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ABSTRACT

We report a detection of the baryon acoustic oscillation (BAO) feature in the three-dimensional correlation function of the transmitted
flux fraction in the Lyα forest of high-redshift quasars. The study uses 48 640 quasars in the redshift range 2.1 ≤ z ≤ 3.5 from the
Baryon Oscillation Spectroscopic Survey (BOSS) of the third generation of the Sloan Digital Sky Survey (SDSS-III). At a mean
redshift z = 2.3, we measure the monopole and quadrupole components of the correlation function for separations in the range
20 h−1 Mpc < r < 200 h−1 Mpc. A peak in the correlation function is seen at a separation equal to (1.01 ± 0.03) times the distance
expected for the BAO peak within a concordance ΛCDM cosmology. This first detection of the BAO peak at high redshift, when
the universe was strongly matter dominated, results in constraints on the angular diameter distance DA and the expansion rate H at
z = 2.3 that, combined with priors on H0 and the baryon density, require the existence of dark energy. Combined with constraints
derived from cosmic microwave background observations, this result implies H(z = 2.3) = (224 ± 8) km s−1 Mpc−1, indicating that
the time derivative of the cosmological scale parameter ȧ = H(z = 2.3)/(1 + z) is significantly greater than that measured with BAO
at z ∼ 0.5. This demonstrates that the expansion was decelerating in the range 0.7 < z < 2.3, as expected from the matter domination
during this epoch. Combined with measurements of H0, one sees the pattern of deceleration followed by acceleration characteristic of
a dark-energy dominated universe.
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1. Introduction

Baryon acoustic oscillations (BAO) in the pre-recombination
universe have striking effects on the anisotropies of the cos-
mic microwave background (CMB) and on the large scale struc-
ture (LSS) of matter (Weinberg et al. 2012, and references
therein). The BAO effects were first seen in the series of peaks
in the CMB angular power spectrum (de Bernardis et al. 2000).
Subsequently, the BAO relic at redshift z ∼ 0.3 was seen
(Eisenstein et al. 2005; Cole et al. 2005) as a peak in the galaxy-
galaxy correlation function at a co-moving distance correspond-
ing to the sound horizon at recombination. For the WMAP7
cosmological parameters (Komatsu et al. 2011), the expected
comoving scale of the BAO peak is rs = 153 Mpc, with an
uncertainty of ≈1%.

The BAO peak in the correlation function at a redshift z
appears at an angular separation ∆θ = rs/(1 + z)DA(z) and
at a redshift separation ∆z = rsH(z)/c, where DA and H are
the angular distances and expansion rates. Measurement of the
peak position at any redshift thus constrains the combinations of
cosmological parameters that determine rsH and rs/DA. While
the possibility of measuring both combinations is beginning to
be exploited (Chuang & Wang 2012; Xu et al. 2012), most
present measurements have concentrated on the combination
DV ≡ [(1 + z)2D2

Acz/H]1/3, which determines the peak posi-
tion for an isotropic distribution of galaxy pairs and an isotropic
clustering strength. The “BAO Hubble diagram”, DV/rs vs. z,
now includes the Sloan Digital Sky Survey (SDSS) measure-
ment (Eisenstein et al. 2005) updated to the DR7 (Abazajian
et al. 2009) sample and combined with 2dF data (Percival et al.
2010), the 6dF point at z = 0.1 (Beutler et al. 2011), the WiggleZ
points at (0.4 < z < 0.8) (Blake et al. 2011a), and a reanalysis of
the SDSS DR7 sample that uses reconstruction (Eisenstein 2007;
Padmanabhan et al. 2009) to sharpen the precision of the BAO
measurement (Padmanabhan et al. 2012; Mehta et al. 2012).
Recently, the Baryon Oscillation Spectroscopic Survey (BOSS;
Dawson et al. 2013) of SDSS-III (Eisenstein et al. 2011) has
added a precise measurement at z ∼ 0.57 (Anderson et al. 2012).
BOSS has also reported a measurement of DA(z = 0.55)/rs
based on the BAO structure in the angular power spectrum of
galaxies (Seo et al. 2012).

In this paper, we present an observation of the BAO peak at
z ∼ 2.3 found in the flux correlation function of the Lyα forest
of BOSS quasars. This is the first such observation at a redshift
where the expansion dynamics is matter-dominated, z > 0.8. The
possibility of such a measurement was suggested by McDonald
(2003) and White (2003) and first studied in detail by McDonald
& Eisenstein (2007). While the galaxy BAO measurements are
most sensitive to DV ∝ D

2/3
A H−1/3, the Lyα flux transmission

is more sensitive to peculiar velocity gradient effects, which en-
hance redshift distortions and shift our sensitivity to the expan-
sion rate. As we shall show below, the most accurately measured
combination from the Lyα forest BAO peak is ∝D0.2

A H−0.8, and
the present BOSS data set allows us to determine its value to a
precision of 3.5%. Combining this result with constraints from
CMB observations allows us to deduce the value of H(z = 2.3)
accurate to 4%. Comparing our results with measurements of H0
and of H(0.2 < z < 0.8) reveals the expected sequence of decel-
eration and acceleration in models with dark energy.

The last decade has seen increasing use of Lyα absorp-
tion to investigate LSS. The number of quasars in early studies
(Croft et al. 1999, 2002; McDonald et al. 2000, 2006; Viel et al.
2004) was enough only to determine the Lyα absorption corre-
lation along individual lines of sight. With the BOSS project the

surface density of quasars is sufficient to probe the full three-
dimensional distribution of neutral hydrogen. A study using the
first 10 000 BOSS quasars was presented by Slosar et al. (2011).
This sample provided clear evidence for the expected long-range
correlations, including the redshift-space distortions due to the
gravitational growth of structure. With the SDSS data release
DR9 (Ahn et al. 2012), we now have ∼60 000 quasars at z ∼ 2.3
(Pâris et al. 2012), with a high enough surface density to observe
the BAO peak.

The use of Lyα absorption to trace matter has certain inter-
esting differences from the use of galaxies. Galaxy surveys pro-
vide a catalog of positions in redshift space that correspond to
points of high over-densities. On the other hand, the forest re-
gion of a quasar spectrum provides a complete mapping of the
absorption over a ∼400 h−1 Mpc (comoving) range starting about
100 h−1 Mpc in front of the quasar (so as to avoid the necessity
of modeling the quasar’s Lyα emission line). To the extent that
quasar lines of sight are random, a large collection of quasars can
provide a nearly unbiased sample of points where the absorp-
tion is measured. Cosmological simulations (Cen et al. 1994;
Petitjean et al. 1995; Zhang et al. 1995; Hernquist et al. 1996;
Miralda-Escudé et al. 1996; Theuns et al. 1998) indicate that
most of the Lyα absorption is due to cosmic filamentary struc-
tures with overdensities of order one to ten, much lower than
the overdensities of virialized halos sampled by galaxies. These
simulations have also indicated that, on large scales, the mean
Lyα absorption is a linear tracer of the mass overdensity (Croft
et al. 1997, 1998; Weinberg et al. 1998; McDonald et al. 2000;
McDonald 2003), implying a relation of the power spectrum
of the measured absorption to that of the underlying mass fluc-
tuations. Finally, the forest is observable in a redshift range in-
accessible to current large galaxy surveys and where theoretical
modeling is less dependent on non-linear effects in cosmological
structure formation. These factors combine to make Lyα absorp-
tion a promising tracer of mass that is complementary to galaxy
tracers.

With Lyα forest measurements along multiple sightlines, one
can attempt to reconstruct the underlying 3-dimensional mass
density field (Nusser & Haehnelt 1999; Pichon et al. 2001;
Gallerani et al. 2011), from which one can investigate topolog-
ical characteristics (Caucci et al. 2008) or the power spectrum
(Kitaura et al. 2012). However, the BOSS sample is fairly sparse,
with a typical transverse sightline separation ∼15 h−1 Mpc (co-
moving), and the signal-to-noise ratio in individual spectra is low
(see Fig. 2 below), which makes it poorly suited to such recon-
struction techniques. In this paper we take the more direct ap-
proach of measuring the BAO feature in the correlation function
of transmitted flux fraction (the ratio of the observed flux to the
flux expected in the absence of absorption).

The use of the Lyα forest is handicapped by the fact that not
all fluctuations of the transmitted flux fraction are due to fluctu-
ations of the density of hydrogen. Because the neutral hydrogen
density is believed to be determined by photo-ionization equi-
librium with the flux of ultraviolet (UV) photons from stars and
quasars, variations of the UV flux may contribute to fluctuations
of the transmitted flux (Worseck & Wisotzki 2006). In addition,
hydrogen can be self-shielded to ionizing photons, leading to
much higher neutral fractions and damping wings in strong ab-
sorption systems (Font-Ribera & Miralda-Escud 2012). Metals
present in the intergalactic medium provide additional absorp-
tion superimposed on the Lyα absorption (Pieri et al. 2010). A
further complication results from the fact that the flux correla-
tion function uses the fluctuations of the transmitted flux about
its mean value; this requires an estimate of the product of the
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mean absorption (as a function of absorber redshift) and the un-
absorbed flux for individual quasars (Le Goff et al. 2011).

All of these complications are important for a complete un-
derstanding of the statistics of the Lyα forest. Fortunately, they
are not expected to produce a sharp peak-like feature in the cor-
relation function, so the interpretation of a peak as due to BAO
should give robust constraints on the cosmological parameters.

