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The masses of the low-lying baryons are evaluated using a total of ten ensembles of dynamical twisted

mass fermion gauge configurations. The simulations are performed using two degenerate flavors of light

quarks, and a strange and a charm quark fixed to approximately their physical values. The light sea quarks

correspond to pseudo scalar masses in the range of about 210 to 430 MeV. We use the Iwasaki improved

gluonic action at three values of the coupling constant corresponding to lattice spacing a ¼ 0.094, 0.082

and 0.065 fm determined from the nucleon mass. We check for both finite volume and cutoff effects on the

baryon masses. We examine the issue of isospin symmetry breaking for the octet and decuplet baryons and

its dependence on the lattice spacing. We show that in the continuum limit isospin breaking is consistent

with zero, as expected. We performed a chiral extrapolation of the forty baryon masses using SU(2) χPT.

After taking the continuum limit and extrapolating to the physical pion mass our results are in good

agreement with experiment. We provide predictions for the mass of the doubly charmed Ξ�
cc, as well as of

the doubly and triply charmed Ωs that have not yet been determined experimentally.

DOI: 10.1103/PhysRevD.90.074501 PACS numbers: 11.15.Ha, 12.38.Gc, 12.38.Aw, 12.38.-t

I. INTRODUCTION

Simulations of QCD defined on four-dimensional

Euclidean lattice using near to physical values of the light

quark masses are enabling the reliable extraction of the

masses of the low-lying hadrons. This progress in lattice

QCD coupled with the interest in charmed-baryon spec-

troscopy, partly triggered by the first observation of a

family of doubly charmed baryons Ξþ
ccð3519Þ and

Ξþþ
cc ð3460Þ by the SELEX Collaboration [1–3], make

the study of the charmed hadron masses particularly timely.

The fact that the observation of Ξþ
ccð3519Þ or Ξþþ

cc ð3460Þ,
has not be confirmed by the BABAR [4] nor the BELLE [5]

experiments calls for further attention into the existence of

doubly charmed Ξs. Even more interesting is the mass

splitting of about 60 MeV for this doublet as compared to

the splitting of other previously observed isospin partners

that have mass differences 1 order of magnitude smaller.

Theoretical studies using e.g. the nonrelativistic [6] and

relativistic quark models [7,8], and QCD sum rules [9]

predict the Ξcc mass to be 100–200 MeV higher than

that observed by SELEX. Heavy baryon spectra will be

further studied experimentally at the recently upgraded

Beijing Electron-Positron Collider detector, the Beijing

Spectrometer and at the antiproton annihilation at

DArmstadt at FAIR. Lattice QCD calculations can provide

theoretical input for these experiments. A number of lattice

QCD studies have recently looked at the mass of charmed

baryons. Most of these studies employ a mixed action

approach using staggered sea quarks. In Ref. [10]

Nf ¼ 2þ 1þ 1 staggered sea quarks with clover light

and strange valence quarks and a relativistic action for the

charm quark are employed and the results are extrapolated

to the continuum limit. In Refs. [11,12] Nf ¼ 2þ 1

staggered sea quarks are used with staggered light and

strange [11] or domain wall [12] valence quarks with a

relativistic action for the charm quark.

In this work we extend our previous study on the low-

lying spectrum of the baryon octet and decuplet using

Nf ¼ 2 twisted mass fermions [13] to Nf ¼ 2þ 1þ 1

twisted mass fermions at maximal twist. For the valence

strange and charm sector we use an Osterwalder-Seiler

quarks avoiding mixing between these two sectors. The

strange and charm valence quark masses are tuned using

the Ω
− and Λc baryon mass, respectively. We analyze a

total of ten Nf ¼ 2þ 1þ 1 ensembles at three different

lattice spacings and volumes. This enables us to take the

continuum limit and assess volume effects. Our results are

fully compatible with an Oða2Þ behavior which is used to

extrapolate to the continuum limit.

The good precision of our results on the baryon masses

allows us to perform a study of chiral extrapolations to

obtain results at the physical point. This study shows that

one of the main uncertainties in predicting the mass at the

physical point is caused by the chiral extrapolations, which

yield the largest systematic error.

An important issue is the restoration of the explicitly

broken isospin symmetry in the continuum limit. At finite

lattice spacing, baryon masses display Oða2Þ isospin
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breaking effects. There are, however, theoretical arguments

[14] as well as numerical evidence [15,16] that these

isospin breaking effects are particularly pronounced for

the neutral pseudo scalar mass, whereas for other quantities

studied so far by the European Twisted Mass Collaboration

(ETMC) they are compatible with zero. In this paper, we

will corroborate this result also in the baryon sector

showing that isospin breaking effects are in general small

or even compatible with zero. For a preliminary account of

these results see Ref. [17].

The paper is organized as follows: The details of our

lattice setup, namely those concerning the twisted mass

action, the parameters of the simulations and the interpo-

lating fields used, are given in Sec. II. Section III contains

the numerical results of the baryon masses computed for

different lattice volumes, lattice spacings and bare quark

masses. Lattice artifacts, including finite volume and

discretization errors are also discussed with special empha-

sis on the Oða2Þ isospin breaking effects inherent in the

twisted mass formulation of lattice QCD. The chiral

extrapolations are analyzed in Sec. IV. Section V contains

a comparison with other existing calculations and con-

clusions are finally drawn in Sec. VI.

II. LATTICE TECHNIQUES

A. The lattice action

In the present work we employ the twisted mass fermion

action [18] and the Iwasaki improved gauge action [19].

Twisted mass fermions provide an attractive formulation of

lattice QCD that allows for automatic OðaÞ improvement,

infrared regularization of small eigenvalues and fast

dynamical simulations [20].

The twisted mass Wilson action used for the light

degenerate doublet of quarks (u, d) is given by [18,20]

S
ðlÞ
F ½χðlÞ; χ̄ðlÞ; U� ¼ a4

X

x

χ̄ðlÞðxÞðDW ½U� þm0;l

þ iμlγ5τ
3ÞχðlÞðxÞ ð1Þ

with τ3 the third Pauli matrix acting in the flavor space,m0;l

the bare untwisted light quark mass, μl the bare twisted

light quark mass and the massless Wilson-Dirac operator

given by

DW ½U� ¼ 1

2
γμð∇μ þ∇�

μÞ −
ar

2
∇μ∇

�
μ ð2Þ

where

∇μψðxÞ ¼
1

a
½U†

μðxÞψðxþ aμ̂Þ − ψðxÞ� and

∇�
μψðxÞ ¼ −

1

a
½Uμðx − aμ̂Þψðx − aμ̂Þ − ψðxÞ�: ð3Þ

The quark fields denoted by χðlÞ in Eq. (1) are in the

so-called “twisted basis.” The fields in the “physical

basis,” ψ ðlÞ, are obtained for maximal twist by the simple

transformation

ψ ðlÞðxÞ ¼ 1
ffiffiffi

2
p ð1þ iτ3γ5ÞχðlÞðxÞ;

ψ̄ ðlÞðxÞ ¼ χ̄ðlÞðxÞ 1
ffiffiffi

2
p ð1þ iτ3γ5Þ: ð4Þ

In addition to the light sector, a twisted heavy mass-split

doublet χðhÞ ¼ ðχc; χsÞ for the strange and charm quarks is

introduced, described by the action [21,22]

S
ðhÞ
F ½χðhÞ; χ̄ðhÞ; U� ¼ a4

X

x

χ̄ðhÞðxÞðDW ½U� þm0;h

þ iμσγ5τ
1 þ τ3μδÞχðhÞðxÞ ð5Þ

where m0;h is the bare untwisted quark mass for the heavy

doublet, μσ is the bare twisted mass along the τ1 direction

and μδ is the mass splitting in the τ3 direction. The quark

fields for the heavy quarks in the physical basis are

obtained from the twisted basis through the transformation

ψ ðhÞðxÞ ¼ 1
ffiffiffi

2
p ð1þ iτ1γ5ÞχðhÞðxÞ;

ψ̄ ðhÞðxÞ ¼ χ̄ðhÞðxÞ 1
ffiffiffi

2
p ð1þ iτ1γ5Þ: ð6Þ

In this paper, unless otherwise stated, the quark fields

will be understood as “physical fields,” ψ , in particular

when we define the baryonic interpolating fields.

The form of the fermionic action in Eq. (1) breaks parity

and isospin at nonvanishing lattice spacing. In particular,

the isospin breaking in physical observables is a cutoff

effect of Oða2Þ [20].
Maximally twistedWilson quarks are obtained by setting

the untwisted quark mass m0 to its critical value mcr, while

the twisted quark mass parameter μ is kept nonvanishing in

order to work away from the chiral limit. A crucial

advantage of the twisted mass formulation is the fact that,

by tuning the bare untwisted quark mass m0 to its critical

value mcr, all physical observables are automatically OðaÞ
improved [20,22]. In practice, we implement maximal twist

of Wilson quarks by tuning to zero the bare untwisted

current quark mass, commonly called Partially Conserved

Axial Current (PCAC) mass, mPCAC [23,24], which is

proportional to m0 −mcr up to OðaÞ corrections. A

convenient way to evaluate mPCAC is through

mPCAC ¼ lim
t=a≫1

P

xh∂4
~Ab
4ðx; tÞ ~Pbð0Þi

P

xh ~Pbðx; tÞ ~Pbð0Þi
b ¼ 1; 2; ð7Þ

where ~Ab
μ ¼ χ̄γμγ5

τb

2
χ is the axial vector current and ~Pb ¼

χ̄γ5
τb

2
χ is the pseudoscalar density in the twisted basis. The

large t=a limit is required in order to isolate the contribution

of the lowest-lying charged pseudoscalar meson state in the
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correlators of Eq. (7). This way of determining mPCAC is

equivalent to imposing on the lattice the validity of the axial

Ward identity ∂μ
~Ab
μ ¼ 2mPCAC

~Pb, b ¼ 1; 2, between the

vacuum and the charged zero three-momentum one-pion

state. When m0 is taken such that mPCAC vanishes, this

Ward identity expresses isospin conservation, as it becomes

clear by rewriting it in the physical quark basis. The value

of mcr is determined at each μl in our Nf ¼ 2þ 1þ 1

simulations, a procedure that preserves OðaÞ improvement

and keeps Oða2Þ small [23,24]. The reader can find more

details on the twisted mass fermion action in Ref. [25].

Simulating a charm quark may give rise to concerns

regarding cutoff effects. An analysis presented in

Ref. [26] shows that they are surprising small. In this

work we investigate in detail the cutoff effects on the

hyperon and charmed-baryon masses using simulations at

our three values of the lattice spacings. All final results are

extrapolated to the continuum limit.

In order to avoid complications due to flavor mixing in

the heavy quark sector we only use Osterwalder-Seiler

valence strange and charm quarks. Since the bare heavy

quark masses in the sea were approximately tuned to the

mass of the kaon and D-meson, in order to match their

masses exactly tuning would have been required even if we

used twisted mass quarks for the strange and the charm.

Since our interest in this work is the baryon spectrum we

choose to use the physical mass of the Ω
− and the Λc in

order to tune the Osterwalder-Seiler strange and charm

quark masses. This means that we need to choose a value of

strange (charm) quark mass performed the computation

at several values of the pion mass and then chiral extrapo-

late the Ω
− (Λc) mass and compare with its experimental

value. If our chirally extrapolated results do not reproduce

the right mass we change the strange (charm) quark

mass and iterate until we reach agreement with the

experimental value. Osterwalder-Seiler fermions are

doublets with r ¼ �1 like the u- and d-doublet, i.e.

χðsÞ ¼ ðsþ; s−Þ and χðcÞ ¼ ðcþ; c−Þ, have an action that

is the same as for the doublet of light quarks, as given in

Eq. (1), but with μl in Eq. (1) replaced with the tuned value

of the bare twisted mass of the strange (charm) valence

quark. Taking m0 to be equal to the critical mass deter-

mined in the light sector the OðaÞ improvement in any

observable still applies. One can equally work with the

upper or the lower component of the strange and charm

doublets. In the continuum limit both choices are equiv-

alent. In this work we choose to work with the upper

components, namely the sþ and cþ. The action for the

heavy quarks would then read

S
ðhÞ
OS½χðhÞ; χ̄ðhÞ; U� ¼ a4

X

x

X

c

h¼s

χ̄ðhÞðxÞðDW ½U� þmcr

þ iμhγ5ÞχðhÞðxÞ: ð8Þ

The reader interested in the advantage of this

mixed action in the mesonic sector is referred to the

Refs. [21,27–30]. We give more details on the tuning of

the strange and charm quark masses in Sec. II F.

