Ata
et al. 2018; Wang et al. 2018; Blomqvist et al. 2018; Zhao et al.
2019; du Mas des Bourboux et al. 2019).

The automated data reduction is organized in two steps
(Dawson et al. 2016). The pipeline initially extracts the two-
dimensional raw data into a one-dimensional flux-calibrated spec-
trum. During this procedure, the spectra are wavelength and flux
calibrated and the individual exposures of one object are coad-
ded into a rebinned spectrum with ∆ log(λ) = 10−4. The spec-
tra are then classified as STAR or GALAXY or QSO, and their
redshift is estimated. Objects that cannot be automatically classi-
fied are visually inspected (Pâris et al. 2018) and a quasar catalog
is produced, which contains 526 356 quasar spectra with redshift
0 < z < 7. Among these objects, 144 046 were not in DR12. The
coverage footprint of DR14 quasars is presented in Fig. 1.

In this study, we examine both Lyα and Lyβ regions (see
Fig. 2). The Lyα region in the quasar spectrum lies between the
Lyα and the Lyβ emission peaks. We limit its coverage to the
rest-frame wavelength range [104, 120] nm in order to exclude
the emission peaks, whose shape depends on the environment
of the quasar. This approach minimizes the variance of the flux-
transmission field defined in Sect. 3.1. Similarly, we define the
Lyβ region as the rest-frame wavelength range [97.4, 102] nm
(Table 1, Fig. 2).

In the DR14 quasar catalog, selecting quasar redshifts in the
range [2.0, 3.5] yields 216 162 spectra containing, at least par-
tially, the Lyα region, and selecting quasar redshifts in the range
zq ∈ [2.53, 3.5] yields 86 245 spectra containing the Lyβ region.
We choose zq = 3.5 as an upper limit, as beyond this redshift the
quasar density is insufficient to measure correlations and the rate
of redshift misidentification is large (Busca & Balland 2018).
The requirement that the observed wavelength must be greater
than 360 nm is due to the low CCD response and atmospheric
transmission in the UV region.

In order to mask damped Lyα systems (DLAs), we use the
updated DR14 DLA catalog of Noterdaeme et al. (2009, 2012),
which contains 34 541 DLAs in 27 212 forests. The absorption
of the identified DLAs is modeled with a Voigt profile and the
regions with more than 20% of absorbed flux are masked. For
the Lyβ regions, we apply this procedure both for Lyα and Lyβ
strong absorbers. We also mask the sky emission and absorp-
tion lines listed on the SDSS website3. The broad absorption line
(BAL) quasars are automatically identified (Pâris et al. 2018) and
excluded from the data, leaving a sample of 201 286 objects for
the Lyα regions and 80 443 for the Lyβ regions.

For the determination of the correlation function, we divide
spectra into “analysis pixels” that are the inverse-variance-
weighted flux average over three adjacent pipeline pixels.
Throughout the rest of this paper, “pixels” refers to analysis pix-
els unless otherwise stated. Spectral regions with <50 such pix-
els or regions which have failed the continuum-fitting procedure
(Sect. 3.1) are discarded. These selection criteria produce 179 965

3 http://classic.sdss.org/dr6/algorithms/linestable.

html
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Fig. 1. Sky distribution of the 216 163 quasars with redshift in the [2.0, 3.5] range in the DR14 footprint of the BOSS and eBOSS surveys. The
high-density regions are the eBOSS and SEQUELS observations (for the highest declinations in the two Galactic caps) and SDSS-stripe 82 (on
the celestial equator in the south Galactic cap).

Fig. 2. Lyα and Lyβ spectral regions defined in Table 1.

Table 1. Definitions of the Lyα and Lyβ regions in terms of restframe
wavelength range.

Regions λRF [nm] λobs [nm] zq # forests

Lyβ [97.4, 102] [360, 459] [2.53, 3.5] 56 154
Lyα [104, 120] [360, 540] [2.0, 3.5] 179 965

Notes. Also listed are the allowed observer frame wavelength ranges,
the corresponding quasar redshift ranges and the number of forests
available in our sample.

Lyα regions (compared to 157 783 in B17) and 56 154 Lyβ regions
(see Table 1).

The analysis procedure described in the following section
assigns redshifts to the observed pixel wavelengths by assum-
ing that flux decrements in both the Lyα and Lyβ regions
are due to Lyα absorption. The effect of non-Lyα absorption
is taken into account in the correlation-function model pre-
sented in Sect. 4. The weighted distribution of the redshifts

Fig. 3. Weighted distribution of the redshift of pairs used to measure the
Lyα(Lyα)×Lyα(Lyα) and Lyα(Lyα)×Lyα(Lyβ) correlation functions.
The mean redshift of the combined sample is 〈zpairs〉 = 2.34.

of pairs of pixels used to measure Lyα(Lyα)×Lyα(Lyα) and
Lyα(Lyα)×Lyα(Lyβ) correlations are presented in Fig. 3. The
mean redshift of the combined set of pixel pairs is 2.34.

3. Computing the Lyα correlation function from the

data

This section describes the measurement of the flux-transmission
field and then its correlation function and associated covariance
matrix.

3.1. Flux-transmission field δq(λ)

The computation of the correlation function requires an esti-
mation of the transmission field along the line of sight (LOS)
towards surveyed quasars. This field arises due to the presence
along the LOS of intergalactic gas. More precisely, for the cor-
relation calculation, we only need to know the flux fluctuations
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Fig. 4. One-dimensional correlation functions, ξ1d, in the Lyα (red
curve) and Lyβ (blue curve) regions as a function of the ratio of tran-
sition wavelengths. Peaks are due to absorption by the two labeled ele-
ments at zero physical separation (Table 3).

around the average transmitted flux spectrum in the forests of
quasars q at wavelength λ. We thus define the field δq(λ), for
each quasar q under investigation, as:

δq(λ) ≡
fq(λ)

Cq(λ)F(z)
− 1, (1)

where fq(λ) denotes the observed flux of quasar q at observed
wavelength λ, Cq(λ) is the continuum flux, and F(z) is the mean
transmission at the absorber redshift z.

We estimate the quantity CqF(z) from the average of the
transmitted flux of all forest spectra in the sample:

f (λRF) =

∑

q wq(λRF) fq(λRF)
∑

q wq(λRF)
, (2)

where λRF is the rest-frame wavelength and wq is a weight (see
Sect. 3.2). For each quasar, f (λRF) is then multiplied by a linear
polynomial function of Λ ≡ log(λ) to account for the diversity
of quasar luminosity and spectral shape:

Cq(λ)F(z) = f (λRF)(aq + bqΛ). (3)

There are thus two adjustable parameters per quasar, aq
and bq.

Those forests with identified DLAs are given special treat-
ment. All pixels where the absorption due to the DLA is >20%
are not used. The absorption in the wings is corrected using
a Voigt profile following the procedure of Noterdaeme et al.
(2012).

The fitting procedure to determine (aq, bq) forces the mean
and spectral slope of δq(λ) for each quasar to zero, thus intro-
ducing spurious correlations in the measured field. To make it
easier to deal with this distortion in the analysis, we follow B17
by transforming the measured δq(λ) to δ̂q:

δ̂q(λi) =
∑

j

ηi jδq(λ j), (4)

where

ηi j = δ
K
i j −

wq(λ j)
∑

k wq(λk)
− (Λi − Λq)

wq(λ j)(Λ j − Λq)
∑

k wq(λk)(Λk − Λq)2
, (5)

where δK
i j

denotes the Kronecker symbol. The advantage of this
transformation is that it makes the distortion of the true field
introduced by the continuum fit procedure explicit, and as a con-
sequence simplifies the link between the true correlation func-
tion and the measured, distorted one (see Sect. 4.3).

The statistics of δ̂q(λ) within individual forests are described
(in part) by the so-called one-dimensional correlation function,
ξ1d(λ1/λ2) = 〈δ̂(λ1)δ̂(λ2)〉. Figure 4 presents this function for the
Lyα and Lyβ forests. The peaks are due to absorption by dif-
ferent transitions at the same physical position. Table 3 lists the
important observed transition pairs (see also Pieri et al. 2014).

3.2. Pixel weights

The pixel weights are proportional to the inverse of the variance
of δq(λ). Following Blomqvist et al. (2018), the variance is mod-
eled as the sum of three terms:

σ2
q(λ) = η(λ)σ2

noise + σ
2
LSS(λ) + ǫ(λ)/σ2

noise. (6)

The noise pixel variance is σ2
noise =σ

2
pip/(CqF)2 where σ2

pip
is the pipeline estimate of the pixel variance. The intrin-
sic, redshift-dependent contribution of the density fluctuations
underlying Lyα regions isσ2

LSS. The third term, ǫ(λ)/σ2
noise, takes

into account differences between the fitted quasar spectrum and
the individual spectrum of quasar q (these differences appear
at high signal-to-noise ratios). The functions η(λ) and ǫ(λ) cor-
rect for imperfections of the pipeline estimates and differences
between the average and individual spectra, respectively.

Following Busca et al. (2013), the weights are corrected to
take into account the expected redshift dependence of the corre-
lation function amplitude:

wq(λ) =
(λ/λα)γα−1

σ2
q(λ)

, (7)

where the Lyα bias redshift-evolution parameter, γα = 2.9
(McDonald et al. 2006) and λα is the Lyα restframe wavelength.

