Baryon Destruction by Asymmetric Dark Matter

Hooman Davoudias

Brookhaven National Laboratory

Based on:

- H. D., D. E. Morrissey, K. Sigurdson, and S. Tulin
- Phys.Rev.Lett. 105 (2010) 211304, arXiv:1008.2399 [hep-ph]
- arXiv:1106.4320 [hep-ph]

Introduction

- DM: no SM candidate, unknown origin
- Visible matter: baryons (p,n)
 - Asymmetry: $\Delta B \neq 0$, negligible cosmic anti-matter
 - Baryogenesis, Sakharov's conditions
 - (i) ₿ (ii) Ç, ÇP (iii) ↔
 - Most likely requires new physics
- Observations: $\rho_{\rm DM} \approx 5 \rho_{\rm visible}$
 - Seemingly unrelated sectors
 - Suggests common asymmetric origin

Asymmetric Dark Matter

• Typically two broad classes

(I) Charge asymmetry chemical equilibration

- Transfer operator O_T connects two sectors.
- Charges freeze in after O_T decouples

(II) Equal and opposite DM and visible sector charges $(\Sigma \Delta B = 0)$

- Hylogenesis ("hyle" = matter)
- Non-equilibrium dynamics generates asymmetries
- Transfer operators remain decoupled to avoid washout
- In this talk, we will focus on option (II), hylogenesis.

A Concrete Model of Hylogenesis

HD, D. Morrissey, K. Sigurdson, S. Tulin, 2010

- Basic idea
 - Visible and hidden sectors charged under generalized B
 - Non-thermal production of heavy fermions $X, \bar{X}; B(X) = +1$
 - Quarks and DM couplings to X preserve B
 - CP violation in $X, ar{X}
 ightarrow$ quarks, anti-quarks $\Rightarrow \Delta B(q)
 eq 0$
 - CPT: $X, \bar{X}
 ightarrow$ DM, anti-DM $\Rightarrow \Delta B(\mathrm{DM}) = -\Delta B(q)$
 - DM, quarks decoupled to avoid washout: typically low reheat temperature
 - Symmetric populations annihilated efficiently $\Rightarrow n_{\text{DM}} \sim n_{\text{visible}}$
- Implications
 - Nucleon destruction via inelastic scattering from DM:

Induced Nucleon Decay (IND)

• DM masses close to $m_N \sim 1 \text{ GeV}$

More Details:

• Dirac fermions X_a , a = 1, 2, Ψ , complex scalar Φ , $B(X_a) = -[B(\Psi) + B(\Phi)] = +1$

$$|m_{\Psi} - m_{\Phi}| < m_p + m_e, \quad m_p - m_e < m_{\Psi} + m_{\Phi}$$
 (Stability)

• X_a couples to quarks via the *neutron portal* (dim-6) and **DM** (Yukawa):

$$-\mathscr{L} \supset \frac{\lambda_a^{ijk}}{M^2} (X_{a,L}^{\dagger} d_R^k) (u_R^i d_R^j) + \zeta_a (X_{a,L} \Psi_L + X_{a,R} \Psi_R) \Phi + \text{H.C.}$$

• Visible baryon asymmetry: $X_1 \rightarrow \begin{pmatrix} a \\ d \\ d \end{pmatrix} = \begin{pmatrix} a \\ A \\ A \\ d \end{pmatrix} = \begin{pmatrix} a \\ A \\ A \\ d \end{pmatrix} = \begin{pmatrix}$

$$\varepsilon = \frac{1}{2\Gamma_{X_1}} \left[\Gamma(X_1 \to udd) - \Gamma(\bar{X}_1 \to \bar{u}d\bar{d}) \right] \simeq \frac{m_{X_1}^5 \operatorname{Im}[\lambda_1^* \lambda_2 \zeta_1 \zeta_2^*]}{256\pi^3 |\zeta_1|^2 M^4 m_{X_2}}$$

