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Abstract.We present our recent results of baryon interactions with strangeness S = −1

based on Nambu-Bethe-Salpeter (NBS) correlation functions calculated from lattice QCD

with almost physical quark masses corresponding to (mπ,mK) ≈ (146, 525) MeV and

large volume (La)4 = (96a)4 ≈ (8.1 fm)4. In order to perform a comprehensive study

of baryon interactions, a large number of NBS correlation functions from NN to ΞΞ are

calculated simultaneously by using large scale computer resources. In this contribution,

we focus on the strangeness S = −1 channels of the hyperon interactions by means of

HAL QCD method. Four sets of three potentials (the 3S 1 −
3 D1 central,

3S 1 −
3 D1 tensor,

and the 1S 0 central potentials) are presented for the ΣN − ΣN (the isospin I = 3/2)

diagonal, the ΛN − ΛN diagonal, the ΛN → ΣN transition, and the ΣN − ΣN (I = 1/2)

diagonal interactions. Scattering phase shifts for ΣN (I = 3/2) system are presented.

1 Introduction

Nuclear force and strangeness nuclear forces provide an important starting point to understand how
hypernuclei are bound, in which hyperons (or strange quarks) are embedded in normal nuclei as
“impurities”[1]. Determining how such a baryon-baryon interaction is described from a fundamental
perspective is a challenging problem in physics. Although a normal nucleus is successfully described
by utilising the high precision nucleon-nucleon (NN) potentials together with a three-nucleon force a
quantitatively same-level description of a hypernucleus is still difficult because of large uncertainties
of hyperon-nucleon (YN) and hyperon-hyperon (YY) interactions; those YN and YY potentials are not
well constrained from experimental data due to the short life time of hyperons. A recent experimental
study shows a tendency to repulsive Σ-nucleus interaction and only a four-body Σ-hypernucleus (4

Σ
He)

has been observed; those suggests a repulsive nature of the ΣN interaction. It has been pointed out that
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a ΛN −ΣN coupled-channel interaction accompanied with 3S 1 −3 D1 mixing by tensor operator plays
a vital role to have a hypernucleus being bound[2]. Such quantitative understanding is useful to study
properties of hyperonic matters inside the neutron stars, where recent observations of massive neutron
star heavier than 2M⊙ [3, 4] may be issued against a hyperonic equation of state (EOS) employed in
such a study. Furthermore, better understanding of YN and YY is becoming increasingly important
due to the observation of the binary neutron star merger[5, 6].
During the last decade a new lattice QCD approach to study a hadron-hadron interaction has

been proposed[7, 8] and developed to overcome the numerical difficulty[9]. In this approach, the
interhadron potential is obtained by means of the lattice QCD measurement of the Nambu-Bethe-
Salpeter (NBS) wave function. The observables such as the phase shifts and the binding energies
are calculated by using the resultant potential[10]. A large scale lattice QCD calculation is now in
progress[11] to study the baryon interactions from NN to ΞΞ by measuring the NBS wave functions
for 52 channels from the 2 + 1 flavor lattice QCD. See also Ref.[12] for the study of ΩΩ interaction.
The purpose of this report is to present our recent results of the ΛN − ΣN (both the isospin

I = 1/2, 3/2) systems using full QCD gauge configurations. Several earlier results had already been
reported at LATTICE 2008, LATTICE 2009 and LATTICE 2011[13] with heavier quark masses and
smaller lattice volumes. Although the possibility of “mirage” is pointed out[14], calculations with
larger quark masses for the Σ−n channel are found in Ref.[15]. This report shows the latest results of
those studies, based on recent works reported at LATTICE 2013[16, 17]; the baryon-baryon interac-
tion in the strangeness S = −1 sector (i.e, ΛN − ΛN, ΛN − ΣN, and ΣN − ΣN (both I = 1/2 and
3/2)) is studied at almost physical quark masses corresponding to (mπ,mK)≈(146,525)MeV and large
volume (La)4 = (96a)4 ≈ (8.1 fm)4.