B. Simulation details

We summarize the input parameters of the calculations,

namely β, L=a, the light quark mass aμ as well as the value

of the pion mass in Table I. A total of ten gauge ensembles

at three values of β are considered, namely β ¼ 1.90,

β ¼ 1.95 and β ¼ 2.10, allowing for an investigation of

finite lattice spacing effects and for taking the continuum

limit. The values of the lattice spacings a given in Table I

are determined using the nucleon mass as explained in

Sec. II E. The pion masses for the simulations span a range

from about 210 to 430 MeV, which is close enough to

the physical point mass to allow us to perform chiral

extrapolations.

TABLE I. Input parameters (β; L; aμ) of our lattice simulations with the corresponding lattice spacing (a), pion mass (mπ) as well as

the number of gauge configurations analyzed.

β ¼ 1.90, a ¼ 0.0936ð13Þ fm r0=a ¼ 5.231ð38Þ

323 × 64, L ¼ 3.0 fm

aμ 0.0030 0.0040 0.0050

Number of configurations 200 200 200

mπ (GeV) 0.261 0.298 0.332

mπL 3.97 4.53 5.05

β ¼ 1.95, a ¼ 0.0823ð10Þ fm, r0=a ¼ 5.710ð41Þ

323 × 64, L ¼ 2.6 fm

aμ 0.0025 0.0035 0.0055 0.0075

Number of configurations 200 200 200 200

mπ (GeV) 0.256 0.302 0.372 0.432

mπL 3.42 4.03 4.97 5.77

β ¼ 2.10, a ¼ 0.0646ð7Þ fm r0=a ¼ 7.538ð58Þ

483 × 96, L ¼ 3.1 fm

aμ 0.0015 0.002 0.003

Number of configurations 196 184 200

mπ (GeV) 0.213 0.246 0.298

mπL 3.35 3.86 4.69

BARYON SPECTRUM WITH Nf ¼ 2þ 1þ 1 TWISTED … PHYSICAL REVIEW D 90, 074501 (2014)

074501-3



C. Two-point correlation functions and effective mass

In order to extract baryon masses we consider two-point correlation functions at ~p ¼ ~0 defined by

C�
X ðt; ~p ¼ ~0Þ ¼

X

xsink−xsource

�

1

4
Trð1� γ0ÞJ Xðxsink; tsinkÞ × J̄ Xðxsource; tsourceÞ

�

; t ¼ tsink − tsource ð9Þ

where J X is the interpolating field of the baryon state of

interest acting at the source ðxsource; tsourceÞ and the sink,

ðxsink; tsinkÞ. Space-time reflection symmetries of the action

and the antiperiodic boundary conditions in the temporal

direction for the quark fields imply, for zero three-

momentum correlators, that Cþ
X ðtÞ ¼ −C−

XðT − tÞ. There-
fore, in order to decrease errors we average correlators in

the forward and backward direction and define

CXðtÞ ¼ Cþ
X ðtÞ − C−

XðT − tÞ: ð10Þ

In addition, the source location is chosen randomly on the

whole lattice for each configuration, in order to decrease

correlation among measurements.

The ground state mass of a given hadron can be extracted

by examining the effective mass defined by

amX
effðtÞ ¼ log

�

CXðtÞ
CXðtþ 1Þ

�

¼ amX þ log

�

1þ
P

∞
i¼1 cie

−Δit

1þ
P

∞
i¼1 cie

−Δiðtþ1Þ

�

→

t→∞
amX

ð11Þ

where Δi ¼ mi −mX is the mass difference of the excited

state i with respect to the ground mass mX. All results in

this work have been extracted from correlators where

Gaussian smearing is applied both at the source and sink.

In general, effective masses of correlators of any interpo-

lating fields are expected to have the same value in the large

time limit, but applying smearing on the interpolating fields

suppresses excited states, therefore yielding a plateau

region at earlier source-sink time separations and better

accuracy in the extraction of the mass. Our fitting procedure

to extract mX is as follows: The sum over excited states in

the effective mass given in Eq. (11) is truncated, keeping

only the first excited state,

amX
effðtÞ ≈ amX þ log

�

1þ c1e
−Δ1t

1þ c1e
−Δ1ðtþ1Þ

�

: ð12Þ

The upper fitting time slice boundary is kept fixed, while

allowing the lower fitting time to be two or three time slices

away from tsource. We then fit the effective mass to the form

given in Eq. (12). This exponential fit yields an estimate for

c1 and Δ1 as well as for the ground state mass, which we

denote by m
ðEÞ
X . Then, we perform a constant fit to the

effective mass increasing the initial fitting time t1. We

denote the value extracted by m
ðCÞ
X ðt1Þ. The final value of

the mass is selected such that the ratio

jamðCÞ
X ðt1Þ − am

ðEÞ
X j

ammean
X

; ammean
X ¼ am

ðCÞ
X ðt1Þ þ am

ðEÞ
X

2

ð13Þ

becomes less than 50% the statistical error on m
ðCÞ
X ðt1Þ.

This criterion is, in most cases, in agreement with χ2=d:o:f:
becoming less than unity. In the cases in which this

criterion is not satisfied a careful examination of the

effective mass is made to ensure that the fit range is in

the plateau region. We show representative results of these

fits to the effective mass of the baryons Ξ0 andΩ0
c in Fig. 1.

The error bands on the constant and exponential fits are

obtained using jackknife analysis. As can be seen, the

exponential and constant fits yield consistent results in the

large time limit.

D. Interpolating fields

The baryon states are created from the vacuum with the

use of interpolating fields that are constructed such that

they have the quantum numbers of the baryon of interest

and reduce to the quark model wave functions in the

nonrelativistic limit. We have a four-dimensional flavor

space and therefore we consider SU(3) subgroups to

visualize baryons under SU(4) symmetry. The baryon

states split into a 200-plet of spin-1=2 states and a 20-plet

of spin-3=2 states. There also exists a 4̄-plet, which is not

considered in this work. Light, strange and charmed

baryons can be classified according to their transformation

properties under flavor SU(3) and their charm content. This

is shown schematically in Fig. 2 and Fig. 3. The spin-1=2
200-plet decomposes into three horizontal levels. The first

level is the standard octet of the SU(3) symmetry that has

no charm quarks, the c ¼ 1 is the second level that splits

into two SU(3) multiplets, a 6 containing the Σc and a 3̄

containing the Λc and the Ξc and the c ¼ 2 3 multiplet of

SU(3) that forms the top level. In a similar way, the 20-plet

of spin-3=2 baryons contains the standard c ¼ 0 decuplet at

the lowest level, the c ¼ 1 level 6 multiplet of SU(3), the

c ¼ 2 3 multiplet and a c ¼ 3 singlet at the top of

the pyramid. The interpolating fields for these baryons,

displayed Fig. 2 and Fig. 3, are collected in the Tables XII

and XIII of Appendix A [31–33].
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In other recent works where baryon properties are

studied, e.g. in Ref. [34], different interpolating fields to

those we provide in Tables XII and XIII were used. These

different interpolating fields are tabulated in Table XIV of

Appendix A. In what follows we will compare the effective

masses using the two different sets that have the same

quantum numbers but different structure.

As local interpolating fields are not optimal for

suppressing excited state contributions, we apply

Gaussian smearing to each quark field qðx; tÞ [35,36].

The smeared quark field is given by qsmearðx; tÞ ¼
P

yFðx; y;UðtÞÞqðy; tÞ, where we have used the gauge

invariant smearing function

Fðx; y;UðtÞÞ ¼ ð1þ αHÞnðx; y;UðtÞÞ; ð14Þ

constructed from the hopping matrix understood as a

matrix in coordinate, color and spin space,

Hðx;y;UðtÞÞ¼
X

3

i¼1

ðUiðx; tÞδx;y−aîþU†
i ðx−aî; tÞδx;yþaîÞ:

ð15Þ

In addition, we apply APE smearing to the spatial links that

enter the hopping matrix. The parameters α and n of the

Gaussian and APE smearing at each value of β are collected

in Table II.

The interpolating fields for the spin-3=2 baryons defined
in Table XIII have an overlap with spin-1=2 states. These

overlaps can be removed with the incorporation of a spin-

3=2 projector in the definitions of the interpolating fields

J
μ
X3=2

¼ Pμν

3=2J νX: ð16Þ

For nonzero momentum, Pμν

3=2 is defined by [37]

Pμν

3=2 ¼ δμν −
1

3
γμγν −

1

3p2
ðpγμpν þ pμγνpÞ: ð17Þ

In correspondence, the spin-1=2 component J
μ
X1=2

can be

obtained by acting with the spin-1=2 projector Pμν

1=2 ¼
δμν − Pμν

3=2 on J
μ
X. Elements with Lorentz indices μ; ν ¼ 0

will not contribute. In this work we study the mass

spectrum of the baryons in the rest frame taking ~p ¼ ~0.

FIG. 1 (color online). Representative effective mass plots for Ξ0 (left) and Ω0
c (right) at β ¼ 2.10, aμl ¼ 0.0015. Both the constant and

the exponential fits are displayed.

FIG. 2. The 200-plet of spin-1=2 baryons classified according

to their charm content. The lowest level represents the c ¼ 0

SU(3) octet.

FIG. 3. The 20-plet of spin-3=2 baryons classified according to

their charm content. The lowest level represents the c ¼ 0

decuplet subgroup.

BARYON SPECTRUM WITH Nf ¼ 2þ 1þ 1 TWISTED … PHYSICAL REVIEW D 90, 074501 (2014)

074501-5



Since in that case the last term of Eq. (17) will contain δ0μ,

it will vanish. When the spin-3=2 and spin-1=2 projectors

are applied to the interpolating field operators, the resulting

two-point correlators for the spin-3=2 baryons acquire the

form

C3
2
ðtÞ ¼ 1

3
Tr½CðtÞ� þ 1

6

X

3

i≠j

γiγjCijðtÞ;

C1
2
ðtÞ ¼ 1

3
Tr½CðtÞ� − 1

3

X

3

i≠j

γiγjCijðtÞ; ð18Þ

where Tr½C� ¼ P

iCii. When no projector is taken into

account, the resulting two-point correlator would

be C ¼ 1
3
Tr½C�.

We have carried out an analysis to examine the results of

the effective masses extracted from correlation functions

with and without the spin-3=2 projection, as well as with

the spin-1=2 projector using 100 gauge configurations, a

number sufficiently large for the purpose of this

comparison. In our comparison we also consider correla-

tion functions obtained using the alternative interpolating

fields given in Table XIV. To distinguish these two sets we

denote the interpolating fields of Tables XII and XIII by J B

and those in Table XIV by ~J B. The left panel of Fig. 4

compares effective masses extracted from correlators with

J Σ
�þ at β ¼ 2.10, aμl ¼ 0.0015. As can be seen, the results

for the effective masses when applying the 3=2-projector
and without any projection are perfectly consistent even at

short source-sink time separations yielding the mass of

Σ
�þ. On the other hand, the effective mass obtained using

the spin-1=2 projected interpolating field is much more

noisy and yields a higher value of the mass. The latter

property suggests that the 1=2-projected interpolating field

J Σ
� yields an excited spin-1=2 state of the Σ

� at least at

small time slices. The large errors associated with the

correlator with the spin-1=2 projector suggest that the

overlap with this state is weak. Another example is shown

in the right panel of Fig. 4, where results are displayed for

the correlator using J Σ
�þþ
c

at β ¼ 1.95, aμl ¼ 0.0055. A

similar behavior to ours for the Σ�þþ
c was found in Ref. [38]

where the same spin projections are implemented.

However, there are cases where the spin-3=2 projection

is required. One example is the Ξ�− baryon, shown in

Fig. 5, where the effective mass when no projection is

applied is persistently lower than when using the spin-3=2
projector. It is also apparent from Fig. 5 that the spin-1=2
projected interpolating field J Ξ�− yields an effective mass,

which is consistent with the corresponding results using the

spin-1=2 interpolating field J Ξ− and thus the mass of Ξ−. A

similar case to this is the Ξ�0, as can be seen from Fig. 6.

Therefore, it is crucial in order to obtain the correct spin-

3=2 mass to project out the lower-lying spin-1=2 state.

In order to further examine the properties of the

interpolating fields, we also include effective mass results

from the alternative set of interpolating fields. We plot

effective mass results obtained from ~J Ξ�0 as well as

the effective mass of the spin-1=2 Ξ0 at β ¼ 1.95,

TABLE II. Smearing parameters for the ensembles at β ¼ 1.90,

β ¼ 1.95 and β ¼ 2.10.