In practice, one starts with an initial estimate of the weights,
allowing a first estimate of the mean spectrum f̄ (λRF) (Eq. (2))
and the quasar parameters aq and bq (Eq. (3)). The functions
η(λ), ǫ(λ), and σLSS(λ) are then fit and the mean spectrum is
then recalculated with the new weights. This process is repeated
until stable values are obtained after about five iterations.

3.3. Correlation function

To compute the correlation function, we correlate absorption at
an observed wavelength λi in the LOS of a given quasar q, with
absorption at an observed wavelength λ j in the LOS of another
quasar q′. Assuming the absorption is due to the Lyα transition,
one can compute, from the values of λi and λ j, the redshifts zi

and z j of the matter absorbing these lines. Each pair of absorbers
(z, q) entering the computation defines a “pixel” in real space
and we use ri j to refer to the physical separation between two
such pixels i and j (see Fig. 5). This distance is calculated assum-
ing the Pl2015 cosmology (Table 2). The distance ri j can be pro-
jected on the radial and the transverse directions, leading to two
components r‖,i j and r⊥,i j. These components can be expressed
in terms of the comoving distances D(zi) and D(z j) from us to
absorbers i and j and the subtended angle between the two LOSs,
θi j, as:














r‖,i j =
(

D(z j) − D(zi)
)

cos
(

θi j

2

)

r⊥,i j =
(

D(zi) + D(z j)
)

sin
(

θi j

2

) . (8)

A85, page 4 of 20

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935638&pdf_id=4


V. de Sainte Agathe et al.: BAO from correlations of Lyα absorption in eBOSS DR14

Fig. 5. Definition of the coordinates of pixels used in the computation
of the correlation function. Absorbers i and j have angular separation
θi j and distance separation ri j. The radial separation r‖,i j is the projec-
tion of ri j on the median LOS, and the transverse separation r⊥,i j is the
LOS perpendicular component of ri j, assuming the flat Pl2015 model
(Table 2).

Table 2. Parameters of the “Pl2015 model”, i.e. the flatΛCDM model of
Planck Collaboration XIII (2016) that we use here to transform redshifts
and angular separations into radial and transverse separations.

Parameters Values

ΩMh2 0.1426
= ΩCh2 + ΩBh2 + Ωνh

2 0.1197+ 0.02222+ 0.0006
h 0.6731
Nν, σ8, ns 3, 0.8298, 0.9655
Ωm 0.3147
rd 147.33 Mpc (99.17 h−1 Mpc)
DH(2.34)/rd, DM(2.34)/rd 8.581, 39.26

We then define bins of (r‖,i j, r⊥,i j) on a 2D grid. In practice,
the grid uses 2500 bins of dimensions 4 h−1 Mpc× 4 h−1 Mpc
over 0 < r⊥ < 200 h−1 Mpc and 0 < r‖ < 200 h−1 Mpc. For a
given bin in this grid, A, we consider each pair of pixels (i, j)
whose r‖ and r⊥ coordinates fall on this bin. The measured cor-
relation function in bin A reads:

ξ̂(A) =

∑

(i, j)∈A wiw jδ̂iδ̂ j
∑

(i, j)∈A wiw j

, (9)

with wk ≡ wqk
(λk) and δ̂k ≡ δ̂qk

(λk).
We discard from the computation all pixel pairs belonging

to the same LOS, since two pixels belonging to the same quasar
spectrum are affected in a correlated way by the fitting proce-
dure described in Sect. 3.1. Likewise, pixels belonging to the
same half plate at the same wavelength are excluded to avoid
unphysical correlations induced by the extraction pipeline.

3.4. Covariance matrix

The covariance between two bins A and B is defined as:

CAB =
〈

ξ̂Aξ̂B
〉

−
〈

ξ̂A
〉〈

ξ̂B
〉

, (10)

where 〈. . .〉 denotes an ensemble average. Following Delubac
et al. (2015) and B17, we estimate Eq. (10) by dividing the
eBOSS footprint in Nh = 876 sky pixels using the HEALPix
tessellation scheme (see Górski et al. 2005) and by equating

the ensemble averages of Eq. (10) with the weighted mean over
these sky pixels:

〈

ξ̂A
〉

≈
∑

h Wh
A
ξ̂h

A
∑

h Wh
A

, (11)

and

〈

ξ̂Aξ̂B
〉

≈
∑

h Wh
A
Wh

B
ξ̂h

A
ξ̂h

B
(

∑

h Wh
A

)(

∑

h Wh
B

) = W−1
A W−1

B

∑

h

Wh
AWh

Bξ̂
h
Aξ̂

h
B, (12)

with Wh
A

being the sum of the weights of pairs in sky pixels h

contributing to bin A. Similarly, ξh
A

is the correlation function of
pairs in sky pixels h that contribute to bin A.

In practice, for the computation of the correlation function,
a pair (i, j) is attributed to the sky pixel of the first quasar of the
pair, and the pair ( j, i) is never considered, insuring that a pair is
not counted twice in the calculation.

In this approximation, we assume that each sky pixel pro-
vides an independent realization of the δ field. This statement is
not exactly true as correlations do exist between pairs in different
sky pixels, but these correlations are small (e.g., Delubac et al.
2015).

We subsequently compute the covariance matrix defined in
Eq. (10) using the following expression:

CAB =

∑

h Wh
A
Wh

B
(ξ̂h

A
ξ̂h

B
− ξ̂Aξ̂B)

(

∑

h Wh
A

)(

∑

h Wh
B

) , (13)

where ξ̂A is given by (9). Due to the finite number of sky pixels,
the estimate (13) is noisy and must be smoothed before it can
be used in fits. We perform the smoothing by approximating the
correlation, CorrAB = CAB/

√
CAACBB, as a function of ∆r‖ =

|rA
‖ − rB

‖ | and ∆r⊥ = |rA
⊥ − rB

⊥| only, ignoring the small dependence
on r‖ and r⊥.

As a check of the subsampling method, the covariance
can also be estimated by neglecting inter-forest correlations, in
which case the four-point function vanishes unless the four pix-
els are drawn from just two spectra:

CAB =
1

WAWB

∑

i j∈A

∑

kl∈B

wiw jwkwlξ1d(λi/λk)ξ1d(λ j/λl), (14)

where ξ1d is the intra-forest correlation function shown in Fig. 4.
The sum can then be estimated from a random sample of forest
pairs. Because neighboring forests are nearly parallel, the sum
necessarily produces CAB = 0 unless rA

⊥ ∼ rB
⊥.

Because the Lyα and Lyβ forests have different ξ1d,
we expect differences between the covariances for Lyα(Lyα)
×Lyα(Lyα) and Lyα(Lyα)×Lyα(Lyβ) correlations. These dif-
ferences are illustrated in Fig. 6, which shows, for the two lowest
values of ∆r⊥, the correlation CorrAB. For ∆r⊥ = 0, there is good
agreement between the subsampling (13) and independent-forest
(14) calculations.

Figure 7 displays the CorrAB between the Lyα(Lyα)×Lyα
(Lyα) and Lyα(Lyα)×Lyα(Lyβ) correlation functions. The
CorrAB are <1%, and will be ignored in the fits of the correla-
tion functions.

4. Modeling the correlation function

This section details the model of the Lyα auto-correlation func-
tion that is fitted against the estimator ξ̂A of Eq. (9). Table 4 lists
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Fig. 6. Averaged correlations, CorrAB = CAB/
√

CAACBB vs. ∆r‖ for the two lowest intervals of ∆r⊥, for the Lyα(Lyα)×Lyα(Lyα) (left) and
Lyα(Lyα)×Lyα(Lyβ) (right) correlation functions. The subsampling covariances are calculated using (13) and the independent-forest estimates
by (14).

Fig. 7. Averaged correlations, CorrAB = CAB/
√

CAACBB vs. ∆r‖ for the
two lowest intervals of ∆r⊥, for the cross-covariance matrix between
Lyα(Lyα)×Lyα(Lyα) and Lyα(Lyα)×Lyα(Lyβ) correlation functions.

the different parameters of the model. The model includes two
components: one is the Lyα-only correlation function computed
from Lyα absorption only; the other component incorporates the
contribution to the correlation function of absorption by metals,
for which the nominal separation for the pixel is not the true sep-
aration (see Sect. 4.2). We thus write

ξmod = ξ
Lyα−Lyα
mod + ξmetals

mod . (15)

The following sections describe these two components.
Section 4.3 explains how the model is “distorted” to fit the data.