2 Outline of the HAL QCD method

In order to study the baryon-baryon interactions, we first define the equal time NBS wave function in
particle channel λ = {B1, B2} with Euclidean time t [7, 8]

φλE(�r)e
−Et
=

∑

�X

〈

0
∣

∣

∣

∣

B1,α(�X + �r, t)B2,β(�X, t)
∣

∣

∣

∣

B = 2, E, S , I
〉

, (1)

where B1,α(x) (B2,β(x)) denotes the local interpolating field of baryon B1 (B2) with mass mB1 (mB2 ),
and E =

√

k2λ + m
2
B1
+

√

k2λ + m
2
B2
is the total energy in the centre of mass system of a baryon number

B = 2, strangeness S , and isospin I state. For B1,α(x) and B2,β(x), we employ the local interpolating
field of octet baryons given by

p=εabc (uaCγ5db) uc, n=−εabc (uaCγ5db) dc, Σ+=−εabc (uaCγ5sb) uc, Σ−=−εabc (daCγ5sb) dc,
Σ
0
=

1√
2
(Xu−Xd) , Λ=

1√
6
(Xu+Xd−2Xs) , Ξ0=εabc (uaCγ5sb) sc, Ξ

−
=−εabc (daCγ5sb) sc,

where Xu = εabc (daCγ5sb) uc, Xd = εabc (saCγ5ub) dc, Xs = εabc (uaCγ5db) sc.
(2)

For simplicity, we have suppressed the explicit spinor indices and spatial coordinates in Eq. (2)
and the renormalisation factors in Eq. (1). Based on a set of the NBS wave functions, we de-

fine a non-local potential
(

∇2
2µλ
+

k2λ
2µλ

)

δλλ′φλ′E(�r) =
∫

d3r′ Uλλ′(�r, �r′)φλ′E(�r′) with the reduced mass

µλ = mB1mB2/(mB1 + mB2).
In lattice QCD calculations, we compute the four-point correlation function defined by[9]

F
�B1B2B3B4�
αβ,JM (�r, t − t0) =

∑

�X

〈
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∣
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∣
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∣
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0
〉

, (3)
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1 flavor lattice QCD. See also Ref.[

2) systems using full QCD gauge configurations. Several earl

channel are found in Ref.[

In order to study the baryon-baryon interactions, we first define the equal time NBS wave function in

)) denotes the local interpolating field of baryon

field of octet baryons given by

fine a non-local potential

elation function defined by[

where J (J,M)
B3B4

(t0) =
∑

α′β′ P
(J,M)
α′β′ B3,α′ (t0)B4,β′(t0) is a source operator that creates B3B4 states with the

total angular momentum J,M. The normalised four-point function can be expressed as

R
�B1B2B3B4�

αβ,JM (�r, t − t0) = e
(mB1+mB2 )(t−t0)F

�B1B2B3B4�

αβ,JM (�r, t − t0)

=

∑

n

An

∑

�X

〈

0
∣

∣

∣

∣

B1,α(�X + �r, 0)B2,β(�X, 0)
∣

∣

∣

∣

En

〉

e−(En−mB1−mB2 )(t−t0)+O(e−(Eth−mB1−mB2 )(t−t0)), (4)

where En (|En�) is the eigen-energy (eigen-state) of the six-quark system and An =
∑

α′β′ P
(JM)
α′β′

�En|B4,β′B3,α′ |0�. Hereafter, the spin and angular momentum subscripts are suppressed for F and
R for simplicity. At moderately large t − t0 where the inelastic contribution above the pion production
O(e−(Eth−mB1−mB2 )(t−t0)) = O(e−mπ(t−t0)) becomes negligible, we can construct the non-local potential U

through
(

∇2

2µλ
+

k2λ
2µλ

)

δλλ′Fλ′(�r) =
∫

d3r′Uλλ′(�r, �r′)Fλ′(�r′). In lattice QCD calculations in a finite box, it

is practical to use the velocity (derivative) expansion, Uλλ′(�r, �r′) = Vλλ′(�r, �∇r)δ
3(�r − �r′). In the lowest

few orders we have

V(�r, �∇r) = V
(0)(r) + V (σ)(r)�σ1 · �σ2 + V

(T )(r)S 12 + V
( LS
ALS
)(r)�L · (�σ1 ± �σ2) + O(∇

2), (5)

where r = |�r|, �σi are the Pauli matrices acting on the spin space of the i-th baryon, S 12 = 3(�r · �σ1)(�r ·

�σ2)/r
2 − �σ1 · �σ2 is the tensor operator, and �L = �r × (−i�∇) is the angular momentum operator. The first

three-terms constitute the leading order (LO) potential while the fourth term corresponds to the next-
to-leading order (NLO) potential. By taking the non-relativistic approximation, En − mB1 − mB2 ≃
k2λ,n
2µλ
+ O(k4λ,n), and neglecting the VNLO and the higher order terms, we obtain