APE Gaussian

aμl; L=a n α n α

β ¼ 1.90

0.0030, 32 20 0.5 50 4.0

0.0040, 32 20 0.5 50 4.0

0.0050, 32 20 0.5 50 4.0

β ¼ 1.95

0.0025, 32 20 0.5 50 4.0

0.0035, 32 20 0.5 50 4.0

0.0055, 32 20 0.5 50 4.0

0.0075, 32 20 0.5 50 4.0

β ¼ 2.10

0.0015, 48 50 0.5 110 4.0

0.0020, 48 20 0.5 50 4.0

0.0030, 48 20 0.5 50 4.0

FIG. 4 (color online). Comparison of effective masses extracted using J Σ
�þ at β ¼ 2.10, aμl ¼ 0.0015 (left) and using J Σ

�þþ
c

at

β ¼ 1.95, aμl ¼ 0.0055 (right) obtained with the spin-3=2 projection (red filled circles), spin-1=2 projection (green triangles) and

without projection (blue open squares, shifted to the right for clarity).
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aμl ¼ 0.0025 in Fig. 7, in correspondence with Fig. 6. As

shown, the results from using spin-3=2 projection and when
applying no projection on ~J Ξ�0 are now consistent. In

contrast with J Ξ�0 , the spin-1=2 projection of ~J Ξ�0 yields

an excited spin-1=2 state of Ξ�0. However, as can be seen

from Fig. 8, the spin-3=2 projections of the two interpolat-

ing fields for Ξ�0 yield fully consistent results, as expected.
Similar behavior is observed in the other baryon states as

well. We demonstrate this by showing results for Ω�0
c at

β ¼ 1.95, aμl ¼ 0.0075 in Figs. 9 and 10.

The main conclusion of this analysis is that the set of

spin-3=2 ~J interpolating fields do not need any spin-3=2
projection, whereas the J in general do. After spin-3=2
projection they both give consistent results for the mass of

the spin-3=2 state they represent, as expected. Therefore

from now on we use only results from spin-3=2 projected

FIG. 5 (color online). Comparison of effective masses extracted

using for J Ξ�− at β ¼ 1.95, aμl ¼ 0.0025 obtained with the spin-

3=2 projection (red filled circles), without projection (blue open

squares, shifted to the right for clarity) and with spin-1=2
projection (green triangles). Also plotted is the effective mass

using J Ξ− (magenta diamonds).

FIG. 6 (color online). Comparison of effective masses for Ξ�0 at
β ¼ 1.95, aμl ¼ 0.0025 obtained with the spin-3=2 projection,

without projection and with spin-1=2 projection. Also plotted is

the effective mass of Ξ0. The notation is as in Fig. 5.

FIG. 7 (color online). Effective masses obtained using ~J Ξ�0 at

β ¼ 1.95, aμl ¼ 0.0025 with the spin-3=2 projection (red filled

circles), without projection (blue open squares, shifted to the right

for clarity) and with spin-1=2 projection (green triangles). Also

plotted is the effective masses using ~J Ξ0 (magenta diamonds).

FIG. 8 (color online). Comparison of effective masses for Ξ�0 at
β ¼ 1.95, aμl ¼ 0.0025 obtained from J Ξ�0 (red filled circles)

and ~J Ξ
�0 (blue open squares, shifted to the right for clarity) using

the spin-3=2 projection. Results from the two interpolating fields

are fully consistent.

FIG. 9 (color online). Effective mass results obtained for Ω0
c

(red filled squares) and from J Ω
�0
c
using the spin-1=2 projection

(blue open squares). The results are in agreement.
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interpolating fields and limit ourselves to the interpolating

fields J listed in Tables XII and XIII.

E. Determination of the lattice spacing

Since in this work the observables discussed are the

masses of baryons, the physical nucleon mass is the most

appropriate quantity to set the scale. In order to determine

the values of the lattice spacings as accurate as possible we

have carried out a high statistics analysis of the nucleon

masses for a total of 17 Nf ¼ 2þ 1þ 1 gauge ensembles

at β ¼ 1.90, β ¼ 1.95 and β ¼ 2.10 on a range of pion

masses and volumes. We average over the masses of the

proton and neutron to further gain on statistics. The

resulting nucleon masses for each of the gauge ensembles

are collected in Table III.

The nucleon masses as function of m2
π are presented in

Fig. 11. As can be seen, cutoff effects are negligible,

therefore we can use continuum chiral perturbation theory

to extrapolate to the physical pion mass using all the lattice

results. To this end we consider SU(2) chiral perturbation

theory (χPT) [39] and the well-established Oðp3Þ result of
the nucleon mass dependence on the pion mass, given by

mN ¼ m
ð0Þ
N − 4c1m

2
π −

3g2A
32πf2π

m3
π ð19Þ

where m0
N is the nucleon mass at the chiral limit and

together with c1 are treated as fit parameters. This lowest

order result for the nucleon in heavy baryon chiral

perturbation theory (HBχPT), first derived in Ref. [40],

and describes well lattice data [13,41]. Since this result is

well established as the leading contribution irrespective of

the various approaches to compute higher orders such as in

HBχPT with dimensional and infra-red regularization with

and without the Δ degree of freedom explicitly included,

we will use it to fix the lattice spacing from the nucleon

mass The lattice spacings aβ¼1.90, aβ¼1.95 and aβ¼2.10 are

considered as additional independent fit parameters in a

combined fit of our data at β ¼ 1.90, β ¼ 1.95 and

β ¼ 2.10. We constrain our fit so that the fitted curve

passes through the physical point by fixing the value of c1.
The physical values of fπ and gA are used in the fits, namely

fπ ¼ 0.092419ð7Þð25Þ GeV and gA ¼ 1.2695ð29Þ, which
is common practice in chiral fits to lattice data on the

nucleon mass [42–44]. The left panel of Fig. 11 shows the

FIG. 10 (color online). Effective mass results of Ω�0
c obtained

from the spin-3=2 projections of J Ω
�0
c

(red filled squares) and
~J Ω

�0
c
(blue open squares) as well as from the spin-1=2 projection

of ~J Ω
�0
c
(green triangles). More details are given in the text.

TABLE III. Values of the nucleon masses with the associated statistical error.

Volume Statistics aμl amπ mπ (GeV) amN mN (GeV)

β ¼ 1.90

323 × 64

740 0.0030 0.1240 0.2607 0.5239(87) 1.1020(183)

1556 0.0040 0.1414 0.2975 0.5192(112) 1.0921(235)

387 0.0050 0.1580 0.3323 0.5422(62) 1.1407(130)

243 × 48

2092 0.0400 0.1449 0.3049 0.5414(84) 1.1389(176)

1916 0.0060 0.1728 0.3634 0.5722(48) 1.2036(101)

1796 0.0080 0.1988 0.4181 0.5898(50) 1.2407(104)

2004 0.0100 0.2229 0.4690 0.6206(43) 1.3056(90)

203 × 48 617 0.0040 0.1493 0.3140 0.5499(195) 1.1568(410)

β ¼ 1.95

323 × 64

2892 0.0025 0.1068 0.2558 0.4470(59) 1.0706(141)

4204 0.0035 0.1260 0.3018 0.4784(48) 1.1458(114)

18576 0.0055 0.1552 0.3716 0.5031(16) 1.2049(39)

2084 0.0075 0.1802 0.4316 0.5330(42) 1.2764(100)

243 × 48 937 0.0085 0.1940 0.4645 0.5416(50) 1.2970(121)

β ¼ 2.10

483 × 96

2424 0.0015 0.0698 0.2128 0.3380(41) 1.0310(125)

744 0.0020 0.0805 0.2455 0.3514(70) 1.0721(215)

226 0.0030 0.0978 0.2984 0.3618(68) 1.1038(208)

323 × 64 1905 0.0045 0.1209 0.3687 0.3944(26) 1.2032(79)
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fit to theOðp3Þ result of Eq. (19) on the nucleon mass. The

error band and the errors on the fit parameters are obtained

from super-jackknife analysis [45]. As can be seen, the

Oðp3Þ result provides a very good fit to our lattice data,

which in fact confirms that cutoff and finite volume effects

are small for the β values used. In addition, our lattice

results exhibit a curvature which supports the presence of

the m3
π-term.

In order to estimate the systematic error due to the chiral

extrapolation we also perform a fit using HBχPT to Oðp4Þ
in the so-called small scale expansion (SSE) [44]. This

form includes explicit Δ degrees of freedom by introducing

as an additional parameter the Δ-nucleon mass splitting,

Δ≡mΔ −mN , takingOðΔ=mNÞ ∼Oðmπ=mNÞ. In SSE the

nucleon mass is given by

mN ¼m0
N−4c1m

2
π−

3g2A
32πf2π

m3
π−4E1ðλÞm4

π

−
3ðg2Aþ3c2AÞ
64π2f2πm

0
N

m4
π−

ð3g2Aþ10c2AÞ
32π2f2πm

0
N

m4
π log

�

mπ

λ

�

−
c2A

3π2f2π

�

1þ Δ

2m0
N

��

Δ

4
m2

πþ
�

Δ
3−

3

2
m2

πΔ

�

log

�

mπ

2Δ

�

þðΔ2−m2
πÞRðmπÞ

�

ð20Þ

where RðmπÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
π − Δ

2
p

cos−1ð Δmπ
Þ for mπ > Δ and

RðmπÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ
2 −m2

π

p

log ð Δmπ
þ

ffiffiffiffiffiffiffiffiffiffiffiffi

Δ
2

m2
π
− 1

q

Þ for mπ < Δ. We

take the cutoff scale λ ¼ 1 GeV, c1 ¼ 1.127 [44] and treat

the counterterm E1 as an additional fit parameter. As in the

Oðp3Þ case we use the physical values of gA and fπ . The
corresponding plot is shown on the right panel of Fig. 11.

The error band as well as the errors on the fit parameters are

obtained using super-jackknife analysis. One can see that

this formulation provides a good description of the lattice

data as well and yields values of the lattice spacings andm0
N

which are consistent with those obtained in Oðp3Þ of

HBχPT. We take the difference between the results of the

Oðp3Þ and Oðp4Þ fits as an estimate of the uncertainty due

to the chiral extrapolation. This is found to be about three

times the statistical error. The final values of the lattice

spacing are shown in Eq. (21). The first parenthesis is the

statistical error and the systematic error is given is the

second parenthesis. The rest of the fit parameters for

the two expansions and the χ2/d.o.f. are given in Table IV.

aβ¼1.90 ¼ 0.0936ð13Þð35Þ fm;

aβ¼1.95 ¼ 0.0823ð10Þð35Þ fm;

aβ¼2.10 ¼ 0.0646ð7Þð25Þ fm: ð21Þ

In order to better assess discretization effects we perform

a fit to Oðp3Þ at each of the β values separately. The values
we find are aβ¼1.90 ¼ 0.0923ð20Þ fm, aβ¼1.95 ¼
0.0821ð16Þ fm and aβ¼2.10 ¼ 0.0657ð12Þ fm. These values

are fully consistent with those obtained in Eq. (21) from the

combined fit, indicating that discretization effects are

small, thus confirming a posteriori the validity of the

assumption that cutoff effects are small for the nucleon

FIG. 11 (color online). Nucleon masses at the three values of the lattice spacing. On the left panel the solid band represents a fit to the

lowest order Oðp3Þ expansion from HBχPT. The band on the right panel is a fit to Oðp4Þ with explicit Δ degrees of freedom in the

so-called SSE. The physical nucleon mass is denoted with the asterisk.

TABLE IV. Fit parameters m0
N in GeVand E1ðλÞ in GeV−3 from Oðp3Þ χPT and Oðp4Þ SSE, as well as the fixed

value of −4c1. Also included is the value of the σ-term for each fit.

m0
N −4c1ðGeV−1Þ E1ðλÞ (GeV−3) σπN (MeV) χ2=d:o:f:

Oðp3Þ HBχPT 0.8667(15) 4.5735 64.9(1.5) 1.5779

Oðp4Þ SSE 0.8813(47) 3.7282 −2.5858ð2480Þ 45.3(4.3) 1.0880
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mass. A different way of demonstrating this is to include a

quadratic term da2 to Eqs. (19) and (20), treating d as an

additional fit parameter. Performing the fits with the da2-
term gives a value of d ¼ 0.017ð17Þ GeV3 i.e. consistent

with zero. The same is true for the Δ mass confirming that

cutoff effects are negligible in the light quark sector.

We will use the values given in Eq. (21) to convert to

physical units all the quantities studied in this work. We

note that when performing these fits only statistical errors

are taken into account and systematic errors due to the

choice of the plateau are not included. The lattice spacings

for these β values were also calculated from a pion decay

constant analysis using next-to-leading order (NLO) SU(2)

chiral perturbation theory for the extrapolations [46]. In that

preliminary analysis only a subset of the ensembles used

here was included, yielding values of the lattice spacings

that are smaller compared to the values we extract using the

nucleon mass in this work. Specifically, the lattice spacings

at β ¼ 1.90; 1.95 and 2.10 were found to be afπ ¼
0.0863ð4Þ; 0.0779ð4Þ and 0.607(2) respectively, where

afπ denotes the lattice spacing determined using the pion

decay constant. This implies that the values of the pion

masses in physical units we quote in this paper are

equivalently smaller than those obtained using fπ to

convert to physical units. A comprehensive study of the

different lattice spacing determinations is ongoing.

