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The masses of the low-lying baryons are evaluated using a total of ten ensembles of dynamical twisted
mass fermion gauge configurations. The simulations are performed using two degenerate flavors of light
quarks, and a strange and a charm quark fixed to approximately their physical values. The light sea quarks
correspond to pseudo scalar masses in the range of about 210 to 430 MeV. We use the Iwasaki improved
gluonic action at three values of the coupling constant corresponding to lattice spacing a = 0.094, 0.082
and 0.065 fm determined from the nucleon mass. We check for both finite volume and cutoff effects on the
baryon masses. We examine the issue of isospin symmetry breaking for the octet and decuplet baryons and
its dependence on the lattice spacing. We show that in the continuum limit isospin breaking is consistent
with zero, as expected. We performed a chiral extrapolation of the forty baryon masses using SU(2) yPT.
After taking the continuum limit and extrapolating to the physical pion mass our results are in good

=

agreement with experiment. We provide predictions for the mass of the doubly charmed =, as well as of
the doubly and triply charmed Qs that have not yet been determined experimentally.
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I. INTRODUCTION

Simulations of QCD defined on four-dimensional
Euclidean lattice using near to physical values of the light
quark masses are enabling the reliable extraction of the
masses of the low-lying hadrons. This progress in lattice
QCD coupled with the interest in charmed-baryon spec-
troscopy, partly triggered by the first observation of a
family of doubly charmed baryons =7.(3519) and
E/(3460) by the SELEX Collaboration [1-3], make
the study of the charmed hadron masses particularly timely.
The fact that the observation of =},(3519) or =/ (3460),
has not be confirmed by the BABAR [4] nor the BELLE [5]
experiments calls for further attention into the existence of
doubly charmed =s. Even more interesting is the mass
splitting of about 60 MeV for this doublet as compared to
the splitting of other previously observed isospin partners
that have mass differences 1 order of magnitude smaller.
Theoretical studies using e.g. the nonrelativistic [6] and
relativistic quark models [7,8], and QCD sum rules [9]
predict the =.. mass to be 100-200 MeV higher than
that observed by SELEX. Heavy baryon spectra will be
further studied experimentally at the recently upgraded
Beijing Electron-Positron Collider detector, the Beijing
Spectrometer and at the antiproton annihilation at
DArmstadt at FAIR. Lattice QCD calculations can provide
theoretical input for these experiments. A number of lattice
QCD studies have recently looked at the mass of charmed
baryons. Most of these studies employ a mixed action
approach using staggered sea quarks. In Ref. [10]
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Ny;=2+1+1 staggered sea quarks with clover light
and strange valence quarks and a relativistic action for the
charm quark are employed and the results are extrapolated
to the continuum limit. In Refs. [11,12] Ny =2+1
staggered sea quarks are used with staggered light and
strange [11] or domain wall [12] valence quarks with a
relativistic action for the charm quark.

In this work we extend our previous study on the low-
lying spectrum of the baryon octet and decuplet using
Ny =2 twisted mass fermions [13] to Ny =2+ 1+1
twisted mass fermions at maximal twist. For the valence
strange and charm sector we use an Osterwalder-Seiler
quarks avoiding mixing between these two sectors. The
strange and charm valence quark masses are tuned using
the Q~ and A, baryon mass, respectively. We analyze a
total of ten Ny =2+ 1+ 1 ensembles at three different
lattice spacings and volumes. This enables us to take the
continuum limit and assess volume effects. Our results are
fully compatible with an O(a?) behavior which is used to
extrapolate to the continuum limit.

The good precision of our results on the baryon masses
allows us to perform a study of chiral extrapolations to
obtain results at the physical point. This study shows that
one of the main uncertainties in predicting the mass at the
physical point is caused by the chiral extrapolations, which
yield the largest systematic error.

An important issue is the restoration of the explicitly
broken isospin symmetry in the continuum limit. At finite
lattice spacing, baryon masses display O(a?) isospin
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breaking effects. There are, however, theoretical arguments
[14] as well as numerical evidence [15,16] that these
isospin breaking effects are particularly pronounced for
the neutral pseudo scalar mass, whereas for other quantities
studied so far by the European Twisted Mass Collaboration
(ETMC) they are compatible with zero. In this paper, we
will corroborate this result also in the baryon sector
showing that isospin breaking effects are in general small
or even compatible with zero. For a preliminary account of
these results see Ref. [17].

The paper is organized as follows: The details of our
lattice setup, namely those concerning the twisted mass
action, the parameters of the simulations and the interpo-
lating fields used, are given in Sec. II. Section III contains
the numerical results of the baryon masses computed for
different lattice volumes, lattice spacings and bare quark
masses. Lattice artifacts, including finite volume and
discretization errors are also discussed with special empha-
sis on the O(a?) isospin breaking effects inherent in the
twisted mass formulation of lattice QCD. The chiral
extrapolations are analyzed in Sec. IV. Section V contains
a comparison with other existing calculations and con-
clusions are finally drawn in Sec. VL

II. LATTICE TECHNIQUES

A. The lattice action

In the present work we employ the twisted mass fermion
action [18] and the Iwasaki improved gauge action [19].
Twisted mass fermions provide an attractive formulation of
lattice QCD that allows for automatic O(a) improvement,
infrared regularization of small eigenvalues and fast
dynamical simulations [20].

The twisted mass Wilson action used for the light
degenerate doublet of quarks (u, d) is given by [18,20]

SPD. 70, U) = a*S "7 (x)(Dy [U] + mo

+ iupys7 )V (x) (1)

with 73 the third Pauli matrix acting in the flavor space, My
the bare untwisted light quark mass, y; the bare twisted
light quark mass and the massless Wilson-Dirac operator
given by

DylU) =5, + V) -5V @
where
V() = (U (x + ap) ~ ()] and
Viw (o) =~ U, (- @iy -ai) ~p(]. ()

The quark fields denoted by yV) in Eq. (1) are in the
so-called “twisted basis.” The fields in the “physical
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basis,” w(!), are obtained for maximal twist by the simple
transformation

O (x) = % (1 + irys)y D (),
70 () = 70 (1) = (1 + ic¥ys). (4)

V2

In addition to the light sector, a twisted heavy mass-split
doublet ™) = (y., y,) for the strange and charm quarks is
introduced, described by the action [21,22]

SP®. 70, U) = a*S "7 (x) (Dw[U] + mo,

X

+ ipgystt + us)y ™ (x) (5)

where my, is the bare untwisted quark mass for the heavy
doublet, u, is the bare twisted mass along the 7' direction
and pg; is the mass splitting in the 7> direction. The quark
fields for the heavy quarks in the physical basis are
obtained from the twisted basis through the transformation

y (x) = \L@ (1+ irlys)r™ (x),

7 (x) = 7 <x>¢i§<ﬂ L irlys). (6)

In this paper, unless otherwise stated, the quark fields
will be understood as “physical fields,” v, in particular
when we define the baryonic interpolating fields.

The form of the fermionic action in Eq. (1) breaks parity
and isospin at nonvanishing lattice spacing. In particular,
the isospin breaking in physical observables is a cutoff
effect of O(a?) [20].

Maximally twisted Wilson quarks are obtained by setting
the untwisted quark mass m to its critical value m,, while
the twisted quark mass parameter y is kept nonvanishing in
order to work away from the chiral limit. A crucial
advantage of the twisted mass formulation is the fact that,
by tuning the bare untwisted quark mass m, to its critical
value m,, all physical observables are automatically O(a)
improved [20,22]. In practice, we implement maximal twist
of Wilson quarks by tuning to zero the bare untwisted
current quark mass, commonly called Partially Conserved
Axial Current (PCAC) mass, mpcac [23,24], which is
proportional to my—m, up to O(a) corrections. A
convenient way to evaluate mpcpc is through

m = lim Zx<84gi’(x,t)i)b(0)>
PCAC ™ am1 S (PP(x, 1) PP (0))

wherbe A;}Z =XVuYs % x 1s the axial vector current and Pt =
J7s % x is the pseudoscalar density in the twisted basis. The
large #/a limit is required in order to isolate the contribution
of the lowest-lying charged pseudoscalar meson state in the
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TABLE L.
the number of gauge configurations analyzed.
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Input parameters (3, L, au) of our lattice simulations with the corresponding lattice spacing (a), pion mass (m,) as well as

B =190, a =0.0936(13) fm ry/a = 5.231(38)

a 0.0030 0.0040 0.0050
Number of configurations 200 200 200
3 _
327 x 64, L = 3.0 fm m, (GeV) 0.261 0.298 0.332
m,L 3.97 453 5.05
B =195, a = 0.0823(10) fm, ro/a = 5.710(41)
ap 0.0025 0.0035 0.0055 0.0075
Number of configurations 200 200 200 200
3 —
327 x 64, L = 2.6 fm m, (GeV) 0.256 0.302 0.372 0.432
m,L 3.42 4.03 4.97 5.77
B =2.10, a = 0.0646(7) fm ry/a = 7.538(58)
a 0.0015 0.002 0.003
Number of configurations 196 184 200
3 —
487> 96, L = 3.1 fm m, (GeV) 0.213 0.246 0.298
m,L 3.35 3.86 4.69

correlators of Eq. (7). This way of determining mpcac i
equivalent to imposing on the lattice the validity of the axial
Ward identity 8”Afj = 2mpcacP’, b =1,2, between the
vacuum and the charged zero three-momentum one-pion
state. When my, is taken such that mpcac vanishes, this
Ward identity expresses isospin conservation, as it becomes
clear by rewriting it in the physical quark basis. The value
of mg, is determined at each y; in our Ny =2+ 1+1
simulations, a procedure that preserves O(a) improvement
and keeps O(a?) small [23,24]. The reader can find more
details on the twisted mass fermion action in Ref. [25].
Simulating a charm quark may give rise to concerns
regarding cutoff effects. An analysis presented in
Ref. [26] shows that they are surprising small. In this
work we investigate in detail the cutoff effects on the
hyperon and charmed-baryon masses using simulations at
our three values of the lattice spacings. All final results are
extrapolated to the continuum limit.

In order to avoid complications due to flavor mixing in
the heavy quark sector we only use Osterwalder-Seiler
valence strange and charm quarks. Since the bare heavy
quark masses in the sea were approximately tuned to the
mass of the kaon and D-meson, in order to match their
masses exactly tuning would have been required even if we
used twisted mass quarks for the strange and the charm.
Since our interest in this work is the baryon spectrum we
choose to use the physical mass of the Q™ and the A, in
order to tune the Osterwalder-Seiler strange and charm
quark masses. This means that we need to choose a value of
strange (charm) quark mass performed the computation
at several values of the pion mass and then chiral extrapo-
late the Q™ (A.) mass and compare with its experimental
value. If our chirally extrapolated results do not reproduce
the right mass we change the strange (charm) quark
mass and iterate until we reach agreement with the
experimental value. Osterwalder-Seiler fermions are
doublets with r = £1 like the u- and d-doublet, i.e.

