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Abstract 

From QCD we derive a three-body Faddeev-type formulation of baryons, as qqq colour-singlet 
states bound by gluon exchange, which is covariant, has dynamically hidden chiral symmetry 
and incorporates the colour dynamics. The formulation exploits the dynamical role of colour "3 
diquark substructure in baryons to simplify computations. For non-zero current quark masses 
the jP = ~ + and ~ - baryon octet mass formulae are shown to satisfy the Gell-Mann-Okubo 

and the Coleman-Glashow multiplet mass relationships. The ~ + baryon multiplet mass 
formulae in conjunction with the mass formulae for the Nambu-Goldstone boson multiplet 
are used to extract from the corresponding experimental data the chiral-limit i + multiplet 
mass of Mx+ = 912 MeV and two parameters characterising the baryon wavefunction for this 
multiplet. An analysis of the incomplete experimental i-mass spectrum yields a chiral 

mass of Mx- '" 1511 MeV together with structure information for this multiplet. 

1. Introduction 

Quantum chromodynamics (QeD) is the model of hadrons in which colour­
octet gluon exchange between colour-triplet quarks leads to colour-singlet 

bound states-the hadrons. The mesons are qq bound states and the baryons 

are qqq bound states with some meson dressing. There are three key 
dynamical aspects of QeD needed to understand baryons. The first is the 

colour algebra. In a colour-singlet qqq state any two quarks are in a colour 

"3 state and for such states colour-octet spin-l gluon exchange produces an 

attractive force between the two quarks, and so all three quarks are mutually 

attracted. Second and of great importance to all hadrons containing low mass 

quarks are the consequences of the approximate chiral symmetry of the QeD 

action_ In the chiral limit (Le. massless quarks) the dynamics induces this 

chiral symmetry to become a hidden symmetry, which in part means that 
the vacuum is degenerate_ Though this degeneracy is lifted by current quark 

masses the fact that for the low mass u,d and s quarks the vacuum is almost 

degenerate has important consequences. In the meson sector this hidden chiral 

symmetry largely determines the pseudo scalar meson properties since they 

are the Nambu-Goldstone bosons associated with this realisation of the chiral 

symmetry. For the baryons it is necessary for any approximate treatment of 

the quark-gluon dynamics leading to baryon structure to be chirally covariant, 
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that is, to respect this hidden chiral symmetry. It is known, for example, 

that bag models which have a scalar confining potential do not respect this 

symmetry, and various ad hoc schemes to restore chiral covariance have been 

employed in these phenomenologies. Our analysis of baryon structure avoids 

such problems since it does not assume any such potentials. The requirement 

of chiral invariance also determines the baryon- Nambu-Goldstone coupling, 

which in the world of nuclear physics means the nucleon-pion coupling. The 

third dynamical requirement of hadron structure calculations in QeD is that 

they be Lorentz covariant. Most of the models of baryons studied up to now 

were not covariant. This leads to various difficulties such as the need to 

remove centre-of-mass motion energies from calculated masses and related 

problems in the calculation of structure functions. 

Of course an important requirement of any calculation of hadron properties 

in the context of QeD is that the treatment must be derivable from QeD. 

While approximations will always be employed a necessary property of such 

calculations is that the derivation provides a systematic scheme for extending 

the calculations in a manner controlled by QCD itself. 

We present here an approximation scheme for baryons which satisfies the 

above requirements; that is, it is derived from QeD in a systematic way, includes 

the colour algebra, the hidden chiral symmetry and is Lorentz covariant. This 

means we must treat the baryons as a chirally-covariant relativistic three-body 

problem, that is, using covariant Faddeev type coupled integral equations, with 

the quarks bound by gluon exchange and with each quark self-interacting via 

gluons, this last aspect being intimately related to the hidden chiral symmetry. 

This produces a bare baryon, and chiral covariance will, to a large extent, then 

control the meson dressing of this bare baryon by Nambu-Goldstone bosons. 