- U(1)', Ψ, Φ charges $\pm e'$, kinetic mixing with $U(1)_Y$: $-(\kappa/2)B_{\mu\nu}Z'_{\mu\nu}$
- GeV-scale Z' coupling to SM $-c_W \kappa Q_{em} e$: Ψ , Φ thermalization, annihilation
- Example: $\Psi\bar{\Psi} \rightarrow Z'Z'$ $\langle \sigma v \rangle = \frac{e'^4}{16\pi} \frac{1}{m_{\Psi}^2} \sqrt{1 - m_{Z'}^2/m_{\Psi}^2} \simeq (1.6 \times 10^{-25} \text{cm}^3/\text{s}) \left(\frac{e'}{0.05}\right)^4 \left(\frac{3 \text{ GeV}}{m_{\Psi}}\right)^2$

M. Pospelov, A. Ritz, M. Voloshin, 2007

This proposal shares some elements with previous discussions, *e.g.*:

Kitano, Low, hep-ph/0411133, hep-ph/0503112; Farrar, Zaharijas, hep-ph/0510079; Agashe, Servant, hep-ph/0411254; Kaplan, Luty, Zurek, arXiv:0901.4117 [hep-ph]; An, Chen, Mohapatra, Zhang, arXiv:0911.4463 [hep-ph]; Allahverdi, Dutta, Sinha, arXiv:1005.2804 [hep-ph].

Some recent works on similar topics, *e.g.*:

Shelton, Zurek, arXiv:1008.1997 [hep-ph]; Haba, Matsumoto, arXiv:1008.2487 [hep-ph]; Buckley, Randall, arXiv:1009.0270 [hep-ph]; M. Blennow, B. Dasgupta, E. Fernandez-Martinez, N. Rius, arXiv:1009.3159 [hep-ph]]; Hall, March-Russell, West, arXiv:1010.0245 [hep-ph]; Allahverdi, Dutta, Sinha, arXiv:1011.1286 [hep-ph]; Bell, Petraki, Shoemaker, Volkas, arXiv:1105.3730 [hep-ph]; Graesser, Shoemaker, Vecchi, arXiv:1107.2666 [hep-ph].

IND and Effective Nucleon Lifetime

HD, D. Morrissey, K. Sigurdson, S. Tulin, 2011

- IND mimics standard nucleon decay (SND) $N \rightarrow \text{meson } V$.
- Transfer operator $O_T \sim c \, u_R^i d_R^j d_R^k \Psi_R \Phi + \text{H.C.}, \quad [c] = -3$

•
$$\mathscr{L}_{int} = \sum_{i} c_{i} O_{i};$$

 $I(O_{i}) = (1/2, 0, 1)$
 $O_{1} = \varepsilon_{\alpha\beta\gamma} \Phi(u_{R}^{\alpha} d_{R}^{\beta})(d_{R}^{\gamma} \Psi_{R})$
 $O_{2} = \frac{1}{\sqrt{6}} \varepsilon_{\alpha\beta\gamma} \Phi[(d_{R}^{\alpha} s_{R}^{\beta})(u_{R}^{\gamma} \Psi_{R}) + (s_{R}^{\alpha} u_{R}^{\beta})(d_{R}^{\gamma} \Psi_{R}) - 2(u_{R}^{\alpha} d_{R}^{\beta})(s_{R}^{\gamma} \Psi_{R})]$
 $O_{3} = \frac{1}{\sqrt{2}} \varepsilon_{\alpha\beta\gamma} \Phi[(d_{R}^{\alpha} s_{R}^{\beta})(u_{R}^{\gamma} \Psi_{R}) - (s_{R}^{\alpha} u_{R}^{\beta})(d_{R}^{\gamma} \Psi_{R})]$
• $\mathscr{L}_{int} = \operatorname{Tr}(c O)$
 $c \equiv \begin{pmatrix} \frac{c_{2}}{\sqrt{6}} + \frac{c_{3}}{\sqrt{2}} & 0 & 0\\ 0 & \frac{c_{2}}{\sqrt{6}} - \frac{c_{3}}{\sqrt{2}} & 0\\ 0 & c_{1} & -\sqrt{\frac{2}{3}} c_{2} \end{pmatrix}, \quad O_{ij} \equiv \frac{1}{2} \varepsilon_{\alpha\beta\gamma} \varepsilon_{jk\ell} (q_{Rk}^{\alpha} q_{R\ell}^{\beta})(q_{iR}^{\gamma} \Psi_{R}) \Phi$