7 = (sT,57) and 79 = (¢™,c¢7), have an action that
is the same as for the doublet of light quarks, as given in
Eq. (1), but with y; in Eq. (1) replaced with the tuned value
of the bare twisted mass of the strange (charm) valence
quark. Taking mg to be equal to the critical mass deter-
mined in the light sector the O(a) improvement in any
observable still applies. One can equally work with the
upper or the lower component of the strange and charm
doublets. In the continuum limit both choices are equiv-
alent. In this work we choose to work with the upper
components, namely the s™ and ¢*. The action for the
heavy quarks would then read

Soalc ™ 7™ U] = a7 70 () (Dy[U] + me,
X h=s
+ i/"h75))(<h)(x)' (8)

The reader interested in the advantage of this
mixed action in the mesonic sector is referred to the
Refs. [21,27-30]. We give more details on the tuning of
the strange and charm quark masses in Sec. ITF.

B. Simulation details

We summarize the input parameters of the calculations,
namely f, L/a, the light quark mass au as well as the value
of the pion mass in Table I. A total of ten gauge ensembles
at three values of B are considered, namely S = 1.90,
f =1.95 and p = 2.10, allowing for an investigation of
finite lattice spacing effects and for taking the continuum
limit. The values of the lattice spacings a given in Table I
are determined using the nucleon mass as explained in
Sec. II E. The pion masses for the simulations span a range
from about 210 to 430 MeV, which is close enough to
the physical point mass to allow us to perform chiral
extrapolations.
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C. Two-point correlation functions and effective mass

In order to extract baryon masses we consider two-point correlation functions at p = 0 defined by

- = 1
C)i((t’ pP= 0) = z <Z TI'(] + YO)jX(Xsinkv tsink) X jX<Xsourcev tsource)>’ I = Isink — Tsource (9)

Xsink —Xsource

where Jx is the interpolating field of the baryon state of
interest acting at the source (Xgourees fsource) and the sink,
(Xginks Lsink )- Space-time reflection symmetries of the action
and the antiperiodic boundary conditions in the temporal
direction for the quark fields imply, for zero three-
momentum correlators, that Cy (f) = —Cyx(T — t). There-
fore, in order to decrease errors we average correlators in
the forward and backward direction and define

Cx(1) = Cx (1) = Cx(T —1). (10)

In addition, the source location is chosen randomly on the
whole lattice for each configuration, in order to decrease
correlation among measurements.

The ground state mass of a given hadron can be extracted
by examining the effective mass defined by

L+ 3 e
— dmy
t—00

= amy + log (1 £y, c.e—Ai(i+1)

(11)

where A; = m; — my is the mass difference of the excited
state i with respect to the ground mass my. All results in
this work have been extracted from correlators where
Gaussian smearing is applied both at the source and sink.
In general, effective masses of correlators of any interpo-
lating fields are expected to have the same value in the large
time limit, but applying smearing on the interpolating fields
suppresses excited states, therefore yielding a plateau
region at earlier source-sink time separations and better
accuracy in the extraction of the mass. Our fitting procedure
to extract my is as follows: The sum over excited states in
the effective mass given in Eq. (11) is truncated, keeping
only the first excited state,
14 cle 1!
amé(ff(t) ~ amy + lOg (m) . (12)
The upper fitting time slice boundary is kept fixed, while
allowing the lower fitting time to be two or three time slices
away from ... We then fit the effective mass to the form
given in Eq. (12). This exponential fit yields an estimate for
¢y and Ay as well as for the ground state mass, which we
denote by m&E. Then, we perform a constant fit to the
effective mass increasing the initial fitting time #;. We

denote the value extracted by mg(c) (t;). The final value of
the mass is selected such that the ratio
c E c E
lam (1) —am| e ami (1) + am?
amiypean ’ X 2

(13)

becomes less than 50% the statistical error on m§f>(z1).
This criterion is, in most cases, in agreement with y>/d.o.f.
becoming less than unity. In the cases in which this
criterion is not satisfied a careful examination of the
effective mass is made to ensure that the fit range is in
the plateau region. We show representative results of these
fits to the effective mass of the baryons Z° and Q¥ in Fig. 1.
The error bands on the constant and exponential fits are
obtained using jackknife analysis. As can be seen, the
exponential and constant fits yield consistent results in the
large time limit.

D. Interpolating fields

The baryon states are created from the vacuum with the
use of interpolating fields that are constructed such that
they have the quantum numbers of the baryon of interest
and reduce to the quark model wave functions in the
nonrelativistic limit. We have a four-dimensional flavor
space and therefore we consider SU(3) subgroups to
visualize baryons under SU(4) symmetry. The baryon
states split into a 20/-plet of spin-1/2 states and a 20-plet
of spin-3/2 states. There also exists a 4-plet, which is not
considered in this work. Light, strange and charmed
baryons can be classified according to their transformation
properties under flavor SU(3) and their charm content. This
is shown schematically in Fig. 2 and Fig. 3. The spin-1/2
20/-plet decomposes into three horizontal levels. The first
level is the standard octet of the SU(3) symmetry that has
no charm quarks, the ¢ = 1 is the second level that splits
into two SU(3) multiplets, a 6 containing the X, and a 3
containing the A, and the =, and the ¢ = 2 3 multiplet of
SU(3) that forms the top level. In a similar way, the 20-plet
of spin-3/2 baryons contains the standard ¢ = 0 decuplet at
the lowest level, the ¢ = 1 level 6 multiplet of SU(3), the
¢ =2 3 multiplet and a ¢ =3 singlet at the top of
the pyramid. The interpolating fields for these baryons,
displayed Fig. 2 and Fig. 3, are collected in the Tables XII
and XIII of Appendix A [31-33].
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FIG. 1 (color online).
the exponential fits are displayed.

In other recent works where baryon properties are
studied, e.g. in Ref. [34], different interpolating fields to
those we provide in Tables XII and XIII were used. These
different interpolating fields are tabulated in Table XIV of
Appendix A. In what follows we will compare the effective
masses using the two different sets that have the same
quantum numbers but different structure.

As local interpolating fields are not optimal for
suppressing excited state contributions, we apply
Gaussian smearing to each quark field g(x,7) [35,36].
The smeared quark field is given by ¢™™*(x,t) =
> F(x,y;U(t))q(y, 1), where we have used the gauge
invariant smearing function

F(x,y;U(1)) = (1 +aH)"(x,y; U(1)),  (14)
constructed from the hopping matrix understood as a
matrix in coordinate, color and spin space,

3
H(x.y:U() =Y (Ui(x.1)8, y_ i+ U} (x—al.0)8, ).

i=1

(15)

FIG. 2. The 20'-plet of spin-1/2 baryons classified according
to their charm content. The lowest level represents the ¢ =0
SU(3) octet.
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Representative effective mass plots for Z° (left) and Q0 (right) at # = 2.10, au; = 0.0015. Both the constant and

In addition, we apply APE smearing to the spatial links that
enter the hopping matrix. The parameters @ and n of the
Gaussian and APE smearing at each value of f are collected
in Table II.

The interpolating fields for the spin-3/2 baryons defined
in Table XIII have an overlap with spin-1/2 states. These
overlaps can be removed with the incorporation of a spin-
3/2 projector in the definitions of the interpolating fields

Ty, = PiTon (16
For nonzero momentum, P’;;z is defined by [37]
P* _yv_lﬂv_i( Hpt 4 ﬂv) (17)
S = 37 g et ).

In correspondence, the spin-1/2 component 7’ ’)‘(1 , can be
obtained by acting with the spin-1/2 projector PY), =
S — P’3‘72 on J%. Elements with Lorentz indices y,v =0
will not contribute. In this work we study the mass
spectrum of the baryons in the rest frame taking p = 0.

FIG. 3. The 20-plet of spin-3/2 baryons classified according to
their charm content. The lowest level represents the ¢ =0
decuplet subgroup.
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TABLE II. Smearing parameters for the ensembles at f = 1.90,

p =195 and p = 2.10.
APE Gaussian

ap;, L/a n a n a

0.0030, 32 20 0.5 50 4.0

p =190 0.0040, 32 20 0.5 50 4.0

0.0050, 32 20 0.5 50 4.0

0.0025, 32 20 0.5 50 4.0

B =195 0.0035, 32 20 0.5 50 4.0

' 0.0055, 32 20 0.5 50 4.0

0.0075, 32 20 0.5 50 4.0

0.0015, 48 50 0.5 110 4.0

p=2.10 0.0020, 48 20 0.5 50 4.0

0.0030, 48 20 0.5 50 4.0

Since in that case the last term of Eq. (17) will contain &,
it will vanish. When the spin-3/2 and spin-1/2 projectors
are applied to the interpolating field operators, the resulting
two-point correlators for the spin-3/2 baryons acquire the
form

C%(t) = %Tr[C(l‘)] +é2yi7jcij(t)7
i#]

1 1<

Cy(1) :gTr[C(f)] —3271'7’]@;'0)’ (18)
i#]

where Tr[C] = .C;;. When no projector is taken into

account, the resulting two-point correlator would

be C = 1 Tr[C].

We have carried out an analysis to examine the results of
the effective masses extracted from correlation functions
with and without the spin-3/2 projection, as well as with
the spin-1/2 projector using 100 gauge configurations, a
number sufficiently large for the purpose of this

1.4

232 p‘rojection‘ —o—
1.2 - 1/2 projection —a—

{ No projection —=3—
L A

¥
Loosr® 44 ]
§ 06} %{\ % %} Hj

. £ {ﬂ

0

0 4 8 12 16 20
t/a

FIG. 4 (color online).
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comparison. In our comparison we also consider correla-
tion functions obtained using the alternative interpolating
fields given in Table XIV. To distinguish these two sets we
denote the interpolating fields of Tables XII and XIII by J g
and those in Table XIV by [Jp. The left panel of Fig. 4
compares effective masses extracted from correlators with
Js—+ at f=2.10, au; = 0.0015. As can be seen, the results
for the effective masses when applying the 3/2-projector
and without any projection are perfectly consistent even at
short source-sink time separations yielding the mass of
>**. On the other hand, the effective mass obtained using
the spin-1/2 projected interpolating field is much more
noisy and yields a higher value of the mass. The latter
property suggests that the 1/2-projected interpolating field
Js+ yields an excited spin-1/2 state of the X* at least at
small time slices. The large errors associated with the
correlator with the spin-1/2 projector suggest that the
overlap with this state is weak. Another example is shown
in the right panel of Fig. 4, where results are displayed for
the correlator using Jy-++ at f =195, au; = 0.0055. A
similar behavior to ours for the X" was found in Ref. [38]
where the same spin projections are implemented.
However, there are cases where the spin-3/2 projection
is required. One example is the Z*~ baryon, shown in
Fig. 5, where the effective mass when no projection is
applied is persistently lower than when using the spin-3/2
projector. It is also apparent from Fig. 5 that the spin-1/2
projected interpolating field 7= yields an effective mass,
which is consistent with the corresponding results using the
spin-1/2 interpolating field 7 =- and thus the mass of Z~. A
similar case to this is the =%, as can be seen from Fig. 6.
Therefore, it is crucial in order to obtain the correct spin-
3/2 mass to project out the lower-lying spin-1/2 state.
In order to further examine the properties of the
interpolating fields, we also include effective mass results
from the alternative set of interpolating fields. We plot
effective mass results obtained from J-.o as well as
the effective mass of the spin-1/2 Z° at f=1.95,