The BOSS collaboration has performed three independent
analyses to search for BAO in Lyα forest. This paper presents
two of them, both of which aim to analyze the forest using simple
procedures at the expense of some loss of sensitivity. The third
analysis, with the goal of an optimal measurement of the flux
correlation function with a more complex method, is described
in a separate publication (Slosar et al. 2013).

Our methods are tested extensively on a set of detailed mock
catalogs of the BOSS Lyα forest data set. These mock catalogs,
which use the method presented by Font-Ribera et al. (2012),
will be described in detail in a forthcoming public release pa-
per (Bailey et al., in prep.). In addition, the BOSS collaboration
have also released a fiducial version of the DR9 Lyα forest spec-
tra (Lee et al. 2012b), with various per-object products includ-
ing masks, continua, and noise correction vectors designed to
aid in Lyα forest analysis. While our analyses implement their
own sample selection criteria and continuum determination pro-
cedures, we have also applied our measurement to this Lee et al.
(2012b) sample.

This paper is organized as follows. Section 2 presents the
BOSS quasar sample used in this analysis and the procedure
used to produce the quasar spectra. Section 3 describes the anal-
ysis to measure the correlation function. Section 4 derives the
monopole and quadrupole components of the correlation func-
tion and determines the significance of the peak observed in
these functions at the BAO scale. The cosmological implications
of our detection of a BAO peak are discussed in Sect. 5. Finally,
Appendix A provides a brief description of the mock spectra
used to test our methodology and Appendix B shows the result
of our BAO measurement applied to the BOSS Lyα sample of
Lee et al. (2012b).

2. The BOSS quasar sample and data reduction

The BOSS project (Dawson et al. 2013) of SDSS-III (Eisenstein
et al. 2011) is obtaining the spectra of ∼1.6 × 106 luminous
galaxies and ∼150 000 quasars. The project uses upgraded ver-
sions of the SDSS spectrographs (Smee et al. 2012) mounted on
the Sloan 2.5-m telescope (Gunn et al. 2006) at Apache Point,
New Mexico. BOSS galaxy and quasar spectroscopic targets are
selected using algorithms based primarily on photometry from
the SDSS camera (Gunn et al. 1998; York et al. 2000) in the
ugriz bands (Fukugita et al. 1996; Smith et al. 2002) reduced
and calibrated as described by Stoughton et al. (2002), Pier et al.
(2003), and Padmanabhan et al. (2008). Targets are assigned to
fibers appropriately positioned in the 3◦ diameter focal plane ac-
cording to a specially designed tiling algorithm (Blanton et al.
2003). Fibers are fixed in place by a pierced metal plate drilled
for each observed field and fed to one of two spectrographs. Each
exposed plate generates 1000 spectra covering wavelengths of
360 to 1000 nm with a resolving power ranging from 1500 to
3000 (Smee et al. 2012). A median of 631 of these fibers are as-
signed to galactic targets and 204 to quasar targets. The BOSS
spectroscopic targets are observed in dark and gray time, while
the bright-time is used by other SDSS-III surveys (see Eisenstein
et al. 2011).

90   150   210   270   330    30    90

0

   30

   60

   90

Fig. 1. Hammer-Aitoff projection in equatorial coordinates of the BOSS
DR9 footprint. The observations cover ∼3000 deg2.

The quasar spectroscopy targets are selected from photomet-
ric data with a combination of algorithms (Richards et al. 2009;
Yeche et al. 2009; Kirkpatrick et al. 2011; Bovy et al. 2011;
Palanque-Delabrouille et al. 2011; for a summary, see Ross et al.
(2012)). The algorithms use SDSS fluxes and, for SDSS Stripe
82, photometric variability. When available, we also use data
from non-optical surveys (Bovy et al. 2012): the GALEX survey
(Martin et al. 2005) in the UV; the UKIDSS survey (Lawrence
et al. 2007) in the near-infrared (NIR), and the FIRST survey
(Becker et al. 1995) in the radio.

The quasar spectroscopy targets are divided into two sam-
ples “CORE” and “BONUS”. The CORE sample consists of
20 quasar targets per square degree selected from SDSS pho-
tometry with a uniform algorithm, for which the selection ef-
ficiency for z > 2.1 quasars is ∼50%. The selection algorithm
for the CORE sample (Bovy et al. 2011) was fixed at the end of
the first year of the survey, thus making it useful for studies that
require a uniform target selection across the sky. The BONUS
sample was chosen from a combination of algorithms with the
purpose of increasing the density on the sky of observed quasars
beyond that of the CORE sample. The combined samples yield
a mean density of identified quasars of 15 deg−2 with a maxi-
mum of 20 deg−2, mostly in zones where photometric variabil-
ity, UV, and/or NIR data are available. The combined BONUS
plus CORE sample can be used for Lyα BAO studies, which re-
quire the highest possible quasar density in a broad sky area but
are insensitive to the uniformity of the quasar selection criteria
because the structure being mapped is in the foreground of these
quasar back-lights.

The data presented here consist of the DR9 data release (Ahn
et al. 2012) covering ∼3000 deg2 of the sky shown in Fig. 1.
These data cover about one-third of the ultimate BOSS footprint.

The data were reduced with the SDSS-III pipeline as de-
scribed in Bolton et al. (2012). Typically four exposures of
15 min were co-added in pixels of wavelength width ∼0.09 nm.
Besides providing flux calibrated spectra, the pipeline provided
preliminary object classifications (galaxy, quasar, star) and red-
shift estimates.

The spectra of all quasar targets were visually inspected,
as described in Pâris et al. (2012), to correct for misiden-
tifications or inaccurate redshift determinations and to flag
broad absorption lines (BAL). Damped Lyα troughs are visu-
ally flagged, but also identified and characterized automatically
(Noterdaeme et al. 2012). The visual inspection of DR9 con-
firms 60 369 quasars with 2.1 ≤ zq ≤ 3.5. In order to simplify the
analysis of the Lyα forest, we discarded quasars with visually
identified BALs and DLAs, leaving 48 640 quasars.
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Fig. 2. Top: weighted distribution of absorber redshifts used in the cal-
culation of the correlation function in the distance range 80 h−1 Mpc <
r < 120 h−1 Mpc. Bottom: distribution of signal-to-noise ratio for anal-
ysis pixels (triplets of pipeline pixels) averaged over the forest region.

For the measurement of the flux transmission, we use the
rest-frame wavelength interval

104.5 < λrf < 118.0 nm. (1)

The range is bracketed by the Lyα and Lyβ emission lines at
121.6 and 102.5 nm. The limits are chosen conservatively to
avoid problems of modeling the shapes of the two emission lines
and to avoid quasar proximate absorbers. The absorber redshift,
z = λ/λLyα − 1, is in the range 1.96 < z < 3.38. The lower
limit is set by the requirement that the observed wavelength be
greater than 360 nm below which the system throughput is less
than 10% its peak value. The upper limit comes from the max-
imum quasar redshift of 3.5, beyond which the BOSS surface
density of quasars is not sufficient to be useful. The distribution
of absorber redshift is shown in Fig. 2 (top panel). When given
the weights used for the calculation of the correlation function
(Sect. 3.3), the absorbers have a mean redshift of 〈z〉 = 2.31.

For the determination of the correlation function, we use
“analysis pixels” that are the flux average over three adjacent
pipeline pixels. Throughout the rest of this paper, “pixel” refers
to analysis pixels unless otherwise stated. The effective width
of these pixels is 210 km s−1, i.e. an observed-wavelength width
∼0.27 nm ∼ 2 h−1 Mpc. The total sample of 48 640 quasars thus
provides ∼8 × 106 measurements of Lyα absorption over a total
volume of ∼20 h−3 Gpc3.

Figure 2 (bottom panel) shows the distribution of the signal-
to-noise ratio for pixels averaged over the forest region. The rel-
atively modest mean value of 5.17 reflects the exposure times
necessary to acquire such a large number of spectra.

In addition to the BOSS spectra, we analyzed 15 sets of
mock spectra that were produced by the methods described in
Appendix A. These spectra do not yet reproduce all of the char-
acteristics of the BOSS sample, but they are nevertheless useful
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Fig. 3. An example of a BOSS quasar spectrum of redshift 3.239.
The red and blue lines cover the forest region used here, 104.5 <
λrf < 118.0. This region is sandwiched between the quasar’s Lyβ and
Lyα emission lines respectively at 435 and 515 nm. The blue line is
an estimate of the continuum (unabsorbed flux) by method 2 and the
red line is the estimate of the product of the continuum and the mean
absorption by method 1.

for a qualitative understanding of the shape of the measured cor-
relation function. More importantly, they are useful for under-
standing the detectability of a BAO-like peak and the precision
of the measurement of its position.

3. Measurement of the correlation function

The flux correlation function can be determined through a sim-
ple two-step process. In the first step, for each pixel in the for-
est region (Eq. (1)) of quasar q, the measured flux fq(λ) at ob-
served wavelength λ is compared with the mean expected flux,
Cq(λ)F(z), thus defining the “delta field”:

δq(λ) =
fq(λ)

Cq(λ)F(z)
− 1. (2)

Here, Cq(λ) is the unabsorbed flux (the so-called “continuum”)
and F(z) is the mean transmitted fraction at the HI absorber red-
shift. The quantities λ and z in Eq. (2) are not independent but
related via z = λ/λLyα − 1.