• $SU(3)_L \times SU(3)_R$ chiral Lagrangian: $\mathscr{L}_{IND} = \beta \operatorname{Tr}[c \xi^{\dagger}(B_R \Psi_R) \Phi \xi]$ M. Claudson, M. Wise, L. Hall, 1982

$$\xi \equiv \exp(iM/f) \,, \quad M = \begin{pmatrix} \frac{\eta}{\sqrt{6}} + \frac{\pi^0}{\sqrt{2}} & \pi^+ & K^+ \\ \pi^- & \frac{\eta}{\sqrt{6}} - \frac{\pi^0}{\sqrt{2}} & K^0 \\ K^- & \bar{K}^0 & -\sqrt{\frac{2}{3}}\eta \end{pmatrix} \,, \quad B = \begin{pmatrix} \frac{\Lambda^0}{\sqrt{6}} + \frac{\Sigma^0}{\sqrt{2}} & \Sigma^+ & p \\ \Sigma^- & \frac{\Lambda^0}{\sqrt{6}} - \frac{\Sigma^0}{\sqrt{2}} & n \\ \Xi^- & \Xi^0 & -\sqrt{\frac{2}{3}}\Lambda^0 \end{pmatrix}$$

 $f \sim 140$ MeV, $\beta = 0.0120(26)$ GeV³ (Lattice) Y. Aoki *et al.*, RBC-UKQCD Collaboration, 2008

• $p_{\text{meson}} \sim 1$ GeV, hence 1/f expansion yields only order-of-magnitude estimate.

Decay mode	p_M^{SND}	p_M^{IND} [up]	p_M^{IND} [down]	$ au_N^{SND}$ bound ($ imes 10^{32}$ yr)
$egin{array}{ccc} N o \pi \ N o K \ N o \pi \end{array}$	460	< 800	800 - 1400	$ au_p^{SND} > 0.16$ [A], $ au_n^{SND} > 1.12$ [B]
	340	< 680	680 - 1360	$ au_p^{SND} > 23$ [C], $ au_n^{SND} > 1.3$ [C]
	310	< 650	650 - 1340	$ au_n^{SND} > 1.58$ [B]

[A] Soudan 2, 2000; [B] IMB-3, 1999; [C] Super-Kamiokande, 2005

$$(\sigma v)_{IND} \approx 10^{-39} \,\mathrm{cm}^3/\mathrm{s} \times \left(\frac{\Lambda_{IND}}{1 \,\mathrm{TeV}}\right)^{-6} \Rightarrow \boxed{\tau_N \approx 10^{32} \,\mathrm{yr} \times \left(\frac{\Lambda_{IND}}{1 \,\mathrm{TeV}}\right)^6 \left(\frac{\rho_{DM}}{0.3 \,\mathrm{GeV/cm^3}}\right)} \qquad \Lambda_{IND} \equiv |c_i|^{-1/3}$$

★ IND meson kinematics <u>different</u> from standard nucleon decay; effect on bounds.

Search for Nucleon Decay Signals

• $p \to K^+ \nu, n \to K^0 \nu$

• Super-Kamiokande (water Čerenkov detector).

(a) $K^+
ightarrow \pi^+ \pi^0$ and $K^+
ightarrow \mu^+$ (+ prompt γ)

- SND: K^+ below Čerenkov threshold, eta < 0.75, decay at rest.
- IND: except for *up-scattering* near threshold, $\beta > 0.75$, not all stopped.

(b)
$$K_S^0
ightarrow \pi^0 \pi^0
ightarrow 4\gamma$$
 and $K_S^0
ightarrow \pi^+ \pi^-$.

- SND: 4 *e*-like rings and 2 μ -like rings, respectively, 200 MeV < $p_{K^0} < 500$ MeV.
- IND: boost can cause 4 rings to overlap, but $\pi^+\pi^-$ signal may be better.