2 ‘ : ;
3/2 projection —e— A
1.8 | 1/2 projection —a—
16l No projection —=—
A
I, 14t
A
g 12r « 2
s 1F @@4 a3 4 ,
0.8 t @ﬁ] ﬁ]
0.6 + 1
0 4 8 12 16 20

t/a

Comparison of effective masses extracted using Js-+ at f = 2.10, ap; = 0.0015 (left) and using Jy-++ at

B =1.95, au; = 0.0055 (right) obtained with the spin-3/2 projection (red filled circles), spin-1/2 projection (green triangles) and
without projection (blue open squares, shifted to the right for clarity).
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1.2 : ‘ ‘ ‘ ‘
J=- 3/2 projection —e—
L1t J=- 1/2 projection —a—
1 J=- No projection —3— |
o- ——
0.9 |* J= ]
5 L il
= 08} A
s 4.*3053 ® e ¢
071 a0, o0 00 g, Ty |
0.6 | R
PY s s
0.5t LR
0.4

2 4 6 8 10 12 14 16

t/a
FIG. 5 (color online). Comparison of effective masses extracted
using for J= at f = 1.95, au; = 0.0025 obtained with the spin-
3/2 projection (red filled circles), without projection (blue open
squares, shifted to the right for clarity) and with spin-1/2

projection (green triangles). Also plotted is the effective mass
using J=- (magenta diamonds).

ap; = 0.0025 in Fig. 7, in correspondence with Fig. 6. As
shown, the results from using spin-3 /2 projection and when
applying no projection on J=.o are now consistent. In
contrast with 7=, the spin-1/2 projection of Jz yields
an excited spin-1/2 state of Z*°. However, as can be seen
from Fig. 8, the spin-3/2 projections of the two interpolat-
ing fields for Z*° yield fully consistent results, as expected.
Similar behavior is observed in the other baryon states as
well. We demonstrate this by showing results for Q0 at
p =1.95, au; = 0.0075 in Figs. 9 and 10.

The main conclusion of this analysis is that the set of
spin-3/2 7 interpolating fields do not need any spin-3/2
projection, whereas the 7 in general do. After spin-3/2
projection they both give consistent results for the mass of
the spin-3/2 state they represent, as expected. Therefore
from now on we use only results from spin-3/2 projected

1.2 -
J=o 3/2 projection —e—
L1 J=o 1/2 projection —a— 1
1 lﬂ J=o No projection —=— |
09 * Jzo —o—
4= . o7
£ 08} a L + |
S *
0.7 A’é.mm%%%%%@ﬁ
06| 2020 5040 ,000 00 M1 |
05} i
0.4

2 4 6 8 10 12 14 16

t/a
FIG. 6 (color online). Comparison of effective masses for =*0 at
B =195, au; = 0.0025 obtained with the spin-3/2 projection,

without projection and with spin-1/2 projection. Also plotted is
the effective mass of Z°. The notation is as in Fig. 5.
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FIG. 7 (color online). Effective masses obtained using J =0 at
£ =195, au; = 0.0025 with the spin-3/2 projection (red filled
circles), without projection (blue open squares, shifted to the right
for clarity) and with spin-1/2 projection (green triangles). Also
plotted is the effective masses using J=o (magenta diamonds).
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FIG. 8 (color online). Comparison of effective masses for = at
B =195, au; = 0.0025 obtained from J=-o (red filled circles)
and J = (blue open squares, shifted to the right for clarity) using
the spin-3/2 projection. Results from the two interpolating fields
are fully consistent.
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FIG. 9 (color online). Effective mass results obtained for QJ
(red filled squares) and from 7 g0 using the spin-1 /2 projection
(blue open squares). The results are in agreement.
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FIG. 10 (color online). Effective mass results of Q% obtained
from the spin-3/2 projections of Jq.0 (red filled squares) and
J g0 (blue open squares) as well as from the spin-1/2 projection
of J o (green triangles). More details are given in the text.

interpolating fields and limit ourselves to the interpolating
fields J listed in Tables XII and XIII.

E. Determination of the lattice spacing

Since in this work the observables discussed are the
masses of baryons, the physical nucleon mass is the most
appropriate quantity to set the scale. In order to determine
the values of the lattice spacings as accurate as possible we
have carried out a high statistics analysis of the nucleon
masses for a total of 17 Ny =2 + 1 + 1 gauge ensembles
at /=190, p=1.95 andﬂ—210 on a range of pion
masses and volumes. We average over the masses of the
proton and neutron to further gain on statistics. The

PHYSICAL REVIEW D 90, 074501 (2014)

resulting nucleon masses for each of the gauge ensembles
are collected in Table III

The nucleon masses as function of m2 are presented in
Fig. 11. As can be seen, cutoff effects are negligible,
therefore we can use continuum chiral perturbation theory
to extrapolate to the physical pion mass using all the lattice
results. To this end we consider SU(2) chiral perturbation
theory (yPT) [39] and the well-established O(p?) result of
the nucleon mass dependence on the pion mass, given by

(19)

where mY, is the nucleon mass at the chiral limit and

together with c; are treated as fit parameters. This lowest
order result for the nucleon in heavy baryon chiral
perturbation theory (HByPT), first derived in Ref. [40],
and describes well lattice data [13,41]. Since this result is
well established as the leading contribution irrespective of
the various approaches to compute higher orders such as in
HByPT with dimensional and infra-red regularization with
and without the A degree of freedom explicitly included,
we will use it to fix the lattice spacing from the nucleon
mass The lattice spacings agz_; 9o, dp—195 and ag_, 1o are
considered as additional independent fit parameters in a
combined fit of our data at =190, f=1.95 and
f =2.10. We constrain our fit so that the fitted curve
passes through the physical point by fixing the value of c;.
The physical values of f, and g, are used in the fits, namely
fz=0.092419(7)(25) GeV and g4 = 1.2695(29), which
is common practice in chiral fits to lattice data on the
nucleon mass [42—44]. The left panel of Fig. 11 shows the

TABLE III. Values of the nucleon masses with the associated statistical error.
Volume Statistics ay, am, m, (GeV) amy my (GeV)
p =190
740 0.0030 0.1240 0.2607 0.5239(87) 1.1020(183)
323 x 64 1556 0.0040 0.1414 0.2975 0.5192(112) 1.0921(235)
387 0.0050 0.1580 0.3323 0.5422(62) 1.1407(130)
2092 0.0400 0.1449 0.3049 0.5414(84) 1.1389(176)
243 x 48 1916 0.0060 0.1728 0.3634 0.5722(48) 1.2036(101)
1796 0.0080 0.1988 0.4181 0.5898(50) 1.2407(104)
2004 0.0100 0.2229 0.4690 0.6206(43) 1.3056(90)
203 x 48 617 0.0040 0.1493 0.3140 0.5499(195) 1.1568(410)
p =195
2892 0.0025 0.1068 0.2558 0.4470(59) 1.0706(141)
323 x 64 4204 0.0035 0.1260 0.3018 0.4784(48) 1.1458(114)
18576 0.0055 0.1552 0.3716 0.5031(16) 1.2049(39)
2084 0.0075 0.1802 0.4316 0.5330(42) 1.2764(100)
243 x 48 937 0.0085 0.1940 0.4645 0.5416(50) 1.2970(121)
p =210
2424 0.0015 0.0698 0.2128 0.3380(41) 1.0310(125)
83 x 96 744 0.0020 0.0805 0.2455 0.3514(70) 1.0721(215)
226 0.0030 0.0978 0.2984 0.3618(68) 1.1038(208)
23 x 64 1905 0.0045 0.1209 0.3687 0.3944(26) 1.2032(79)
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FIG. 11 (color online).
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Nucleon masses at the three values of the lattice spacing. On the left panel the solid band represents a fit to the

lowest order O(p?) expansion from HByPT. The band on the right panel is a fit to O(p*) with explicit A degrees of freedom in the
so-called SSE. The physical nucleon mass is denoted with the asterisk.

fit to the O(p?) result of Eq. (19) on the nucleon mass. The
error band and the errors on the fit parameters are obtained
from super-jackknife analysis [45]. As can be seen, the
O(p?) result provides a very good fit to our lattice data,
which in fact confirms that cutoff and finite volume effects
are small for the f values used. In addition, our lattice
results exhibit a curvature which supports the presence of
the m3-term.

In order to estimate the systematic error due to the chiral
extrapolation we also perform a fit using HByPT to O(p*)
in the so-called small scale expansion (SSE) [44]. This
form includes explicit A degrees of freedom by introducing
as an additional parameter the A-nucleon mass splitting,
A = myp — my, taking O(A/my) ~ O(m,/my). In SSE the
nucleon mass is given by

3 2
A3 —4E, (A)m?
327f2

_3(g§+3ci) 4_(3gi+10cﬁ) e
6472 f2m8, " 3222 fZmQ, " yl

2

c4 ANA 5 3, m,
- 1+—=) 2 A3 —2m2A ) log [ 2=
3zz2f,2,( +2m9v> {4'"”( a5 OB\ S

(@ = m)R(m)

mN:m?\,—4clm,2,—

(20)

where R(m,) = —\/m3 — A’cos™' (&) for m, > A and

R(m,) = /A* —mZlog (A + /A — 1) for m, < A. We
take the cutoff scale A = 1 GeV, ¢; = 1.127 [44] and treat

the counterterm E; as an additional fit parameter. As in the
O(p?) case we use the physical values of g, and f,. The
corresponding plot is shown on the right panel of Fig. 11.
The error band as well as the errors on the fit parameters are
obtained using super-jackknife analysis. One can see that
this formulation provides a good description of the lattice
data as well and yields values of the lattice spacings and m$,
which are consistent with those obtained in O(p?) of
HByPT. We take the difference between the results of the
O(p?) and O(p*) fits as an estimate of the uncertainty due
to the chiral extrapolation. This is found to be about three
times the statistical error. The final values of the lattice
spacing are shown in Eq. (21). The first parenthesis is the
statistical error and the systematic error is given is the
second parenthesis. The rest of the fit parameters for
the two expansions and the y?/d.o.f. are given in Table IV.

aﬁ:]go = 00936(13) 35

(
aﬂ:l,95 = 00823( 10) (35
10 = 0.0646(7)(25) fm.

) fm
) fm
(1)

In order to better assess discretization effects we perform
a fitto O(p?) at each of the 8 values separately. The values
we find are ag_j99 = 0.0923(20) fm, az_j¢5 =
0.0821(16) fm and as_, 19 = 0.0657(12) fm. These values
are fully consistent with those obtained in Eq. (21) from the
combined fit, indicating that discretization effects are
small, thus confirming a posteriori the validity of the
assumption that cutoff effects are small for the nucleon

TABLEIV. Fit parameters m% in GeV and E, (1) in GeV~3 from O(p?) yPT and O(p*) SSE, as well as the fixed
value of —4c,. Also included is the value of the o-term for each fit.

m% —4c (GeVT) E (%) (GeV™) o,y (MeV) y*/d.of.
O(p?) HByPT 0.8667(15) 4.5735 64.9(1.5) 1.5779
O(p*) SSE 0.8813(47) 3.7282 —2.5858(2480) 45.3(4.3) 1.0880
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mass. A different way of demonstrating this is to include a
quadratic term da® to Egs. (19) and (20), treating d as an
additional fit parameter. Performing the fits with the da’-
term gives a value of d = 0.017(17) GeV? i.e. consistent
with zero. The same is true for the A mass confirming that
cutoff effects are negligible in the light quark sector.