Having determined the parameters of the chiral fit we can

compute the nucleon σπN-term by evaluating m2
π∂mN=∂m

2
π

where we have taken the leading order relation m2
π ∼ μl.

Using Eq. (19) we find σπN ¼ 64.9� 1.5 MeV. This value

is fully consistent with previous values extracted using this

lowest order fit by ETMC on Nf ¼ 2 quark flavor

ensembles [13,41]. Performing the same calculation using

the Oðp4Þ expression we obtain a lower value of σπN ¼
45.3� 4.3 MeV showing the sensitivity to the chiral

extrapolation. It is worth mentioning that such a difference

in the determination of the σπN-term is known in the

literature. For example, a latest πN scattering study [47],

reporting a value σπN ¼ 59� 7 MeV, while higher values

were also obtained using the Feynman-Hellmann theorem

to analyze lattice QCD data yielding σπN ¼ 55� 1 MeV

[48]. Lower values are associated with the well-known

result of σπN ¼ 45� 8 MeV extracted from an earlier

chiral perturbation analysis of experimental scattering data

[49], as well as, with the values extracted in other lattice

QCD calculations, such as the analysis of the QCDSF

Collaboration [50], where a value σπN ¼ 38� 12 MeV is

obtained and of Ref. [51] where a value of σπN ¼ 52�
3� 8 is extracted from a flavor SU(2) extrapolation of a

large set of lattice data on the nucleon mass. A very recent

result is obtained using the relativistic chiral Lagrangian

from Ref. [52], suggests a rather smaller value of

σπN ¼ 39þ 2 − 1 MeV. We summarize lattice results on

σπN in Fig. 12 we show our Oðp3Þ value. We take

difference between the value extracted from the Oðp4Þ
expression of Eq. (20) and the Oðp3Þ value as an estimate

for the error arising from chiral extrapolation. As can be

seen from the values in Table IV the chiral extrapolation

error is large showing the sensitivity on the chiral extrapo-

lation, which explains the large error shown on our σπN
results. It is apparent that, despite the long efforts, the

precise determination of the nucleon σ-terms is still an open

issue and direct techniques as those described in for

example Ref. [53] are welcome.

F. Tuning of the bare strange and charm quark masses

A tuning of the bare strange and charm quark masses is

performed using the physical mass of the Ω
− and the Λþ

c

baryons respectively. For the tuning we calculate the Ω
−

FIG. 12 (color online). Comparison of lattice results for σπN in MeV, extracted from the Oðp3Þ analysis of this work with the results

from other lattice calculations. Our result shows the statistical error in red and a systematic error in blue taken as the difference between

the value obtained using theOðp3Þ andOðp4Þ expressions [Eqs. (19) and (20) respectively] providing an estimate of the uncertainty due

to the chiral extrapolation.
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and Λþ
c masses at a given value of the renormalized strange

and charm quark mass for all β values. For this we need the

renormalization constants ZP for the three β values. These

were computed in Ref. [54] and we quote, for the

convenience of the reader, the values computed in the

MS scheme at 2 GeV:

Zβ¼1.90
P ¼ 0.529ð7Þ;

Zβ¼1.95
P ¼ 0.509ð4Þ;

Zβ¼2.10
P ¼ 0.516ð2Þ: ð22Þ

For the Ω− we use the leading one-loop result from SU(2)

χPT, given by

mΩ ¼ m
ð0Þ
Ω

− 4c
ð1Þ
Ω
m2

π; ð23Þ

where the mass m
ð0Þ
Ω

and c
ð1Þ
Ω

are treated as fit parameters.

For the Λþ
c baryon, we use the result motivated by SU(2)

HBχPT to leading one-loop order given by

mΛc
¼ m

ð0Þ
Λc

þ c1m
2
π þ c2m

3
π; ð24Þ

where m
ð0Þ
Λc

and the coefficients ci are treated as fit

parameters. We include cutoff effects, by adding a quad-

ratic term da2 to the Eqs. (23) and (24), where d is treated

as an additional fit parameter. The fit then yields the result

at the physical point in the continuum limit. We use the

lattice spacings given in Eq. (21) extracted from the

nucleon mass to convert the Ω− and Λc masses to physical

units.

In order to perform the tuning we use several values of

the strange and charm quark masses for the gauge ensem-

bles considered in this work, as listed in Table V. Our

strategy is to interpolate the Ω− and Λþ
c masses to a given

value of the renormalized strange and charm quark mass,

respectively, and then extrapolate to the physical point

using Eqs. (23) and (24) to compare with the experimental

values. The value of the renormalized quark mass is then

changed iteratively until the extrapolated continuum values

TABLE V. The values of the strange and charm quark masses for each ensemble used for the tuning.

Ensemble ams mR
s (GeV) amc mR

c (GeV)

β ¼ 1.90

aμl ¼ 0.0030; L=a ¼ 32
0.0229 0.0904 0.2968 1.1737

0.0234 0.0924 0.2999 1.1860

aμl ¼ 0.0040; L=a ¼ 32

0.0232 0.0917
0.2851 1.1272

0.0234 0.0924

0.0264 0.1043
0.2999 1.1860

aμl ¼ 0.0050; L=a ¼ 32 0.0234 0.0924
0.2943 1.1637

0.2999 1.1860

β ¼ 1.95

aμl ¼ 0.0025; L=a ¼ 32

0.0182 0.0862 0.2350 1.1122

0.0192 0.0909 0.2506 1.1860

0.0195 0.0924 0.2550 1.2069

0.0200 0.0947 0.2694 1.2752

aμl ¼ 0.0035; L=a ¼ 32
0.0187 0.0883

0.2250 1.0649

0.0195 0.0924
0.2450 1.1596

0.2506 1.1860
0.0200 0.0970

0.2580 1.2210

aμl ¼ 0.0055; L=a ¼ 32
0.0186 0.0879

0.2350 1.1122

0.0195 0.0924
0.2506 1.1860

0.2570 1.2164
0.0200 0.0970

0.2715 1.2848

aμl ¼ 0.0075; L=a ¼ 32
0.0195 0.0924

0.2240 1.0602

0.2440 1.1548
0.0200 0.0970

0.2506 1.1860

β ¼ 2.10

aμl ¼ 0.0015; L=a ¼ 48

0.0155 0.0919 0.1850 1.0959

0.0156 0.0924 0.2000 1.1847

0.0162 0.0959 0.2002 1.1860

0.0169 0.1002 0.2195 1.3002

aμl ¼ 0.0020; L=a ¼ 48
0.0156 0.0924 0.1900 1.1255

0.0158 0.0936 0.2002 1.1860

0.0165 0.0977 0.2150 1.2736

aμl ¼ 0.0030; L=a ¼ 48
0.0156 0.0924

0.1800 1.0662

0.2002 1.1860
0.0163 0.0965

0.2080 1.2321
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agree with the experimental ones. This determines the

tuned values of mR
s and mR

c that reproduce the physical

masses of Ω− and Λþ
c , respectively. In Fig. 13 we show

representative plots from the determination of mR
S and mR

c .

We obtain the following values in MS at 2 GeV:

mR
s ¼ 92.4ð6Þð2.0Þ MeV

mR
c ¼ 1173.0ð2.4Þð17.0Þ MeV: ð25Þ

The error in the first parenthesis is the statistical error on the

fit parameters and in the second parenthesis is the error

associated with the tuning estimated by allowing the

renormalized mass to vary within the statistical errors of

the Ω
− and Λþ

c mass at the physical point. The latter

systematic uncertainty due to the tuning will be included in

the final errors we quote for the baryon masses. In Ref. [54]

the mass of the kaon and D-meson were used to tune the

strange and charm quark masses, obtaining mR
s ¼

99.6ð4.1Þ MeV and mR
c ¼ 1176ð36Þ MeV in MS at

2 GeV, respectively, both in agreement with our values.

The corresponding plots of the chiral extrapolations for Ω−

(Λþ
c ) at the fixed value of the strange (charm) quark mass

after correcting for cutoff effects are shown in Fig. 14,

where indeed all data fall on the same curve and the

physical masses of the Ω− and Λþ
c baryons are reproduced.

The fit parameters m
ð0Þ
Ω
, c

ð1Þ
Ω

and ci are collected in

Table VII. The results in lattice units and the continuum

extrapolated values in physical units for Ω− and Λþ
c are

listed in Table VI.

Given the fact that we have performed a high statistics

run (see Table I) using mR
c ¼ 1186 MeV, which was our

first estimate for mR
c and since this value is consistent with

FIG. 14 (color online). Chiral extrapolations of the lattice data for Ω− (left) and Λc (right) at the fixed values of the renormalized

strange and charm quark masses of Eq. (25) respectively. In these figures, the lattice data for each β value as well as the continuum

extrapolated values are plotted. The physical masses of Ω− and Λc are reproduced at the continuum limit and at the physical pion mass.

FIG. 13 (color online). Tuning of the renormalized strange and charm quark masses with the experimental values of theΩ (left) andΛþ
c

(right) masses respectively.

TABLE VI. Masses of the Ω and Λþ
c baryons in lattice and

physical units with the associated statistical error. The values in

physical units are continuum extrapolated.

aμl amΩ mΩ (GeV) amΛ
þ
c

mΛ
þ
c
(GeV)

β ¼ 1.90

0.0030 0.8380(77) 1.6575(609) 1.1651(157) 2.3223(729)

0.0040 0.8374(131) 1.6562(648) 1.1714(92) 2.3356(678)

0.0050 0.8491(118) 1.6808(637) 1.1816(78) 2.3571(670)

β ¼ 1.95

0.0025 0.7484(60) 1.7111(535) 1.0236(52) 2.3523(584)

0.0035 0.7406(72) 1.6924(544) 1.0261(45) 2.3581(581)

0.0055 0.7477(67) 1.7093(540) 1.0434(43) 2.3997(580)

0.0075 0.7409(62) 1.6931(536) 1.0468(53) 2.4077(585)

β ¼ 2.10

0.0015 0.5676(34) 1.6816(418) 0.7817(33) 2.3234(459)

0.0020 0.5568(54) 1.6484(437) 0.7796(68) 2.3171(494)

0.0030 0.5651(51) 1.6740(434) 0.7883(43) 2.3438(467)
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the final tuned value given in Eq. (25) we will use the high

statistics results to obtain the values of the charmed-baryon

masses at the physical point. We have checked that

interpolation of our lattice data for the charm baryons at

the tuned value of mR
c ¼ 1173ð2.4Þ yield masses at the

physical point which are totally consistent with the ones

obtained atmR
c ¼ 1186ð2.4Þ, albeit with larger errors due to

the interpolation of the lattice results. Thus, we avoid

interpolation and use the results obtained directly at mR
c ¼

1186 MeV in what follows.

III. LATTICE RESULTS

Lattice results are obtained for three lattice spacings

allowing to assess cutoff effects. We start by addressing any

possible isospin breaking effects on the baryon masses.

A. Isospin symmetry breaking

The twisted mass action breaks isospin explicitly to

Oða2Þ and the size of the Oða2Þ-terms determines how

large this breaking is. Any isospin splitting should vanish in

the continuum limit. In general, isospin symmetry breaking

manifests itself as a mass splitting among baryons belong-

ing to the same multiplets. We note that there is still a

symmetry when interchanging a u- with a d-quark, which

means for example that the proton and the neutron are still

degenerate as are the Δþþ and the Δ− as well as the Δþ and

Δ
0. However, mass splitting could be seen between the

FIG. 15 (color online). Mass differences for the Δ baryons for

our three lattice spacings (circles for β ¼ 1.90, squares for β ¼
1.95 and triangles for β ¼ 2.10) examined and for all pion masses.

Symbols for each lattice spacing have been shifted to the left and

right for clarity. Red symbols represent the lightest pion mass and

blue symbols the heaviest pion mass for each lattice spacing. For

β ¼ 1.95, the green symbol is the second lightest pion mass and

the magenta symbol is the second heaviest pion mass.

TABLE VII. Fit parameters and physical point values deter-

mined from the chiral fits to the Ω− and Λþ
c using Eqs. (23) and

(24) respectively.

Ω
− (1.672)

m
ð0Þ
Ω

(GeV) 1.669(19)

−4c
ð1Þ
Ω

(GeV−1) 0.161(124)

d (GeV3) 0.466(123)

χ2=d:o:f: 2.24

m (GeV) 1.672(18)

Λþ
c (2.286)

m
ð0Þ
Λc

(GeV) 2.272(26)

c1 (GeV−1) 0.799(935)

c2 (GeV−2) −0.118ð1.834Þ
d (GeV3) 0.553(104)

χ2=d:o:f: 1.33

m (GeV) 2.286(17)

FIG. 16 (color online). Mass differences for the octet (left) and decuplet (right) hyperons for our three lattice spacings examined. Small

nonzero mass differences are observed for the octet hyperons. The symbol notation is as in Fig. 15.
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Δ
þþ and the Δ

þ. Also, isospin breaking effects maybe

present in the hyperons and charmed baryons in particular

given that we consider only the sþ and cþ, as explained in

Sec. II A.