• $p \rightarrow \pi^+ v$

- Soudan 2 (iron tracking calorimeter).
 - Single π + track, consistent with m_{π} or m_{μ} .
 - Initial 140 MeV $< p_{\pi^+} <$ 420 MeV, visible endpoint decays $(\pi^+ \rightarrow \mu^+ \rightarrow e)$.
 - Simulations: On average half of initial p_{π^+} lost in iron nucleus.
 - IND: higher p_{π^+} ; may help with atmospheric v background.
 - Open questions: momentum loss in iron and possible nuclear fragmentation.

• $n \rightarrow \pi^0 v, \ n \rightarrow \eta v$

- IMB-3 (water Čerenkov detector).
 - IND: Photons could overlap for $\pi^0 o \gamma\gamma$; better prospects for $\eta o \gamma\gamma$.

Dotted (dashed) lines $N\Phi \rightarrow \bar{\Psi}M$ ($N\Psi \rightarrow \Phi^{\dagger}M$); $|c_i| = \text{TeV}^{-3}$

• Gray regions: Super-Kamiokande bounds for up-scattering near thershold:

- $p \rightarrow K^+$ for $\beta_{K^+} < 0.75$ (below Čerenkov threshold).
- $n \rightarrow K^0$ for 200 MeV < $p_{K^0} < 500$ MeV.

Collider Signals

- Monojet (mono t/b) from the neutron portal: $q_i q_j
 ightarrow ar{q}_k X_{1,2}$
- Focus on the lighter $X_1 \equiv X$ and

$$-\mathscr{L} \supset \frac{\lambda}{M^2} (X_L^{\dagger} s_R) (u_R d_R) + \zeta X \Psi \Phi + H.C.,$$

•
$$q(p_1)q'(p_2) \to \bar{q}''(p_3)\bar{\Psi}(p_4)\Phi^{\dagger}(p_5)$$

$$|\mathcal{M}|^{2} = \begin{cases} \frac{2}{3} \left| \frac{\lambda \zeta}{M^{2}} \right|^{2} \left| \frac{1}{q^{2} - m_{x}^{2} + i\Gamma_{x}m_{x}} \right|^{2} (p_{1} \cdot p_{2}) \left[2(p_{3} \cdot q)(p_{4} \cdot q) - (q^{2} - m_{X}^{2})(p_{3} \cdot p_{4}) \right]; & s\text{-like} \end{cases}$$

$$\left(\frac{2}{3} \left| \frac{\lambda \zeta}{M^2} \right|^2 \left| \frac{m_x}{q^2 - m_x^2 + i\Gamma_x m_x} \right|^2 (p_1 \cdot p_3) \left[2(p_2 \cdot q)(p_4 \cdot q) - (q^2 - m_X^2)(p_2 \cdot p_4) \right] ; t-like$$

 $q = (p_4 + p_5) = (p_1 + p_2 - p_3); \ \Gamma_x = \zeta^2 m_X / 16\pi$

- Enhancement near X pole, but $m_X \leq M$ (hylogenesis): loss of effective theory.
- Mimic UV phylsics by boson exchange with mass M and width $\Gamma = \mathscr{C}M$, $\mathscr{C} = 1/5, 1/50$.

$$rac{\lambda}{M^2} o rac{\lambda}{\hat{s}-M^2+i\sqrt{\hat{s}}\Gamma} \quad ; \quad rac{\lambda}{M^2} o rac{\lambda}{\hat{t}-M^2},$$

- Tevatron; $\lambda = 1$ and $\zeta = 0.7$
 - Cuts: $p_T > 80$ GeV, $|\eta| < 1.0$; efficiency factor: 40%
 - Dotted line: Tevatron 2σ limit

CDF collaboration 2008

J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T. Tait, H.-B. Yu, 2010

- LHC, $\sqrt{s} = 14$ TeV; $\lambda = 1$ and $\zeta = 0.7$
 - Cuts: $p_T > 500$ GeV, $|\eta| < 3.2$; efficiency factor: 85%