We will use the values given in Eq. (21) to convert to
physical units all the quantities studied in this work. We
note that when performing these fits only statistical errors
are taken into account and systematic errors due to the
choice of the plateau are not included. The lattice spacings
for these f values were also calculated from a pion decay
constant analysis using next-to-leading order (NLO) SU(2)
chiral perturbation theory for the extrapolations [46]. In that
preliminary analysis only a subset of the ensembles used
here was included, yielding values of the lattice spacings
that are smaller compared to the values we extract using the
nucleon mass in this work. Specifically, the lattice spacings
at #=1.90,195 and 2.10 were found to be as =
0.0863(4),0.0779(4) and 0.607(2) respectively, where
ay_denotes the lattice spacing determined using the pion
decay constant. This implies that the values of the pion
masses in physical units we quote in this paper are
equivalently smaller than those obtained using f, to
convert to physical units. A comprehensive study of the
different lattice spacing determinations is ongoing.

Having determined the parameters of the chiral fit we can
compute the nucleon 6,y-term by evaluating m29my /Om>
where we have taken the leading order relation m2 ~ y;.
Using Eq. (19) we find 6,y = 64.9 £ 1.5 MeV. This value
is fully consistent with previous values extracted using this
lowest order fit by ETMC on N;=2 quark flavor
ensembles [13,41]. Performing the same calculation using
the O(p*) expression we obtain a lower value of ¢,y =
453 +£4.3 MeV showing the sensitivity to the chiral

PHYSICAL REVIEW D 90, 074501 (2014)

extrapolation. It is worth mentioning that such a difference
in the determination of the o,y-term is known in the
literature. For example, a latest z/N scattering study [47],
reporting a value o,y = 59 =7 MeV, while higher values
were also obtained using the Feynman-Hellmann theorem
to analyze lattice QCD data yielding o,y = 55 £ 1 MeV
[48]. Lower values are associated with the well-known
result of o,y =45+ 8 MeV extracted from an earlier
chiral perturbation analysis of experimental scattering data
[49], as well as, with the values extracted in other lattice
QCD calculations, such as the analysis of the QCDSF
Collaboration [50], where a value o,y = 38 &= 12 MeV is
obtained and of Ref. [51] where a value of o,y =52 +
3 £ 8 is extracted from a flavor SU(2) extrapolation of a
large set of lattice data on the nucleon mass. A very recent
result is obtained using the relativistic chiral Lagrangian
from Ref. [52], suggests a rather smaller value of
o,y =394+2—1 MeV. We summarize lattice results on
o,y in Fig. 12 we show our O(p?) value. We take
difference between the value extracted from the O(p*)
expression of Eq. (20) and the O(p?) value as an estimate
for the error arising from chiral extrapolation. As can be
seen from the values in Table IV the chiral extrapolation
error is large showing the sensitivity on the chiral extrapo-
lation, which explains the large error shown on our o,y
results. It is apparent that, despite the long efforts, the
precise determination of the nucleon o-terms is still an open
issue and direct techniques as those described in for
example Ref. [53] are welcome.

F. Tuning of the bare strange and charm quark masses

A tuning of the bare strange and charm quark masses is
performed using the physical mass of the Q™ and the A}
baryons respectively. For the tuning we calculate the Q~
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FIG. 12 (color online).

100

Comparison of lattice results for o,y in MeV, extracted from the O(p?) analysis of this work with the results

from other lattice calculations. Our result shows the statistical error in red and a systematic error in blue taken as the difference between
the value obtained using the O(p?) and O(p*) expressions [Egs. (19) and (20) respectively] providing an estimate of the uncertainty due

to the chiral extrapolation.
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and A} masses at a given value of the renormalized strange
and charm quark mass for all # values. For this we need the
renormalization constants Zp for the three § values. These
were computed in Ref. [54] and we quote, for the
convenience of the reader, the values computed in the

MS scheme at 2 GeV:

Z510 = 0.529(7),
757195 = 0.509(4),
757210 = 0.516(2).

(22)

For the Q™ we use the leading one-loop result from SU(2)

xPT, given by

mo = mg)) —468)’”:%’

(0)

(23)

where the mass mg,” and cg) are treated as fit parameters.
For the A baryon, we use the result motivated by SU(2)

HByPT to leading one-loop order given by

PHYSICAL REVIEW D 90, 074501 (2014)

(0)

my, =m,’ + cym2 + com3, (24)

where mgg) and the coefficients c; are treated as fit
parameters. We include cutoff effects, by adding a quad-
ratic term da® to the Eqs. (23) and (24), where d is treated
as an additional fit parameter. The fit then yields the result
at the physical point in the continuum limit. We use the
lattice spacings given in Eq. (21) extracted from the
nucleon mass to convert the Q~ and A, masses to physical
units.

In order to perform the tuning we use several values of
the strange and charm quark masses for the gauge ensem-
bles considered in this work, as listed in Table V. Our
strategy is to interpolate the Q™ and A} masses to a given
value of the renormalized strange and charm quark mass,
respectively, and then extrapolate to the physical point
using Eqgs. (23) and (24) to compare with the experimental
values. The value of the renormalized quark mass is then
changed iteratively until the extrapolated continuum values

TABLE V. The values of the strange and charm quark masses for each ensemble used for the tuning.

Ensemble am mk (GeV) am, mk (GeV)
0.0229 0.0904 0.2968 1.1737
auy = 0.0030. L/a = 32 0.0234 0.0924 0.2999 1.1860
0.0232 0.0917
5= 190 ap, = 0.0040, L/a = 32 0.0234 0.0924 0300 laee
0.0264 0.1043 : '
_ B 0.2943 1.1637
ap; = 0.0050,L/a = 32 0.0234 0.0924 0999 L1860
0.0182 0.0862 0.2350 1.1122
0.0192 0.0909 0.2506 1.1860
au = 0.0025. L/a = 32 0.0195 0.0924 0.2550 1.2069
0.0200 0.0947 0.2694 1.2752
0.0187 0.0883 o %
ap; = 0.0035,L/a = 32 0.0195 0.0924 ' '
0.0200 0.0970 0.2506 1.1860
B =195 ’ ' 0.2580 1.2210
0.0186 0.0879 0.2350 L1122
ap; = 0.0055,L/a = 32 0.0195 0.0924 0.2506 1.1860
0.0200 0.0970 0.2570 1.2164
' : 0.2715 1.2848
0.2240 1.0602
ap; = 0.0075,L/a = 32 8'8538 8’83% 0.2440 1.1548
' : 0.2506 1.1860
0.0155 0.0919 0.1850 1.0959
0.0156 0.0924 0.2000 1.1847
ap; =0.0015,L/a = 48 0.0162 0.0959 0.2002 1.1860
0.0169 0.1002 0.2195 1.3002
B =2.10 0.0156 0.0924 0.1900 1.1255
ap; = 0.0020,L/a = 48 0.0158 0.0936 0.2002 1.1860
0.0165 0.0977 0.2150 1.2736
0.1800 1.0662
ap; = 0.0030, L/a = 48 8'8122 8'832?5‘ 0.2002 1.1860
' : 0.2080 1.2321
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Chiral extrapolations of the lattice data for Q™ (left) and A, (right) at the fixed values of the renormalized

strange and charm quark masses of Eq. (25) respectively. In these figures, the lattice data for each S value as well as the continuum
extrapolated values are plotted. The physical masses of Q~ and A, are reproduced at the continuum limit and at the physical pion mass.

agree with the experimental ones. This determines the
tuned values of m® and m¥ that reproduce the physical
masses of Q™ and A/, respectively. In Fig. 13 we show
representative plots from the determination of m% and m¥.

We obtain the following values in MS at 2 GeV:
mBR =92.4(6)(2.0) MeV

mR = 1173.0(2.4)(17.0) MeV. (25)

The error in the first parenthesis is the statistical error on the
fit parameters and in the second parenthesis is the error
associated with the tuning estimated by allowing the
renormalized mass to vary within the statistical errors of
the Q- and A} mass at the physical point. The latter
systematic uncertainty due to the tuning will be included in
the final errors we quote for the baryon masses. In Ref. [54]
the mass of the kaon and D-meson were used to tune the
strange and charm quark masses, obtaining mX =
99.6(4.1) MeV and mR =1176(36) MeV in MS at
2 GeV, respectively, both in agreement with our values.
The corresponding plots of the chiral extrapolations for Q™
(A7) at the fixed value of the strange (charm) quark mass
after correcting for cutoff effects are shown in Fig. 14,
where indeed all data fall on the same curve and the
physical masses of the Q~ and A/ baryons are reproduced.
The fit parameters mgg, CQ1 and c; are collected in

Table VII. The results in lattice units and the continuum
extrapolated values in physical units for Q= and A are
listed in Table VI.

Given the fact that we have performed a high statistics
run (see Table I) using mR = 1186 MeV, which was our
first estimate for m® and since this value is consistent with

TABLE VI. Masses of the Q and A baryons in lattice and
physical units with the associated statistical error. The values in
physical units are continuum extrapolated.

au, amg mg (GeV) amy+ my+ (GeV)
£ =190

0.0030 0.8380(77) 1.6575(609) 1.1651(157) 2.3223(729)

0.0040 0.8374(131) 1.6562(648) 1.1714(92) 2.3356(678)

0.0050 0.8491(118) 1.6808(637) 1.1816(78) 2.3571(670)
p =195

0.0025 0.7484(60) 1.7111(535) 1.0236(52) 2.3523(584)

0.0035 0.7406(72) 1.6924(544) 1.0261(45) 2.3581(581)

0.0055 0.7477(67) 1.7093(540) 1.0434(43) 2.3997(580)

0.0075 0.7409(62) 1.6931(536) 1.0468(53) 2.4077(585)
p=2.10

0.0015 0.5676(34) 1.6816(418) 0.7817(33) 2.3234(459)

0.0020 0.5568(54) 1.6484(437) 0.7796(68) 2.3171(494)

0.0030 0.5651(51) 1.6740(434) 0.7883(43) 2.3438(467)

074501-12



BARYON SPECTRUM WITH Ny =2+ 1+ 1 TWISTED ...

TABLE VII. Fit parameters and physical point values deter-
mined from the chiral fits to the Q™ and A/ using Egs. (23) and

PHYSICAL REVIEW D 90, 074501 (2014)

(24) respectively.

Q- (1.672)
mY (GeV) 1.669(19)
—4cl) (Gev) 0.161(124)
d (GeV?) 0.466(123)
¥*/d.of. 2.24

m (GeV) 1.672(18)

A (2.286)

m? (GeV) 2.272(26)
¢; (GeV™ 0.799(935)
¢y (GeV—2) —0.118(1.834)
d (GeV?) 0.553(104)
¥*/dof. 1.33

m (GeV) 2.286(17)

the final tuned value given in Eq. (25) we will use the high
statistics results to obtain the values of the charmed-baryon
masses at the physical point. We have checked that
interpolation of our lattice data for the charm baryons at
the tuned value of mR = 1173(2.4) yield masses at the
physical point which are totally consistent with the ones
obtained at mR = 1186(2.4), albeit with larger errors due to
the interpolation of the lattice results. Thus, we avoid
interpolation and use the results obtained directly at m® =
1186 MeV in what follows.