Figure 3 shows an example of an estimation for Cq(λ) (blue
line) and CqF (red line). Our two methods for estimating Cq

and F are described in Sects. 3.1 and 3.2.
In the second step, the correlation function is calculated as a

weighted sum of products of the deltas:

ξ̂A =
∑

i j∈A
wi jδiδ j/

∑

i j∈A
wi j, (3)

where the wi j are weights and each i or j indexes a measure-
ment on a quasar q at wavelength λ. The sum over (i, j) is un-
derstood to run over all pairs of pixels of all pairs of quasars
within A defining a region in space of pixel separations, ri − r j.
The region A is generally defined by a range rmin < r < rmax and
µmin < µ < µmax with:

r = |ri − r j| µ =
(ri − r j)‖

r
(4)

where (ri − r j)‖ is the component along the line of sight.
Separations in observational pixel coordinates (RA, Dec, z) are
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transformed to (r, µ) in units of h−1 Mpc by using a ΛCDM fidu-
cial cosmology with matter and vacuum densities of

(ΩM,ΩΛ) = (0.27, 0.73). (5)

In the sum (3), we exclude pairs of pixels from only one quasar
to avoid the correlated errors in δi and δ j coming from the esti-
mate of Cq. Note that the weights in Eq. (3) are set to zero for
pixels flagged by the pipeline as having problems due, e.g., to
sky emission lines or cosmic rays.

A procedure for determining ξ is defined by its method for
estimating the expected flux CqF and by its choice of weights,
wi j. The two methods described here use the same technique to
calculate weights but have different approaches to estimate CqF.
We will see that the two methods produce correlation functions
that have no significant differences. However, the two indepen-
dent codes were invaluable for consistency checks throughout
the analysis.

The two methods were “blind” to the extent that many of the
procedures were defined during tests either with mock data or
with the real data in which we masked the region of the peak
in the correlation function. Among those aspects fixed in this
way were the quasar sample, the continuum determination, the
weighting, the extraction of the monopole and quadrupole cor-
relation function and the determination of the peak significance
(Sect. 4). This early freezing of procedures resulted in some that
are suboptimal but which will be improved in future analyses.
We note, however, that the procedures used to extract cosmolog-
ical information (Sect. 5) were decided on only after de-masking
the data.

3.1. Continuum fits, method 1

Both methods for estimating the product CqF assume that Cq is,
to first approximation, proportional to a universal quasar spec-
trum that is a function of rest-frame wavelength, λrf = λ/(1+ zq)
(for quasar redshift zq), multiplied by a mean transmission frac-
tion that slowly varies with absorber redshift. Following this as-
sumption, the universal spectrum is found by stacking the ap-
propriately normalized spectra of quasars in our sample, thus
averaging out the fluctuating Lyα absorption. The product CqF
for individual quasars is then derived from the universal spec-
trum by normalizing it to account for the quasar’s mean forest
flux and then modifying its slope to account for spectral-index
diversity and/or photo-spectroscopic miscalibration.

Method 1 estimates directly the product CqF in Eq. (2). An
example is given by the red line in Fig. 3. The estimate is made
by modeling each spectrum as

CqF = aq

(

λ

〈λ〉

)bq

f (λrf , z) (6)

where aq is a normalization, bq a “deformation parameter”, and
〈λ〉 is the mean wavelength in the forest for the quasar q and
f (λrf , z) is the mean normalized flux obtained by stacking spectra
in bins of width ∆z = 0.1:

f (λrf , z) =
∑

q

wq fq(λ)/ f 128
q

/

∑

q

wq. (7)

Here z is the redshift of the absorption line at observed wave-
length λ (z = λ/λLyα − 1), fq is the observed flux of quasar q

at wavelength λ and f 128
q is the average of the flux of quasar

q for 127.5 < λrf < 128.5 nm. The weight wq(λ) is given

360 380 400 420 440 460 480 500 520
λ (nm)

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

<
δ>

2.0 2.2 2.4 2.6 2.8 3.0 3.2
redshift

Fig. 4. Mean of δ(λ) as a function of observed wavelength (method 1).
Systematic offsets from zero are seen at the 2% level. The calcium lines
(393.4, 396.8 nm) is present. The features around the hydrogen lines
Hγ, δ and ǫ (434.1, 410.2, 397.0 nm) are artifacts from the use of F-stars
for the photocalibration of the spectrometer.

by w−1
q = 1/[ivar(λ) · ( f 128

q )2]+σ2
flux, LSS. The quantity ivar is the

pipeline estimate of the inverse flux variance in the pixel corre-
sponding to wavelength λ. The quantity σ2

flux, LSS is the contri-
bution to the variance in the flux due to the LSS. We approxi-
mate it by its value at the typical redshift of the survey, z ∼ 2.3:
σ2

flux, LSS ∼ 0.035 (Sect. 3.3).
Figure 4 shows the resulting mean δi as a function of ob-

served wavelength. The mean fluctuates about zero with up to
2% deviations with correlated features that include the H and
K lines of singly ionized calcium (presumably originating from
some combination of solar neighborhood, interstellar medium
and the Milky Way halo absorption) and features related to
Balmer lines. These Balmer features are a by-product of imper-
fect masking of Balmer absorption lines in F-star spectroscopic
standards, which are used to produce calibration vectors (in the
conversion of CCD counts to flux) for DR9 quasars. Therefore
such Balmer artifacts are constant for all fibers in a plate fed
to one of the two spectrographs and so they are approximately
constant for every “half-plate”.

If unsubtracted, the artifacts in Fig. 4 would lead to spuri-
ous correlations, especially between pairs of pixels with sepa-
rations that are purely transverse to the line of sight. We have
made a global correction by subtracting the quantity 〈δ〉(λ) in
Fig. 4 (un-smoothed) from individual measurements of δ. This
is justified if the variance of the artifacts from half-plate-to-half-
plate is sufficiently small, as half-plate-wide deviations from our
global correction could, in principle add spurious correlations.

We have investigated this variance both by measuring the
Balmer artifacts in the calibration vectors themselves and by
studying continuum regions of all available quasars in the DR9
sample. Both studies yield no detection of excess variance aris-
ing from these artifacts, but do provide upper limits. The study
of the calibration vectors indicate that the square-root of the vari-
ance is less than 20% of the mean Balmer artifact deviations and
the study of quasar spectra indicate that the square-root of the
variance is less than 100% of the mean Balmer artifacts (and
less than 50% of the mean calcium line deviations).

We then performed Monte Carlo simulations by adding a
random sampling of our measured artifacts to our data to con-
firm that our global correction is adequate. We found that there
is no significant effect on the determination of the BAO peak
position, even if the variations are as large as that allowed in
our tests.
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3.2. Continuum fits, method 2

Method 1 would be especially appropriate if the fluxes had a
Gaussian distribution about the mean absorbed flux, CqF. Since
this is not the case, we have developed method 2 which explicitly
uses the probability distribution function for the transmitted flux
fraction F, P(F, z), where 0 < F < 1. We use the P(F, z) that
results from the log-normal model used to generate mock data
(see Appendix A).

Using P(F, z), we can construct for each BOSS quasar the
PDF of the flux in pixel i, fi, by assuming a continuum Cq(λi)
and convolving with the pixel noise, σi:

Pi( fi,Cq(λi), zi) ∝
∫ 1

0
dFP(F, zi) exp

⎡

⎢

⎢

⎢

⎢

⎣

−(CqF − fi)2

2σ2
i

⎤

⎥

⎥

⎥

⎥

⎦

· (8)

The continuum is assumed to be of the form

Cq(λ) = (aq + bqλ) f (λrf) (9)

where f (λrf) is the mean flux as determined by stacking spectra
as follows:

f (λrf) =
∑

q

wq(λrf)
[

fq(λrf)/ f 128
q

]

/

∑

q

wq (10)

as in Eq. (7) except that here there is no redshift binning. The
parameters aq and bq are then determined for each quasar by
maximizing a likelihood given by

L(Cq) =
∏

i

Pi[ fi,Cq(λi)]. (11)

Figure 3 shows the Cq(λ) estimated for a typical quasar (blue
line).

The last element necessary to use Eq. (2) is the mean trans-
mitted flux fraction F(z). If P(F, z) derived from the mocks were
the true distribution of the transmitted flux fraction, then F(z)
could simply be computed from the average of this distribution.
Since this is not precisely true, we determine F(z) from the data
by requiring that the mean of the delta field vanish for all red-
shifts. The F(z) we obtain is shown in Fig. 5. The unphysical
wiggles in the derived F(z) are associated with the aforemen-
tioned residuals in δ(λ) for method 1 (Fig. 4).

There is one inevitable effect of our two continuum estimat-
ing procedures. The use of the forest data in fitting the contin-
uum effectively forces each quasar to have a mean absorption
near that of the mean for the entire quasar sample. This ap-
proach introduces a spurious negative correlation between pix-
els on a given quasar even when well separated in wavelength.
This negative correlation has no direct effect on our measure-
ment of the flux correlation function because we do not use pixel
pairs from the same quasar. However, the physical correlation
between absorption on neighboring quasars causes the unphysi-
cal negative correlation for individual quasars to generate a neg-
ative contribution to the correlation measured with quasar pairs.
Fortunately, this distortion is a smooth function of scale so it can
be expected to have little effect on the observability or position
of the BAO peak. This expectation is confirmed by analysis of
the mock spectra (Sect. 5).