4.1. Baseline model for ξ
Lyα−Lyα
mod

We start from the CAMB linear power spectrum (Lewis et al.
2000) which is decomposed into a smooth component and a
peak component, following the side-band technique described
by Kirkby et al. (2013). This allows one to constrain the posi-
tion of the BAO peak independently of the correlation function
at scales much smaller or much larger than the BAO distance

scale. We thus model the matter power spectrum as the sum of
two terms corresponding to the smooth and the peak terms in
the correlation function. Moreover, in order to incorporate the
effects of the nonlinear growth of matter that lead to broadening
of the BAO peak, the peak term is corrected by a Gaussian fac-
tor (Eisenstein et al. 2007). The “quasi-linear” power spectrum
hence reads

PQL(k, z) = Psmooth(k, z)+exp















−
k2
‖Σ

2
‖

2
−

k2
⊥Σ

2
⊥

2















Ppeak(k, z), (16)

where Psmooth(k, z) and Ppeak(k, z) are the power spectra of the
smooth and peak components, and Σ‖ and Σ⊥ represent the rms
displacements in the parallel and transverse directions, respec-
tively. We adopt the values of Kirkby et al. (2013) for these
parameters: Σ‖ = 6.41 h−1 Mpc and Σ⊥ = 3.26 h−1 Mpc.

The power spectrum is obtained from PQL as

PLyα−Lyα(k, z) = PQL(k, z)d2
Lyα(k, z)DNL(k)G(k), (17)

where dLyα is the Kaiser factor (Kaiser 1987) for the Lyα absorp-
tion and DNL(k) takes into account nonlinear effects. The func-
tion G(k) models the effect of binning of the correlation function
on the separation grid.

The Kaiser factor can be written as

dLyα = b′Lyα(z)(1 + β′Lyαµ
2
k), (18)

where b′Lyα is the effective bias of Lyα absorbers with respect to
the underlying matter density field, β′Lyα is the effective redshift
space distortion (RSD) parameter, and µk = k‖/k. The two effec-
tive parameters (b′Lyα and b′Lyαβ

′
Lyα) combine Lyα absorption in

the IGM and in unmasked HCD systems, i.e., HI absorbers with
column densities NHI > 1017.2 cm−2:
{

b′Lyα = bLyα + bHCDFHCD(k‖)
b′Lyαβ

′
Lyα = bLyαβLyα + bHCDβHCDFHCD(k‖),

(19)

where (bLyα, βLyα) and (bHCD, βHCD) are the bias parameters asso-
ciated with the IGM and HCD systems and FHCD is a function
defined below.
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Table 3. Lyα/metal and metal/metal pairs contributing to the flux corre-
lation function.

Transitions λ1/λ2 r
ap
‖ [h−1 Mpc]

Si ii(1193)/Si ii(1190) 1.002 7
Lyα(1216)/Si iii(1207) 1.008 21
Si iii(1207)/Si ii(1193) 1.011 31
Si iii(1207)/Si ii(1190) 1.014 38
Lyα(1216)/Si ii(1193) 1.019 52
Lyα(1216)/Si ii(1190) 1.021 59
Si ii(1260)/Lyα(1216) 1.037 105
Si ii(1260)/Si iii(1207) 1.045 126
Si ii(1260)/Si ii(1193) 1.056 157
Si ii(1260)/Si ii(1190) 1.059 164

Notes. The table shows the ratio of transition wavelengths and the cor-
responding apparent separation, r

ap
‖ , for pairs at vanishing physical sep-

aration, computed at an average redshift of 2.34 using Eq. (23).

Following McDonald et al. (2006), we assume that the prod-
uct of bLyα and the growth factor of structures varies with red-
shift as (1 + z)γα−1, with γα = 2.9, while we make use of the
approximation that βLyα does not depend on redshift.

HCD absorbers are expected to trace the underlying density
field and their effect on the flux-transmission field depends on
whether or not they are identified and given the special treat-
ment described in Sect. 2. If they are correctly identified with
the total absorption region masked and the wings correctly mod-
eled, they can be expected to have no significant effect on the
field. Conversely, if they are not identified, the measured correla-
tion function will be modified because their absorption is spread
along the radial direction. This broadening effect introduces a k‖
dependence of the effective bias (Font-Ribera & Miralda-Escudé
2012). Following the study of Rogers et al. (2018), we adopt a
simple exponential form, FHCD = exp(−LHCDk‖), where LHCD is
a typical length scale for these systems. DLA identification is
possible if the width (wavelength interval for absorption greater
than 20%) of the system(s) is above ∼2.0 nm, corresponding to
∼14 h−1 Mpc in our sample. Based on results from Rogers et al.
(2018), we impose LHCD ∼ 10 h−1 Mpc while fitting for the bias
parameters bHCD and βHCD. Fixing LHCD is necessary because
otherwise the model becomes too unconstrained. We have veri-
fied that setting LHCD in the range 7 < LHCD < 13 h−1 Mpc does
not significantly change the inferred BAO peak position.

We focus on the minimal model able to reproduce the data,
designated the “baseline model”. This baseline model does
not include the correction of the UV background fluctuations
(Pontzen et al. 2014; Gontcho A Gontcho et al. 2014) used in
B17. In Sect. 5 we discuss the improvement of the fit when this
UV correction is added.

The function DNL(k) accounts for nonlinear effects such
as thermal broadening, peculiar velocities, and nonlinear struc-
ture growth. A fitting formula for DNL is given by Eq. (21) of
McDonald (2003) and has been extensively used in previous
studies. More recently, Arinyo-i-Prats et al. (2015) proposed a
new fitting formula involving six free parameters given by their
Eq. (3.6). Besides reducing the number of free parameters with
respect to McDonald (2003), it has the correct behavior at small
wavenumber k and an explicit dependence on PQL(k), whereas
this dependence is only implicit in the McDonald (2003) for-
mula. In practice, the two approaches yield similar results but for
the above reasons we adopt the formula of Arinyo-i-Prats et al.

Table 4. Parameters of the model of the correlation function.

Parameter Description

α‖, α⊥ BAO peak-position parameters
bLyα, βLyα Bias parameters for Lyα absorption
bHCD, βHCD Bias parameters of HCD systems
bm Bias of metal species

LHCD = 10 h−1 Mpc Smoothing scale of HCD systems
Σ⊥ = 3.26 h−1 Mpc Transverse broadening of BAO peak
Σ‖ = 6.41 h−1 Mpc Radial broadening of BAO peak
βm = 0.5 Redshift-space distortion for

Si ii (1190), (1193), (1260), Si iii (1207)
βCIV(eff) = 0.27 C iv (eff) redshift-space distortion
R‖,R⊥ = 4 h−1 Mpc Binning smoothing parameter
Apeak = 1 BAO peak amplitude
γα = 2.9 Lyα bias evolution exponent
γm = 1 Metal bias evolution exponent

Notes. The standard-fit parameters are given in the first section of the
table. The second section lists parameters that are fixed in the standard
fit, together with their values.

(2015) in the present work and linearly interpolate the parameter
values from their Table 7 at the effective redshift z = 2.34.

To account for the effect of the binning of the correlation
function on the separation grid, we assume the distribution to be
homogeneous on each bin4 and compute the function G(k) as the
product of the Fourier transforms of the rectangle functions that
model a uniform square bin:

G(k) = sinc

(

k‖R‖

2

)

sinc

(

k⊥R⊥

2

)

, (20)

where R‖ and R⊥ are the radial and transverse widths of the bins,
respectively.

The two terms in PQL(k, z) (Eq. (16)) are Fourier transformed
to the smooth and peak components of the correlation function:

ξ
Lyα−Lyα
mod (r‖, r⊥, α‖, α⊥) = ξsmooth(r‖, r⊥) + Apeak ξpeak(α‖r‖, r⊥α⊥).

(21)

The amplitude of the peak, Apeak, is fixed to unity in the stan-
dard fit. In the peak component we have introduced the parame-
ters (α‖, α⊥) which allow us to fit for the peak position indepen-
dently of the smooth component:

α‖ =
DH(z)/rd

[DH(z)/rd]fid
, α⊥ =

DM(z̄)/rd

[DM(z̄)/rd]fid
, (22)

where z is the effective redshift of the measurement and the suffix
“fid” denotes the Pl2015 cosmology from Table 2.

4.2. Contamination by metals

The second term in the model correlation function (Eq. (15))
accounts for absorption by metals along the quasar LOS. Such
absorption is correlated with Lyα absorption (Pieri et al. 2014)
and can be used as a tracer of the density field (Blomqvist et al.
2018; du Mas des Bourboux et al. 2019). Here, it is a compli-
cating factor in the analysis because the redshifts of pixels are
calculated assuming Lyα absorption.

4 In the perpendicular direction the distribution is in fact approxi-
mately proportional to r⊥; however, assuming homogeneity produces
a sufficiently accurate correlation function (B17).
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The important metals can be seen in the 1D correlation func-
tion, ξ1d(λ1/λ2), shown in Fig. 4. Column 2 of Table 3 lists
the wavelength ratios for the main metal/metal and metal/Lyα
absorption correlations, relevant for the Lyα auto-correlation
function computation. The corresponding apparent radial sep-
aration at vanishing physical separation is

r
ap
‖ ≈ (1 + z)DH(z)

λ1 − λ2

λα
, (23)

where z is the mean redshift of the pair. Values are given in
Table 3 for z = 2.34.

We model the power spectrum of each pair of absorbers,
(m, n), with the same form as that for Lyα–Lyα absorption (17)
except that HCD effects are neglected:

Pmn(k, z) = bmbn(1 + βmµ
2
k)(1 + βnµ

2
k)G(k)PL(k, z). (24)

Since the bm and βm are mostly determined near (r⊥, r‖) ∼
(0, r

ap
‖ ), they cannot be determined separately. We therefore fix

βCIV(eff) = 0.27 (Blomqvist et al. 2018). For the other metal
species we keep the value β = 0.50 used in Bautista et al. (2017)
which comes from DLA measurements (Font-Ribera & Miralda-
Escudé 2012).