We begin this analysis by plotting the mass difference as

a function of a2 for the Δ baryons. We average over Δþþ

and Δ
− as well as over Δþ and Δ

0 and take the difference

between the two averages. The corresponding plot is shown

in Fig. 15, where as one can see, the mass difference is

consistent with zero, indicating that isospin breaking effects

are small for the Δ baryons at the β values analyzed.

We also examine the mass difference of the strange baryons

in Fig. 16. We observe that the mass difference between

the Σ
þ and Σ

− and between the Ξ0 and Ξ− are indeed

decreasing linearly with a2 being almost zero at our

smallest lattice spacing. For the strange spin-3=2 baryons

the results are fully consistent with zero at all lattice

spacings.

FIG. 17 (color online). Mass differences between the charm baryons belonging to the same isospin multiplets for the three lattice

spacings. Small nonzero differences which are reduced as the lattice spacing gets smaller are seen between the Ξc states. The notation is

the same as that in Fig. 15.
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We continue our analysis by studying the isospin break-

ing for the charm baryons. We show in Fig. 17 the mass

difference between the Σc, Ξc and Ξcc multiplets at the

three lattice spacings for all pion masses considered in this

work. As in the strange sector, nonzero values are obtained

at the largest lattice spacing, which do not exceed 3% the

average mass of these baryons. As expected, the mass

splitting vanishes as the continuum limit is approached. In

the same figure we also show the mass difference between

Ξ0þ
c and Ξ00

c , which is consistent with zero indicating that

isospin breaking effects are small at all values of the lattice

spacing. As in the case of the strange decuplet, the isospin

splitting for the charmed spin-3=2 baryons is consistent

with zero.

Having several pion masses at a given lattice spacing one

can ask how the isospin mass splitting depends on the pion

mass. As shown in Figs. 16 and 17, the baryon mass

differences are independent of the light quark mass to the

present accuracy of our results.

IV. CHIRAL AND CONTINUUM

EXTRAPOLATION

In order to extrapolate our lattice results to the physical

pion mass we allow for cutoff effects by including a term

quadratic in the lattice spacing and then apply continuum

chiral perturbation theory at our results.

For the strange baryon sector we consider SU(2) HBχPT.

The same expressions were used in other twisted mass

fermion studies [13,41,55] and were found to describe

lattice data satisfactory. The leading one-loop results for the

octet and decuplet baryons [56,57] are given by

mΛðmπÞ ¼ m
ð0Þ
Λ

− 4c
ð1Þ
Λ
m2

π −
g2
ΛΣ

16πf2π
m3

π

mΣðmπÞ ¼ m
ð0Þ
Σ

− 4c
ð1Þ
Σ
m2

π −
2g2

ΣΣ
þ g2

ΛΣ
=3

16πf2π
m3

π

mΞðmπÞ ¼ m
ð0Þ
Ξ

− 4c
ð1Þ
Ξ
m2

π −
3g2

ΞΞ

16πf2π
m3

π ð26Þ

for the octet baryons and

mΔðmπÞ ¼ m
ð0Þ
Δ

− 4c
ð1Þ
Δ
m2

π −
25

27

g2
ΔΔ

16πf2π
m3

π

mΣ
�ðmπÞ ¼ m

ð0Þ
Σ
� − 4c

ð1Þ
Σ
� m2

π −
10

9

g2
Σ
�
Σ
�

16πf2π
m3

π

mΞ�ðmπÞ ¼ m
ð0Þ
Ξ� − 4c

ð1Þ
Ξ� m2

π −
5

3

g2
Ξ�Ξ�

16πf2π
m3

π

mΩðmπÞ ¼ m
ð0Þ
Ω

− 4c
ð1Þ
Ω
m2

π ð27Þ

for the decuplet baryons. In addition we consider the next-

to-leading order SU(2) χPT results [39]. For completeness,

we include the expressions in Appendix C.

We fix the nucleon axial charge gA and pion decay

constant fπ to their experimental values [we use the

convention such that fπ ¼ 0.092419ð7Þð25Þ GeV] as

was done in the case of determining the lattice spacings

from fitting the nucleon mass. The remaining pion-baryon

axial coupling constants are taken from the following

SU(3) relations [39]:

Octet∶ gA ¼ Dþ F gΣΣ ¼ 2F; gΞΞ ¼ D − F; gΛΣ ¼ 2D

Decuplet∶ gΔΔ ¼ H; gΣ�
Σ
� ¼ 2

3
H; gΞ�Ξ� ¼ 1

3
H

Transition∶ gΔN ¼ C; gΣ�
Σ ¼ 1

ffiffiffi

3
p C; gΞ�Ξ ¼ 1

ffiffiffi

3
p C; gΛΣ� ¼ −

1
ffiffiffi

2
p C: ð28Þ

In the octet case, once gA is fixed, the axial coupling

constants depend on a single parameter α such that

α ¼ D
DþF. Its value is poorly known. It can be taken either

from the quark model (α ¼ 3=5), from the phenomenology

of semileptonic decays or from hyperon-nucleon scattering.

As in Ref. [39], we take α ¼ 0.58 or 2D ¼ 1.47. The axial

couplings in the decuplet case depend only on H for

which we take the value H ¼ 2.2, again from Ref. [39].

This value is close to the prediction by SU(6), namely

H ¼ 9
5
gA ¼ 2.29. The latter was used in a previous work

[41], resulting in the same cubic term for the nucleon and

Δ. When fixing the octet-decuplet transition couplings we

take C ¼ 1.48 from Ref. [58]. Having fixed the coupling

constants this way, the LO, the one-loop as well as the NLO

expressions are left with m
ð0Þ
X and c

ð1Þ
X as independent fit

parameters. Unlike in Ref. [39] where a universal mass

parameter m
ð0Þ
X was used for all baryons with the same

strangeness, in this work we treat all mass parameters m
ð0Þ
X

independently. The chiral extrapolation is applied to the

average over all states belonging to the same isospin

multiplets, except for the charged states of the Σ, Ξ and

Ξc where small nonzero mass differences exist due to

isospin breaking effects. For these particles we first

extrapolate to the continuum limit to ensure that they are

degenerate and then take the average of their continuum

values.

We give the fit parameters extracted from fitting our

lattice results for the octet and decuplet baryons to the

leading one-loop order [Eqs. (26) and (27)] and NLO

[Eqs. (C1) and (C2)] in Table IX. We also show the baryon
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masses at the physical point obtained from the leading

order fits in Table XI. The lattice results for the octet and

decuplet baryons at the three β values are collected in

Appendix B. The deviation of the values obtained at the

physical pion mass from the two fitting procedures provide

an estimate of the systematic error due to the chiral

extrapolation. This error on the masses is given in the

second parenthesis in Table XI. Since for the Ω the LO and

NLO expressions have no difference, we do not quote a

systematic error due to the chiral extrapolation. We show

representative plots of the chiral fits for the octet and

decuplet baryons in Fig. 18. Our results shown here are

continuum extrapolated and thus the errors on the points are

larger than those on the raw data. The error band for the

leading one-loop order and NLO fits are constructed using

the super-jackknife procedure [45]. As can be seen, the data

are well described by the LO fits and the physical masses of

Λ, Σ0 and Ξ0 are reproduced. For the Δ and Ξ� the physical
point is missed by about 1 standard deviation, while

the results for Σ� extrapolate to a 5% higher value. The

NLO fits also describe the lattice data satisfactory but in

general extrapolate to a lower value at the physical point.

Taking the difference between the value found using the

LO and NLO expressions we estimate the systematic error

due to the chiral extrapolation, and this yields agreement

with the experimental values also in the cases of Δ, Σ�

and Ξ�.
For the charm baryons we use the ansatz

mB ¼ m
ð0Þ
B þ c1m

2
π þ c2m

3
π: ð29Þ

This expression is motivated by SU(2) HBχPT to leading

one-loop order, where m
ð0Þ
B and ci are treated as indepen-

dent fit parameters. As before, we add the term da2 in the

fits in order to simultaneously extrapolate to the continuum

and we average over the states belonging to the same

isospin multiplets. We show representative plots of the

chiral fits for the charm baryons in Fig. 19. The resulting fit

parameters from the fits are listed in Table X. The masses at

the physical point are shown in Table XI. The lattice results

FIG. 18 (color online). Chiral extrapolations of the octet (left) and decuplet (right) baryons in physical units, using the leading one-

loop expressions of Eqs. (26) and (27) respectively as well as the NLO expressions of Eqs. (C1) and (C2). The lattice values are

continuum extrapolated. The notation is given in the legend in the top left plot. The experimental value is shown with the black asterisk.
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for all charm baryons at the three β values are collected in

Appendix B. As can be seen from the chiral fits, setting

c2 ¼ 0 in the ansatz would lead to satisfactory fits as well.

This is also reflected by the large uncertainties on this fit

parameter, making it consistent with zero. As in the strange

baryon sector, our continuum data are described well by

Eq. (29), yielding values at the physical point which in

general are consistent with experiment. For the Ω0
c and Ω

�0
c

the lattice data extrapolate to a lower value by 1 and 2

standard deviations respectively. In order to estimate a

systematic error due to the chiral extrapolation in the charm

sector, we perform the chiral fits using Eq. (29) with our

lattice data only up to mπ ∼ 300 MeV and setting c2 ¼ 0.

The deviation of the values obtained at the physical pion

FIG. 19 (color online). Representative chiral fits of the charm spin-1=2 (left) and spin-3=2 (right) baryon results in physical units, using
the ansatz of Eq. (29). The lattice results are the continuum extrapolated ones. The notation is shown in the legend of the top left plot.

FIG. 20 (color online). Dependence of the Ω
− (left) and Ωccc (right) mass on the lattice spacing.
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mass from fitting using the whole pion mass range and

fitting up to mπ ∼ 300 MeV yields an estimation of the

systematic error due to the chiral extrapolation.

The size of the cutoff effects in both the strange and

charm quark sectors are small. This can be seen by the

values of the fit parameter d, which are Oð1Þ, and thus the

cutoff effects are indeedOða2Þ. As an example, we show in

Fig. 20 the a-dependence of the mass of the Ω
− and Ωccc

for fixed quark masses. The correction at the largest value

of a is 6% for the Ω− and 5% for the Ωccc. In Table VIII we

give the values of the parameter d and the finite lattice

spacing corrections in percentage of the mass at each β

value for the doubly and triply charmed-baryon masses.

We also estimate a systematic uncertainty due to the

tuning for all strange and charm baryons. This is done by

evaluating the baryon masses when the strange and charm

quark masses take the upper and lower bound allowed by

the error in their tuned values [Eq. (25)]. The deviation of

the mass extracted using χPT to leading order provides an

estimate of the systematic error due to the tuning, given in

the third parenthesis in Table XI. In the strange sector, the

systematic error due to the tuning on the strange baryon

masses gives an upper bound of the error expected, since

the tuning was performed using the Ω which contains three

strange quarks, and thus any error due to the uncertainty of

the tuning would be the largest in this case.

As in the nucleon case, an estimate of the light σ-term of

all the hyperons and charmed baryons considered in this

work can be made, by taking the derivative m2
π∂mB=∂m

2
π .

For the octet and decuplet we calculate σπB using the LO as

well as the NLO expressions. It is apparent that the value

extracted depends on the fitting ansatz, and since the slope

of the NLO fit is larger at the physical point, the resulting

values for σπB from the NLO expressions are larger, again

indicating the sensitivity on the chiral extrapolations. We

TABLE VIII. The value of the fit parameter d and the finite

lattice spacing correction as percentage of the mass for the doubly

and triply charmed baryons.

% correction

Baryon d (GeV3) β ¼ 1.90 β ¼ 1.95 β ¼ 2.10

Ξcc 1.08 6.3 5.0 3.1

Ξ�
cc 1.01 5.9 4.6 2.9

Ωcc 1.20 6.9 5.4 3.4

Ω
�
cc 1.10 6.2 4.9 3.0

Ωccc 1.15 5.1 4.1 2.6

FIG. 21 (color online). Comparison of the light σ-term of the spin-1=2 hyperons in MeV, extracted from the Oðp3Þ in this work with

the results from other lattice calculations. Our result shows the statistical error in red and a systematic error in blue taken as the difference

between the value obtained using the Oðp3Þ and Oðp4Þ expressions [Eqs. (26) and (C1) respectively] providing an estimate of the

uncertainty due to the chiral extrapolation.