3.3. Weights

A discussion on the optimal use of weights for the Lyα corre-
lation function is found in McQuinn & White (2011). Here we
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Fig. 5. Mean transmitted flux fraction as a function of redshift ob-
tained from the continuum fits with method 2. Data are shown in black,
mock-000 in red and the input mean transmitted flux fraction in blue.

simply choose the weights wi j so as to approximately minimize
the relative error on ξ̂A estimated with Eq. (3). In the approxima-
tion of uncorrelated pixels, the variance of ξ̂A is

Var(ξ̂A) =

∑

i, j∈A w
2
i j
ξiiξ j j

[

∑

i, j∈A wi j

]2
ξii = 〈δ2

i 〉 (12)

where the pixel variance, ξii, includes contributions from both
observational noise and LSS. The signal-to-noise ratio is:

(

S

N

)2

=
〈ξ̂A〉2

Var(ξ̂A)
≃

(

∑

i j∈A ξi jwi j

)2

∑

i j∈A ξiiξ j jw
2
i j

· (13)

Because of LSS growth and redshift evolution of the mean ab-
sorption, the ξi j depend on redshift and we use the measured de-
pendence of the 1d correlation function (McDonald et al. 2006)

ξi j(z) = (1 + zi)
γ/2(1 + z j)

γ/2ξi j(z0) γ ∼ 3.8. (14)

Maximizing the signal-to-noise ratio with respect to wi j this
gives:

wi j ∝
(1 + zi)γ/2(1 + z j)γ/2

ξ2
ii
ξ2

j j

· (15)

For this expression to be used, we require a way of estimating
the ξii. We assume that it can be decomposed into a noise term
and a LSS term (σLS S ):

ξ2ii =
σ2

pipeline,i

η(zi)
+ σ2

LSS(zi) zi = λi/λLyα − 1, (16)

where σ2
pipeline,i = [ivar(CqF)2]−1 is the pipeline estimate of the

noise-variance of pixel i and η is a factor that corrects for a pos-
sible misestimate of the variance by the pipeline.

We then organize the data in bins of σ2
pipeline,i and redshift.

In each such bin, we measure the variance of δi, which serves as
an estimator of ξii for the bin in question. The two functions η(z)
and σ2

LSS(z) can then be determined by fitting Eq. (16).
These fits are shown in Fig. 6. The top panel shows that the

measured inverse variance follows the inverse pipeline variance
until saturating at the redshift-dependent LSS variance (shown
on the bottom left panel). For z > 3, there are not enough pixel
pairs to determine η(z) and σ2

LSS(z). In this high redshift range,
we assumed η = 1 and extrapolated σLSS(z) with a second-
degree polynomial fit to the z < 3 data.
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Fig. 6. Top panel: inverse total variance in bins of redshift as a function
of the pipeline inverse variance. Bottom panel: parameters of the fit: the
LSS contribution σLSS (left) and the pipeline correction factor η (right)
as a function of redshift. The lines show fits to the data as explained in
the text.

3.4. ξ(r, µ)

The procedure described above was used to determine ξ(r, µ)
through Eq. (3) in r-bins of width 4 h−1 Mpc (centered at 2,6,...,
198 h−1 Mpc) and in µ-bins of width 0.02, (centered at 0.01,
0.03, ... 0.99). The 50× 50 r − µ bins have an average of 6× 106

terms in the sum (3) with an average nominal variance of ξ for
individual bins of (10−4)2 as given by (Eq. (12)).

Figure 7 shows an example of ξ(r, µ) for the r bin centered
on 34 h−1 Mpc. The blue dots are the data and the red dots are
the mean of the 15 mocks. The function falls from positive to
negative values with increasing µ, as expected from redshift dis-
tortions. The effect is enhanced by the deformation due to the
continuum subtraction.

Figure 8 presents ξ(r, µ) averaged over three bins in µ. A
clear peak at the expected BAO position, rs = 105 h−1 Mpc, is
present in the bin 0.8 < µ < 1.0 corresponding to separation
vectors within 37◦ of the line-of-sight. The curves show the best
fits for a ΛCDM correlation function, as described in Sect. 5.

The data were divided into various subsamples to search
for systematic errors in ξ(r, µ). For example, searches were
made for differences between the northern and southern Galactic
cap regions and between higher and lower signal-to-noise ra-
tio quasars. No significant differences were found in the overall
shape and amplitude of the correlation function. We also verified
that the BAO peak position does not change significantly when
wavelength slices of Lyα forest data are eliminated, in particular
slices centered on the Balmer features in Fig. 4. The peak posi-
tion also does not change significantly if the subtraction of the
mean δ (Fig. 4) is suppressed.
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Fig. 7. ξ(r, µ) vs. µ2 for the bin centered on r = 34 h−1 Mpc. The red dots
are the mean of the 15 mocks and the blue dots are the data.
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Fig. 8. ξ(r, µ) averaged over 0.1 < µ < 0.5, 0.5 < µ < 0.8 and 0.8 <
µ < 1. The curves give fits (Sect. 5) to the data imposing concordance
ΛCDM cosmology. The BAO peak is most clearly present in the data
for µ > 0.8.
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4. The monopole and quadrupole

The analysis of the correlation function was performed in the
framework of the standard multipole decomposition (Hamilton
1992). For each bin in r we fit a monopole (ℓ = 0) and
quadrupole (ℓ = 2) to the angular dependence:

ξ̂(r, µ) =
∑

ℓ=0,2

ξℓ(r)Pℓ(µ) = [ξ0(r) − ξ2(r)/2]+ [3ξ2(r)/2]µ2 (17)

where Pℓ is the ℓ-Legendre polynomial. We ignore the small and
poorly determined ℓ = 4 term. This fit is performed using a sim-
ple χ2 minimization with the nominal variance (Eq. (12)) and ig-
noring the correlations between bins. This approach makes the fit
slightly sub-optimal. (Later, we will correctly take into account
correlations between r-bins of the monopole and quadrupole.)
We also exclude from this fit the portion µ < 0.1 to avoid resid-
ual biases due to correlated sky subtraction across quasars; this
has a negligible impact on the fits and, at any rate, there is little
BAO signal at low µ.

Figure 9 displays the monopole and quadrupole signals
found by the two methods. The two methods are slightly off-
set from one another, but the peak structure is very similar.
Figure 9 also shows the combination ξ0 + 0.1ξ2 which, because
of the small monopole-quadrupole anti-correlation (Sect. 4.1), is
a better-determined quantity. The peak structure seen in Fig. 8 is
also present in these figures.

Because of the continuum estimation procedure (Sects. 3.1
and 3.2), we can expect that the monopole and quadrupole
shown in Fig. 9 are deformed with respect to the true monopole
and quadrupole. The most important difference is that the mea-
sured monopole is negative for 60 h−1 Mpc < r < 100 h−1 Mpc
while the true ΛCDM monopole remains positive for all r <
130 h−1 Mpc. The origin of the deformation in the continuum
estimate is demonstrated in Appendix A where both the true and
estimated continuum can be used to derive the correlation func-
tion (Fig. A.1). As expected, the deformation is a slowly varying
function of r so neither the position of the BAO peak nor its am-
plitude above the slowly varying part of the correlation function
are significantly affected.

4.1. Covariance of the monopole and quadrupole

In order to determine the significance of the peak we must esti-
mate the covariance matrix of the monopole and quadrupole. If
the fluctuations δi in Eq. (3) in different pixels were uncorrelated,
the variance of ξA would simply be the weighted products of the
fluctuation variances. This yields a result that is ∼30% smaller
than the true correlation variance that we compute below. The
reason is, of course, that the δ-pairs are correlated, either from
LSS or from correlations induced by instrumental effects or con-
tinuum subtraction; this effect reduces the effective number of
pairs and introduces correlations between (r, µ) bins.

Rather than determine the full covariance matrix for ξ(r, µ),
we determined directly the covariance matrix for ξ0(r) and ξ2(r)
by standard techniques of dividing the full quasar sample into
subsamples according to position on the sky. In particular we
used the sub-sampling technique described below. We also tried
a bootstrap technique (e.g. Efron & Gong 1983) consisting of
substituting the entire set of N subdivisions of the data by N
of these subdivisions chosen at random (with replacement) to
obtain a “bootstrap” sample. The covariances are then measured
from the ensemble of bootstrap samples. Both techniques give
consistent results.
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Fig. 9. Monopole (upper panel) and quadrupole (middle panel) correla-
tion functions found by method 1 (red) and method 2 (black). The bot-
tom panel shows the combination ξ0 + 0.1ξ2 found by method 1 (red)
and method 2 (black).

The adopted covariance matrix for the monopole and
quadrupole uses the sub-sampling technique. We divide the data
into angular sectors and calculate a correlation function in each
sector. Pairs of pixels belonging to different sectors contribute
only to the sector of the pixel with lower right ascension. We
investigated two different divisions of the sky data: defining 800
(contiguous but disjoint) sectors of similar solid angle, and tak-
ing the plates as defining the sectors (this latter version does not
lead to disjoint sectors). The two ways of dividing the data lead
to similar covariance matrices.