The Fourier transform of Pmn(k, z) is then the model cor-
relation function of the pair (m, n): ξm−n

mod (r̃‖, r̃⊥), where (r̃‖, r̃⊥)
are the separations calculated using the correct restframe wave-
lengths, (λm, λn).

Since we assign a redshift, zα, assuming Lyα absorption,
the rest-frame wavelength we ascribe to a metal transition m
observed at wavelength λi is not equal to the true rest-frame
wavelength λi/(1+ zm), where zm is the true redshift of the metal
absorber. This misidentification results in a shift of the model
contaminant correlation function. For each pair (m, n) of con-
taminants, we compute the shifted model correlation function
with respect to the unshifted model metal correlation function
ξm−n

mod by introducing a metal matrix MAB (Blomqvist et al. 2018),
such that:

ξm−n
mod (A) =

∑

B

MABξ
m−n
mod (r̃‖(B), r̃⊥(B)), (25)

where

MAB =
1

WA

∑

(m,n)∈A,(m,n)∈B

wmwn, (26)

and (m, n) ∈ A refers to pixel separation computed assuming zα,
and (m, n) ∈ B to pixel separation computed using the redshifts
of the m and n absorbers, zm and zn. We take into account the
redshift dependence of the weights (Eq. (7)) in the computation
of wm and wn.

The total metal contaminant correlation function, ξmetals
mod , is

the sum of all the ξm−n
mod contributions, where (m, n) runs over all

the involved transition pairs for the Lyα auto-correlation func-
tion; see Table 3:

ξmetals
mod (A) =

∑

m,n

ξm−n
mod (A). (27)

4.3. Distorted model

The model correlation function, ξmod of Eq. (15) cannot be fit
directly to the estimated correlation function (9) because the

measured δ̂(λ) are only related to the true δ(λ) through the trans-
formation (4). Following B17, we can account for this effect in
the fit by using a distorted model:

ξ̂mod(A) =
∑

B

DABξmod(B), (28)

where DAB is the distortion matrix which, following Eq. (5), is
given by

DAB = W−1
A

∑

i j∈A
wiw j

















∑

i′ j′∈B

ηii′η j j′

















. (29)

The accuracy of this method of accounting for the distortion
of the correlation function was tested with mock data sets by
Bautista et al. (2017).

In practice, to avoid prohibitive computational time, the dis-
tortion matrix is computed using only a random 5% portion of
the total number of pairs.

5. Fitting the BAO peak position

Table 5 presents the best-fit parameters for the Lyα(Lyα)×
Lyα(Lyα) correlation function alone and those including
the Lyβ region, that is, the Lyα(Lyα)× Lyα(Lyα+Lyβ)
correlation function. Figure 8 displays data for the latter in four
ranges of µ along with the best fits. The BAO peak is apparent
for µ > 0.8 and is suggested for 0.5 < µ < 0.8.

The BAO parameters for the fit using both Lyα and Lyβ
regions are














α‖ = 1.033+0.034
−0.034

+0.071
−0.068

α⊥ = 0.953+0.050
−0.045

+0.108
−0.091

. (30)

Using the D/rd values for the Pl2015 cosmology in Table 2,
these values yield














DH(2.34)/rd = 8.86+0.29
−0.29

+0.61
−0.58

DM(2.34)/rd = 37.41+1.96
−1.77

+4.24
−3.57

. (31)

These results can be compared with those of B17, who found
α‖ = 1.053±0.036 and α⊥ = 0.965±0.055 at z = 2.33 using only
the Lyα region. These values are very near the present results
using only the Lyα region: α‖ = 1.047±0.035 and α⊥ = 0.960±
0.041. Our use of the Lyβ region produces consistent results,
given the increase in the data set; the main improvement is that
on the precision on DM/rd by ∼25%.

Constraints on the BAO parameters (α‖, α⊥) are presented in
Fig. 9. Following the method introduced and described in detail
in du Mas des Bourboux et al. (2017), we estimate the relation
between ∆χ2 = χ2 − χ2

min and confidence levels (CLs) for the
BAO parameters using a large number of simulated correlation
functions generated from the best-fit model and the covariance
matrix measured with the data. The results of the study, summa-
rized in Table D.1, indicate that the (68.27, 95.45%) confidence
levels for (α‖, α⊥) correspond to ∆χ2 = (2.74, 7.41); instead of
the nominal values ∆χ2 = (2.3, 6.18). These levels are shown
as the red contours in Fig. 9 for the Lyα(Lyα)×Lyα(Lyα+Lyβ)
fit. The best fit is within one standard deviation of the Pl2015
model.

In addition to the baseline fits, we performed a variety of
nonstandard fits to verify that our BAO results are robust and
independent of the model. The results of this exercise are given
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Table 5. Parameters of the model of the correlation function and the best-fit values of the Lyα(Lyα)×Lyα(Lyα) data (third column) and those of
the Lyα(Lyα)×Lyα(Lyα) and Lyα(Lyα)×Lyα(Lyβ) data (fourth column).

Parameter description Lyα(Lyα)×Lyα(Lyα) Lyα(Lyα)×Lyα(Lyα)
+Lyα(Lyα)×Lyα(Lyβ)

npairs 5.44 × 1011 6.94 × 1011
∑

wpairs 3.56 × 1013 4.20 × 1013

Radial BAO peak-position α‖ 1.047 ± 0.035 1.033 ± 0.031
Transverse BAO peak-position α⊥ 0.969 ± 0.041 0.953 ± 0.042

Lyα redshift-space distortion βLyα 1.773 ± 0.066 1.933 ± 0.100
Lyα velocity bias bηLyα = bLyα f /βLyα bηLyα −0.208 ± 0.004 −0.211 ± 0.004

HCD redshift-space distortion βHCD 0.845 ± 0.157 1.031 ± 0.153

HCD bias Lyα(Lyα)×Lyα(Lyα) b
Lyα(Lyα)×Lyα(Lyα)
HCD −0.047 ± 0.003 −0.051 ± 0.004

HCD bias Lyα(Lyα)×Lyα(Lyβ) b
Lyα(Lyα)×Lyα(Lyβ)
HCD – −0.072 ± 0.005

Metal absorption bias bSiII(1190) −0.0051 ± 0.0010 −0.0050 ± 0.0010
bSiII(1193) −0.0046 ± 0.0010 −0.0046 ± 0.0010
bSiIII(1207) −0.0082 ± 0.0010 −0.0080 ± 0.0010
bSiII(1260) −0.0025 ± 0.0013 −0.0022 ± 0.0013
bCIV(eff) −0.0185 ± 0.0078 −0.0163 ± 0.0089

χ2
min 1619.77 3258.92

d.o.f. 1590−11 3180−12
Probability 0.232 0.127

χ2(α‖ = α⊥ = 1) 1621.55 3260.54

Notes. Errors on parameters correspond to ∆χ2 = 1.

Fig. 8. Weighted combination between measured Lyα(Lyα)×Lyα(Lyα) and Lyα(Lyα)×Lyα(Lyβ) correlation functions along with the model best
fits in four ranges of µ = r‖/r. The curves show the standard fit and the two fits with broadband terms defined by Eq. (32) with (imin, imax, jmax) =
(0, 2, 6) with and without additional priors, as described in the text.
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Fig. 9. Left panel: 68% and 95% confidence level contours in the (α‖, α⊥) plane from the Lyα(Lyα)×Lyα(Lyα+Lyβ) auto-correlation function
for the standard fit and for fits with polynomial broadband terms with and without additional priors, as described in the text. Right panel: contours
for Lyα(Lyα)×Lyα(Lyα+Lyβ) auto-correlation standard fit and those from the combined fit of the auto-correlation and the quasar-Lyα cross-
correlation of Blomqvist et al. (2019). In both panels the value for the Pl2015 model (Planck Collaboration XIII 2016) is shown as a black
point.

Table 6. Best-fit values of (α‖, α⊥) for the Lyα(Lyα)×Lyα(Lyα+Lyβ) correlation function fit with various models.

Models α‖ α⊥ χ2/d.o.f. Probability

Kaiser 1.021 ± 0.028 0.977 ± 0.040 3624.74/(3180−4) 3.46 × 10−8

+Metals 1.025 ± 0.032 0.979 ± 0.044 3607.96/(3180−9) 7.14 × 10−8

+HCD (baseline) 1.033 ± 0.031 0.953 ± 0.042 3258.92/(3180−12) 0.127
+UV 1.033 ± 0.031 0.953 ± 0.042 3258.84/(3180−13) 0.125

Broadband
Physical priors on (bLyα, βLyα, bHCD) 1.037 ± 0.028 0.972 ± 0.040 3006.25/(3030−36) 0.434
No additional priors 1.032 ± 0.027 0.980 ± 0.039 3001.00/(3030−36) 0.460

Notes. The first group includes physical models starting with the basic Kaiser redshift-space model and then including, progressively, metals,
HCD, and UV corrections. Fits in the second group include polynomial broadband terms, as described in the text.

in Table 6. The first group of fits starts with the simple Kaiser
redshift-space model and then includes progressively metals,
HCD absorption, and UV background fluctuations. Including
HCD absorption is necessary to obtain a good χ2 but adding UV
fluctuations such as those characterized in Gontcho A Gontcho
et al. (2014) does not improve the fit, justifying our choice of
ignoring the UV issue in the baseline fit. In the standard fit, the
physical parameters (LHCD, Σ⊥, Σ‖, βm) are fixed (see Table 4)
in order to avoid degeneracies with other parameters and non-
physical values. We verified that letting them free has no impact
on the α‖ and α⊥ parameters.