Such a three-body problem would lead to excessively difficult computations 

were it not for an ideal feature of baryons related to the colour algebra, 

namely that any two of the quarks are necessarily in a 3" colour state and for 

such states gluon exchange leads to bound states known as diquark states, 

and for the scalar spin-O diquarks their masses are such that they play a 

significant dynamical role in the first baryon multiplet. For higher mass 

multiplets the pseudoscalar and spin-l diquark states come into play. This 

means that in baryons the q - q propagator is dominated by the diquark pole 

term. This naturally allows the separation-of-variables approximation, which 

played such a useful role in non-relativistic three-body theory. This allows 

the reduction of the three-body problem to a non-local covariant two-body 

problem. We illustrate the general techniques by considering the first baryon 

octet. After determining the chiral covariance of the formulation we include 

explicit chiral symmetry breaking by giving the quarks small current masses. 

The baryon octet mass formulae are then determined and shown to satisfy 

the Gell-Mann-Okubo and Coleman-Glashow mass relationships. These quark 

mass effects are treated as perturbations on the chirally covariant solutions 

and the mass formulae are used to determine from the experimental data the 

nucleon mass in the chiral limit. This mass will be needed for comparison 

with calculations to be reported elsewhere. 

In Section 2 we derive from QeD the three-body formulation of the baryon 

structure problem. For simplicity we use the Feynman rules for QeD and we 
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work in the Euclidean metric. The reader is referred to Cahill et al. (1987) 

for details of an analogous treatment of the mesons and the diquarks. In this 

way it is made clear which class of diagrams is retained as our first-stage 

approximation. This will allow some insight to be gained into this class by 

comparison of our results with experiment before further classes of diagrams 

are included. In this section we also use the separable approximation which 

is based on the dynamical role of the diquarks. This is chirally invariant, 

includes the special aspects of the colour algebra needed for baryons, and 

is Lorentz is covariant. Our general formulation provides a very useful 

starting point for the systematic study of baryon structure in the context 

of QCD. In Section 3 the baryon octet mass splittings due to current quark 

masses are determined. While these give splittings well known from early 

phenomenologies, they nevertheless formed a simple but important check on 

the formulation. They are also used here to extract from experimental data 

various parameters characterising the i + and i-baryon octets in the chiral 

limit. 

2. Baryons 

Consider the three constituent quarks forming a 'bare' baryon and, as in 

Fig. 1 a, the self-interaction of one of the quarks by way of the emission and 

absorption of gluons, which are themselves also self-interacting. Summing 

such diagrams gives a quark propagator which is a matrix in spin, flavour 

and colour space and which may be written C(q) = (ilf + L'(q»-l. The integral 

equation which determines L'(q) is (in some unspecified gauge), for zero bare 

masses, 

0) 

where ... denote diagrams involving higher order gluon n-point functions Dn 

and where D~t = 6abDIlV is the 2-point function. In those gauges which are not 

ghost free the ghost 'particles' contribute to the Dn. However in our approach 

these n-point gluon functions do not involve qq loops, which are included 

through meson dressing at a later stage. Here {Aaj2,a = I, .. ,8} are the hermitian 

generators of the SU(3) colour group of QCD and [Aa,Ab] = 2ifabcAc. The Aa y ll 

in (1) of course specify the coupling between the colour-octet spin-I gluons 

and the colour-triplet quarks. The algebra of the Euclidean Dirac matrices is 

{yll, yV} = 261lV, C = y2 y 4 is the charge conjugation matrix and C-l yllC = _yilT. 