Each sector s in each division of the data provides a mea-
surement of ξs(r, µ) that can be used to derive a monopole and
quadrupole, ξℓs(r), (ℓ = 0, 2). The covariance of the whole BOSS
sample can then be estimated from the weighted and rescaled co-
variances for each sector:
√

W(r)W(r′)Cov[ξ̂ℓ(r), ξ̂ℓ′(r
′)] =

〈√

Ws(r)Ws(r′)
[

ξ̂ℓs(r)ξ̂ℓ′ s(r
′) − ξℓ(r)ξℓ′ (r

′)
] 〉

. (18)
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Fig. 10. r-dependence of the product of the monopole (top) and
quadrupole (middle) variances and the number of pairs in the r-bin.
The bottom panel shows the product for the monopole-quadrupole
covariance (r = r′ elements). The dotted lines show the means for
r > 20 h−1 Mpc.

The average denoted by 〈 〉 is the simple average over sec-
tors, while ξℓ(r) denotes the correlation function measured for
the whole BOSS sample. The Ws(r) are the summed pixel-pair
weights for the radial bin r for the sector s and W(r) is the same
sum for the whole BOSS sample.

The most important terms in the covariance matrix are the
r = r′ terms, i.e. the monopole and quadrupole variances. They
are shown in Fig. 10 as a function of r. In the figure, they are
multiplied by the number N of pixel pairs in the r-bin. The prod-
uct is nearly independent of r, as expected for a variance nearly
equal to the pixel variance divided by N. For the monopole, the
variances are only about 30% higher than what one would calcu-
late naively assuming uncorrelated pixels and Eq. (12). Figure 10
also displays the monopole-quadrupole covariance times num-
ber of pairs, which also is nearly independent of r.

Figure 11 displays the monopole-monopole and quadrupole-
quadrupole covariances. Nearest-neighbor covariances are of
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Fig. 11. Monopole and quadrupole covariance matrix. The monopole-
monopole and quadrupole-quadrupole elements are normalized to the
variance: Ci j/

√

CiiC j j. The monopole-quadrupole elements are nor-
malized to the mean of the quadrupole and monopole variances. The
first off-diagonal elements of the monopole-monopole and quadrupole-
quadrupole elements are ∼20% of the diagonal elements. The diagonal
elements of the quadrupole-monopole covariance are ∼−0.2 times the
geometric mean of the monopole and quadrupole variances.

order 20%. Figure 11 also shows monopole-quadrupole
covariance.

We used the 15 sets of mock spectra to test our method for
calculating the covariance matrix. From the 15 measurements
of ξℓ(r) one can calculate the average values of ξℓ(r)ξℓ′ (r′) and
compare them with those expected from the covariance ma-
trix. Figures 12 shows this comparison for the monopole and
quadrupole variance, the monopole and quadrupole covariances
between neighboring r-bins and the monopole-quadrupole co-
variance. The agreement is satisfactory.
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Fig. 12. Verification of the off-diagonal elements of the covariance ma-
trix with the 15 sets of mock spectra. The black lines show correlations
derived from the dispersion of the 15 measurements and the red lines
show the correlations expected from the covariance matrix calculated
by sub-sampling. The top and middle panels show the correlation be-
tween neighboring bins for monopole and quadrupole respectively. The
bottom panel, the correlation between monopole and quadrupole mea-
sured at the same distance bin.

4.2. Detection significance of the BAO peak

In this section, we estimate the significance of our detection
of a BAO peak at 105 h−1 Mpc. At the statistical power of the
present data, it is clear that the peak significance will depend to
some extent on how we treat the so-called “broadband” correla-
tion function on which the peak is superimposed. In particular,
the significance will depend strongly on the r-range over which
the correlation functions are fitted. To the extent that the BAO
peak is known to be present in the matter correlation function
and that the Lyα absorption is known to trace matter, the actual
significance is of limited interest for cosmology. Of greater in-
terest is the uncertainty in the derived cosmological parameter
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Fig. 13. Fitting functions used for the determination of the peak de-
tection significance: r2ξbb(r) (blue), r2[ξpeak(r) + ξbb(r)] (black) and
r2ξdist(r) (red) for the monopole (solid lines) and quadrupole (dashed
lines).

constraints (Sect. 5) which will be non-linear reflections of the
peak significance derived here.

A detection of the BAO peak requires comparing the quality
of a fit with no peak (the null hypothesis) to that of a fit with a
peak. Typically, this exercise would be performed by choosing
a test statistic, such as the χ2, computing the distribution of this
quality indicator from a large number of peak-less simulations
and looking at the consistency of the data with this distribution.
Since our mock data sets are quite computationally expensive
and only a handful are available, we chose a different approach.

Our detection approach uses the following expression to fit
the observed monopole and quadrupole.

ξℓ(r) = Bℓξ
BB
ℓ (r) +Cℓξ

peak
ℓ

(r) + Aℓξ
dist
ℓ (r) (19)

where ξBB
ℓ

is a broadband term to describe the LSS correlation

function in the absence of a peak, ξpeak
ℓ

is a peak term, and ξdist
ℓ

is a “distortion” term used to model the effects of continuum
subtraction. The broadband term is derived from the fiducial
ΛCDM cosmology defined by the parameters in Eq. (A.1). It is
obtained by fitting the shape of the fiducial correlation function
with an 8-node spline function masking the region of the peak
(80 h−1 Mpc < r < 120 h−1 Mpc). The peak term is the difference
between the theoretical correlation function and the broadband
term. Finally, the distortion term is calculated from simulations,
as the difference in the monopole or quadrupole measured using
the true continuum and that measured from fitting the continuum
as described in Appendix A. The three components are shown in
Fig. 13.

Expression (19) contains three parameters each for the
monopole and quadrupole (so six in total). We have performed
fits leaving all six parameters free and fits where we fix the ra-
tio C2/C0 to be equal to its nominal value used to generate our
mock spectra (the value given by assuming a “redshift distor-
tion parameter” β = 1.4, see Appendix A). We define the test
statistic as the χ2 difference between fitting Eq. (19) simultane-
ously to monopole and quadrupole by fixing C0 to zero (a “peak-
less” four or five-parameter fit) and fitting for C0 (a five or six-
parameter fit). In our detection fits we do not fit for the BAO
position but fix it to the theoretical prediction. The distribution
for this test statistic (“∆χ2

det”) under the null hypothesis is a χ2

distribution with one degree of freedom. The significance is then
given by σ = (∆χ2

det)
1/2.

Figure 14 shows the fits to monopole (top panel) and
quadrupole (bottom panel) and the corresponding fits with and
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Fig. 14. Monopole and quadrupole fits with a BAO peak (red line) and
without a BAO peak (blue line, Method 2). The fitting range is rmin <

r < 200 h−1 Mpc with rmin = 20 h−1 Mpc.

without peaks and fixing β = 1.4. For method 2, we obtain
χ2/d.o.f. = 93.7/85 (111.8/86) with (without) a peak, giving
∆χ2 = 18.1 for a detection significance of 4.2σ. For method 1,
we obtain χ2/d.o.f. = 93.2/85 (102.2/86) for a significance of
3.0σ. Allowing β to be a free parameter gives essentially the
same detection significances.

The detection significance of ∼4σ is typical of that which
we found in the 15 sets of mock spectra. For the mocks, the
significances ranged from 0 to 6σ with a mean of 3.5σ.

Our significance depends strongly on the fitting range. For
a lower boundary of the range of rmin = 20, 40, 60 h−1 Mpc
we obtain a significance of σ = 4.2, 3.2 and 2.3, respectively
(method 2). The reason for this result is illustrated in Fig. 15,
where the results of the fits with and without peaks are com-
pared to data for different values of rmin = 20, 40, 60 h−1 Mpc.
Reducing the fitting range poses less stringent constraints on
the distortion and broadband terms, thus allowing some of the
peak to be attributed to the broadband. In particular, the sta-
tistically insignificant bump in the quadrupole at ∼65 h−1 Mpc
causes the fitted broadband to increase as rmin is increased to
60 h−1 Mpc, decreasing the amplitude of the BAO peak. For the
monopole, the rmin = 60 h−1 Mpc fit predicts a positive slope
for ξ0(r) that decreases the amplitude of the peak but predicts a
ξ0(r < 50 h−1 Mpc) to be much less than what is measured.

5. Cosmology with the BAO peak

The observed position of the BAO peak in ξ(r, µ) is determined
by two sets of cosmological parameters: the “true” parameters
and the “fiducial” parameters. Nature uses the true cosmology to
create correlations at the true sound horizon, rs. The true cosmol-
ogy transforms physical separations between Lyα absorbers into
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Fig. 15. Same as Fig. 14 except for different fitting ranges: blue, green
and red curves are for fits with rmin = 20 h−1 Mpc, 40 h−1 Mpc and
60 h−1 Mpc respectively (Method 2). The solid lines for fits without a
BAO peak and the dashed lines with a peak.

angles on the sky and redshift differences: θBAO = rs/DA(z)(1+z)
and ∆zBAO = rsH(z)/c. We, on the other hand, use a “fiducial”
cosmology (defined by Eq. (A.1)) to transform angular and red-
shift differences to local distances at the redshift in question to
reconstruct ξ(r, µ). If the fiducial cosmology is the true cosmol-
ogy, the reconstructed peaks will be at the calculated fiducial
sound horizon, rs,f . Limits on the difference between the fidu-
cial and reconstructed peak position can be used to constrain the
differences between the fiducial and true cosmological models.