III. LATTICE RESULTS

Lattice results are obtained for three lattice spacings
allowing to assess cutoff effects. We start by addressing any
possible isospin breaking effects on the baryon masses.

012 1
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FIG. 15 (color online). Mass differences for the A baryons for
our three lattice spacings (circles for # = 1.90, squares for f =
1.95 and triangles for # = 2.10) examined and for all pion masses.
Symbols for each lattice spacing have been shifted to the left and
right for clarity. Red symbols represent the lightest pion mass and
blue symbols the heaviest pion mass for each lattice spacing. For
p = 1.95, the green symbol is the second lightest pion mass and
the magenta symbol is the second heaviest pion mass.

A. Isospin symmetry breaking

The twisted mass action breaks isospin explicitly to
O(a?) and the size of the O(a*)-terms determines how
large this breaking is. Any isospin splitting should vanish in
the continuum limit. In general, isospin symmetry breaking
manifests itself as a mass splitting among baryons belong-
ing to the same multiplets. We note that there is still a
symmetry when interchanging a u- with a d-quark, which
means for example that the proton and the neutron are still
degenerate as are the A™" and the A~ as well as the AT and
A°. However, mass splitting could be seen between the
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FIG. 16 (color online).
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Mass differences for the octet (left) and decuplet (right) hyperons for our three lattice spacings examined. Small
nonzero mass differences are observed for the octet hyperons. The symbol notation is as in Fig. 15.
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FIG. 17 (color online).

Mass differences between the charm baryons belonging to the same isospin multiplets for the three lattice

spacings. Small nonzero differences which are reduced as the lattice spacing gets smaller are seen between the =, states. The notation is

the same as that in Fig. 15.

ATt and the A™. Also, isospin breaking effects maybe
present in the hyperons and charmed baryons in particular
given that we consider only the s™ and ¢™, as explained in
Sec. ITA.

We begin this analysis by plotting the mass difference as
a function of a® for the A baryons. We average over AT+
and A~ as well as over A™ and A” and take the difference
between the two averages. The corresponding plot is shown
in Fig. 15, where as one can see, the mass difference is

consistent with zero, indicating that isospin breaking effects
are small for the A baryons at the f values analyzed.
We also examine the mass difference of the strange baryons
in Fig. 16. We observe that the mass difference between
the =+ and X~ and between the Z° and =~ are indeed
decreasing linearly with @®> being almost zero at our
smallest lattice spacing. For the strange spin-3/2 baryons
the results are fully consistent with zero at all lattice
spacings.
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We continue our analysis by studying the isospin break-
ing for the charm baryons. We show in Fig. 17 the mass
difference between the X., =. and =.. multiplets at the
three lattice spacings for all pion masses considered in this
work. As in the strange sector, nonzero values are obtained
at the largest lattice spacing, which do not exceed 3% the
average mass of these baryons. As expected, the mass
splitting vanishes as the continuum limit is approached. In
the same figure we also show the mass difference between
E* and =9, which is consistent with zero indicating that
isospin breaking effects are small at all values of the lattice
spacing. As in the case of the strange decuplet, the isospin
splitting for the charmed spin-3/2 baryons is consistent
with zero.

Having several pion masses at a given lattice spacing one
can ask how the isospin mass splitting depends on the pion
mass. As shown in Figs. 16 and 17, the baryon mass
differences are independent of the light quark mass to the
present accuracy of our results.

IV. CHIRAL AND CONTINUUM
EXTRAPOLATION

In order to extrapolate our lattice results to the physical
pion mass we allow for cutoff effects by including a term
quadratic in the lattice spacing and then apply continuum
chiral perturbation theory at our results.

For the strange baryon sector we consider SU(2) HByPT.
The same expressions were used in other twisted mass
fermion studies [13,41,55] and were found to describe
lattice data satisfactory. The leading one-loop results for the
octet and decuplet baryons [56,57] are given by

Octet: g4 =D+ F gsy = 2F,
2
Decuplet: gap = H, Oyszr = gH»
.o, . l
Transition: gy = C, [

In the octet case, once g, is fixed, the axial coupling
constants depend on a single parameter o such that
a= DLJFF. Its value is poorly known. It can be taken either
from the quark model (a = 3/5), from the phenomenology
of semileptonic decays or from hyperon-nucleon scattering.
As in Ref. [39], we take @ = 0.58 or 2D = 1.47. The axial
couplings in the decuplet case depend only on H for
which we take the value ‘H = 2.2, again from Ref. [39].
This value is close to the prediction by SU(6), namely
H= %gA = 2.29. The latter was used in a previous work
[41], resulting in the same cubic term for the nucleon and
A. When fixing the octet-decuplet transition couplings we
take C = 1.48 from Ref. [58]. Having fixed the coupling
constants this way, the LO, the one-loop as well as the NLO
expressions are left with mg?) and cgf as independent fit

=

PHYSICAL REVIEW D 90, 074501 (2014)

2
(0) 1) g
oo == S
2635 + gax/3
0 1 g g
maling) = ) —aclm -2 3
3g2=
mz(my) = m< = dcl'm? - i}m* (26)
- = 1672
for the octet baryons and
0 1 25 g3
g ==t e
0 1 10 G2y
) = a0
2
— 0 (1) iz
mz(my) = mz! — dez/m? — S0 3
m(mg) = my) —4cgm? (27)

for the decuplet baryons. In addition we consider the next-
to-leading order SU(2) yPT results [39]. For completeness,
we include the expressions in Appendix C.

We fix the nucleon axial charge g, and pion decay
constant f, to their experimental values [we use the
convention such that f, = 0.092419(7)(25) GeV] as
was done in the case of determining the lattice spacings
from fitting the nucleon mass. The remaining pion-baryon
axial coupling constants are taken from the following
SU(3) relations [39]:

g===D - F, gas = 2D
1
TR = —H
J== =3
1 1
C, gasr = ——=C. (28)

g=rz = \/_§ \/§

I
parameters. Unlike in Ref. [39] where a universal mass
parameter m)? was used for all baryons with the same
strangeness, in this work we treat all mass parameters m)?
independently. The chiral extrapolation is applied to the
average over all states belonging to the same isospin
multiplets, except for the charged states of the X, = and
=. where small nonzero mass differences exist due to
isospin breaking effects. For these particles we first
extrapolate to the continuum limit to ensure that they are
degenerate and then take the average of their continuum
values.

We give the fit parameters extracted from fitting our
lattice results for the octet and decuplet baryons to the
leading one-loop order [Egs. (26) and (27)] and NLO
[Egs. (C1) and (C2)] in Table IX. We also show the baryon
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Chiral extrapolations of the octet (left) and decuplet (right) baryons in physical units, using the leading one-

loop expressions of Egs. (26) and (27) respectively as well as the NLO expressions of Eqgs. (C1) and (C2). The lattice values are
continuum extrapolated. The notation is given in the legend in the top left plot. The experimental value is shown with the black asterisk.

masses at the physical point obtained from the leading
order fits in Table XI. The lattice results for the octet and
decuplet baryons at the three S values are collected in
Appendix B. The deviation of the values obtained at the
physical pion mass from the two fitting procedures provide
an estimate of the systematic error due to the chiral
extrapolation. This error on the masses is given in the
second parenthesis in Table XI. Since for the € the LO and
NLO expressions have no difference, we do not quote a
systematic error due to the chiral extrapolation. We show
representative plots of the chiral fits for the octet and
decuplet baryons in Fig. 18. Our results shown here are
continuum extrapolated and thus the errors on the points are
larger than those on the raw data. The error band for the
leading one-loop order and NLO fits are constructed using
the super-jackknife procedure [45]. As can be seen, the data
are well described by the LO fits and the physical masses of
A, 2% and Z° are reproduced. For the A and Z* the physical
point is missed by about 1 standard deviation, while
the results for X* extrapolate to a 5% higher value. The

NLO fits also describe the lattice data satisfactory but in
general extrapolate to a lower value at the physical point.
Taking the difference between the value found using the
LO and NLO expressions we estimate the systematic error
due to the chiral extrapolation, and this yields agreement
with the experimental values also in the cases of A, X*
and =*.
For the charm baryons we use the ansatz

mg = mg)) +cym2 + com3. (29)
This expression is motivated by SU(2) HByPT to leading
one-loop order, where m 1;) and c¢; are treated as indepen-
dent fit parameters. As before, we add the term da?® in the
fits in order to simultaneously extrapolate to the continuum
and we average over the states belonging to the same
isospin multiplets. We show representative plots of the
chiral fits for the charm baryons in Fig. 19. The resulting fit
parameters from the fits are listed in Table X. The masses at
the physical point are shown in Table XI. The lattice results
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for all charm baryons at the three  values are collected in
Appendix B. As can be seen from the chiral fits, setting
¢, = 0 in the ansatz would lead to satisfactory fits as well.
This is also reflected by the large uncertainties on this fit
parameter, making it consistent with zero. As in the strange
baryon sector, our continuum data are described well by
Eq. (29), yielding values at the physical point which in
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FIG. 20 (color online).

general are consistent with experiment. For the Q0 and Q°
the lattice data extrapolate to a lower value by 1 and 2
standard deviations respectively. In order to estimate a
systematic error due to the chiral extrapolation in the charm
sector, we perform the chiral fits using Eq. (29) with our
lattice data only up to m, ~ 300 MeV and setting ¢, = 0.
The deviation of the values obtained at the physical pion

T T T T
51 .
Mg, = 4.734(9) + 1.154(10) a?
~ 5¢F .
>
[
e
S a9r J
£
48+ 1
4.7 Il Il Il Il
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Dependence of the Q™ (left) and Q... (right) mass on the lattice spacing.
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TABLE VIII. The value of the fit parameter d and the finite
lattice spacing correction as percentage of the mass for the doubly
and triply charmed baryons.

% correction

Baryon  d(GeV®) p=190 p=195 f=210
= 1.08 6.3 5.0 3.1
= 1.01 59 4.6 2.9
Q.. 1.20 6.9 5.4 34
Q;, 1.10 6.2 49 3.0
Q 1.15 5.1 4.1 2.6

cce

mass from fitting using the whole pion mass range and
fitting up to m, ~ 300 MeV yields an estimation of the
systematic error due to the chiral extrapolation.

The size of the cutoff effects in both the strange and
charm quark sectors are small. This can be seen by the
values of the fit parameter d, which are O(1), and thus the
cutoff effects are indeed O(a?). As an example, we show in
Fig. 20 the a-dependence of the mass of the Q™ and Q...
for fixed quark masses. The correction at the largest value
of a is 6% for the Q™ and 5% for the Q,.... In Table VIII we
give the values of the parameter d and the finite lattice

PHYSICAL REVIEW D 90, 074501 (2014)

spacing corrections in percentage of the mass at each f
value for the doubly and triply charmed-baryon masses.

We also estimate a systematic uncertainty due to the
tuning for all strange and charm baryons. This is done by
evaluating the baryon masses when the strange and charm
quark masses take the upper and lower bound allowed by
the error in their tuned values [Eq. (25)]. The deviation of
the mass extracted using yPT to leading order provides an
estimate of the systematic error due to the tuning, given in
the third parenthesis in Table XI. In the strange sector, the
systematic error due to the tuning on the strange baryon
masses gives an upper bound of the error expected, since
the tuning was performed using the Q which contains three
strange quarks, and thus any error due to the uncertainty of
the tuning would be the largest in this case.