FIG. 22 (color online). Comparison of the light σ-term of the spin-3=2 hyperons in MeV, extracted from the Oðp3Þ in this work with

the results from other lattice calculations. The notation is the same as that in Fig. 21.
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list the values extracted for the octet and decuplet baryons

in Table IX. A number of other recent works [13,48,52,59–

63] have computed the light σ-terms for the octet and

decuplet baryons by analyzing lattice QCD data from

various collaborations. We compare our results with the

results of these calculations in Figs. 21 and 22. As for the

case of the nucleon σ-term, we take the difference between

the values obtained using Oðp3Þ and Oðp4Þ perturbation

theory as an estimate of the systematic error arising from

the chiral extrapolation. This explains why our results have

a larger error as compared to other groups which, typically,

do not include such an estimate. Extending this analysis we
can compute the poorly known σ-terms for the charmed

baryons from the fitting ansatz of Eq. (29). We list the

resulting values in Table X.

It is worth mentioning that a number of analyses based

on baryon chiral perturbation theory have been carried out

for the octet baryon masses and sigma terms. We refer for

example to Refs. [64–66] for details.

V. COMPARISON WITH RESULTS FROM

OTHER COLLABORATIONS

In this section we compare our lattice results with those

of other collaborations which use different discretization

schemes. Having already extrapolated to the continuum, we

also compare our values at the physical pion mass with the

corresponding results of other collaborations and with

experiment.

Several collaborations have calculated the strange

spectrum. The Budapest-Marseille-Wuppertal (BMW)

Collaboration carried out simulations using tree level

improved 6-step stout smearedNf ¼ 2þ 1 clover fermions

and a tree level Symanzik improved gauge action. The

lattice spacing values used to obtain the continuum limit

TABLE X. The mass at the chiral limit, m
ð0Þ
B , and fit parameters

ci as determined from fitting to the ansatz of Eq. (29) for the

charm baryons at the tuned strange and charm quark masses. Also

listed is the value of the light σ-term in MeV.

Baryon m
ð0Þ
B (GeV) c1 (GeV−1) c2 (GeV−2) σπB (MeV)

Λc 2.272(26) 0.799(935) −0.118ð1.834Þ 14.1(10.3)

Σc 2.445(32) 0.903(1.118) −0.662ð2.159Þ 14.0(12.4)

Ξc 2.469(28) 0.233(906) −0.087ð1.782Þ 4.6(10.0)

Ξc 2.447(25) 0.855(788) −1.128ð1.527Þ 11.4(8.8)

Ξ0
c 2.542(27) 1.242(870) −1.924ð1.690Þ 15.5(9.7)

Ωc 2.629(22) 1.028(768) −2.017ð1.507Þ 11.3(8.5)

Ξcc 3.561(22) 0.516(725) −0.880ð1.415Þ 6.2(8.0)

Ωcc 3.654(18) 0.341(602) −0.937ð1.193Þ 2.8(6.6)

Σ
�
c 2.513(38) 0.887(1.345) −0.481ð2.593Þ 14.4(15.0)

Ξ�
c 2.628(33) 0.483(1.178) −0.766ð2.339Þ 6.0(12.9)

Ω
�
c 2.709(26) 1.408(875) −2.623ð1.710Þ 16.0(9.7)

Ξ�
cc 3.642(26) 0.703(891) −1.087ð1.733Þ 8.8(9.9)

Ω
�
cc 3.724(21) 0.792(719) −1.695ð1.418Þ 8.2(7.9)

Ωccc 4.733(18) 0.156(551) −0.443ð1.082Þ 1.2(6.1)

TABLE XI. Our values of the masses of the baryons considered

in this work after extrapolating to the physical point and taking

the continuum limit given in GeV, with the associated statistical

error shown in the first parenthesis. The error in the second

parenthesis is an estimate of the systematic error due to the chiral

extrapolation and in the third parenthesis (except for Δ, which

contains only light quarks) is an estimate of the systematic error

due to the tuning. There are no systematic errors for Ω− and Λþ
c

since these are used for the tuning of the strange and charm quark

mass, respectively.

Baryon (PDG) m (GeV)

N (0.939) 0.939

Λ (1.116) 1.120(15)(54)(22)

Σ (1.193) 1.168(32)(14)(44)

Ξ (1.318) 1.318(19)(23)(9)

Δ (1.232) 1.299(30)(66)

Σ
� (1.384) 1.457(22)(28)(32)

Ξ� (1.530) 1.558(18)(41)(19)

Ω (1.672) 1.672(18)

Λc (2.286) 2.286(17)(10)

Σc (2.453) 2.460(20)(20)(6)

Ξc (2.470) 2.467(24)(4)(5)

Ξ0
c (2.575) 2.560(16)(22)(42)

Ω
0
c (2.695) 2.643(14)(19)(42)

Ξcc (3.519) 3.568(14)(19)(1)

Ω
þ
cc 3.658(11)(16)(50)

Σ
�
c (2.517) 2.528(25)(15)(7)

Ξ�
c (2.645) 2.635(20)(27)(55)

Ω
�0
c (2.765) 2.728(16)(19)(26)

Ξ�
cc 3.652(17)(27)(3)

Ω
�þ
cc 3.735(13)(18)(43)

Ω
þþ
ccc 4.734(12)(11)(9)

TABLE IX. The mass at the chiral limit, m
ð0Þ
B , and the fit

parameter c
ð1Þ
B as determined from fitting to the leading one-loop

order expressions for the octet and decuplet baryons at the tuned

strange quark mass. Also shown in the value of the light σ-term at

the physical point determined from the fits.

σπB (MeV)

Baryon m
ð0Þ
B (GeV) −4c

ð1Þ
B (GeV−1) Oðp3Þ NLO

N 0.867(2) 4.574 64.9(1.5) 45.3(4.3)

Λ 1.067(16) 3.544(97) 46.0(1.8) 74.5(1.8)

Σ
þ 1.110(21) 4.470(113) 55.6(2.1) 65.3(2.2)

Σ
0 1.117(17) 4.422(95) 54.7(1.7) 64.5(1.8)

Σ
− 1.095(18) 4.618(102) 58.3(1.9) 68.3(1.9)

Ξ0 1.307(16) 0.433(147) 6.8(2.7) 18.9(2.7)

Ξ− 1.312(12) 0.497(107) 8.0(2.0) 20.4(1.9)

Δ 1.207(31) 6.496(162) 79.9(3.0) 100.3(3.1)

Σ
� 1.405(23) 3.603(156) 45.1(2.8) 68.6(2.7)

Ξ� 1.535(19) 1.562(123) 20.8(2.2) 38.2(2.2)

Ω 1.669(19) 0.161(124) 2.9(2.3)
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were a ¼ 0.065 fm, 0.085 fm and 0.125 fm. Using pion

masses as low as 190 MeV, a polynomial fit was performed

to extrapolate to the physical point [67]. The PACS-CS

Collaboration obtained results using Nf ¼ 2þ 1 nonper-

turbatively OðaÞ improved clover fermions on an Iwasaki

gauge action on a lattice of spatial length of 2.9 fm and a

value of lattice spacing a ¼ 0.09 fm [68]. In addition, the

octet and decuplet spectrum was obtained in Ref. [69],

using Nf ¼ 2þ 1 SLiNC configurations. Reference [70]

also includes results on the charmed baryons from an

analysis on Nf ¼ 2þ 1 2-HEX [71] and SLiNC [69,72]

configurations produced by the BMW-c and QCDSF

Collaborations respectively. Finally, we compare with the

LHPC Collaboration, which obtained results using a hybrid

action of domain wall valence quarks on a staggered sea on

a lattice of spatial length 2.5 and 3.5 fm at lattice spacing

a ¼ 0.124 fm [73].

In Fig. 23 we compare our lattice results on the octet

baryons with those of BMW, the PACS-CS and the LHPC

Collaborations. In the nucleon case, we furthermore com-

pare with results from the MILC Collaboration [74],

obtained from Nf ¼ 2þ 1þ 1 simulations using the

one-loop Symanzik improved gauge action and an

improved Kogut-Susskind quark action at a lattice spacing

value a ¼ 0.130 fm and with results from QCDSF-

UKQCD, obtained using Nf ¼ 2 simulations at three

values of the lattice spacing, a ¼ 0.076; 0.072; 0.060 fm

[75]. We note that our results shown in these plots and the

results from the PACS-CS and LHPC are not continuum

extrapolated, while the results from BMW are continuum

extrapolated and have larger errors than the rest.

Nevertheless, there is an overall agreement, best seen in

the case of the nucleon mass, which indicates that cutoff

effects are small. A similar behavior is also seen in the case

for the mass in the decuplet shown in Fig. 24, where we

compare our results with those from PACS-CS and LHPC.

We stress that these lattice results need to be extrapolated to

zero lattice spacing (continuum limit) and therefore small

deviations are to be expected the raw data. A comparison is

also made with recent phenomenology results on the octet

and decuplet baryon masses, obtained from an analysis of

lattice QCD data based on the relativistic chiral Lagrangian

[52]. As can be seen from Fig. 25, results show an overall

agreement.

In Fig. 26 we show the masses for the octet and decuplet

baryons obtained after extrapolating to the continuum limit

and to the physical pion mass. Our results are obtained

using the leading order expansions from HBχPT and the

statistical error and total error are shown separately. The

error in red in our results shown in Fig. 26 represents

the statistical error. The total error bar, shown in blue, is

obtained after adding quadratically the statistical error and

the systematic errors due to the chiral extrapolation and due

to the tuning.

In addition, we compare our results obtained in the

charm sector with the corresponding results of other lattice

FIG. 23 (color online). Comparison of lattice results of this work (red filled circles) with those from other collaborations for the octet

baryons. Results using clover fermions from BMW [67] are shown in green triangles and from PACS-CS [68] with blue squares.

Domain wall valence quarks by the LHPC [73] are shown in magenta diamonds. In the nucleon case we additionally show results from

the MILC Collaboration [74] in purple inverted triangles and from QCDSF-UKQCD [75] with orange crosses. The physical point is

shown with the black asterisk.
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calculations. Specifically, the MILC Collaboration has

obtained results using a clover charm valence quark in

Nf ¼ 2þ 1þ 1 gauge configurations at three values of the

lattice spacing, a ¼ 0.09; 0.12; 0.15 fm [11,77]. Moreover,

results for the charm spectrum were produced from Nf ¼
2þ 1þ 1 gauge configurations at lattice spacing values

a ¼ 0.06; 0.09; 0.12 fm using the highly improved stag-

gered quark action, whereas the valence up, down and

strange quark propagators were generated using the clover

improved Wilson action [10]. A relativistic heavy quark

action was implemented for the charm quark in order to

reduce discretization artifacts. In Ref. [12] domain wall

fermions are used for the up, down and strange quarks

with Nf ¼ 2þ 1 simulations using the improved Kogut-

Susskind sea quarks at a lattice spacing value a ¼ 0.12 fm.

For the charm quark the relativistic Fermilab action was

adopted. Finally, the PACS-CS has obtained results in the

charm sector using the relativistic heavy quark action on

Nf ¼ 2þ 1 configurations with the light and strange

quarks tuned to their physical masses, a lattice spacing

FIG. 24 (color online). Comparison of the results for the decuplet baryons in this work with the results from PACS-CS using clover

fermions [68] and from the LHPC Collaboration [73] using domain wall valence quarks. The notation is as in Fig. 23.

FIG. 25 (color online). Comparison of the lattice results for the octet (left) and decuplet (right) baryons from this work (red circles)

with the phenomenology results from Ref. [52] (blue open squares). The results are consistent for all β values.
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of a ¼ 0.09 fm and a spatial length of L ¼ 2.9 fm [78]. We

compare our results with those from Refs. [10–12,77,78].

In Fig. 27 we compare our continuum extrapolated

results on the charmed spectrum with experiment again

showing separately the statistical error and the total error.

Given the agreement with the experimental values, lattice

QCD thus provides predictions for the mass of the Ξ�
cc,Ωcc,

Ω
�
cc and Ωccc. These predictions are consistent among

lattice calculations, as shown in Fig. 27. We also point out

that our value for Ξcc is within errors with the value

measured by the SELEX experiment.

VI. CONCLUSIONS

The twisted mass formulation allowing simulations with

dynamical strange and charm quarks with their mass fixed

to approximately their physical values provides a good

framework for studying the baryon spectrum. A number of

gauge ensembles are analyzed spanning pion masses from

about 450 to 210 MeV for three lattice spacings. For the

strange and charm valence quarks we use the Osterwalder-

Seiler formulation and tuned their mass using the mass of

the Ω and Λc, respectively. Thus the strange and charm

quarks are treated in the same manner as the light quarks.

This is to be contrasted with other lattice calculations where

Nf ¼ 2þ 1 staggered gauge configurations are used and

the charm valence quark is introduced using a different

discretization scheme such as clover or described by a

relativistic heavy quark action. A comparison of our lattice

results to other lattice calculations before extrapolations

shows an overall similar tread for all lattice formulations.