5.1. The peak position

The use of incorrect fiducial DA, H and rs leads to shifts in the
BAO peak position in the transverse and radial directions by the
multiplicative factors αt and αr:

αt ≡
DA(z)/rs

DA,f/rs,f
(20)

αr ≡
Hf(z)rs,f

H(z)rs
(21)

where the subscript f refers to the fiducial model. Following
Xu et al. (2012), we will use a fitting function, ξ̃ℓ(r), for the
monopole and quadrupole that follows the expected peak posi-
tion as a function of (αt, αr):

ξ̃ℓ(r) = ξ̂ℓ(r, αt, αr, b, β) + Aℓ(r) ℓ = 0, 2. (22)

Here, the two functions ξ̂ℓ, derived from the power spectrum
given in Appendix A, describe the underlying mass correlation
function, the linear bias b and redshift distortion parameter β,
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Table 1. Results with the the two methods and two broadbands (Eqs. (23) and (24)).

Method and χ2
fid/d.o.f. χ2

min/d.o.f. αiso Hrs/[Hrs]fid Hrs/[Hrs]fid

broadband (with WMAP7)
Method 1 (24) 85.0/80 84.6/78 1.035 ± 0.035 0.876 ± 0.049 (+0.188

−0.111) 0.983 ± 0.035

Method 2 (24) 71.5/80 71.4/78 1.010 ± 0.025 0.954 ± 0.077 (+0.152
−0.154) 1.000 ± 0.036

Method 1 (23) 104.3/82 99.9/80 1.027 ± 0.031 0.869 ± 0.044 (+0.185
−0.084) 0.988 ± 0.034

Method 2 (23) 88.4/82 87.7/80 1.004 ± 0.024 0.994 ± 0.111 (+0.166
−0.178) 1.006 ± 0.032

Notes. Columns 2 and 3 give the χ2 for the fiducial model and for the model with the minimum χ2. Column 4 gives the best fit for αiso with the
constraint (αt = αr ≡ αiso). Column 5 gives Hrs/[Hrs]fid with the 2σ limits in parentheses. Column 6 gives the Hrs/[Hrs]fid deduced by combining
our data with that of WMAP7 (Komatsu et al. 2011) (see Sect. 5.3).

and the movement of the BAO peak for αt, αr � 1. The functions
Aℓ take into account distortions, as described below.

For αt = αr ≡ αiso, there is a simple isotropic scaling
of the coordinates by αiso and ξ̂(r) is given by ξ̂ℓ(r, αiso) =
fℓ(b, β)ξℓ,f(αisor), where ξℓ,f are the fiducial monopole and
quadrupole and the normalizations fℓ are the functions of the
bias and redshift-distortion parameter given by Hamilton (1992).
For αt � αr, Xu et al. (2012) found an approximate formula for
ξ̂(r) that was good in the limit |αt − αr| ≪ 1. We take the more
direct route of numerically expanding ξf(αtrt, αrrr) in Legendre
polynomials, Pℓ(µ), to directly calculate the ξ̂ℓ(r, αt, αr).

The functions Aℓ(r) describe broadband distortions due to
continuum subtraction and the fact that the broadband correla-
tion function is not expected to change in the same way as the
BAO peak position when one deviates from the fiducial model.
They correspond to the term Aℓξ

dist
ℓ

in Eq. (19). We have used
two forms to represent Aℓ(r):

A
(1)
ℓ

(r) =
aℓ

r2
+

bℓ

r
+ cℓ (23)

and

A
(2)
ℓ

(r) =
aℓ

r2
+

bℓ

r
+ cℓ +

dℓ√
r
· (24)

The observed monopole and quadrupole can then be fit to
Eq. (22) with free parameters αt, αr, bias, β, and the nuisance
parameters (aℓ, bℓ, cℓ and dℓ).

We first fixed (αt, αr) = (1, 1) to determine if we find reason-
able values of (b, β). These two parameters are highly degenerate
since both the quadrupole and monopole have amplitudes that
are proportional to b2 times polynomials in β. A well-determined
combination is b(1 + β), for which we find a value 0.38 ± 0.07;
this is in agreement with b(1 + β) = 0.336 ± 0.012 found at
r ∼ 40 h−1 Mpc by Slosar et al. (2011). The larger error of our
fit reflects the substantial freedom we have introduced with our
distortion function.

We next freed all parameters to constrain (αt, αr). The con-
tours for the two methods and two broadbands are shown in
Fig. 16 and the χ2 for the fiducial and best-fit models are given in
Table 1. The broadband term in Eq. (24) fits the data better than
that in Eq. (23) both for the fiducial parameters and for the best
fit. For broadband in Eq. (24), the χ2 for the fiducial model is
acceptable for both methods: χ2/d.o.f. = 85.0/80 for method 1
and χ2/d.o.f. = 71.5/80 for method 2.

The contours in the figure are elongated along the direction
for which the BAO peak position stays approximately fixed at
large µ (near the radial direction, where the observations are
most sensitive). The best constrained combination of DA and H
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Fig. 16. Contours for (DA/rs, rsH) obtained by fitting the monopole and
quadrupole to (22). The broadband distortions are Eq. (23) – dashed
lines or Eq. (24) – solid lines. The blue lines are for method 1 and the
red lines for method 2. All contours are for ∆χ2 = 4 except for the
interior solid red contour which is for ∆χ2 = 1.

of the form (DζAHζ−1/rs) turns out to have ζ ∼ 0.2. This low
value of ζ reflects the fact that we are mostly sensitive to the
BAO peak in the radial direction. At the one standard-deviation
level, the precision on this combination is about 4%. However,
even this combination is sensitive to the tails in the contours.
A more robust indicator of the statistical accuracy of the peak-
position determination comes from fits imposing αt = αr ≡ αiso,
as has generally been done in previous BAO studies with the ex-
ception of Chuang & Wang (2012) and Xu et al. (2012). This
constraint does not correspond to any particular class of cosmo-
logical models. It does however eliminate the tails in the con-
tours in a way that is similar to the imposition of outside data
sets. The two methods and broadbands give consistent results,
as seen in Table 1.

We used the sets of mock spectra to search for biases in
our measurement of αiso. The mean value reconstructed for this
quantity on individual mocks is 1.002 ± 0.007, suggesting that
there are no significant biases in the determination of the BAO
scale. Figure 17 shows the values and errors for the individual
mocks along with that for the data. Both the measured value and
its uncertainty for the data is typical of that found for individual
sets of mock spectra.

5.2. Constraints on cosmological models

Our constraints on (DA/rs,Hrs) can be used to constrain the cos-
mological parameters. In a ΛCDM cosmology, apart from the
pre-factors of H0 that cancel, DA/rs and Hrs evaluated at z = 2.3
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Fig. 17. Measurements of αiso (=αt = αr) for the 15 sets of mock spectra
and for the data (realization = −1). The large errors for realization 5
and 8 are due to the very low significance of the BAO peak found on
these two sets.
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Fig. 18. Constraints on the matter and dark-energy density parameters
(ΩM,ΩΛ) assuming a dark-energy pressure-density ratio w = −1. The
blue regions are the one and two standard deviation constraints derived
from our contours in Fig. 16 (method 2, broadband 24) combined with
a measurement of H0 (Riess et al. 2011). Also shown are one and two
standard deviation contours from lower redshift measurements of DV/rs

(also combined with H0) at z = 0.11 (6dF: Beutler et al. 2011), z = 0.35
(LRG: Percival et al. 2010) and z = 0.57 (CMASS: Anderson et al.
2012). All constraints use a WMAP7 (Komatsu et al. 2011) prior on the
baryon-to-photon ratio η but do not otherwise incorporate CMB results.

depend primarily on ΩM through rs and on ΩΛ which, with ΩM,
determines DA and H. The sound horizon also depends on H0
(required to derive Ωγ from TCMB), on the effective number of
neutrino species Nν (required to derive the radiation density from
the photon density), and on the baryon-to-photon number ratio,
η (required for the speed of sound).

Figure 18 shows the ΛCDM constraints on (ΩM,ΩΛ) de-
rived from the contours in Fig. 16 combined with the most recent
measurement of H0 (Riess et al. 2011). We use the contours for
method 2 and the broadband of Eq. (24) which gives better fits
to the data than the other method and broadband. The contours
also assume Nν = 3 and the WMAP7 value of η (Komatsu et al.
2011). Also shown are constraints from BAO measurements of
DV/rs (Percival et al. 2010; Anderson et al. 2012; Beutler et al.
2011).