The solution of (1) has the form (Cahill et al. 1985, 1987, 1988; Roberts 

and Cahill 1987) 

(2) 

where Ie is the unit matrix in colour space and 

with {Fa} = {(Ij JNF) I, J2Tl, ... } where {F} are the hermitian generators of the 

flavour group SU(NF) , with [Ta, Tb] = ifabcF. The {Tf'I} are arbitrary real 
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constants. The matrix V occurs because in the chiral limit the QeD action has 

an exact global G = UdNF) ® UR(NF) chiral symmetry which is now realised as 

a hidden symmetry. The degenerate vacuum manifold associated with such a 

hidden symmetry is parametrised by the {rra} and in fact is the coset space 

(a) + ••• 

P, 

(b) P P2 L 
P3 

(c) ~: L~; 
i ~k k 

(d) =(1:: ·T j~ j+~i 
I I j J 

q (~ +q) fij 
P-p (~ -p) 

f( 
(e) P , (-q -p) 

fj k 
p (¥ +p) 

(! -q) P-q 

Fig. 1. (a) Self-interaction of one of the quarks in a baryon via gluons, leading to the 

quark propagator in (1). (b) Integral equation for the baryon form factor T(P;PIP2P3) 

where the interaction is due to gluon exchange between distinct quarks and where the 

quark propagators are from (a). (c) Decomposition of the baryon form factor into three 

terms, each corresponding to the sum of all diagrams in (b) ending in a gluon exchange 

between a particular pair of quarks; {ijk} is a cyclic permutation of {123}. (d) Three coupled 

integral equations for the {T(i)}, representing (3); (j denotes the amputated quark-quark 

scattering amplitude. (e) Definition of two alternate sets of momenta, and illustration of the 

quark-exchange nature of the quark-diquark formulation of the baryon; the flavour indices 

will be helpful in understanding equations (11), (19) and (21). 



Baryon Structure and QeD 133 

G/H = UA(NF) where H = UV(NF) c G. The implications of this realisation for 

the meson sector of QCD have been extensively studied in Praschifka et al. 

0987 a, 1987 b) and Roberts et al. (988) and shown to produce the expected 

effective action for the Nambu-Goldstone (NG) bosons. There the rra become 

coordinatised to ~(x) and so the above ~ may properly be considered 

to describe long-wavelength NG bosons. Approximate forms for the A and 

B functions have been extensively discussed in Cahill et al. 0985, 1987), 

Praschifka et al. 0987a, 1987b), and Roberts et al. (988). An important aspect 

to keep in mind is that the quark effective mass function m(q2) = B(q2)A(q2)-1 

is momentum dependent and m(q2) -> 0 as q2 -> 00. That is chiral symmetry is 

restored at large (Euclidean) momenta or short distances, or more formally, G 

becomes chi rally invariant at large q2. This effect and the momentum scale 

at which m(q2) "" 0 play a key role in determining baryon structure. As well 

the confinement of the quarks is manifested by the absence of a pole in the 

quark propagator, which is a property of the A and B functions. 

The functions A(q2) and B(q2) satisfy complicated integral equations whose 

solution requires a practically unattainable knowledge of all the Dn. While a 

truncation of 0) is possible an alternative approach is to parametrise QCD in 

terms of the A and B functions. Since B is the pion form factor (Cahill et al. 

1987) r IT and thus essentially observable and A appears to be slowly varying 

this approach proves to be meaningful and very useful. It is then possible 

to define an effective 2-point gluon function Deff so that keeping only the 

first term in 0), with D replaced by Deff, 0) would then generate the same B. 

Then from the parametrised A and B we may in practice calculate Deff, and 

this is then used in the calculation of various meson, diquark and baryon 

properties. It is possible that this procedure is related to that suggested 

by Cornwall (982) which also involves a selective summation to define an 

effective 2-point function. The systematics of these procedures clearly needs 

further study, particularly as it provides a practical link between QCD and 

hadronic observables. It could also be a problem that could be contributed 

to by the lattice QCD techniques. 

A chi rally covariant calculation in QCD means that hadronic observables must 

transform, under a chiral transformation, according to some representation of 

the chiral group. In particular baryon masses must be chiral invariants. In the 

present context this means that the baryon masses must be independent of the 

angle variables rra, which occur in the quark propagator G(V). One can write 

V = pLut + PRU, where PL = ~O- Y5), PR = ~O + Y5) and U = exp(i.J2rra Fa). It may 

then be shown (Roberts and Cahill 1987) that under a chiral transformation 

U -> ULUUk which holds also when U is coordinatised. This is the transformation 

property of U(x) assumed in phenomenological treatments of hadrons. The 

chiral invariance of the baryon-meson effective action may also be used to 

place restrictions on phenomenological constructions for baryon-NG meson 

couplings. See Christos (987) for a recent phenomenological analysis of these 

couplings and for references to earlier works. 