L. Vacavant, I. Hinchliffe, 2001 J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T. Tait, H.-B. Yu, 2010

•
$$S/\sqrt{B} > 5$$
 for $\int L dt = 1,100$ fb⁻¹

- LHC sensitivity to M = 1 4 TeV.
- IND in nucleon decay searches: $M \sim 1$ TeV.
- IND and collider mono-jet signals correlated.
- Hylogenesis may also go through *heavy quark* flavors.
- $M \sim 1$ TeV \Rightarrow mono-top or mono-bottom signals: $sd \rightarrow X\bar{t}$, ...
- Recent work on mono-top signals at the LHC:
 - J. Andrea, B. Fuks, F. Maltoni, arXiv:1106.6199 [hep-ph]
 - J. kamenik, J. Zupan, arXiv:1107.0623 [hep-ph].

IND in Astrophysical Environments

- Hylogenesis: DM-DM annihilation very suppressed (B).
- In stars: capture followed by IND $\Psi N \rightarrow \Phi^{\dagger} M$.
- Capture: assume $\sigma_p^{SI} = 10^{-39} \text{ cm}^2$, $\sigma_n^{SI} = 0$ (Z' couples to charge).
 - Consistent with CRESST, CDMS, and CoGeNT for m < 3 GeV.

$$\sigma_0^{SI} = (5 \times 10^{-39} \text{cm}^2) \left(\frac{2Z}{A}\right)^2 \left(\frac{\mu_N}{\text{GeV}}\right)^2 \left(\frac{e'}{0.05}\right)^2 \left(\frac{\kappa}{10^{-5}}\right)^2 \left(\frac{0.1\text{GeV}}{m_{Z'}}\right)^4$$

Hylogenesis possible for $\sigma_0^{SI} \ll 10^{-39} {\rm cm}^2$.

- $(\sigma v)_{ann} = 10^{-25} \text{cm}^3/\text{s}.$
- For IND, assume two cases:

(1) $(\sigma v)_{IND} = 10^{-39} \text{cm}^3/\text{s}$ (large) ; (2) $(\sigma v)_{IND} = 0$ (small)

Capture and Annihilation in Stars

• Once captured, DM is quickly thermalized, collect within

$$r_{i,th} = \left(\frac{9T_c}{4\pi G\rho_c m_i}\right)^{1/2}$$

• Evolution governed by

$$\frac{dN_{\Psi}}{dt} = C_{\Psi} - A_{\Psi} N_{\Psi} N_{\bar{\Psi}} - B_{\Psi} N_{\Psi}$$

$$\frac{dN_{\bar{\Psi}}}{dt} = -A_{\Psi} N_{\Psi} N_{\bar{\Psi}} + \varepsilon_{\bar{\Psi}} B_{\Phi} N_{\Phi}$$

$$\frac{dN_{\Phi}}{dt} = C_{\Phi} - A_{\Phi} N_{\Phi} N_{\Phi^{\dagger}} - B_{\Phi} N_{\Phi}$$

$$\frac{dN_{\Phi^{\dagger}}}{dt} = -A_{\Phi} N_{\Phi} N_{\Phi^{\dagger}} + \varepsilon_{\Phi^{\dagger}} B_{\Psi} N_{\Psi}$$

• C_i capture rate, A_i annihilation rate , B_i IND rate

$$A_i \simeq (\sigma v)_{i,ann} / \left(4\pi r_{i,th}^3 / 3 \right) \quad ; \quad B_i \simeq (\sigma v)_{i,IND} \left(\rho_c / m_n \right)$$

• Probability of anti-DM produced by IND to be captured: ε_i

Neutron Stars

$$C_i \simeq 2.5 \times 10^{25} \mathrm{s}^{-1} \left(\frac{\rho_{DM}}{\mathrm{GeV/cm^3}}\right) \left(\frac{5 \mathrm{GeV}}{m_{\Psi} + m_{\Phi}}\right) \left(\frac{220 \mathrm{km/s}}{\bar{\nu}}\right) f$$