The Lyα contours are nicely orthogonal to the lower redshift
DV/rs measurements, reinforcing the requirement of dark en-
ergy from BAO data. In fact, our measurement is the only BAO
measurement that by itself requires dark energy: ΩΛ > 0.5. This
is because at z = 2.3 the universe is strongly matter dominated

Model: Flat wCDM

0.2 0.4 0.6 0.8 1.0
Ωm

-2.0

-1.5

-1.0

-0.5

0.0

w

Model: Flat wCDM

0.2 0.4 0.6 0.8 1.0
Ωm

-2.0

-1.5

-1.0

-0.5

0.0

w

Ly-α + H0

CMASS + H0

LRG + H0

6df + H0

Fig. 19. As in Fig. 18 with constraints on the matter density parameter,
ΩM, and dark-energy pressure-density ratio w assuming ΩM + ΩΛ = 1.

and the
√
ΩM factor in H partially cancels the 1/

√
ΩM in rs, en-

hancing the importance of the ΩΛ dependence of H.
Figure 19 shows the constraints on (ΩM, w; where w is the

dark-energy pressure-density ratio) assuming a flat universe:
Ωk = 0. Our result is the only BAO measurement that by itself
requires negative w. Our limit w < −0.6 requires matter domina-
tion at z = 2.3.

ρde(z = 2.3)
ρm(z = 2.3)

< 0.3

(

ΩΛ/ΩM

0.73/0.27

)

· (25)

5.3. Constraints on H(z)

The contours in Fig. 16 give the measurements of Hrs given in
Table 1. A measurement of the expansion rate deep in the matter-
dominated epoch can be used to demonstrate the deceleration of
the expansion at that time. Unfortunately, our data are not yet
precise enough to do this. To make a more precise measurement
of H(z = 2.3), we must add further constraints to eliminate the
long tails in Fig. 16. These tails correspond to models where
1/H(z = 2.3) is increased (resp. decreased) with respect to the
fiducial value while DA(z = 2.3) is decreased (resp. increased).
For flat models, this would imply a change in the mean of 1/H
(averaged up to z = 2.3) that is opposite to that of the change
in 1/H(z = 2.3), which requires a functional form H(z) that
strongly differs from the fiducial case. It is possible to construct
models with this property by introducing significant non-zero
curvature.

Because of the importance of curvature, the tails are elim-
inated once WMAP7 constraints (Komatsu et al. 2011) are in-
cluded. This is done in Fig. 20 within the framework of non-flat
models where the dark-energy pressure-density ratio, w(z), is de-
termined by two parameters, w0 and wa: w(z) = w0 +waz/(1+ z).
As expected, the WMAP7 results in this framework constrain
DA and 1/H to migrate in roughly the same direction as one
moves away from the fiducial model. Combining WMAP7 con-
straints with ours gives the values of H(z = 2.3)rs given in the
last column of Table 1. For what follows, we adopt the mean of
methods 1 and 2 that use the more flexible broadband of Eq. (24):

H(z = 2.3)rs

[H(z = 2.3)rs]fid
= 0.992 ± 0.035, (26)

The precision on H is now sufficient to study the redshift evolu-
tion of H(z).
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Fig. 20. Constraints on (DA/rs, rsH)z=2.3 within the framework of
OwOwaCDM models. The green contours are our 1σ and 2σ con-
straints using method 2 and broadband (24). The gray contours are the
1σ and 2σ constraints from WMAP7 (Komatsu et al. 2011). The red
contours show the combined constraints.

Table 2. Recent measurements of H(z)/(1 + z).

z H(z)/(1 + z) Method Reference
km s−1 Mpc−1

2.3 66.5 ± 7.4 BAO this work
2.3 67.8 ± 2.4 BAO+WMAP7 this work
0.35 60.8 ± 3.6 BAO Chuang & Wang (2012)
0.35 62.5 ± 5.2 BAO Xu et al. (2012)
0.57 58.8 ± 2.9 BAO + AP Reid et al. (2012)
0.44 57.4 ± 5.4 BAO + AP Blake et al. (2012)
0.60 54.9 ± 3.8
0.73 56.2 ± 4.0

0.2 (1.11 ± 0.17)H0 AP + SN Blake et al. (2011b)
0.4 (0.83 ± 0.13)H0

0.6 (0.81 ± 0.08)H0

0.8 (0.83 ± 0.10)H0

0 73.8 ± 2.5 Riess et al. (2011)

Notes. The BAO-based measurements use rs = 152.76 Mpc as the stan-
dard of length and are shown as the filled circles in Fig. 21. The quoted
uncertainties in H(z) do not include uncertainties in rs which are ex-
pected to be negligible, ≈1% (Komatsu et al. 2011). The measurements
of Blake et al. (2011b) use supernova data and therefore measure H(z)
relative to H0. We quote the results they obtain without assuming a flat
universe and plot them as the open green circles in Fig. 21 assuming
h = 0.7.

The fiducial model has rs = 152.76 Mpc and H(z = 2.3) =
3.23H0, H0 = 70 km s−1 Mpc−1. These results produce

H(z = 2.3)rs

1 + z
= (1.036 ± 0.036) × 104 km s−1, (27)

or equivalently

H(z = 2.3)
1 + z

= (67.8 ± 2.4) km s−1 Mpc−1

(

152.76 Mpc
rs

)

· (28)

This number can be compared with the measurements of H(z)
at lower redshift shown in Table 2 and Fig. 21. Other than those
of H0, the measurements that we use can be divided into two
classes: those (like ours) that use rs as the standard of length and
those that use c/H0 as the standard of length.

The comparison with our measurement is simplest with
BAO-based measurements that use rs as the standard of length
and therefore measure H(z)rs (as is done here). The first attempt
at such a measurement was made by Gaztañaga et al. (2009), a
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Fig. 21. Measurements of H(z)/(1 + z) vs. z demonstrating the acceler-
ation of the expansion for z < 0.8 and deceleration for z > 0.8. The
BAO-based measurements are the filled circles: this work: (red), Xu
et al. (2012, black) Chuang & Wang (2012, blue), Reid et al. (2012,
cyan), and Blake et al. (2012, green). The open green circles are from
WiggleZ (Blake et al. 2011b) Alcock-Paczynski data combined with su-
pernova data yielding H(z)/H0 (without the flatness assumption) plot-
ted here assuming H0 = 70 km s−1 Mpc−1. The open blue circle is the
H0 measurement of Riess et al. (2011). The open black squares with
dashed error bars show the results of Riess et al. (2007) which were
derived by differentiating the SNIa Hubble diagram and assuming spa-
tial flatness. (For visual clarity, the Riess et al. 2007 point at z = 0.43
has been shifted to z = 0.48.) The line is the ΛCDM prediction for
(h,ΩM,ΩΛ) = (0.7, 0.27, 0, 73).

result debated in subsequent papers by Miralda-Escudé (2009),
Yoo & Miralda-Escudé (2010), Kazin et al. (2010), and Cabré
& Gaztañaga (2011). Here, we use four more recent measure-
ments. Chuang & Wang (2012) and Xu et al. (2012) studied the
SDSS DR7 LRG sample and decomposed the BAO peak into
radial and angular components, thus extracting directly Hrs and
DA/rs. Blake et al. (2012) and Reid et al. (2012) took a more
indirect route. They first used the angle-averaged peak position
to derive DV(z)/rs = ((1 + z)2D2

AczH−1/rs. They then studied
the Alcock-Paczynski effect on the broadband galaxy correlation
function to determine DA(z)H(z). Combining the two measure-
ments yielded H(z)rs.

It is evident from comparing our H(z) measurement (filled
red circle in Fig. 21) to the other BAO-based measurements
(other filled circles) that H(z)/(1 + z) decreases between z = 2.3
and z = 0.35−0.8. To demonstrate deceleration quantitatively,
we fit the eight BAO-based values of H(z) in Table 2 to the
oΛCDM form H(z) = H0(ΩΛ +ΩM(1+ z)3 + (1−ΩΛ −ΩM)(1+
z)2)1/2. Marginalizing over ΩΛ and H0 we find

[H(z)/(1 + z)]z=2.3

[H(z)/(1 + z)]z=0.5
= 1.17 ± 0.05, (29)

clearly indicating deceleration between z = 2.3 and z = 0.5.
This measurement is in good agreement with the fiducial value
of 1.146. We emphasize that this result is independent of rs, as-
suming only that the BAO-peak position is redshift-independent
in comoving coordinates. The result also does not assume spatial
flatness.

To map the expansion rate over the full range 0 < z < 2.3,
we must adopt the fiducial value of rs and compare the resulting
H(z) with H0 and with other BAO-free measurements. Besides
the H0 measurement of Riess et al. (2011), we use the WiggleZ
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analysis combining their Alcock-Paczynski data with distant su-
pernova data from the Union-2 compilation (Amanullah et al.
2010). The supernova analysis does not use the poorly known
mean SNIa luminosity, so the SNIa Hubble diagram gives the
luminosity distance in units of H−1

0 , DL(z)H0. Combining this
result with the Alcock-Paczynski measurement of DA(z)H(z)
yields H(z)/H0. The values are given in Table 2.

We fit all the data in Table 2 (filled and open circles in
Fig. 21) to the ΛCDM form of H(z). This yields an estimate
of the redshift of minimum H(z)/(1 + z)

zd−a = 0.82 ± 0.08 (30)

which compares well with the fiducial value: zd−a =

(2ΩΛ/ΩM)1/3 − 1 = 0.755.
In this analysis, we have not used two other sources of in-

formation on H(z) at high redshift. The first use high-redshift
type Ia supernovae to probe the era where the universe transi-
tions from deceleration to acceleration (e.g., Riess et al. 2004,
2007). The data of Riess et al. (2007) (plotted as the open squares
in Fig. 21) yielded useful measurements up to z ∼ 1.1. However,
this data yields constraints on H(z) that are weaker than those
of BAO-based methods because of the need to differentiate the
distance-redshift relation. Moreover, these inferences of H(z) as-
sume spatial flatness. Fitting the SNe data to a model with an
evolving deceleration parameter q(z) = q0 + (dq/dz)0z and as-
suming flatness, Riess et al. (2007, 2004) were able to demon-
strate that (dq/dz)0 > 0, i.e. a negative 3rd-derivative of a(t).
However, we point out that in a more general q(z) model, the
demonstration that dq/dz > 0 at low redshift is not equivalent to
a demonstration that ä becomes negative in the past.