An important test of systematic effects in the position of
the BAO peak is performed by adding polynomial “broadband”
terms to the correlation function (before distortion). We follow
the procedure and choice of broadband forms used by B17 and
adopt the form

B(r, µ) =
jmax
∑

j=0

imax
∑

i=imin

ai j

L j(µ)

ri
( j even), (32)

where the L j are Legendre polynomials.
We want to ensure that the power-law terms model varia-

tions of the slowly varying part of the correlation function under
the BAO peak. We therefore perform these fits only over the

restricted range 40 < r < 180 h−1 Mpc, avoiding the introduc-
tion of undue influence of the 10 < r < 40 h−1 Mpc range on
the amplitudes of the power laws. Following B17, we fit with
(imin, imax) = (0, 2) corresponding to a parabola in r2ξsmooth
underneath the BAO peak. We set jmax = 6, giving four values
of j corresponding to approximately independent broadbands in
each of the four angular ranges in Fig. 8.

We performed the broadband fits in two ways. The first
placed “physical priors” on (bLyα, βLyα, bHCD) in the form of a
Gaussian with the same mean and width as those of the fit with-
out broadband terms. Such priors ensured that the broadband
terms were relatively small perturbations to the physical model.
The second type of fit placed no priors on (bLyα, βLyα, bHCD).

The results of these fits are given in Table 6 and Fig. 9. We
see that the addition of such terms does not change α‖ signifi-
cantly but does shift α⊥ by 0.5σ or 0.7σ for fits with and with-
out physical priors, respectively. This effect was already seen in
B17 but with less significance. Figure 9 shows that in all cases
the BAO peak position is within one standard deviation of the
prediction of the Pl2015 model.

The fits of the Lyα(Lyα)×Lyα(Lyα) and Lyα(Lyα)×
Lyα(Lyβ) correlation functions described above are the primary
results of this paper. We also performed fits with two redshift
bins, as described in Appendix B. Each of the two redshifts
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Table 7. Best-fit results of the Lyα(Lyα)×Lyα(Lyα+Lyβ) correlation function (second column), of the QSO×Lyα(Lyα+Lyβ) correlation func-
tion given by Blomqvist et al. (2019) (third column), and of the two correlation functions (fourth column).

Parameters Lyα(Lyα)×Lyα(Lyα+Lyβ) QSO×Lyα(Lyα+Lyβ) Lyα(Lyα)×Lyα(Lyα+Lyβ)
+QSO×Lyα(Lyα+Lyβ)

α‖ 1.033± 0.034 1.076± 0.042 1.049± 0.026
α⊥ 0.953± 0.048 0.923± 0.046 0.942± 0.031
βLyα 1.933± 0.101 2.28± 0.31 1.994± 0.099
bηLyα −0.211± 0.004 −0.267± 0.014 −0.214± 0.004
βQSO – 0.257 0.209± 0.006

βHCD 1.031± 0.153 0.500± 0.200 0.972± 0.150

b
Lyα(Lyα)×Lyα(Lyα)
HCD −0.051± 0.004 – −0.052± 0.004

b
Lyα(Lyα)×Lyα(Lyβ)
HCD −0.072± 0.005 – −0.073± 0.005

b
QSO×Lyα(Lyα+Lyβ)
HCD – −0.000± 0.004 −0.000± 0.004

bSiII(1190) −0.0050± 0.0010 −0.0057± 0.0024 −0.0043± 0.0009
bSiII(1193) −0.0046± 0.0010 −0.0015± 0.0024 −0.0034± 0.0009
bSiIII(1207) −0.0080± 0.0010 −0.0117± 0.0024 −0.0083± 0.0009
bSiII(1260) −0.0022± 0.0013 −0.0022± 0.0017 −0.0019± 0.0009
bCIV(eff) −0.0163± 0.0089 – −0.0167± 0.0090

σν [h−1 Mpc] – 7.60± 0.61 7.053± 0.357
∆r‖ [h−1 Mpc] – −0.22± 0.32 −0.169± 0.284

ξTP
0 – 0.276± 0.158 0.478± 0.112

Arel1 – −13.5± 5.8 −13.573± 4.721

χ2
min 3258.91 3231.61 6499.31

d.o.f. 3180−12 3180−14 6360−18
Probability 0.13 0.20 0.08

χ2(α‖ = α⊥ = 1) 3260.54 3235.79 6504.30

Notes. Errors on BAO parameters correspond to CL= 68.27%, while the other parameters have errors corresponding to ∆χ2 = 1. The σν, ∆r‖, ξTP
0

and Arel1 parameters are fit on the QSO×Lyα(Lyα+Lyβ) correlation function and fully described in Blomqvist et al. (2019).

yielded values of (α‖, α⊥) that are within 1.2σ of the Pl2015
model (Fig. B.2). We also fit the Lyα(Lyα)×Lyβ(Lyβ) corre-
lation as described in Appendix C. Adding the Lyβ absorption
data does not add a significant signal to the BAO peak, but it
does allow us to measure the Lyβ bias parameters.

Finally, we combine the measurement of Lyα auto-
correlation function of the present analysis with the Lyα –
quasar cross-correlation measurement of Blomqvist et al. (2019)
by performing a joint fit of the two correlation functions. We
use the baseline models of the two analyses and consider the
errors to be independent. The joint fit has 18 free parame-
ters and the effective redshift is z = 2.34. The results are
given in the column four of Table 7 and the constraints on
(α⊥, α‖) in the right panel of Fig. 9. From this combined fit, we
obtain:















α‖ = 1.049+0.026
−0.025

+0.052
−0.051

α⊥ = 0.942+0.032
−0.030

+0.067
−0.059

, (33)

corresponding to















DH(2.34)/rd = 9.00+0.22
−0.22

+0.45
−0.43

DM(2.34)/rd = 36.98+1.26
−1.18

+2.63
−2.32

. (34)

The value of χ2 for (α‖ = 1, α⊥ = 1) is 4.99 greater than the
best fit. Using the confidence levels of Table D.1, we conclude
that the results of the combined fit are 1.7σ from the predictions
of the Pl2015 model (Planck Collaboration XIII 2016).

6. Cosmological constraints

Baryon acoustic oscillation data over the redshift range 0.1 < z <
2.4 is in overall good agreement with the predictions of the flat
ΛCDM models consistent with CMB anisotropies, as illustrated
in Fig. 10. A striking illustration of the expansion history can
be made by transforming DH(z)/rd to H(z)rd. The measurement
presented here gives

H(2.34)
rd

rd(Pl2015)
= (227 ± 8) km s−1 Mpc−1. (35)

Figure 11 plots this value along with other measurements.
The data are consistent with the expected behavior of decelera-
tion at high redshift followed by acceleration at low redshift.

Independent of CMB data and without assuming flat-
ness, the BAO data by themselves constrain the parameters
(Ωm, ΩΛ, H0rd) of the (o)ΛCDM model. Using the combined
fit (Eq. (34)), the galaxy data of Beutler et al. (2011), Ross et al.
(2015), Alam et al. (2017), and Bautista et al. (2018) and the
quasar data of Ata et al. (2018) yield

ΩM = 0.293 ± 0.027, ΩΛ = 0.675 ± 0.099, (36)

corresponding to Ωk = 0.032 ± 0.117. The best fit gives
(c/H0)/rd = 29.78 ± 0.55, corresponding to hrd = (0.683 ±
0.013) × 147.33 Mpc. The Pl2015 model has χ2 = 13.76 for 12◦

of freedom and is within one standard deviation of the best fit,
as illustrated in Fig. 12.

7. Conclusions

We used Lyα and Lyβ spectral regions from the BOSS and
eBOSS DR14 data sample to study BAO. Following B17, we
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Fig. 10. Baryon acoustic oscillation measurement of DH/rd and DM/rd

using BOSS galaxies (Alam et al. 2017), Lyα absorption in BOSS-
eBOSS quasars (this work), and correlation between BOSS-eBOSS
quasars and Lyα absorption (Blomqvist et al. 2019). Other measure-
ments give DV/rd, with DV = D

2/3
M (zDH)1/3, using galaxies (Beutler

et al. 2011; Ross et al. 2015; Bautista et al. 2018) and BOSS-eBOSS
quasars (Ata et al. 2018). Solid lines show the Pl2015 values (Planck
Collaboration XIII 2016).