Having values for the masses at three lattice spacings is

crucial in order to both verify that cutoff effects are under

control and to extrapolate the results to the continuum limit.

We perform a continuum extrapolation to all our data and

chiral extrapolate to the physical pion mass. In most cases,

the largest systematic error arises because of the chiral

extrapolation and the tuning of the strange and charm quark

masses. We estimate the error due to the chiral extrapo-

lation by comparing results at different orders of the chiral

expansion. The systematic error due to tuning is estimated

by varying the strange and charm quark mass within the

error band of the Ω and Λc masses at the physical point.

From the chiral fits we can determine the light σ-terms for

all baryons via the Feynman-Hellmann theorem. The

largest uncertainty in their determination arises from the

chiral extrapolation which, in some cases amounts to over

30% error. Therefore direct determinations of the σ-terms

[53,79] although very computer intensive can provide a

valuable alternative. The values extracted for σπB for all the

baryons are given in Table IX.

FIG. 26 (color online). The octet and decuplet baryon masses

obtained at the physical point and the experimental masses [76]

shown by the horizontal bands. For most baryons the band is too

small to be visible. For the twisted mass results of this work (red

circles) the chiral extrapolation was performed using the leading

order HBχPT. In our results, the statistical error is shown in red,

whereas the blue error bar includes the statistical error and the

systematic errors due to the chiral extrapolation and due to the

tuning added in quadrature. Results using clover fermions from

BMW [67] are shown in magenta squares and from PACS-CS

[68] with green triangles. Results from QCDSF-UKQCD Col-

laborations [69] using Nf ¼ 2þ 1 SLiNC configurations are also

displayed in blue inverted triangles. Open symbols are used

wherever the mass was used as input to the calculations.

FIG. 27 (color online). The masses of spin-1=2 (left) and spin-3=2 (right) charm baryons. The notation of our results (ETMC) is the

same as in Fig. 26. The experimental values are from Ref. [76] and are shown with the horizontal bands. Included are results from

various hybrid actions with staggered sea quarks from Refs. [11,77] (purple triangles), [10] (magenta diamonds) and [12] (orange

inverted triangles). Results from PACS-CS [78] are shown in green triangles.
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Our values for the baryon masses at the physical

point, shown in Figs. 26 and 27, reproduce the

known baryon masses. For the Ξcc we find a mass of

3.568(14)(19)(1) GeV, which is higher by 1 standard

deviation as compared with the value of 3.519 GeV

measured by the SELEX Collaboration. Our prediction

for the mass of the Ξ�
cc is 3.652(17)(27)(3) GeV, for the Ω

þ
cc

is 3.658(11)(16)(50) GeV, for Ω�þ
cc 3.735(13)(18)(43) GeV

and for Ωþþ
ccc 4.734(12)(11)(9) GeV.
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APPENDIX A: INTERPOLATING FIELDS FOR BARYONS

In Tables XII, XIII, and XIV, we give the interpolating fields for the baryons used in this work in correspondence with

Fig. 2 and Fig. 3. Throughout, C denotes the charge conjugation matrix and spinor indices are suppressed.

TABLE XII. Interpolating fields and quantum numbers for the 200-plet of spin-1=2 baryons.

Charm Strange Baryon Quark content Interpolating field I Iz

c ¼ 2 s ¼ 0 Ξþþ
cc ucc ϵabcðcTaCγ5ubÞcc 1=2 þ1=2

Ξþ
cc dcc ϵabcðcTaCγ5dbÞcc 1=2 −1=2

s ¼ 1 Ω
þ
cc scc ϵabcðcTaCγ5sbÞcc 0 0

c ¼ 1

s ¼ 0

Λþ
c udc 1

ffiffi

6
p ϵabc½2ðuTaCγ5dbÞcc þ ðuTaCγ5cbÞdc − ðdTaCγ5cbÞuc� 0 0

Σ
þþ
c uuc ϵabcðuTaCγ5cbÞuc 1 þ1

Σ
þ
c udc 1

ffiffi

2
p ϵabc½ðuTaCγ5cbÞdc þ ðdTaCγ5cbÞuc� 1 0

Σ
0
c ddc ϵabcðdTaCγ5cbÞdc 1 −1

s ¼ 1

Ξþ
c usc ϵabcðuTaCγ5sbÞcc 1=2 þ1=2

Ξ0
c dsc ϵabcðdTaCγ5sbÞcc 1=2 −1=2

Ξ0þ
c usc 1

ffiffi

2
p ϵabc½ðuTaCγ5cbÞsc þ ðsTaCγ5cbÞuc� 1=2 þ1=2

Ξ00
c dsc 1

ffiffi

2
p ϵabc½ðdTaCγ5cbÞsc þ ðsTaCγ5cbÞdc� 1=2 −1=2

s ¼ 2 Ω
0
c ssc ϵabcðsTaCγ5cbÞsc 0 0

c ¼ 0 s ¼ 0 p uud ϵabcðuTaCγ5dbÞuc 1=2 þ1=2

n udd ϵabcðdTaCγ5ubÞdc 1=2 −1=2

s ¼ 1

Λ uds 1
ffiffi

6
p ϵabc½2ðuTaCγ5dbÞsc þ ðuTaCγ5sbÞdc − ðdTaCγ5sbÞuc� 0 0

Σ
þ uus ϵabcðuTaCγ5sbÞuc 1 þ1

Σ
0 uds 1

ffiffi

2
p ϵabc½ðuTaCγ5sbÞdc þ ðdTaCγ5sbÞuc� 1 0

Σ
− dds ϵabcðdTaCγ5sbÞdc 1 −1

s ¼ 2
Ξ0 uss ϵabcðsTaCγ5ubÞsc 1=2 þ1=2

Ξ− dss ϵabcðsTaCγ5dbÞsc 1=2 −1=2
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APPENDIX B: LATTICE RESULTS

In Tables XV, XVI, XVII, XVIII, XIX, and XX we list the baryon masses in lattice units and the continuum extrapolated

values in physical units. The masses in physical units are in GeV and are converted from lattice units using the lattice

spacing values extracted from the nucleon in this work, Eq. (21). The masses for the nucleon Ω and Λþ
c are listed in

Tables III and VI.

TABLE XIV. Additional interpolating fields for spin-1=2 and spin-3=2 baryons. There are two of the spin-1=2 baryons and eight of the
spin-3=2 baryons.

Charm Strange Baryon Quark content Interpolating field I Iz

Spin-1=2 baryons

c ¼ 1 s ¼ 1 Ξþ
c usc 1

ffiffi

6
p ϵabc½2ðsTaCγ5ubÞcc þ ðsTaCγ5cbÞuc − ðuTaCγ5cbÞsc� 1=2 þ1=2

Ξ0
c dsc 1

ffiffi

6
p ϵabc½2ðsTaCγ5dbÞcc þ ðsTaCγ5cbÞdc − ðdTaCγ5cbÞsc� 1=2 −1=2

Spin-3=2 baryons

c ¼ 0 s ¼ 2 Ξ⋆0 uss 1
ffiffi

3
p ϵabc½2ðsTaCγμubÞsc þ ðsTaCγμsbÞuc� 1=2 þ1=2

Ξ⋆− dss 1
ffiffi

3
p ϵabc½2ðsTaCγμdbÞsc þ ðsTaCγμsbÞdc� 1=2 −1=2

c ¼ 1 s ¼ 1 Ξ⋆þ
c usc

ffiffi

2
3

q

ϵabc½ðuTaCγμsbÞcc þ ðsTaCγμcbÞuc þ ðcTaCγμubÞsc� 1=2 þ1=2

Ξ⋆0
c dsc

ffiffi

2
3

q

ϵabc½ðdTaCγμsbÞcc þ ðsTaCγμcbÞdc þ ðcTaCγμdbÞsc� 1=2 −1=2

s ¼ 2 Ω
⋆0
c ssc 1

ffiffi

3
p ϵabc½2ðsTaCγμcbÞsc þ ðsTaCγμsbÞcc� 0 0

c ¼ 2 s ¼ 0 Ξ⋆þþ
cc ucc 1

ffiffi

3
p ϵabc½2ðcTaCγμubÞcc þ ðcTaCγμcbÞuc� 1=2 þ1=2

Ξ⋆þ
cc dcc 1

ffiffi

3
p ϵabc½2ðcTaCγμdbÞcc þ ðcTaCγμcbÞdc� 1=2 −1=2

s ¼ 1 Ω
⋆þ
cc scc 1

ffiffi

3
p ϵabc½2ðcTaCγμsbÞcc þ ðcTaCγμcbÞsc� 0 0

TABLE XIII. Interpolating fields and quantum numbers for the 20-plet of spin-3=2 baryons.

Charm Strange Baryon Quark content Interpolating field I Iz

c ¼ 3 s ¼ 0 Ω
þþ
ccc ccc ϵabcðcTaCγμcbÞcc 0 0

c ¼ 2
s ¼ 0

Ξ⋆þþ
cc ucc ϵabcðcTaCγμubÞcc 1=2 þ1=2

Ξ⋆þ
cc dcc ϵabcðcTaCγμdbÞcc 1=2 −1=2

s ¼ 1 Ω
⋆þ
cc scc ϵabcðcTaCγμsbÞcc 0 0

c ¼ 1

s ¼ 0

Σ
⋆þþ
c uuc 1

ffiffi

3
p ϵabc½ðuTaCγμubÞcc þ 2ðcTaCγμubÞuc� 1 þ1

Σ
⋆þ
c udc

ffiffi

2
3

q

ϵabc½ðuTaCγμdbÞcc þ ðdTaCγμcbÞuc þ ðcTaCγμubÞdc� 1 0

Σ
⋆0
c ddc 1

ffiffi

3
p ϵabc½ðdTaCγμdbÞcc þ 2ðcTaCγμdbÞdc� 1 −1

s ¼ 1
Ξ⋆þ
c usc ϵabcðsTaCγμubÞcc 1=2 þ1=2

Ξ⋆0
c dsc ϵabcðsTaCγμdbÞcc 1=2 −1=2

s ¼ 2 Ω
⋆0
c ssc ϵabcðsTaCγμcbÞsc 0 0

c ¼ 0

s ¼ 0

Δ
þþ uuu ϵabcðuTaCγμubÞuc 3=2 þ3=2

Δ
þ uud 1

ffiffi

3
p ϵabc½2ðuTaCγμdbÞuc þ ðuTaCγμubÞdc� 3=2 þ1=2

Δ
0 udd 1

ffiffi

3
p ϵabc½2ðdTaCγμubÞdc þ ðdTaCγμdbÞuc� 3=2 −1=2

Δ
− ddd ϵabcðdTaCγμdbÞdc 3=2 −3=2

s ¼ 1

Σ
⋆þ uus 1

ffiffi

3
p ϵabc½ðuTaCγμubÞsc þ 2ðsTaCγμubÞuc� 1 þ1

Σ
⋆0 uds

ffiffi

2
3

q

ϵabc½ðuTaCγμdbÞsc þ ðdTaCγμsbÞuc þ ðsTaCγμubÞdc� 1 0

Σ
⋆− dds 1

ffiffi

3
p ϵabc½ðdTaCγμdbÞsc þ 2ðsTaCγμdbÞdc� 1 −1

s ¼ 2
Ξ⋆0 uss ϵabcðsTaCγμubÞsc 1=2 þ1=2

Ξ⋆− dss ϵabcðsTaCγμdbÞsc 1=2 −1=2

s ¼ 3 Ω
− sss ϵabcðsTaCγμsbÞsc 0 0
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TABLE XVI. Octet and decuplet baryon masses in physical units with the associated statistical error.

aμl mΛ mΣ mΞ mΔ mΣ
� mΞ�

β ¼ 1.90

0.0030 1.2329(394) 1.3103(435) 1.3331(356) 1.4909(834) 1.5669(678) 1.6139(539)

0.0040 1.2343(394) 1.2924(431) 1.3294(349) 1.4560(863) 1.5372(674) 1.5869(545)

0.0050 1.2496(402) 1.3381(431) 1.3422(369) 1.4923(835) 1.5920(675) 1.6133(604)

β ¼ 1.95

0.0025 1.2314(364) 1.3067(399) 1.3632(312) 1.5178(749) 1.5938(608) 1.6379(504)

0.0035 1.2610(356) 1.3180(385) 1.3662(320) 1.5152(750) 1.5787(610) 1.6126(502)

0.0055 1.3063(351) 1.3580(393) 1.3748(322) 1.5621(740) 1.6332(598) 1.6609(487)

0.0075 1.3328(358) 1.3909(378) 1.3746(345) 1.6019(731) 1.6382(600) 1.6633(483)

β ¼ 2.10

0.0015 1.1798(287) 1.2522(308) 1.3272(250) 1.4074(598) 1.5222(470) 1.5973(380)