(

∇2

2µλ
− ∂
∂t

)

Rλε(�r, t) ≃

V
(LO)
λλ′ (�r)θλλ′Rλ′ε(�r, t), with θλλ′ = e

(mB1+mB2−mB′1
−mB′

2
)(t−t0). Note that we have introduced the matrix form

Rλ′ε = {Rλ′ε0 ,Rλ′ε1 } with linearly independent NBS wave functions Rλ′ε0 and Rλ′ε1 . For the spin singlet

state, we extract the central potential as V (Central)λλ′ (r; J = 0) = (θλλ′)
−1(R−1)ε′λ′(

∇2

2µλ
− ∂
∂t
)Rλε′ . For the

spin triplet state, the wave function is decomposed into the S - and D-wave components as
{

R(�r; 3S 1) = PR(�r; J = 1) ≡
1
24

∑

R∈O RR(�r; J = 1),
R(�r; 3D1) = QR(�r; J = 1) ≡ (1 − P)R(�r; J = 1).

(6)

Therefore, the Schrödinger equation with the LO potentials for the spin triplet state becomes

{

P

Q

}

×
{

V
(0)
λλ′ (r)+V

(σ)
λλ′ (r)+V

(T )
λλ′ (r)S 12

}

θλλ′Rλ′ε(�r, t − t0)=

{

P

Q

}

×

{

∇2

2µλ
−
∂

∂t

}

Rλε(�r, t − t0), (7)

from which the central and tensor potentials, V (Central)λλ′ (r; J = 0) = (V (0)(r) − 3V (σ)(r))λλ′ for J = 0,

V
(Central)
λλ′ (r; J = 1) = (V (0)(r) + V (σ)(r))λλ′ , and V

(Tensor)
λλ′ (r) for J = 1, can be determined1.

3 Comprehensive lattice QCD calculation with almost physical quark

masses

N f = 2 + 1 gauge configurations at almost the physical quark masses are used; they are generated
on 964 lattice by employing the RG improved (Iwasaki) gauge action at β = 1.82 with the non-
perturbatively O(a) improved Wilson quark (clover) action at (κud, κs) = (0.126117, 0.124790) with

1 The potential is obtained from the NBS wave function at moderately large imaginary time; it would be t − t0 ≫ 1/mπ ∼
1.4 fm. In addition, no single state saturation between the ground state and the excited states with respect to the relative motion,

e.g., t − t0 ≫ (∆E)
−1
=

(

(2π)2/(2µ(La)2)
)−1
≃ 8.0 fm, is required for the HAL QCD method[9].
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Figure 1. The effective mass of single baryon’s correlation

functions with utilising wall sources.

csw = 1.11 and the 6-APE stout smeared links with the smearing parameter ρ = 0.1. Preliminary
studies show that the physical volume is (aL)4 ≈(8.1fm)4 with the lattice spacing a ≈ 0.085fm and
(mπ,mK) ≈ (146, 525)MeV. See Ref.[18] for details on the generation of the gauge configuration.
The periodic (Dirichlet) boundary condition is used for spacial (temporal) directions; wall quark
source is employed with Coulomb gauge fixing which is separated from the Dirichlet boundary by
|tDBC − t0| = 48. Forward and backward propagation in time are combined by using the charge con-
jugation and time reversal symmetries to double the statistics. Each gauge configuration is used four
times by using the hypercubic SO(4,Z) symmetry of 964 lattice. A large number of baryon-baryon po-
tentials including the channels from NN to ΞΞ are studied by means of HAL QCD method[11]. See
also Ref.[17] for the thoroughgoing consistency check in the numerical outputs and comparison at
various occasions between the UCA[19] and the present algorithm[16]. In this report, 96 wall sources
are used for the 207 gauge configurations at every 10 trajectories. Statistical data are averaged with
the bin size 23. Jackknife method is used to estimate the statistical errors.