Fig. 11. Baryon acoustic oscillation measurement of the comoving
expansion rate, H(z)/(1+ z), measured with BAO with rd = 147.3 Mpc.
The red square is the present measurement at z = 2.34. The measure-
ment by Blomqvist et al. (2019) is the blue dot. The other points are
computed using galaxy measurements (Beutler et al. 2011; Ross et al.
2015; Alam et al. 2017). The points at z = 0.106 (Beutler et al. 2011)
and z = 0.15 (Ross et al. 2015) are converted from DV to H(z) using the
SNIa measurement of q0 given by Betoule et al. (2014). Solid black line
shows the Pl2015 values (Planck Collaboration XIII 2016).

built a model for the Lyα auto-correlation function that we then
fit to the data. Our model incorporates the effects of redshift
space distortions, the nonlinear growth of matter, the contamina-
tion by metals, and the modeling of HCD systems along the LOS
to quasars. Including UV fluctuations has only a minor impact
on the fit results. We measure the ratios DH/rd and DM/rd at the
average redshift of pixel pairs, z = 2.34. We also performed a
measurement of these ratios from the Lyα auto-correlation func-
tion in two redshift bins, at z = 2.19 and z = 2.49.

Fig. 12. One and two standard deviation constraints on (Ωm, ΩΛ). The
red contours use BAO measurements of DM/rd and DH/rd of this work,
those of Blomqvist et al. (2019) and Alam et al. (2017), and the mea-
surements of DV/rd of Beutler et al. (2011), Ross et al. (2015), Ata
et al. (2018) and Bautista et al. (2018). The gray contours do not use the
Lyα-quasar cross-correlation measurement of Blomqvist et al. (2019).
The green contours show the constraints from SN Ia Pantheon sample
(Scolnic et al. 2018). The black point indicates the values for the Planck
Collaboration XIII (2016) best-fit flat ΛCDM cosmology.

The DH/rd ratio is measured with a precision of ∼3.3%, a
slight improvement over the precision obtained by B17 for this
ratio. The DM/rd ratio is measured with a precision of ∼4.4%,
which represents an improvement of about 25% with respect to
B17. The cosmological measurements obtained in this analysis
are in agreement with the predictions of the flat ΛCDM model
(Pl2015) favored by the measurement of CMB anisotropies by
Planck.

We also combined the measurements of the present analysis
with those obtained from the cross-correlation of Lyα absorption
and quasars by Blomqvist et al. (2019). The latter alone favor a
value of the DH/rd ratio ∼3% higher than the one favored by the
Lyα auto-correlation. As a result, the best-fit value of DH/rd for
the combined fit is shifted towards a higher value than the best-
fit from the Lyα auto-correlation alone. Combining the measure-
ment of Lyα auto-correlation (this paper) with the quasar–Lyα
cross-correlation of Blomqvist et al. (2019), the BAO measure-
ments at z = 2.34 are within 1.7σ of the predictions of the
Pl2015 model.

The ensemble of BAO measurements is in good agree-
ment with the Pl2015 model (Planck Collaboration XIII 2016).
They provide an independent way of determining cosmological
parameters that is based only on low-redshift measurements. As
illustrated in Fig. 12, the BAO results are also consistent with the
recent Pantheon SNIa results (Scolnic et al. 2018).

The present measurements will be much improved by the
greater statistical power of the upcoming DESI (DESI Collabo-
ration 2016) and WEAVE-QSO (Pieri et al. 2016) projects. The
challenge will be to improve the physical modeling of the corre-
lation function in order to fully profit from the improved data.
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Slosar, A., Iršič, V., Kirkby, D., et al. 2013, J. Cosmol. Astropart. Phys., 4, 26
Smee, S. A., Gunn, J. E., Uomoto, A., et al. 2013, AJ, 146, 32
Wang, D., Zhao, G.-B., Wang, Y., et al. 2018, MNRAS, 477, 1528
Zarrouk, P., Burtin, E., Gil-Marín, H., et al. 2018, MNRAS, 477, 1639
Zhao, G.-B., Wang, Y., Saito, S., et al. 2019, MNRAS, 482, 3497

A85, page 13 of 20

http://www.sdss.org/
http://linker.aanda.org/10.1051/0004-6361/201935638/1
http://linker.aanda.org/10.1051/0004-6361/201935638/2
http://linker.aanda.org/10.1051/0004-6361/201935638/3
http://linker.aanda.org/10.1051/0004-6361/201935638/4
http://linker.aanda.org/10.1051/0004-6361/201935638/5
http://linker.aanda.org/10.1051/0004-6361/201935638/6
http://linker.aanda.org/10.1051/0004-6361/201935638/6
http://linker.aanda.org/10.1051/0004-6361/201935638/7
http://linker.aanda.org/10.1051/0004-6361/201935638/8
http://linker.aanda.org/10.1051/0004-6361/201935638/9
http://linker.aanda.org/10.1051/0004-6361/201935638/10
http://linker.aanda.org/10.1051/0004-6361/201935638/11
http://linker.aanda.org/10.1051/0004-6361/201935638/12
http://linker.aanda.org/10.1051/0004-6361/201935638/13
http://linker.aanda.org/10.1051/0004-6361/201935638/14
http://linker.aanda.org/10.1051/0004-6361/201935638/15
http://linker.aanda.org/10.1051/0004-6361/201935638/15
http://linker.aanda.org/10.1051/0004-6361/201935638/16
http://linker.aanda.org/10.1051/0004-6361/201935638/16
https://arxiv.org/abs/1808.09955
http://linker.aanda.org/10.1051/0004-6361/201935638/18
http://linker.aanda.org/10.1051/0004-6361/201935638/19
http://linker.aanda.org/10.1051/0004-6361/201935638/20
http://linker.aanda.org/10.1051/0004-6361/201935638/21
http://linker.aanda.org/10.1051/0004-6361/201935638/22
https://arxiv.org/abs/1611.00036
http://linker.aanda.org/10.1051/0004-6361/201935638/24
http://linker.aanda.org/10.1051/0004-6361/201935638/25
http://linker.aanda.org/10.1051/0004-6361/201935638/25
http://linker.aanda.org/10.1051/0004-6361/201935638/26
http://linker.aanda.org/10.1051/0004-6361/201935638/26
http://linker.aanda.org/10.1051/0004-6361/201935638/27
http://linker.aanda.org/10.1051/0004-6361/201935638/28
http://linker.aanda.org/10.1051/0004-6361/201935638/29
http://linker.aanda.org/10.1051/0004-6361/201935638/30
http://linker.aanda.org/10.1051/0004-6361/201935638/31
http://linker.aanda.org/10.1051/0004-6361/201935638/31
http://linker.aanda.org/10.1051/0004-6361/201935638/32
http://linker.aanda.org/10.1051/0004-6361/201935638/33
http://linker.aanda.org/10.1051/0004-6361/201935638/33
http://linker.aanda.org/10.1051/0004-6361/201935638/34
http://linker.aanda.org/10.1051/0004-6361/201935638/35
http://linker.aanda.org/10.1051/0004-6361/201935638/36
http://linker.aanda.org/10.1051/0004-6361/201935638/37
http://linker.aanda.org/10.1051/0004-6361/201935638/38
http://linker.aanda.org/10.1051/0004-6361/201935638/39
http://linker.aanda.org/10.1051/0004-6361/201935638/40
http://linker.aanda.org/10.1051/0004-6361/201935638/40
http://linker.aanda.org/10.1051/0004-6361/201935638/41
http://linker.aanda.org/10.1051/0004-6361/201935638/42
http://linker.aanda.org/10.1051/0004-6361/201935638/43
http://linker.aanda.org/10.1051/0004-6361/201935638/44
http://linker.aanda.org/10.1051/0004-6361/201935638/45
http://linker.aanda.org/10.1051/0004-6361/201935638/46
http://linker.aanda.org/10.1051/0004-6361/201935638/47
http://linker.aanda.org/10.1051/0004-6361/201935638/48
http://linker.aanda.org/10.1051/0004-6361/201935638/49
http://linker.aanda.org/10.1051/0004-6361/201935638/50
http://linker.aanda.org/10.1051/0004-6361/201935638/51
http://linker.aanda.org/10.1051/0004-6361/201935638/51
http://linker.aanda.org/10.1051/0004-6361/201935638/51
http://linker.aanda.org/10.1051/0004-6361/201935638/52
http://linker.aanda.org/10.1051/0004-6361/201935638/53
http://linker.aanda.org/10.1051/0004-6361/201935638/54
http://linker.aanda.org/10.1051/0004-6361/201935638/55
http://linker.aanda.org/10.1051/0004-6361/201935638/56
http://linker.aanda.org/10.1051/0004-6361/201935638/57
http://linker.aanda.org/10.1051/0004-6361/201935638/58
http://linker.aanda.org/10.1051/0004-6361/201935638/59
http://linker.aanda.org/10.1051/0004-6361/201935638/60
http://linker.aanda.org/10.1051/0004-6361/201935638/61
http://linker.aanda.org/10.1051/0004-6361/201935638/62


A&A 629, A85 (2019)

Appendix A: Effective redshift of the fitted

parameters

In this section we present a method to determine the region in
(r⊥, r‖, z) space that is most constraining for the various param-
eters in the fits of the correlation function. We can expect that
the parameters (α⊥, α‖) are mostly determined by (r⊥, r‖) bins
near the BAO peak and at a redshift near the mean redshift of the
pixel pairs used in the BAO region. Previous studies (B17, Busca
et al. 2013; Delubac et al. 2015) defined the effective redshift of
the BAO measurement in this way. Here, we make this intuitive
conclusion more precise by using a Fisher matrix analysis.