Consider now gluon exchanges between the three quarks which lead to 

their binding to form a bare baryon. The baryon form factors and masses 

are determined by the homogeneous integral equations represented in Fig. 1 b 

where the quark propagators are the G(V), where the V dependence arises 
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from (2), and the gluon propagators are Deff. The higher order n-point gluon 

functions will contribute only in as much that they are implicitly included in 

Deff. All residual n-point contributions and other graphs are to be treated as 

perturbations on the formalism presented here. The qq dressing of the bare 

baryons will follow from the non-local meson-baryon effective action which 

may be determined by our formalism. 

Before proceeding we show that the baryon mass spectrum is independent 

of the choice of the matrix V, that is, of the choice of the vacuum from the 
vacuum manifold, or more simply, that the baryon masses, in the chiral limit, 

are chiral invariants. To do this consider the amplitudes T(p2)~K satisfying the 

integral equation represented in Fig. 1 b, where p2 = -M~ with MB one of the 
baryon masses for which these homogeneous equations have a solution. The 

V dependence of these amplitudes arises from that of the quark propagators 

G(V). We wish to show that the {MBl are independent of V. First note that 

where ,== .JV. The integral equation of Fig. 1 b has the form 

f K(P; V)JjK;LMN TLMN = T~K' 

(3) 

where only the spin and flavour labels of each quark are explicitly shown. 

Because G(V) is a unit matrix in colour space the {MBl are manifestly colour 

invariants. One can easily show that 

(4) 

which follows from (3) and because the interactions in K are vector couplings 

of the gluons to the quarks, and yP,t = ,yp. This result is not restricted 

to those ladder diagrams in Fig. 1 b, but is easily extended to include all 

possible diagrams involving any of the gluon n-point functions. It then follows 

from covariance and the similarity transformation of (4) that the baryon mass 

spectrum is invariant under the choice of V, and from now on we choose V = 1. 

However we note that a chiral transformation UL ® UR, for which U --+ ULUUl, 

and hence which transforms V as 

thus induces a mapping of, say, the JP = ~ + baryon manifold into itself. In 

contrast Christos (1987) used both the r and ~ - manifolds to carry a linear 

representation of the chiral group in the phenomenological construction of 

baryon-NG boson couplings. It may well be the case that Christos' representation 

implicitly assumes that the ~ + and ~ - baryons also have the same form factor. 

The construction of chiraUy invariant effective actions for the coupling of 

baryons and mesons thus leaves many problems unresolved. 

We now return to the internal dynamical aspects of the baryons. As we 

have learnt from non-relativistic three-body theory the equations of Fig. 1 b 
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must be cast into the form of three coupled amplitudes, with each amplitude 

representing the sum of all diagrams ending in a gluon exchange between a 

particular pair of quarks, 

T = I T(P; PiPjPkhjK, 
cyc.perm. 

where we use the notation that the i and j quarks scatter last in the amplitude 

on the RHS, as shown in Fig. 1 c. We then find that these three amplitudes 

satisfy the three coupled integral equations, represented in Fig. 1 d, 

T(P; PiPjPkhjK == If d4q~ (j(PiPj; qiqj)ljJ"jIG(qihll' 
(2IT) 

x G(qh'j' T(P; qjPkqi)j'KI' + j - term, (5) 

where ijk (== cye. perm. 123) label the quarks, 1== {sifiCi} are the Dirac, flavour 

and colour indices of quark i, and (j are the diquark (amputated) propagators. 

The summation is over all repeated indices {I', .. }. With P the baryon momentum, 

the conservation of 4-momentum requires 

et. eye. 

The baryon mass M, with p2 == _M2, is determined by the requirement that 

the coupled homogeneous equations (5) have a non-trivial solution and this 

requires analytic continuation in the variable P 4 (P 4 --+ iM in the rest frame). 