4 Results

4.1 Effective masses from single baryons’ correlation function

In the following analysis to obtain the potential, we use the single baryon’s correlation functions,
(CB1 (t − t0)CB2(t − t0))

−1, instead of the simple exponential functional form e(mB1+mB2 )(t−t0) in order to
calculate the normalised four-point correlation function. It would be beneficial to reduce the statis-
tical noise because of the statistical correlation between the numerator and the denominator in the
normalised four-point correlation function.
Fig. 1 shows the effective masses of the single baryon’s correlation function. For the baryons N,Λ,

and Σ, the plateaux start from the time slice around t − t0 ≈ 14. Therefore it is favourable that the
potentials are obtained at the time slices t − t0 � 14. In this report we present preliminary results of
potentials at time slices (t − t0 = 5 − 14) of our on-going work.

4.2 ΣN (I = 3/2) system

4.2.1 Potentials

Fig. 2 shows the central potential in the 3S 1 −
3 D1 (left), the tensor potential in the

3S 1 −
3 D1 (centre),

and the central potential in the 1S 0 (right) states of ΣN (I = 3/2) system, respectively. The stronger
repulsive core of the central potential in the 3S 1 −

3 D1 is seen in wider radial distance r � 1 fm;
such a strong repulsion is consistent with quark model’s prediction that is almost Pauli forbidden state
in the flavor 10 representation. In addition, the central potential in the 3S 1 −3 D1 obtained at time
slices t − t0 ≥ 10 shows small attractive well. The tensor potential is not as strong as the NN tensor

4
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525)MeV. See Ref.[ ] for details on the generation of the gauge configuration.

source is employed with Coulomb gauge fixing which is separat

ics. Each gauge configuration is used four

also Ref.[

are used for the 207 gauge configurations at every 10 trajecto

. It would be beneficial to reduce the statis-

in the flavor

Figure 2. The ΣN potentials of 3S 1 −
3 D1 central (left),

3S 1 −
3 D1 tensor (centre), and

1S 0 central (right) in the

I = 3/2 channel.

potential. The statistical fluctuation of the tensor potential becomes large at the time slices t − t0 ≥ 11
while that of the tensor potential at t − t0 ≤ 10 does not. These observations are consistent with the
scattering phase shift calculated below. On the other hand, for the 1S 0 state the repulsive core of the
central potential is relatively short ranged; the attractive force is seen in medium to long distance.
This behaviour is similar to the NN 1S 0 because this state belongs to flavor 27.

4.2.2 Scattering phase shifts
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Figure 3. Scattering bar-phase shifts and mixing angle in the 3S 1 −
3 D1 states of I = 3/2 ΣN system, δ̄0 (left), δ̄2

(centre), and ε̄1 (right), obtained from parametrised functional form Eq. (8) by solving the Schrödinger equation.

The potential itself is not a physical observable. A reliable comparison with other results from
experimental and/or theoretical (phenomenological) approaches should be made through physical ob-
servables, e.g., scattering phase shift. In order to obtain the scattering phase shift from present lattice
QCD potential we first parametrise the potential with an analytic functional form. As the first attempt,
we use following functional forms for the central and tensor potentials, respectively.

VC(r) = vC1e
−κC1r

2

+ vC2e
−κC2r

2

+ vC3
(

1 − e−αCr
2
)2 ( e−βCr

r

)2
,

VT (r) = vT1
(

1 − e−αT1r
2
)2 (

1 + 3
βT1r
+ 3
(βT1r)2

)

e−βT1r

r
+ vT2

(

1 − e−αT2r
2
)2 (

1 + 3
βT2r
+ 3
(βT2r)2

)

e−βT2r

r
.
(8)

Figure 3 shows the scattering phase shifts in 3S 1 −
3 D1 channels of ΣN(I = 3/2) system obtained

by solving the Schrödinger equation with above parametrised analytic functions. For the 3S 1 −
3 D1

channels, the scattering matrix is parametrised with three real parameters bar-phase shifts and mixing

5
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angle [20]:

S =

(

eiδ̄J−1 0

0 eiδ̄J+1

) (

cos 2ε̄J i sin 2ε̄J
i sin 2ε̄J cos 2ε̄J

) (

eiδ̄J−1 0

0 eiδ̄J+1

)

. (9)

The phase shift δ̄0 at the time slices t − t0 = 9 − 11 shows the interaction is repulsive while the phase
shift δ̄2 behaves around almost zero degree. Figure 4 shows the scattering phase shift in

1S 0 channel
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Figure 4. Scattering phase shift in the 1S 0 state of I = 3/2 ΣN system,

obtained from parametrised functional form Eq. (8) by solving the

Schrödinger equation.