We use the Fisher matrix formalism as follows: given a
parameter p varying linearly with redshift, we define the effec-
tive redshift z0 at which it is measured by

p(z) = p0 + p1(z − z0), (A.1)

where p0 is the value given by the fit at z = z0. The covariance
matrix Cp between two parameters p0 and p1 is given by

Cp ≡
(

σ2
0 ρσ0σ1

ρσ0σ1 σ2
1

)

, (A.2)

where σ2
i

is the variance of the parameter pi, and ρ is the cor-
relation coefficient between p0 and p1. By definition, Cp is the
inverse of the Fisher matrix Fp :

C−1
p ≡ Fp ≡


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, (A.3)

with mi the model at bin i. In the case of the linear redshift depen-
dency (A.1), the Fisher matrix Fp at redshift z, computed using
the set of all the fitted parameter values, {λ0}, is given by

Fp(z) =
∑

i, j

∂mi

∂p

∣

∣

∣

∣{λ0}
C−1

i j

∂m j

∂p

∣

∣

∣

∣{λ0}

(

1 (z j − z)
(zi − z) (zi − z)(z j − z)

)

,

(A.4)

with zi the mean redshift of the pairs in bin i.
We represent the quantities ∂mi

∂p
for 4 of the 12 fitted parame-

ters of the Lyα auto-correlation function in Fig. A.1. The covari-
ance matrix Cp(z) then reads

Cp(z) =
1
|Fp|

∑

i j

Mi j

(

(zi − z)(z j − z) −(zi − z)
−(z j − z) 1

)

, (A.5)

with

Mi j ≡
∂mi

∂p

∣

∣

∣

∣{λ0}
C−1

i j

∂m j

∂p

∣

∣

∣

∣{λ0}
. (A.6)

Since Mi j is symmetric, the determinant of the Fisher matrix,
|Fp|, does not depend on redshift and is given by

Table A.1. Effective redshifts at which the α‖ and α⊥ parameters are
measured.

Correlation functions z zα|| zα⊥

Lyα(Lyα)×Lyα(Lyα) 2.35 2.34 2.34
Lyα(Lyα)×Lyα(Lyβ) 2.29 2.29 2.28

Lyα(Lyα)×Lyα(Lyα+Lyβ) 2.34 2.33 2.33
Lyα(Lyα)×Lyα(Lyα) (low z) 2.19 2.19 2.18
Lyα(Lyα)×Lyα(Lyα) (high z) 2.49 2.49 2.49

Lyα(Lyα)×Lyβ(Lyβ) 2.76 2.77 2.78

Notes. The average redshift of pairs is also given. Lyα(Lyα)×Lyα(Lyα)
(low z) and (high z) are introduced in Appendix B.

|Fp| =
∑

i, j,k,l

Mi jMklzi × (z j − zk). (A.7)

The variance of p0 at redshift z becomes:

σ2
0(z) =

1
|Fp|

∑

i j

Mi j(zi − z)(z j − z). (A.8)

The effective redshift z0 is the value which minimizes the
error on p0 :

dσ2
0

dz

∣

∣

∣

∣

z0

= − 2
|Fp|

∑

i j

Mi j(zi − z0) = 0, (A.9)

that is,

z0 =

∑

i j Mi jzi
∑

i j Mi j

· (A.10)

In the case of a combined fit, we compute one matrix Md for
each correlation function entering the fit:

Md
i j ≡
∂md

i

∂p

∣

∣

∣

∣{λ0}
(Cd

i j)
−1
∂md

j

∂p

∣

∣

∣

∣{λ0}
, (A.11)

where md
i

is the model for the correlation function d at bin i. In
this case, z0 reads

z0 =

∑

d

∑

i j Md
i j

zi

∑

d

∑

i j Md
i j

· (A.12)

Table A.1 presents the effective redshifts at which the α‖
and α⊥ parameters are measured for the different correlation
functions computed in this paper. The effective redshift values
differ by <0.5% for α‖ and α⊥. Figure A.1 shows the quanti-
ties ∂m/∂p in the (r⊥, r‖) plane for the fitted parameters p ∈
[α‖, α⊥, bLyα, bSiIII(1207)]. m is the baseline model for the Lyα
auto-correlation.
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Fig. A.1. Quantity ∂m/∂p in the (r⊥, r‖) plane for the fitted parameters p ∈ [α‖, α⊥, bLyα, bSiIII(1207)], where m is the baseline model of the Lyα
auto-correlation function. The graphs show which pixels contribute the most to the constraints on the considered parameter. BAO parameters α‖
and α⊥ are constrained by the bins around the location of the BAO peak, while the Lyα bias is mostly constrained by the bins at approximately zero
separation. We also note that the Si iii(1207) bias is mostly constrained by the bins r⊥ ∼ 0, r‖ ∼ 21 h−1 Mpc, in agreement with the r

ap
‖ apparent

separation given in Table 3.
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Appendix B: Fits in two redshift bins

Fig. B.1. Pixel pair redshift distribution of the subsamples used in the
present analysis: full Lyα auto-correlation function (gray), low-redshift
Lyα auto-correlation function (blue), high-redshift Lyα auto-correlation
function (red). The two latter subsamples are used to produce a mea-
surement of H(z) at z = 2.19 and z = 2.49.

The present data set is large enough to constrain the BAO param-
eters in two independent redshift bins, in a way similar to what
will be done in forthcoming cosmological surveys, such as the
DESI project (DESI Collaboration 2016). To simplify the analy-
sis, we consider only the Lyα(Lyα)×Lyα(Lyα) correlation func-
tion.

A straightforward way of defining a high- and low-redshift
sample of pixel pairs would be to simply use pixel pairs of mean
redshift less than or greater than an appropriately chosen value,
zcut. The drawback of such an approach is that a given pair of
forests could belong to both bins, as some pixels in a given forest
would be associated with some pixels in the other forest, either
in pixel pairs with mean redshift less than zcut, or in pixel pairs
with mean redshift greater than zcut. The fact that some pairs of
forests belong to both redshift bins introduces unwanted correla-
tions when correcting for the distortions introduced by our con-
tinuum fitting procedure. To circumvent this problem, we choose
to assign forest pairs to the high- or low-redshift sample by cut-
ting on the mean of the maximum z of the two forests.

We thus evaluate, for all pairs of forests (i, j), the following
quantity:

zi j =
zi

max,abs + z
j

max,abs

2
, (B.1)

where 1 + zk
max,abs = max(λk

obs)/λabs, with max λk
obs the last pixel

of forest k, and λabs the rest-frame wavelength of the considered
transition. The condition zi j < zcut defines the low-redshift bin,
while the opposite condition defines the high-redshift one.

The value of zcut is tuned so that the sum of the weights of
all absorber pairs in the high-redshift correlation function equals
the one of all pairs in the low-redshift correlation function. This
ensures the two bins have a comparable statistical power. This
process leads us to select zcut = 2.5. The redshift distribution of
absorber pairs obtained in this way are shown on Fig. B.1. The
average pair redshift is z = 2.19 and z = 2.49 for the low- and
high-redshift bin, respectively.

Figure B.3 presents the result of fitting the Lyα(Lyα)×
Lyα(Lyα) correlation baseline model to the data in the low- (blue

Fig. B.2. 68% and 95% confidence level contours in the (α‖, α⊥)
plane from the Lyα(Lyα)×Lyα(Lyα) computed with the low- and high-
redshift bins. The ∆χ2 values corresponding to confidence levels are
taken from Table D.1. The black dot corresponds to the Pl2015 model.

Table B.1. Results in two redshift bins from fitting the baseline model
to the Lyα(Lyα)×Lyα(Lyα) correlation function.

Parameters low z high z

α‖ 1.008± 0.043 1.088± 0.046
α⊥ 0.861± 0.062 0.977± 0.044

βLyα 2.083± 0.160 1.585± 0.113
bηLyα −0.218± 0.006 −0.201± 0.005

βHCD 0.745± 0.174 0.678± 0.179
bHCD −0.058± 0.007 −0.040± 0.006

bSiII(1190) −0.0049± 0.0015 −0.0045± 0.0016
bSiII(1193) −0.0067± 0.0015 −0.0021± 0.0015
bSiIII(1207) −0.0105± 0.0016 −0.0055± 0.0017
bSiII(1260) −0.0039± 0.0018 −0.0021± 0.0017
bCIV(eff) −0.0178± 0.0095 −0.0186± 0.0095

χ2
min 1580.95 1737.15

d.o.f. 1590−11 1590−11
Probability 0.481 0.003

χ2(α‖ = α⊥ = 1) 1584.30 1740.89

points) and high-redshift (red points) bins in the usual four µ
wedges.

Table B.1 shows the associated best-fit parameters. From the
table, we note that βLyα is notably different at low and high red-
shift. When fitting the full sample, we assumed βLyα to be con-
stant, following Kirkby et al. (2013). A redshift-dependent βLyα
could therefore be an improvement in future analyses.