E. g., I. Goldman, S. Nussinov, 1989

 $f = \min\left\{1, \left(x_p \sigma_p + x_n \sigma_n\right) / (2 \times 10^{-45} \,\mathrm{cm}^2)\right\}$

 $x_p = 0.1$, NS optically thick for (Ψ, Φ) with $\sigma_p^{SI} = 10^{-39} \text{ cm}^2$ $r_{i,th} \simeq (140 \text{ cm}) \left(\frac{T_c}{10^5 \text{ K}}\right)^{1/2} \left(\frac{3 \text{GeV}}{m_i}\right)^{1/2} \left(\frac{1.4 \times 10^{18} \text{kg/m}^3}{\rho_c}\right)^{1/2}$

- First case: $(\sigma v)_{IND} = 10^{-39} \text{cm}^3/\text{s}$
- Steady state for $t \gtrsim 10^7$ s.
- Neutron star heating likely unobservable.
- E. g., A.Lavallaz, M. Fairbairn, 2010
- Destroyed baryons negligible unless $\rho_{\rm DM} \sim 10^{14}~{\rm GeV/cm^3}.$

- Second case: $(\sigma v)_{IND} = 0 \Rightarrow$ After ~ 10 Gyr $10^{43} (\rho_{DM}/\text{GeV}\,\text{cm}^{-3})$ DM particles.
- Self-gravitation:

$$N_i \gtrsim N_{self} \equiv \frac{\rho_c}{m_i} (4\pi r_{i,th}^3/3) \simeq 3 \times 10^{45} \left(\frac{3\text{GeV}}{m_i}\right)^{5/2} \left(\frac{T_c}{10^5 \text{K}}\right)^{3/2} \left(\frac{1.4 \times 10^{18} \text{kg/m}^3}{\rho_c}\right)^{1/2}$$

Larger than number for local DM densities $(3 \times 10^2 GeV/cm^3) \min\{1, 3 \times 10^{-57} cm^3 s^{-1}/(\sigma v)_{IND}\}$.

- Black hole formation
 - Fermions (degeneracy pressure): $N_i \gtrsim N_{crit}^f \equiv \left(\frac{\sqrt{8\pi}M_{\text{Pl}}}{m_i}\right)^3 \simeq 6 \times 10^{55} \left(\frac{3 \text{GeV}}{m_i}\right)^3$
 - Bosons (zero-point pressure): $N_i \gtrsim N_{crit}^b \equiv \left(\frac{\sqrt{8\pi}M_{\text{Pl}}}{m_i}\right)^2 \simeq 2 \times 10^{37} \left(\frac{3 \text{GeV}}{m_i}\right)^2$

$$M_{\mathsf{Pl}} = \sqrt{8\pi/G} \simeq 2.4 imes 10^{18} \text{ GeV}$$

- With U(1)' present, black hole formation unlikely:
 - Pressure among Φ population for $m_{Z'} \ll (m_{\Phi} M_{\mathsf{Pl}}^2)^{1/3}$ and $e' \gg m_{\Phi}/M_{\mathsf{Pl}}$.
 - Charge neutrality: $N > N_{crit}^{f}$ (overcome degeneracy) with $\rho_{\rm DM} \gtrsim 5 \times 10^{11} \, {\rm GeV/cm^3}!$

White **Dwarfs**

- Mainly carbon and oxygen.
- Supported by degeneracy pressure of electrons.
- $M = 0.7 M_{\odot}$, $R = 0.01 R_{\odot}$, $ho_c = 10^9 \, {
 m kg/m^3}$, and $T_c = 10^7 \, {
 m K}$
- WD optically thick for $\sigma_p^{SI} = 10^{-39} \text{cm}^2$ $(f_p = 1, f_n = 0)$:

$$C_{\Psi,\Phi} = \simeq (6 \times 10^{27} \mathrm{s}^{-1}) \left(\frac{R}{0.01 R_{\odot}}\right) \left(\frac{M}{0.7 M_{\odot}}\right) \left(\frac{\rho_{hDM}}{\mathrm{GeV/cm^3}}\right) \left(\frac{5 \mathrm{GeV}}{m_{\Psi} + m_{\Phi}}\right) \left(\frac{270 \mathrm{km/s}}{\bar{v}}\right)$$

$$r_{i,th} \simeq (5 \times 10^7 \,\mathrm{cm}) \left(\frac{3 \,\mathrm{GeV}}{m_i}\right)^{1/2} \left(\frac{T_c}{10^7 \mathrm{K}}\right)^{1/2} \left(\frac{10^9 \mathrm{kg/m^3}}{\rho_c}\right)^{1/2}$$