As in the nucleon case, an estimate of the light o-term of
all the hyperons and charmed baryons considered in this
work can be made, by taking the derivative m20mpg/Om>.
For the octet and decuplet we calculate ¢, using the LO as
well as the NLO expressions. It is apparent that the value
extracted depends on the fitting ansatz, and since the slope
of the NLO fit is larger at the physical point, the resulting
values for o,5 from the NLO expressions are larger, again
indicating the sensitivity on the chiral extrapolations. We

—  ———— —@— —_— —— This work
— A Ay —A ETMC Ny =2 [13]
A A - X.-L. Ren et al. [48]
A A M.F.M. Lutz et al. [52]
e e A S. Durr et al. (BMW) [59]

e A e s A = R. Horsley et al. (QCDSF-UKQCD) [60]

QIO 410 6I0 8I0 2IO 410 fl)'O 8I0 IO IIO QIO 30
oxp (MeV)

FIG. 21 (color online).

Comparison of the light o-term of the spin-1/2 hyperons in MeV, extracted from the O(p?) in this work with

the results from other lattice calculations. Our result shows the statistical error in red and a systematic error in blue taken as the difference
between the value obtained using the O(p?) and O(p*) expressions [Eqs. (26) and (C1) respectively] providing an estimate of the

uncertainty due to the chiral extrapolation.

T T T T T T T T T T
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FIG. 22 (color online).

Comparison of the light o-term of the spin-3/2 hyperons in MeV, extracted from the O(p?) in this work with

the results from other lattice calculations. The notation is the same as that in Fig. 21.
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TABLE IX. The mass at the chiral limit, mj’, and the fit
parameter ¢ Bl as determined from fitting to the leading one-loop
order expressions for the octet and decuplet baryons at the tuned
strange quark mass. Also shown in the value of the light o-term at
the physical point determined from the fits.

0.3 (MeV)

Baryon mg» (GeV) —465;) (GeV™h  O(p?) NLO
N 0.867(2) 4.574 64.9(1.5) 45.3(4.3)
A 1.067(16) 3.544(97) 46.0(1.8) 74.5(1.8)
pI 1.110(21) 4.470(113) 55.6(2.1) 65.3(2.2)
50 1.117(17) 4422095)  547(1.7) 64.5(1.8)
- 1.095(18) 4.618(102) 58.3(1.9) 68.3(1.9)
=0 1.307(16) 0.433(147) 6.8(2.7) 18.9(2.7)
=" 1.312(12) 0.497(107) 8.0(2.0) 20.4(1.9)
A 1.207(31) 6.496(162) 79.9(3.0) 100.3(3.1)
z* 1.405(23) 3.603(156) 45.1(2.8) 68.6(2.7)
=+ 1.535(19) 1562(123)  20.8(22) 38.2(2.2)
Q 1.669(19) 0.161(124) 2.9(2.3)

list the values extracted for the octet and decuplet baryons
in Table IX. A number of other recent works [13,48,52,59—
63] have computed the light o-terms for the octet and
decuplet baryons by analyzing lattice QCD data from
various collaborations. We compare our results with the
results of these calculations in Figs. 21 and 22. As for the
case of the nucleon o-term, we take the difference between
the values obtained using O(p?) and O(p*) perturbation
theory as an estimate of the systematic error arising from
the chiral extrapolation. This explains why our results have
a larger error as compared to other groups which, typically,
do not include such an estimate. Extending this analysis we

TABLE X. The mass at the chiral limit, mg», and fit parameters
¢; as determined from fitting to the ansatz of Eq. (29) for the
charm baryons at the tuned strange and charm quark masses. Also
listed is the value of the light o-term in MeV.

Baryon mg)> (GeV) c¢; (GeV™H) ¢, (GeV™>) 6,5 (MeV)

A, 2.272(26)  0.799(935)  —0.118(1.834) 14.1(10.3)
3. 2.445(32)  0.903(1.118) —0.662(2.159) 14.0(12.4)
=, 2.469(28)  0.233(906)  —0.087(1.782) 4.6(10.0)
=, 2.447(25) 0.855(788) —1.128(1.527) 11.4(8.8)
= 2.542(27)  1.242(870)  —1.924(1.690) 15.5(9.7)
Q. 2.62922)  1.028(768) —2.017(1.507) 11.3(8.5)
S.  3.561(22) 0.516(725) —0.880(1.415) 6.2(8.0)
Q..  3.654(18) 0.341(602)

Iy 2.513(38)
= 2.628(33)

0.887(1.345) —0.481(2.593) 14.4(15.0)

(
(
(
(
E
~0.937(1.193) 2.8(6.6)
(
0.483(1.178) —0.766(2.339) 6.0(12.9)
(
(
(
(

Q 2.709(26)  1.408(875) —2.623(1.710) 16.0(9.7)
Si. 3.642(26) 0.703(891) —1.087(1.733) 8.8(9.9)
Q. 3.72421) 0.792(719) —1.695(1.418) 8.2(7.9)
Q.. 4733(18) 0.156(551) —0.443(1.082) 1.2(6.1)
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TABLE XI.  Our values of the masses of the baryons considered
in this work after extrapolating to the physical point and taking
the continuum limit given in GeV, with the associated statistical
error shown in the first parenthesis. The error in the second
parenthesis is an estimate of the systematic error due to the chiral
extrapolation and in the third parenthesis (except for A, which
contains only light quarks) is an estimate of the systematic error
due to the tuning. There are no systematic errors for Q™ and A}
since these are used for the tuning of the strange and charm quark
mass, respectively.

Baryon (PDG) m (GeV)

N (0.939) 0.939

A (1.116) 1.120(15)(54)(22)
T (1.193) 1.168(32)(14)(44)
= (1.318) 1.318(19)(23)(9)
A (1.232) 1.299(30)(66)

* (1.384) 1.457(22)(28)(32)
=* (1.530) 1.558(18)(41)(19)
Q (1.672) 1.672(18)

A, (2.286) 2.286(17)(10)

T, (2.453) 2.460(20)(20)(6)
Z. (2.470) 2.467(24)(4)(5)
= (2.575) 2.560(16)(22)(42)
QY (2.695) 2.643(14)(19)(42)
=, (3.519) 3.568(14)(19)(1)
o 3.658(11)(16)(50)
i (2.517) 2.528(25)(15)(7)
=5 (2.645) 2.635(20)(27)(55)
Q0 (2.765) 2.728(16)(19)(26)
Sk 3.652(17)27)(3)
Qif 3.735(13)(18)(43)
Qi 4.734(12)(11)(9)

can compute the poorly known o-terms for the charmed
baryons from the fitting ansatz of Eq. (29). We list the
resulting values in Table X.

It is worth mentioning that a number of analyses based
on baryon chiral perturbation theory have been carried out
for the octet baryon masses and sigma terms. We refer for
example to Refs. [64—66] for details.

V. COMPARISON WITH RESULTS FROM
OTHER COLLABORATIONS

In this section we compare our lattice results with those
of other collaborations which use different discretization
schemes. Having already extrapolated to the continuum, we
also compare our values at the physical pion mass with the
corresponding results of other collaborations and with
experiment.

Several collaborations have calculated the strange
spectrum. The Budapest-Marseille-Wuppertal (BMW)
Collaboration carried out simulations using tree level
improved 6-step stout smeared Ny = 2 + 1 clover fermions
and a tree level Symanzik improved gauge action. The
lattice spacing values used to obtain the continuum limit
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were a = 0.065 fm, 0.085 fm and 0.125 fm. Using pion
masses as low as 190 MeV, a polynomial fit was performed
to extrapolate to the physical point [67]. The PACS-CS
Collaboration obtained results using N, =2 + 1 nonper-
turbatively O(a) improved clover fermions on an Iwasaki
gauge action on a lattice of spatial length of 2.9 fm and a
value of lattice spacing a = 0.09 fm [68]. In addition, the
octet and decuplet spectrum was obtained in Ref. [69],
using Ny =2+ 1 SLiNC configurations. Reference [70]
also includes results on the charmed baryons from an
analysis on Ny =2+ 1 2-HEX [71] and SLiNC [69,72]
configurations produced by the BMW-c and QCDSF
Collaborations respectively. Finally, we compare with the
LHPC Collaboration, which obtained results using a hybrid
action of domain wall valence quarks on a staggered sea on
a lattice of spatial length 2.5 and 3.5 fm at lattice spacing
a =0.124 fm [73].

In Fig. 23 we compare our lattice results on the octet
baryons with those of BMW, the PACS-CS and the LHPC
Collaborations. In the nucleon case, we furthermore com-
pare with results from the MILC Collaboration [74],
obtained from Ny =2+ 1+ 1 simulations using the
one-loop Symanzik improved gauge action and an
improved Kogut-Susskind quark action at a lattice spacing
value a = 0.130 fm and with results from QCDSF-
UKQCD, obtained using N, =2 simulations at three
values of the lattice spacing, a = 0.076,0.072,0.060 fm
[75]. We note that our results shown in these plots and the
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results from the PACS-CS and LHPC are not continuum
extrapolated, while the results from BMW are continuum
extrapolated and have larger errors than the rest.
Nevertheless, there is an overall agreement, best seen in
the case of the nucleon mass, which indicates that cutoff
effects are small. A similar behavior is also seen in the case
for the mass in the decuplet shown in Fig. 24, where we
compare our results with those from PACS-CS and LHPC.
We stress that these lattice results need to be extrapolated to
zero lattice spacing (continuum limit) and therefore small
deviations are to be expected the raw data. A comparison is
also made with recent phenomenology results on the octet
and decuplet baryon masses, obtained from an analysis of
lattice QCD data based on the relativistic chiral Lagrangian
[52]. As can be seen from Fig. 25, results show an overall
agreement.

In Fig. 26 we show the masses for the octet and decuplet
baryons obtained after extrapolating to the continuum limit
and to the physical pion mass. Our results are obtained
using the leading order expansions from HByPT and the
statistical error and total error are shown separately. The
error in red in our results shown in Fig. 26 represents
the statistical error. The total error bar, shown in blue, is
obtained after adding quadratically the statistical error and
the systematic errors due to the chiral extrapolation and due
to the tuning.