From the lower right panel of Fig. B.3, we see that the
amplitude of the high-redshift correlation function is higher than
the amplitude of the low-redshift one. This is expected, as bLyα
increases with redshift (Kirkby et al. 2013).

Figure B.2 presents the constraints obtained, in the (α⊥,
α‖) parameter space, from fitting the Lyα auto-correlation
Lyα(Lyα)×Lyα(Lyα) in the low-(blue contours) and high-
redshift (red contours) bins. The values of ∆χ2 corresponding
to a given confidence level were taken from Table D.1. Both
the high- and low-redshift measurements are within 1.2σ of the
Pl1015 model.
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Fig. B.3. Lyα(Lyα)×Lyα(Lyα) function in four ranges of µ = r‖/r values, computed in a low-redshift (blue dots) and in a high-redshift (red
dots) bin obtained by splitting our sample so that the two bins have equivalent statistical power. The dashed lines correspond to the simple fits
to the data of the Lyα(Lyα)×Lyα(Lyα) correlation function, the solid line to the combining fits to the data of the Lyα(Lyα)×Lyα(Lyα) and
Lyα(Lyα)×Lyα(Lyβ) correlation functions.
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Appendix C: The Lyα(Lyα)×Lyβ(Lyβ) cross

correlation

Table C.1. Same as Table 3 for the main metal/metal, metal/Lyβ,
and Lyα/metal correlations relevant to the computation of the
Lyα(Lyα)×Lyβ(Lyβ) correlation function.

Transitions λ1/λ2 r
ap
|| [h−1 Mpc]

Si ii(1190)/Ovi(1038) 1.147 −88
Si ii(1193)/Ovi(1038) 1.150 −81
Si ii(1190)/Ovi(1032) 1.154 −73
Si ii(1193)/Ovi(1032) 1.156 −66
Si ii(1190)/Lyβ(1026) 1.161 −56
Si iii(1207)/Ovi(1038) 1.163 −52
Si ii(1193)/Lyβ(1026) 1.163 −50
Si iii(1207)/Ovi(1032) 1.169 −37
Lyα(1216)/Ovi(1038) 1.172 −31
Si iii(1207)/Lyβ(1026) 1.176 −20
Lyα(1216)/Ovi(1032) 1.178 −16
Si ii(1260)/Ovi(1038) 1.215 68
Si ii(1260)/Ovi(1032) 1.221 83
Si ii(1260)/Lyβ(1026) 1.229 100

Notes. The apparent separation r
ap
|| = (1 + z)H(z)

(

λ1
λα
− λ2
λβ

)

is computed
at the average redshift of 2.76.

As an extension of our main analysis, we compute the
Lyα(Lyα)×Lyβ(Lyβ) correlation function, following the pro-
cedure previously described. We computed the 1D correlation
function in the Lyβ region (Fig. C.1) to identify the contaminat-
ing metals (see Table C.1).

The results of this analysis are presented in Table C.2. The
Lyβ absorption signal is clearly detected as bLyβ is nonzero
at the 2.9σ level. We also see the signal due to Ovi(1032)
and Ovi(1036). We note that the correlation between Lyβ and
Si ii(1260) occurs near the BAO peak (last line of Table C.1).
Due to the small Lyβ absorption cross-section and to the small
wavelength extent of the Lyβ region, it is harder to detect the
BAO peak than for the Lyα auto-correlation function. Moreover,
the Lyβ-Si ii correlation further overlaps the BAO signal at small
r⊥, hampering its detection in our data.

Figure C.2 presents for the first time the 2D
Lyα(Lyα)×Lyβ(Lyβ) correlation function. It is shown in

the usual four wedges of µ values, as a function of r =
√

r2
‖ + r2

⊥
multiplied by the sign of r‖. We note that the model is not
symmetric around zero separation.

The oscillator strength of Lyβ absorption is a fifth of that
of Lyα, and consequently there are far fewer Lyβ HCD systems
than Lyα HCD systems. On the other hand Lyβ absorption in
our analysis occurs at a systematically higher redshift. Overall
we find that b

Lyα(Lyα)×Lyβ(Lyβ)
HCD is consistent with zero.

Fig. C.1. Same as Fig. 4 but for cross-correlation function of Lyα with
Lyβ regions, as a function of the ratio of transition wavelengths.

Table C.2. Results of the combining fit on Lyα(Lyα)×Lyα(Lyα),
Lyα(Lyα)×Lyα(Lyβ) and Lyα(Lyα)×Lyβ(Lyβ) correlation functions
with the BAO parameters (α‖, α⊥) fixed to 1.

Parameters Lyα(Lyα)×Lyα(Lyα)
+Lyα(Lyα)×Lyα(Lyβ)
+Lyα(Lyα)×Lyβ(Lyβ)

βLyα 1.840± 0.084
bηLyα −0.212± 0.004

βLyβ 1.123± 0.384
bηLyβ −0.098± 0.018

βHCD 1.116± 0.152
b

Lyα(Lyα)×Lyα(Lyα)
HCD −0.050± 0.004

b
Lyα(Lyα)×Lyα(Lyβ)
HCD −0.073± 0.005

b
Lyα(Lyα)×Lyβ(Lyβ)
HCD −0.002± 0.032

bOVI(1032) −0.0081± 0.0015
bOVI(1038) −0.0055± 0.0014
bSiII(1190) −0.0025± 0.0005
bSiII(1193) −0.0022± 0.0005
bSiIII(1207) −0.0035± 0.0005
bSiII(1260) −0.0011± 0.0006
bCIV(eff) −0.0047± 0.0025

χ2
min/d.o.f. 6469.77/(6360−15)

Probability 0.134

In summary, there are not enough data at present to constrain
the BAO peak position with Lyβ absorption only. However, Lyβ
absorption could be used to access to physical IGM parameters
at redshifts for which the Lyα absorption is saturated (Dijkstra
et al. 2004; Iršič & Viel 2014).
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Fig. C.2. Measured Lyα(Lyα)×Lyβ(Lyβ) correlation function in four ranges of µ. In order to see the asymmetry of this correlation function,
r = (r2

‖ + r2
⊥)1/2 is multiplied by the sign of r‖ which is positive if the Lyα absorber is farther than the Lyβ absorber, and negative in the

opposite configuration. The model for this correlation function (red solid line) is fitted on Lyα(Lyα)×Lyα(Lyα), Lyα(Lyα)×Lyα(Lyβ) and
Lyα(Lyα)×Lyβ(Lyβ).
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Appendix D: Confidence levels

To make a precise estimate of the relation between ∆χ2 and con-
fidence level, we closely followed the procedure of du Mas des
Bourboux et al. (2017). We generated a large number of simu-
lated correlation functions using the fiducial cosmological model
and the best-fit values of nonBAO parameters, randomized using
the covariance matrix measured with the data. Each simulated
correlation function was then fit for the model parameters and the
χ2 for the best-fit parameters compared with the best χ2 with one
or more parameters set to the known input values. Confidence
levels are the fractions of the generated data sets that have best
fits below the ∆χ2 limit. The uncertainties are estimated using a
bootstrap technique.

The analysis of du Mas des Bourboux et al. (2017) followed
this procedure using models that incorporated only Lyα absorp-
tion and models that incorporated also HCDs and metals. Since
no significant differences were seen in the two methods, we use
here only Lyα absorption, simplifying the analysis considerably.

The results are summarized in Table D.1 for various corre-
lation functions. In all cases the ∆χ2 values corresponding to
a given confidence level are increased above the standard val-
ues. For example, for the Lyα(Lyα)×Lyα(Lyα+Lyβ) correla-
tion, the one- and two-standard deviation contours for (α‖, α⊥)
correspond to ∆χ2 = 2.77 and ∆χ2 = 7.33, to be compared with
the standard values of 2.29 and 6.18.

Table D.1. Values of ∆χ2 corresponding to confidence levels (CLs)
(68.27, 95.45%).

Parameter ∆χ2 (68.27%) ∆χ2 (95.45%)

Lyα(Lyα)×Lyα(Lyα+Lyβ)
α‖ 1.19± 0.03 4.74± 0.09
α⊥ 1.23± 0.03 4.83± 0.08
(α‖, α⊥) 2.77± 0.04 7.33± 0.10
Lyα(Lyα)×Lyα(Lyα+Lyβ)
+QSO×Lyα(Lyα+Lyβ)
α‖ 1.08± 0.02 4.29± 0.10
α⊥ 1.08± 0.02 4.28± 0.10
(α‖, α⊥) 2.47± 0.03 6.71± 0.13
Lyα(Lyα) × Lyα(Lyα)
α‖ 1.19± 0.02 4.65± 0.09
α⊥ 1.17± 0.02 4.32± 0.07
(α‖, α⊥) 2.65± 0.04 6.99± 0.10
low z
α‖ 1.28± 0.02 5.09± 0.08
α⊥ 1.35± 0.02 5.09± 0.10
(α‖, α⊥) 2.89± 0.04 7.55± 0.12
high z
α‖ 1.28± 0.03 4.92± 0.09
α⊥ 1.23± 0.03 4.74± 0.08
(α‖, α⊥) 2.83± 0.04 7.44± 0.11

Notes. Values are derived from 10 000 Monte Carlo simulations of the
correlation function that are fit using the model containing only Lyα
absorption.
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