of ΣN(I = 3/2) system obtained through the above parametrised functions. The present result shows
that the interaction in the 1S 0 channel of ΣN(I = 3/2) system is attractive on average though the
fluctuation is large especially for the time slices t − t0 = 9, 11. The lattice potentials at flavor SU(3)
limit [21] show that group theoretical classification based on quark model works for clarifying the
general behaviour of various baryon-baryon interactions in the S -wave; the ΣN I = 3/2 3S 1 −

3 D1
belongs to 10 which is almost Pauli forbidden while the ΣN I = 3/2 1S 0 belongs to 27 which is
same as NN 1S 0. The present S -wave (dominated) phase shifts, the repulsive (attractive) behaviour
of δ̄0 (δ(

1S 0)), augur well for future quantitative conclusions with larger statistics. Incidentally, these
behaviours are also qualitatively similar to recent studies [15, 22–24]. For both Figs. 3 and 4, the
parametrisation procedure through the functional form may not be so stable at this moment especially
for t − t0 = 11. The present phase shifts and mixing angle should be regarded as preliminary results
so that the large errorbars would be improved by future analysis with larger statistical data.

4.3 ΛN − ΣN (I = 1/2) coupled-channel systems

Fig. 5 showsΛN−ΛN diagonal part for the central potential in the 3S 1−
3D1 (left), the tensor potential

in the 3S 1−
3D1 (centre), and the central potential in the

1S 0 (right) states ofΛN−ΣN (I = 1/2) system,
respectively. There are repulsive cores in the short distance region and medium to long range attractive
well for both central potentials. The relatively weak tensor potential is found. Fig. 6 showsΛN → ΣN
transition part for the central potential in the 3S 1 −

3 D1 (left), the tensor potential in the
3S 1 −

3 D1

Figure 5. The ΛN −ΛN potentials for 3S 1 −
3 D1 central (left),

3S 1 −
3 D1 tensor (centre), and

1S 0 central (right).

6
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fluctuation is large especially for the time slices 11. The lattice potentials at flavor
] show that group theoretical classification based on quark m

Figure 6. The ΛN → ΣN potentials for 3S 1 −3 D1 central (left), 3S 1 −3 D1 tensor (centre), and 1S 0 central (right).

Figure 7. The ΣN − ΣN potentials of 3S 1 −3 D1 central (left), 3S 1 −3 D1 tensor (centre), and 1S 0 central (right)
in the I = 1/2 channel.

(centre), and the central potential in the 1S 0 (right) states of ΛN − ΣN (I = 1/2) system, respectively.
The 3S 1 −3 D1 central potential is found to be short ranged. The tensor potential is not as strong as the
NN tensor potential but it has sizable strength. The statistical fluctuation in the 1S 0 central potential
is still large. Fig. 7 shows ΣN − ΣN diagonal part for the central potential in the 3S 1 −3 D1 (left), the
tensor potential in the 3S 1−3D1 (centre), and the central potential in the 1S 0 (right) states of ΛN−ΣN
(I = 1/2) system, respectively. There are short range repulsive core and medium range attractive well
in the 3S 1−3D1 central potential. The very strong repulsive core is seen in the 1S 0 central potential; it
could be due to the large contribution of flavor 8s component, where we have |ΣN� = 1√

10
(3|8s�− |27�)

in the flavor SU(3) limit. The statistical fluctuation in the repulsive channel seems to be large.

5 Summary

In this report, the preliminary results of the ΛN, ΣN and their coupled-channel potentials are pre-
sented. For the ΣN (I = 3/2) interaction, phase shifts are calculated for the 3S 1 −3 D1 and 1S 0 states.
The phase shift δ̄0 in the

3S 1 −3 D1 channel shows that the ΣN (I = 3/2,3S 1) interaction is repulsive.
The phase shift in the ΣN (I = 3/2,1S 0) channel shows that the interaction is attractive on average.
These results are qualitatively consistent with recent phenomenological approaches. For the ΛN −ΣN
coupled-channel system, the potentials in the 1S 0 channel have still large statistical fluctuations be-
cause the number of statistics in the spin-singlet is factor 3 smaller than the number of statistics in the
spin-triplet. In addition, large contribution from flavor 8s component in the ΣN (I = 1/2, 1S 0) could
deteriorate the signal in the ΣN 1S 0 potential. Further calculations to obtain physical quantities with
increased statistics are in progress and will be reported elsewhere.
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