In addition, we compare our results obtained in the
charm sector with the corresponding results of other lattice
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Comparison of lattice results of this work (red filled circles) with those from other collaborations for the octet

baryons. Results using clover fermions from BMW [67] are shown in green triangles and from PACS-CS [68] with blue squares.
Domain wall valence quarks by the LHPC [73] are shown in magenta diamonds. In the nucleon case we additionally show results from
the MILC Collaboration [74] in purple inverted triangles and from QCDSF-UKQCD [75] with orange crosses. The physical point is

shown with the black asterisk.
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Comparison of the results for the decuplet baryons in this work with the results from PACS-CS using clover

fermions [68] and from the LHPC Collaboration [73] using domain wall valence quarks. The notation is as in Fig. 23.

calculations. Specifically, the MILC Collaboration has
obtained results using a clover charm valence quark in
Ny =241+ 1 gauge configurations at three values of the
lattice spacing, a = 0.09,0.12,0.15 fm [11,77]. Moreover,
results for the charm spectrum were produced from N, =
2+ 1+ 1 gauge configurations at lattice spacing values
a = 0.06,0.09,0.12 fm using the highly improved stag-
gered quark action, whereas the valence up, down and
strange quark propagators were generated using the clover
improved Wilson action [10]. A relativistic heavy quark
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FIG. 25 (color online).

action was implemented for the charm quark in order to
reduce discretization artifacts. In Ref. [12] domain wall
fermions are used for the up, down and strange quarks
with Ny =2 + 1 simulations using the improved Kogut-
Susskind sea quarks at a lattice spacing value @ = 0.12 fm.
For the charm quark the relativistic Fermilab action was
adopted. Finally, the PACS-CS has obtained results in the
charm sector using the relativistic heavy quark action on
N;=2+1 configurations with the light and strange
quarks tuned to their physical masses, a lattice spacing
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Comparison of the lattice results for the octet (left) and decuplet (right) baryons from this work (red circles)

with the phenomenology results from Ref. [52] (blue open squares). The results are consistent for all # values.
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FIG. 26 (color online). The octet and decuplet baryon masses
obtained at the physical point and the experimental masses [76]
shown by the horizontal bands. For most baryons the band is too
small to be visible. For the twisted mass results of this work (red
circles) the chiral extrapolation was performed using the leading
order HByPT. In our results, the statistical error is shown in red,
whereas the blue error bar includes the statistical error and the
systematic errors due to the chiral extrapolation and due to the
tuning added in quadrature. Results using clover fermions from
BMW [67] are shown in magenta squares and from PACS-CS
[68] with green triangles. Results from QCDSF-UKQCD Col-
laborations [69] using Ny = 2 + 1 SLiNC configurations are also
displayed in blue inverted triangles. Open symbols are used
wherever the mass was used as input to the calculations.

of a = 0.09 fm and a spatial length of L = 2.9 fm [78]. We
compare our results with those from Refs. [10-12,77,78].

In Fig. 27 we compare our continuum extrapolated
results on the charmed spectrum with experiment again
showing separately the statistical error and the total error.
Given the agreement with the experimental values, lattice
QCD thus provides predictions for the mass of the =7, Q...
Q. and Q... These predictions are consistent among
lattice calculations, as shown in Fig. 27. We also point out
that our value for =.. is within errors with the value
measured by the SELEX experiment.
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FIG. 27 (color online).
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VI. CONCLUSIONS

The twisted mass formulation allowing simulations with
dynamical strange and charm quarks with their mass fixed
to approximately their physical values provides a good
framework for studying the baryon spectrum. A number of
gauge ensembles are analyzed spanning pion masses from
about 450 to 210 MeV for three lattice spacings. For the
strange and charm valence quarks we use the Osterwalder-
Seiler formulation and tuned their mass using the mass of
the Q and A, respectively. Thus the strange and charm
quarks are treated in the same manner as the light quarks.
This is to be contrasted with other lattice calculations where
Ny =2+ 1 staggered gauge configurations are used and
the charm valence quark is introduced using a different
discretization scheme such as clover or described by a
relativistic heavy quark action. A comparison of our lattice
results to other lattice calculations before extrapolations
shows an overall similar tread for all lattice formulations.

Having values for the masses at three lattice spacings is
crucial in order to both verify that cutoff effects are under
control and to extrapolate the results to the continuum limit.
We perform a continuum extrapolation to all our data and
chiral extrapolate to the physical pion mass. In most cases,
the largest systematic error arises because of the chiral
extrapolation and the tuning of the strange and charm quark
masses. We estimate the error due to the chiral extrapo-
lation by comparing results at different orders of the chiral
expansion. The systematic error due to tuning is estimated
by varying the strange and charm quark mass within the
error band of the Q and A, masses at the physical point.
From the chiral fits we can determine the light o-terms for
all baryons via the Feynman-Hellmann theorem. The
largest uncertainty in their determination arises from the
chiral extrapolation which, in some cases amounts to over
30% error. Therefore direct determinations of the o-terms
[53,79] although very computer intensive can provide a
valuable alternative. The values extracted for o, for all the
baryons are given in Table IX.

ETMC Nf:2+1+1 "—0—‘ A
PACS-CS Np=2+1 —h—i o®
45} Na et al. Ng=2+1 —A—
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The masses of spin-1/2 (left) and spin-3/2 (right) charm baryons. The notation of our results (ETMC) is the

same as in Fig. 26. The experimental values are from Ref. [76] and are shown with the horizontal bands. Included are results from
various hybrid actions with staggered sea quarks from Refs. [11,77] (purple triangles), [10] (magenta diamonds) and [12] (orange
inverted triangles). Results from PACS-CS [78] are shown in green triangles.
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Our values for the baryon masses at the physical
point, shown in Figs. 26 and 27, reproduce the
known baryon masses. For the =.. we find a mass of
3.568(14)(19)(1) GeV, which is higher by 1 standard
deviation as compared with the value of 3.519 GeV
measured by the SELEX Collaboration. Our prediction
for the mass of the =, is 3.652(17)(27)(3) GeV, for the Q.
is 3.658(11)(16)(50) GeV, for Qi 3.735(13)(18)(43) GeV
and for Q7 4.734(12)(11)(9) GeV.

ACKNOWLEDGMENTS

We would like to thank all members of the ETMC for the
many valuable and constructive discussions and the very

PHYSICAL REVIEW D 90, 074501 (2014)

fruitful collaboration that took place during the develop-
ment of this work. The project used computer time granted
by the John von Neumann Institute for Computing (NIC)
on JUQUEEN (project hch02) and JUROPA (project
ecy00) at the Jilich Supercomputing Centre as well as
by the Cyprus Institute on the Cy-Tera machine (project
Isprol13s1), under the Cy-Tera project (NEA
YIIOAOMH/XTPATH/0308/31). We thank the staff
members of these computing centers for their technical
advice and support. C.K. is supported by the project
GPUCW [TIIE/TTAHPO/0311(BIE)/09], which is co-
financed by the European Regional Development Fund
and the Republic of Cyprus through the Research
Promotion Foundation.

APPENDIX A: INTERPOLATING FIELDS FOR BARYONS

In Tables XII, XIII, and XIV, we give the interpolating fields for the baryons used in this work in correspondence with
Fig. 2 and Fig. 3. Throughout, C denotes the charge conjugation matrix and spinor indices are suppressed.

TABLE XII. Interpolating fields and quantum numbers for the 20’-plet of spin-1/2 baryons.
Charm Strange Baryon Quark content Interpolating field 1 I,
c=2 s=0 =hE ucc €ape (T Cysuy)c, 1/2 +1/2
=2 dee Cane(cICrsdy)c, /2 172
s=1 Q. sce €ape (L Cyssp) e, 0 0
c=1 Af udc \/Lgeabc[z(uszC?/Sdb)Cc + (ug Cyscp)d. — (di Cysey)ue) 0 0
i Cape (Ul Crscy)u, S
s=0
I ude %eabc[(ugc}’scb)dc + (di Crsep)uc] 1 0
b ddc €ave (di Cy5¢p)d, 1 -1
Ej usc eabc(uzcySSb)cc 1/2 +1/2
. = dsc €ape(AECyssy)c. 1/2 -1/2
s = -
B usc ﬁ%bc[(”gc}’scb)sc + (54 Cysep)uc] 1/2 +1/2
EQO dsc ﬁeabc[(dgc}%cb)sc + (SZCYSCb)dc] 1/2 _1/2
s=2 Q0 ssc €ape (ST Cyscp)s. 0 0
c=0 s=0 p uud €ape (UL Cysdy)u, 1/2 +1/2
n udd €ape (AT Cysuy)d, 1/2 -1/2
A uds %Gahc[z(ugcySdh)sc + (MZC}’SSh)dC - (dZCySSb)uc} 0 0
| >+ uus Eape (UL Cyssy)u, 1 +1
T 20 uds ﬁeabc[(”gc}’ssb)dc + (d; Cyssy)u,] 1 0
e dds €ape (AL Cyss,)d, 1 -1
) =0 uss €ape(STCysuy)s, 1/2 +1/2
S =
= dss %m:(SZCJ’Sdb)Sc 1/2 _1/2
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TABLE XIII. Interpolating fields and quantum numbers for the 20-plet of spin-3/2 baryons.

Charm Strange Baryon Quark content Interpolating field 1 I,
c=3 s=0 Qt cce €ave (¢ECy Ch)C, 0 0
S ucc €ape (¢t Cryup)ce 1/2 +1/2
cen 70 =2 dec Cane(CTCrydy)e 2 -12
s=1 Q sce €ape (T Cy 1), 0 0
Dt uuc %eabc[(uﬁCyﬂub)c(, +2(ckCyup)u,] 1 +1
s=0 = ude Ve ewel (W Crudy)ec + (diCr,en)ue + (G Crum)d] 1 0
o 50 dde Leancl(diCrudy)ce + 2(chCr,dy)d,] 1 1
Bxt usc €abe (SECyup)c, 1/2 +1/2
s=1 =40 dsc Cape (ST Cr,dy e, 12 -2
s=2 Q0 ssc €anc(S5CY,Cp)Sc 0 0
AT uuu Eabe (Ul Cy ity )u, 3/2 +3/2
o AT uud %eahc[Z(u Cy,dy)u. + (ul Cy,uy)d,] 3/2 +1/2
A0 udd %eabc[Z(d Cy,up)d, + (diCy,dy)u,] 3/2 —-1/2
A- ddd €ape (A1 Cy,dy)d, 32 32
c=0 ™ uus 5 €abe (UG Crytty)se + 2(s{ Cryup )uc] 1 +1
s=1 50 uds V2 earc (WECrydy)s, + (@ Crusp)ue + (sTCru)d,) 1 0
xr dds %%bc[(dgchdb)sc +2(s4Crudy)d.] 1 -1
=0 uss €abe (SECy i) s, 1/2 +1/2
s=2 S dss €ape(sTCy,dy)se 12 -1/2
s=3 Q- sss €ape (SECY,8p) 8¢ 0 0

TABLE XIV. Additional interpolating fields for spin-1/2 and spin-3/2 baryons. There are two of the spin-1/2 baryons and eight of the
spin-3/2 baryons.