0.0020 1.2157(294) 1.2775(324) 1.3282(258) 1.4484(632) 1.5380(486) 1.5819(395)

0.0030 1.2216(291) 1.2783(320) 1.3290(253) 1.4484(609) 1.5294(497) 1.5885(402)

TABLE XVII. Charm spin-1=2 baryon masses in lattice units with the associated statistical error.

aμl amΣc
amΞc

amΞ0
c

amΩ
0
c

amΞcc
amΩ

þ
cc

β ¼ 1.90

0.0030 1.2543(72) 1.2611(46) 1.3028(53) 1.3575(46) 1.8187(48) 1.8704(38)

0.0040 1.2448(53) 1.2580(62) 1.2983(50) 1.3506(37) 1.8166(42) 1.8694(33)

0.0050 1.2696(55) 1.2599(61) 1.3185(49) 1.3655(47) 1.8303(44) 1.8781(37)

β ¼ 1.95

0.0025 1.0896(55) 1.0900(43) 1.1388(42) 1.1764(41) 1.5684(34) 1.6099(29)

0.0035 1.0927(49) 1.0920(41) 1.1322(43) 1.1726(39) 1.5684(32) 1.6077(27)

0.0055 1.1091(51) 1.1027(37) 1.1440(44) 1.1788(39) 1.5782(36) 1.6138(33)

0.0075 1.1112(43) 1.1024(36) 1.1412(37) 1.1691(37) 1.5739(34) 1.6065(34)

β ¼ 2.10

0.0015 0.8348(35) 0.8362(25) 0.8682(27) 0.9010(23) 1.2136(25) 1.2449(19)

0.0020 0.8384(64) 0.8419(33) 0.8735(35) 0.9000(30) 1.2078(31) 1.2414(21)

0.0030 0.8376(49) 0.8410(26) 0.8741(33) 0.9028(28) 1.2139(25) 1.2438(19)

TABLE XV. Octet and decuplet baryon masses in lattice units with the associated statistical error.

aμl amΛ amΣ amΞ amΔ amΣ
� amΞ�

β ¼ 1.90

0.0030 0.5972(46) 0.6420(60) 0.6906(50) 0.7090(100) 0.7481(95) 0.8046(61)

0.0040 0.5978(46) 0.6335(52) 0.6888(38) 0.6924(145) 0.7339(89) 0.7918(73)

0.0050 0.6051(60) 0.6552(52) 0.6949(69) 0.7097(101) 0.7600(91) 0.8044(144)

β ¼ 1.95

0.0025 0.5217(59) 0.5586(66) 0.6077(38) 0.6340(100) 0.6677(89) 0.7093(87)

0.0035 0.5341(50) 0.5633(50) 0.6090(48) 0.6329(102) 0.6614(92) 0.6987(84)

0.0055 0.5529(43) 0.5800(60) 0.6126(50) 0.6525(88) 0.6841(77) 0.7189(68)

0.0075 0.5640(52) 0.5937(39) 0.6125(72) 0.6691(74) 0.6862(80) 0.7199(62)

β ¼ 2.10

0.0015 0.3904(37) 0.4167(37) 0.4537(28) 0.4614(71) 0.5000(48) 0.5359(39)

0.0020 0.4021(43) 0.4250(49) 0.4540(35) 0.4749(98) 0.5052(63) 0.5308(53)

0.0030 0.4041(40) 0.4253(46) 0.4543(32) 0.4749(81) 0.5024(71) 0.5330(58)
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TABLE XVIII. Charm spin-1=2 baryon masses in physical units with the associated statistical error.

aμl mΣc
mΞc

mΞ0
c

mΩ
0
c

mΞcc
mΩ

þ
cc

β ¼ 1.90

0.0030 2.5020(560) 2.4921(374) 2.5890(412) 2.6663(350) 3.5829(344) 3.6631(268)

0.0040 2.4820(551) 2.4856(384) 2.5796(410) 2.6518(345) 3.5784(340) 3.6611(265)

0.0050 2.5342(552) 2.4896(384) 2.6221(410) 2.6831(350) 3.6072(341) 3.6794(267)

β ¼ 1.95

0.0025 2.5042(492) 2.4865(334) 2.6102(363) 2.6713(311) 3.5687(300) 3.6461(235)

0.0035 2.5114(489) 2.4912(332) 2.5946(364) 2.6623(310) 3.5687(299) 3.6408(234)

0.0055 2.5509(490) 2.5168(330) 2.6228(364) 2.6771(310) 3.5921(301) 3.6554(238)

0.0075 2.5558(485) 2.5161(329) 2.6160(360) 2.6538(309) 3.5818(300) 3.6378(239)

β ¼ 2.10

0.0015 2.4816(387) 2.4746(261) 2.5766(286) 2.6585(242) 3.5867(239) 3.6686(186)

0.0020 2.4927(421) 2.4921(269) 2.5927(294) 2.6557(249) 3.5690(245) 3.6581(188)

0.0030 2.4902(401) 2.4891(262) 2.5944(292) 2.6643(247) 3.5877(239) 3.6652(186)

TABLE XIX. Charm spin-3=2 baryon masses in lattice units with the associated statistical error.

aμl amΣ
�
c

amΞ�
c

amΩ
�0
c

amΞ�
cc

amΩ
�þ
cc

amΩ
þþ
ccc

β ¼ 1.90

0.0030 1.2828(103) 1.3333(78) 1.3780(58) 1.8464(71) 1.8941(47) 2.3788(37)

0.0040 1.2812(76) 1.3337(57) 1.3846(48) 1.8407(100) 1.9034(38) 2.3845(48)

0.0050 1.3057(65) 1.3543(57) 1.3953(51) 1.8665(52) 1.9092(41) 2.3857(42)

β ¼ 1.95

0.0025 1.1296(90) 1.1757(52) 1.2049(46) 1.6084(54) 1.6400(41) 2.0486(29)

0.0035 1.1295(53) 1.1588(63) 1.1999(46) 1.6037(45) 1.6394(35) 2.0537(27)

0.0055 1.1435(63) 1.1767(54) 1.2028(51) 1.6153(42) 1.6451(36) 2.0578(29)

0.0075 1.1471(54) 1.1608(64) 1.2016(43) 1.6107(39) 1.6386(38) 2.0570(28)

β ¼ 2.10

0.0015 0.8591(41) 0.8951(32) 0.9239(28) 1.2380(26) 1.2669(21) 1.5958(20)

0.0020 0.8612(73) 0.8928(53) 0.9277(30) 1.2377(40) 1.2702(26) 1.5928(20)

0.0030 0.8596(55) 0.8909(44) 0.9296(29) 1.2384(33) 1.2665(26) 1.5946(16)

TABLE XX. Charm spin-3=2 baryon masses in physical units with the associated statistical error.

aμl mΣ
�
c

mΞ�
c

mΩ
�0
c

mΞ�
cc

mΩ
�þ
cc

mΩ
þþ
ccc

β ¼ 1.90

0.0030 2.5529(709) 2.6263(552) 2.7461(402) 3.6555(497) 3.7362(335) 4.7432(263)

0.0040 2.5496(694) 2.6271(541) 2.7599(396) 3.6435(518) 3.7556(330) 4.7552(270)

0.0050 2.6012(689) 2.6704(541) 2.7824(397) 3.6978(486) 3.7680(332) 4.7576(266)

β ¼ 1.95

0.0025 2.5928(631) 2.6778(479) 2.7677(354) 3.6756(436) 3.7361(298) 4.7049(231)

0.0035 2.5927(607) 2.6373(487) 2.7557(353) 3.6642(430) 3.7347(293) 4.7171(229)

0.0055 2.6261(612) 2.6803(481) 2.7626(357) 3.6921(428) 3.7481(294) 4.7268(231)

0.0075 2.6349(607) 2.6422(488) 2.7600(351) 3.6810(427) 3.7327(295) 4.7250(230)

β ¼ 2.10

0.0015 2.5515(482) 2.6459(377) 2.7459(277) 3.6679(336) 3.7469(230) 4.7443(183)

0.0020 2.5581(517) 2.6388(398) 2.7576(279) 3.6669(349) 3.7568(234) 4.7350(184)

0.0030 2.5530(495) 2.6329(387) 2.7632(278) 3.6694(342) 3.7457(234) 4.7406(180)
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APPENDIX C: HBχPT NEXT-TO-LEADING

ORDER EXPRESSIONS FOR THE OCTET

AND DECUPLET BARYONS

For the octet baryons the NLO expressions read

mNLO
Λ

ðmπÞ ¼ m
ð0Þ
Λ

− 4c
ð1Þ
Λ
m2

π −
g2
ΛΣ

ð4πfπÞ2
F ðmπ;ΔΛΣ; λÞ

−
4g2

ΛΣ�

ð4πfπÞ2
F ðmπ;ΔΛΣ� ; λÞ

mNLO
Σ

ðmπÞ ¼ m
ð0Þ
Σ

− 4c
ð1Þ
Σ
m2

π −
2g2

ΣΣ

16πf2π
m3

π

−
g2
ΛΣ

3ð4πfπÞ2
F ðmπ;−ΔΛΣ; λÞ

−
4g2

Σ
�
Σ

3ð4πfπÞ2
F ðmπ;ΔΣΣ

� ; λÞ

mNLO
Ξ

ðmπÞ ¼ m
ð0Þ
Ξ

− 4c
ð1Þ
Ξ
m2

π −
3g2

ΞΞ

16πf2π
m3

π

−
2g2

Ξ�Ξ

ð4πfπÞ2
F ðmπ;ΔΞΞ� ; λÞ ðC1Þ

and for the decuplet baryons

mNLO
Δ

ðmπÞ ¼ m
ð0Þ
Δ

− 4c
ð1Þ
Δ
m2

π −
25

27

g2
ΔΔ

16πf2π
m3

π

−
2g2

ΔN

3ð4πfπÞ2
F ðmπ;−ΔNΔ; λÞ

mNLO
Σ
� ðmπÞ ¼ m

ð0Þ
Σ
� − 4c

ð1Þ
Σ
� m2

π −
10

9

g2
Σ
�
Σ
�

16πf2π
m3

π

−
2

3ð4πfπÞ2
½g2

Σ
�
Σ
F ðmπ;−ΔΣΣ

� ; λÞ

þ g2
ΛΣ�F ðmπ;−ΔΛΣ� ; λÞ�

mNLO
Ξ� ðmπÞ ¼ m

ð0Þ
Ξ� − 4c

ð1Þ
Ξ� m2

π −
5

3

g2
Ξ�Ξ�

16πf2π
m3

π

−
g2
Ξ�Ξ

ð4πfπÞ2
F ðmπ;−ΔΞΞ� ; λÞ

mNLO
Ω

ðmπÞ ¼ m
ð0Þ
Ω

− 4c
ð1Þ
Ω
m2

π: ðC2Þ

The nonanalytic function F ðm;Δ; λÞ is of the form [58]

F ðm;Δ; λÞ ¼ ðm2 − Δ
2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ
2 −m2 þ iϵ

p

× log

�

Δ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ
2 −m2 þ iϵ

p

Δþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ
2 −m2 þ iϵ

p
�

−
3

2
Δm2 log

�

m2

λ2

�

− Δ
3 log

�

4Δ2

m2

�

ðC3Þ

depending on the threshold parameter ΔXY ¼ m
ð0Þ
Y −m

ð0Þ
X

and on the scale λ of chiral perturbation theory, fixed to

λ ¼ 1 GeV. For Δ > 0 the real part of the function

F ðm;Δ; λÞ has the property

F ðm;−Δ;λÞ¼
	

−F ðm;Δ;λÞ m<Δ

−F ðm;Δ;λÞþ2πðm2−Δ
2Þ3=2 m>Δ

ðC4Þ

which corrects a typo in the sign of the second term

in Ref. [73].

A noticeable result of this expansion is the absence of a

cubic term in the expressions for the Λ andΩ baryons given

in Eqs. (C1) and (C2). In the case of Ω it follows from the

absence of light valence quarks. However, the absence of a

cubic term in the NLO expression for Λ, although a

consequence of χPT, is nevertheless a questionable result,

since it relies on the assumption that mπ ≪ MΣ −MΛ. In

the limit Δ → 0 the nonanalytic function of Eq. (C3)

becomes

F ðmπ;Δ → 0; λÞ ¼ πm3
π; ðC5Þ

which generates a cubic term for the Λ and slightly

modifies the existing one for Σ. The corresponding expres-

sions are given by

mΛðmπÞ ¼ m
ð0Þ
Λ

− 4c
ð1Þ
Λ
m2

π −
g2
ΛΣ

16πf2π
m3

π

mΣðmπÞ ¼ m
ð0Þ
Σ

− 4c
ð1Þ
Σ
m2

π −
2g2

ΣΣ
þ g2

ΛΣ
=3

16πf2π
m3

π: ðC6Þ
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