- IND: steady state with $N_{\Psi,\Phi} \simeq 5 \times 10^{36}$ and $N_{\bar{\Psi},\Phi^{\dagger}} \simeq 6 \times 10^{49}$ (Destroyed baryons over Hubble time negligible for $\rho_{DM} \ll 10^{11} \,\text{GeV/cm}^3$)
- Main effect heating with rate $(m_{\Psi} + m_{\Phi} + m_N)C_{\Psi,\Phi}$.
- Bounds on σ_p^{SI} inconclusive (globular cluster DM density).
- Cool WD within dwarf spheroidal galaxies good probe.

D. Hooper, D. Spolyar, A. Vallinotto, N. Gnedin, 2010

• Small IND: no significant effect unless $N_i \sim N_{self}$, N_{crit}^f ($\rho_{\rm DM} \sim 10^8 - 10^{10} {\rm GeV/cm^3}$).

The Sun

- Sun optically thin for $\sigma_p^{SI} = 10^{-39} {
 m cm}^2$.
- IND products $\bar{\Psi}, \Phi^{\dagger}$ escape.

$$C_{i} \simeq (8 \times 10^{25} \text{s}^{-1}) \left(\frac{5 \text{GeV}}{m_{\Psi} + m_{\Phi}}\right) \left(\frac{\rho_{DM}}{0.3 \text{GeV/cm}^{3}}\right) \left(\frac{270 \text{ km/s}}{\bar{\nu}}\right) \left(\frac{\sigma_{p}^{SI}}{10^{-39} \text{cm}^{2}}\right) \times \left[x_{H} + (1.1) x_{He} (1 + f_{n}/f_{p})^{2} \frac{m_{r_{He}}^{2}}{m_{r_{p}}^{2}}\right]$$
$$r_{i,th} \simeq (5 \times 10^{9} \text{ cm}) \left(\frac{3 \text{GeV}}{m_{i}}\right)^{1/2} \left(\frac{T_{c}}{1.5 \times 10^{7} \text{ K}}\right)^{1/2} \left(\frac{1.5 \times 10^{5} \text{kg/m}^{3}}{\rho_{c}}\right)^{1/2}$$

- Evaporation important for the Sun:
- A. Gould, 1987; D. Hooper, F. Petriello, K. Zurek, M. Kamionkowski, 2008

$$E_i \simeq 10^{[-3.5(m_i/\text{GeV})-4]} \left(\frac{\sigma_p^{SI}}{5 \times 10^{-39} \text{cm}^2}\right) \text{s}^{-1}.$$

- For fiducial parameters and $m_{\rm DM} \lesssim 2.4$ GeV, evaporation more important than IND.
- Steady state after 10^{4-8} yr with $N_i \lesssim 10^{41}$; negligible effect on main sequence stars.
- Neutrinos from IND below threshold of telescopes such as IceCube.

Conclusions

- Data: DM and atoms have similar energy densities; suggests common origin.
- Hylogenesis: DM and baryons generated by asymmetry; no net cosmic ΔB .
 - DM can destroy nucleons through inelastic scattering processes.
 - Signals in nucleon decay experiments, at colliders, and from astrophysics.
 - If hidden and visible sectors coupled through TeV-scale physics
 - \Rightarrow Nucleon decay signal correlated with mono-jets at colliders (LHC).
 - Mono-top/bottom signals at colliders are generally present in Hylogenesis.
 - Astrophysics does not yield severe constraints.
- Nature of DM unknown \Rightarrow novel approaches to detection important.