Charm Strange Baryon Quark content Interpolating field 1 I,
Spin-1/2 baryons
c=1 s=1 Ef usc Tz €ave2(s5Crsup)e, + (s{Crscp)uc — (ugCrsey)s] 12 +1/2
=2 dsc %eabc[z(sz];cySdb)cc + (84 Cysep)d. — (d5Cysey)s.] 1/2 -1/2
Spin-3/2 baryons
c=0 s=2 =x0 uss %eabC[Z(sgCy”ub)sc + (sICyysp)u] 1/2 +1/2
= dss Leabc[2(sTCyﬂdb)s‘ + (sICy,sp)d.] 1/2 -1/2
c=1 s=1 =t usc \/5 ave| (U TC}’MS;?)C + (s TC}/Mch)u + (T Cy,utp)s.] 1/2 +1/2
=20 dse V¥l Crusp)ec + (ECrep)de + (chCrdy)s) 172 =172
s=2 Qo ssc \/igeabc[Z(saTCyﬂcb)s (sLCyusp)e.] 0 0
c=2 s=0 S ucc \/Lgeab( 2(cECy up)e. + (¢ Crucy)u] 1/2 +1/2
Shina dee \/%eabc[ (cXCyudy)e, + (chCyyep)d,] 1/2 -1/2
s=1 Qrr sce %eabc[Z(ca Cy,sp)c, + (T Cyucp)s] 0 0

APPENDIX B: LATTICE RESULTS

In Tables XV, X VI, XVII, XVIII, XIX, and XX we list the baryon masses in lattice units and the continuum extrapolated
values in physical units. The masses in physical units are in GeV and are converted from lattice units using the lattice
spacing values extracted from the nucleon in this work, Eq. (21). The masses for the nucleon Q and A} are listed in
Tables III and VI
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TABLE XV. Octet and decuplet baryon masses in lattice units with the associated statistical error.

ap,; any any ams amp anty-« ams=
p=1.90
0.0030 0.5972(46) 0.6420(60) 0.6906(50) 0.7090(100) 0.7481(95) 0.8046(61)
0.0040 0.5978(46) 0.6335(52) 0.6888(38) 0.6924(145) 0.7339(89) 0.7918(73)
0.0050 0.6051(60) 0.6552(52) 0.6949(69) 0.7097(101) 0.7600091) 0.8044(144)
p=1.95
0.0025 0.5217(59) 0.5586(66) 0.6077(38) 0.6340(100) 0.6677(89) 0.7093(87)
0.0035 0.5341(50) 0.5633(50) 0.6090(48) 0.6329(102) 0.6614(92) 0.6987(84)
0.0055 0.5529(43) 0.5800(60) 0.6126(50) 0.6525(88) 0.6841(77) 0.7189(68)
0.0075 0.5640(52) 0.5937(39) 0.6125(72) 0.6691(74) 0.6862(80) 0.7199(62)
p=2.10
0.0015 0.3904(37) 0.4167(37) 0.4537(28) 0.4614(71) 0.5000(48) 0.5359(39)
0.0020 0.4021(43) 0.4250(49) 0.4540(35) 0.4749(98) 0.5052(63) 0.5308(53)
0.0030 0.4041(40) 0.4253(46) 0.4543(32) 0.4749(81) 0.5024(71) 0.5330(58)
TABLE XVI. Octet and decuplet baryon masses in physical units with the associated statistical error.
ap; my my mz ma Mg+ msz
£ =190
0.0030 1.2329(394) 1.3103(435) 1.3331(356) 1.4909(834) 1.5669(678) 1.6139(539)
0.0040 1.2343(394) 1.2924(431) 1.3294(349) 1.4560(863) 1.5372(674) 1.5869(545)
0.0050 1.2496(402) 1.3381(431) 1.3422(369) 1.4923(835) 1.5920(675) 1.6133(604)
p =195
0.0025 1.2314(364) 1.3067(399) 1.3632(312) 1.5178(749) 1.5938(608) 1.6379(504)
0.0035 1.2610(356) 1.3180(385) 1.3662(320) 1.5152(750) 1.5787(610) 1.6126(502)
0.0055 1.3063(351) 1.3580(393) 1.3748(322) 1.5621(740) 1.6332(598) 1.6609(487)
0.0075 1.3328(358) 1.3909(378) 1.3746(345) 1.6019(731) 1.6382(600) 1.6633(483)
p=2.10
0.0015 1.1798(287) 1.2522(308) 1.3272(250) 1.4074(598) 1.5222(470) 1.5973(380)
0.0020 1.2157(294) 1.2775(324) 1.3282(258) 1.4484(632) 1.5380(486) 1.5819(395)
0.0030 1.2216(291) 1.2783(320) 1.3290(253) 1.4484(609) 1.5294(497) 1.5885(402)
TABLE XVII. Charm spin-1/2 baryon masses in lattice units with the associated statistical error.
a amy, amsz, amz amgo amsz, amgy
S =1.90
0.0030 1.2543(72) 1.2611(46) 1.3028(53) 1.3575(46) 1.8187(48) 1.8704(38)
0.0040 1.2448(53) 1.2580(62) 1.2983(50) 1.3506(37) 1.8166(42) 1.8694(33)
0.0050 1.2696(55) 1.2599(61) 1.3185(49) 1.3655(47) 1.8303(44) 1.8781(37)
p =195
0.0025 1.0896(55) 1.0900(43) 1.1388(42) 1.1764(41) 1.5684(34) 1.6099(29)
0.0035 1.0927(49) 1.0920(41) 1.1322(43) 1.1726(39) 1.5684(32) 1.6077(27)
0.0055 1.1091(51) 1.1027(37) 1.1440(44) 1.1788(39) 1.5782(36) 1.6138(33)
0.0075 1.1112(43) 1.1024(36) 1.1412(37) 1.1691(37) 1.5739(34) 1.6065(34)
p=2.10
0.0015 0.8348(35) 0.8362(25) 0.8682(27) 0.9010(23) 1.2136(25) 1.2449(19)
0.0020 0.8384(64) 0.8419(33) 0.8735(35) 0.9000(30) 1.2078(31) 1.2414(21)
0.0030 0.8376(49) 0.8410(26) 0.8741(33) 0.9028(28) 1.2139(25) 1.2438(19)
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TABLE XVIIL
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Charm spin-1/2 baryon masses in physical units with the associated statistical error.

ap my, Mz, mz=, Mgo me Mo
p=1.90

0.0030 2.5020(560) 2.4921(374) 2.5890(412) 2.6663(350) 3.5829(344) 3.6631(268)

0.0040 2.4820(551) 2.4856(384) 2.5796(410) 2.6518(345) 3.5784(340) 3.6611(265)

0.0050 2.5342(552) 2.4896(384) 2.6221(410) 2.6831(350) 3.6072(341) 3.6794(267)
p =195

0.0025 2.5042(492) 2.4865(334) 2.6102(363) 2.6713(311) 3.5687(300) 3.6461(235)

0.0035 2.5114(489) 2.4912(332) 2.5946(364) 2.6623(310) 3.5687(299) 3.6408(234)

0.0055 2.5509(490) 2.5168(330) 2.6228(364) 2.6771(310) 3.5921(301) 3.6554(238)

0.0075 2.5558(485) 2.5161(329) 2.6160(360) 2.6538(309) 3.5818(300) 3.6378(239)
p=2.10

0.0015 2.4816(387) 2.4746(261) 2.5766(286) 2.6585(242) 3.5867(239) 3.6686(186)

0.0020 2.4927(421) 2.4921(269) 2.5927(294) 2.6557(249) 3.5690(245) 3.6581(188)

0.0030 2.4902(401) 2.4891(262) 2.5944(292) 2.6643(247) 3.5877(239) 3.6652(186)

TABLE XIX. Charm spin-3/2 baryon masses in lattice units with the associated statistical error.

ap amzr_ leEzf amgio amEL amgﬁ leQ:r[T
p =190
0.0030 1.2828(103) 1.3333(78) 1.3780(58) 1.8464(71) 1.8941(47) 2.3788(37)
0.0040 1.2812(76) 1.3337(57) 1.3846(48) 1.8407(100) 1.9034(38) 2.3845(48)
0.0050 1.3057(65) 1.3543(57) 1.3953(51) 1.8665(52) 1.9092(41) 2.3857(42)
p =195
0.0025 1.1296(90) 1.1757(52) 1.2049(46) 1.6084(54) 1.6400(41) 2.0486(29)
0.0035 1.1295(53) 1.1588(63) 1.1999(46) 1.6037(45) 1.6394(35) 2.0537(27)
0.0055 1.1435(63) 1.1767(54) 1.2028(51) 1.6153(42) 1.6451(36) 2.0578(29)
0.0075 1.1471(54) 1.1608(64) 1.2016(43) 1.6107(39) 1.6386(38) 2.0570(28)
p=2.10
0.0015 0.8591(41) 0.8951(32) 0.9239(28) 1.2380(26) 1.2669(21) 1.5958(20)
0.0020 0.8612(73) 0.8928(53) 0.9277(30) 1.2377(40) 1.2702(26) 1.5928(20)
0.0030 0.8596(55) 0.8909(44) 0.9296(29) 1.2384(33) 1.2665(26) 1.5946(16)
TABLE XX. Charm spin-3/2 baryon masses in physical units with the associated statistical error.
afl My; mz; Mg0 "= mo:r Mot
p =190
0.0030 2.5529(709) 2.6263(552) 2.7461(402) 3.6555(497) 3.7362(335) 4.7432(263)
0.0040 2.5496(694) 2.6271(541) 2.7599(396) 3.6435(518) 3.7556(330) 4.7552(270)
0.0050 2.6012(689) 2.6704(541) 2.7824(397) 3.6978(486) 3.7680(332) 4.7576(266)
p =195
0.0025 2.5928(631) 2.6778(479) 2.7677(354) 3.6756(436) 3.7361(298) 4.7049(231)
0.0035 2.5927(607) 2.6373(487) 2.7557(353) 3.6642(430) 3.7347(293) 4.7171(229)
0.0055 2.6261(612) 2.6803(481) 2.7626(357) 3.6921(428) 3.7481(294) 4.7268(231)
0.0075 2.6349(607) 2.6422(488) 2.7600(351) 3.6810(427) 3.7327(295) 4.7250(230)
p=2.10
0.0015 2.5515(482) 2.6459(377) 2.7459(277) 3.6679(336) 3.7469(230) 4.7443(183)
0.0020 2.5581(517) 2.6388(398) 2.7576(279) 3.6669(349) 3.7568(234) 4.7350(184)
0.0030 2.5530(495) 2.6329(387) 2.7632(278) 3.6694(342) 3.7457(234) 4.7406(180)
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APPENDIX C: HByPT NEXT-TO-LEADING
ORDER EXPRESSIONS FOR THE OCTET
AND DECUPLET BARYONS

For the octet baryons the NLO expressions read

2
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and for the decuplet baryons
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The nonanalytic function F(m, A, 1) is of the form [58]

A% —m? +ie
(A— Az—m2+i€>
x log
A+ VAT —m?+ie

3 m? 4N
- 5 Am2 IOg (ﬁ) - A3 IOg (W) (C3)

depending on the threshold parameter Ayy = mg/o) - m§?>

and on the scale A4 of chiral perturbation theory, fixed to
A=1GeV. For A >0 the real part of the function
F(m, A, 1) has the property

F(m,A2) = (m* — A?)

[ =F(m,A%) m<A
F(m.-A2)= { —F(m, A1) +2x(m?> = A%)32 m>A
(C4)

which corrects a typo in the sign of the second term
in Ref. [73].

A noticeable result of this expansion is the absence of a
cubic term in the expressions for the A and Q baryons given
in Egs. (C1) and (C2). In the case of Q it follows from the
absence of light valence quarks. However, the absence of a
cubic term in the NLO expression for A, although a
consequence of yPT, is nevertheless a questionable result,
since it relies on the assumption that m, < My — M. In
the limit A — O the nonanalytic function of Eq. (C3)
becomes

F(my A = 0,2) = wm3, (C5)
which generates a cubic term for the A and slightly

modifies the existing one for Z. The corresponding expres-
sions are given by

16zf2 "
0 1 2035 + G35/3
my(m,) = mg) —4c§)m,2, —%m}, (C6)
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