Another approach to determining H(z) uses the evolution of
stellar populations as a clock to infer dt/dz (Stern et al. 2010;
Moresco et al. 2012). This method yields results that are consis-
tent with ΛCDM expectations, but the uncertainties (statistical
and systematic) are larger than those of the determinations in
Table 2, so we have not plotted them in Fig. 21.

6. Conclusions

In this paper, we have presented the first observation of the BAO
peak using the Lyα forest. It represents both the first BAO de-
tection deep in the matter dominated epoch and the first to use a
tracer of mass that is not galactic. The results are consistent with
concordance ΛCDM, and require, by themselves, the existence
of dark energy. Combined with CMB constraints, we deduce
the expansion rate at z = 2.3 and demonstrate directly the se-
quence of deceleration and acceleration expected in dark-energy
dominated cosmologies. These results have been confirmed with
higher precision by Slosar et al. (2013) using the same underly-
ing DR9 data set but more aggressive data cuts and a more nearly
optimal statistical method.

BOSS continues to acquire data and will eventually produce
a quasar sample three times larger than DR9. We can thus ex-
pect improved precision in our measurements of distances and
expansion rates, leading to improved constraints on cosmologi-
cal parameters. The Lyα forest may well be the most practical
method for obtaining precise DA(z) and H(z) measurements at
z > 2, thanks to the large number of independent density mea-
surements per quasar. It is reassuring that the first sample large
enough to yield a detection of BAO produces a signal in good
agreement with expectations. In the context of BAO dark energy
constraints, high redshift measurements are especially valuable
for breaking the degeneracy between curvature and the equation

of state history More generally, however, by probing an epoch
largely inaccessible to other methods, BAO in the Lyα forest
have the potential to reveal surprises, which could provide criti-
cal insights into the origin of cosmic acceleration.
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Appendix A: Mock quasar spectra

We have produced mock spectra in order to tune the analysis
procedure and to study statistical uncertainties and systematic
effects in the measured correlation function.

In some galaxy clustering studies (e.g. Anderson et al. 2012)
the covariance matrix of the measured correlation function is ob-
tained from mock data sets. In this case, it is crucial to have very
realistic mocks with the right statistics.

In order to do so, we would need to generate several realiza-
tions of hydrodynamical simulations, with a large enough box
to cover the whole survey (several Gpc3) and at the same time
have a good enough resolution to resolve the Jeans mass of the
gas (tenths of kpc). This type of simulations are not possible to
generate with current technology, but luckily in this study the
covariance matrix is obtained from the data itself, and the mock
data sets are only used to test our analysis and to study possible
systematic effects.

In the last few years there have been several methods pro-
posed to generate simplified mock Lyman-α surveys by com-
bining Gaussian fields and nonlinear transformations of the field
(Le Goff et al. 2011; Greig et al. 2011; Font-Ribera et al. 2012).
In this study we used a set of mocks generated using the process
described in Font-Ribera et al. (2012), the same method used in
the first publication of the Lyman-α correlation function from
BOSS (Slosar et al. 2011).

The mock quasars were generated at the angular positions
and redshifts of the BOSS quasars. The unabsorbed spectra
(continua) of the quasars were generated using the Principal
Component Analysis (PCA) eigenspectra of Suzuki et al. (2005),
with amplitudes for each eigenspectrum randomly drawn from
Gaussian distributions with sigma equal to the corresponding
eigenvalues as published in Suzuki (2006) Table 1. A detailed
description will be provided by Bailey et al. (in prep.), accom-
panying a public release of the mock catalogs.

We generated the field of transmitted flux fraction, F, that
have a ΛCDM power spectrum with the fiducial parameters

(ΩM,ΩΛ,Ωbh2, h, σ8, ns)fid = (0.27, 0.73, 0.0227, 0.7, 0.8, 0.97)

(A.1)

where h = H0/100 km s−1Mpc−1. These values produce a fidu-
cial sound horizon of

rs,fid = 152.76 Mpc. (A.2)

Here, we use the parametrized fitting formula introduced by
McDonald (2003) to fit the results of the power spectrum from
several numerical simulations,

PF(k, µk) = b2
δ(1 + βµ

2
k)2PL(k)DF(k, µk), (A.3)

where µk = k‖/k is the cosine of the angle between k and the line
of sight, bδ is the density bias parameter, β is the redshift distor-
tion parameter, PL(k) is the linear matter power spectrum, and
DF(k, µk) is a non-linear term that approaches unity at small k.
This form of PF is the expected one at small k in linear theory,
and provides a good fit to the 3D Lyα observations reported in
Slosar et al. (2011). We do not generate a density and a velocity
field, but directly create the Lyα forest absorption field instead,
with the redshift distortions being directly introduced in the in-
put power spectrum model of Eq. (A.3), with the parameter β
that measures the strength of the redshift distortion.

To model the evolution of the forest with redshift, bδ
varies with redshift according to bδ = 0.14[(1 + z)/3.25]1.9
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Fig. A.1. Effect of the continuum estimation procedure on the correla-
tion function found with the mock spectra. The black dots are the av-
erage of monopole and quadrupole obtained with the 15 sets using the
exact continua. The blue (red) dots show those obtained with the contin-
uum estimation of method 1 (method 2) as described in Sect. 3.1 (3.2).

(McDonald et al. 2006). The redshift distortion parameter is
given a fixed value of βF = 1.4. The non-linear correction fac-
tor D(k, µk) is taken from McDonald (2003). The flux field was
constructed by generating Gaussian random fields g with an ap-
propriately chosen power spectrum (Font-Ribera et al. 2012) to
which the log-normal transformation F = exp(−aeυg) is applied
(Coles & Jones 1991; Bi et al. 1992; Gnedin & Hui 1996). Here
a and υ are free parameters chosen to reproduce the flux variance
and mean transmitted flux fraction (McDonald et al. 2006).

DLA’s were added to the spectra according to the procedure
described in Font-Ribera & Miralda-Escud (2012).

Finally, the spectra were modified to include the effects of the
BOSS spectrograph point spread function (PSF), readout noise,
photon noise, and flux miscalibration.

Fifteen independent realizations of the BOSS data were pro-
duced and analyzed with the same procedures as those for the
real data.

We used the mock spectra to understand how our analysis
procedure modifies the correlation function. Figure A.1 shows
the average over 15 mocks of the reconstructed quadrupole
and monopole using methods 1 and 2 (Sects. 3.1 and 3.2) and
that reconstructed with the true continuum. The monopole and
quadrupole for the two methods have a general shape that fol-
lows that found with the true continuum including the position
of the BAO peak. However, both methods produce a monopole
that becomes negative for 60 h−1 Mpc < r < 100 h−1 Mpc while
the true monopole remains positive for all r < 130 h−1 Mpc. As
discussed in Sect. 3.2, this result is due to the continuum estima-
tion of the two methods which introduced negative correlations.
For both methods, however, the BAO peak remains visible with
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Fig. A.2. Comparison of the correlation function for the mock spectra
and that for the data. The red dots show the mean of the 15 sets of mock
spectra and the black dots show the data.

a deviation above the “broadband” correlation function that is
hardly affected by the distortion.

Figure A.2 presents ξ0(r) and ξ2(r) found with the data,
along with the mean of 15 mocks. The figure demonstrates that
our mocks do not perfectly reproduce the data. In particular,
for r < 80 h−1 Mpc, the monopole is underestimated and the
quadrupole overestimated. Since we use only peak positions to
extract cosmological constraints, we only use the mocks quali-
tatively to search for possible systematic problems in extracting
the peak position.

Appendix B: Results for a fiducial BOSS Lyα forest

sample

The spectra analyzed here are all available through SDSS DR9
(Ahn et al. 2012), and the DR9 quasar catalog is described
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Fig. B.1. Comparison of the monopole and quadrupole correlation func-
tions for the sample used here (black dots) and for the sample and con-
tinua of Lee et al. (2012b) (red dots).

by Pâris et al. (2012). A Lyα forest analysis requires many
detailed choices about data selection and continuum determi-
nation. To aid community analyses and comparison of results
from different groups, Lee et al. (2012b) has presented a fidu-
cial BOSS Lyα forest sample that uses constrained PCA con-
tinuum determination (Lee et al. 2012a) and reasonable choices
of masks for DLAs, BALs, and data reduction artifacts. Both
the data selection and the continuum determination differ from
those used here. Figure B.1 compares the Method 2 correlation
function from this paper’s analysis to that obtained by apply-
ing the Method 2 weights and correlation measurement code di-
rectly to the continuum-normalized spectra of the fiducial Lee
et al. sample. The good agreement in this figure, together with
the good agreement between our Method 1 and Method 2 re-
sults, demonstrates the robustness of the BAO measurement,
and the more general correlation function measurement, to the
BOSS DR9 data.
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