A feature of these equations is that only the quark and diquark propagators 

appear. 

We now determine the form of (5) for colour-singlet baryons. Then the 

diquarks are necessarily in colour "3 states and the diquark propagators have 

the colour structure 

(6) 

where on the RHS {I,] ... } now represent only Dirac and flavour indices and cij 

labels the "3 colour states of the ij quark pair. For a colour-singlet baryon we 

have 

(7) 

where again the {I,],K} on the RHS now label Dirac and flavour indices only. 

Substituting (6) and (7) in equation (5), and using 

I EabcEade == DbdDce - DbeDcd 

a=1.2.3 

(8) 

in the colour summations, we obtain (5) again but with {I,],K .. } now representing 

Dirac and flavour indices only. This simple colour algebra calculation 

demonstrates the important property that in the colour singlet baryon states of 
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QCD any two constituent quarks are necessarily in a "3 colour state. Of course 

the diquark colour state effects the determination of the diquark form factor 

T and effective mass m, as shown in Cahill et al. (1987). It is a particular 

feature of QCD that these "3 diquark states are bound by colour-octet gluon 

exchange. 

We now specify the spin and flavour structure of the diquark propagators, 

and it is now that we restrict the analysis to NF = 3. For simplicity, for the ~ + 

baryons, we shall keep only the spin-O (scalar) diquark state, and the required 

propagator is, keeping in mind the Pauli principle, 

where Ef is the matrix whose mn element is Efmn, d(Q) = (Q2 +m2)-1, (ij = 1,2,3 

labels the flavour state of the ij pair and f[r] is the normalisation factor for the 

diquark form factors. The Efmn occur because, for NF = 3, the scalar diquarks 

transform as "3 flavour states of the SU(3) flavour group. The dependence 

of these diquark form factors on the total diquark momentum Pi + Pj while 

required by Lorentz covariance will, as a minor simplifying approximation, 

be neglected. As indicated in (9) we will keep only the pole part of the 

diquark propagator, which then enables a separable expansion of the baryon 

form factor. For the ~ - baryon multiplet the pseudoscalar diquark states are 

relevant and for these the only change is that C rather than CY5 appears in (9) 

together with the appropriate (,T and d. Expressions for these quantities may 

be determined using the techniques of Cahill et al. (1987). Our calculations 

show that the pseudo scalar diquark mass is larger than that of the scalar 

diquark. Equations (5) and (9) show that the T have the separable form 

and we find that 

() 1" f d4qi T(qi-qj)T(qj-Pk)d(q'+p ) 
'P P; Pk fijskfk = 2{2 ,L:, (2rr)4 2 2 ) k 

0k S;(, 

Here 'P(P; Pk)fijskfk is the spinor part (with Dirac index Sk) of the form factor 

of a spin- i baryon, with momentum P, describing the relative motion of the 

k-th quark, with flavour fk and the other two quarks forming a diquark in a 

flavour state labelled by {ij. The baryon spin is carried by that quark which is 

not forming the diquark. The basic dynamical structure of (11) describes the 

rearrangement of the three quarks between the diquark state and the quark 

state. 
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For the baryon octet we decompose 'P into the generators of 5U(NF = 3) 

given in the Appendix and which are chosen to facilitate the analysis of the 

mass splitting of this baryon multiplet in Section 3: 

'P(P; Pk)(ij(k = 2. 'P(P; Pk)a 7(~(ij 
a 

with the Sk index suppressed, and (11) becomes, using tr(TaTbT) = bab, 

a 1 "'J d4q; qj-Pk q;-qj rr'a rr'b 
'P(P;Pk) = - 2f2 L (2rr)4f(-2-)f(-2-)d(qj+Pk).l(dij.l(ir;k 

X E(ij(i(jf::r;d5h G(qj)G(q;)'P(P; q;)b + j - term, (12) 

where the minus sign comes from 

(CYSG(q)CYS)T = -G(q). 

For the ~ - baryons the corresponding statement is 

(CG(q)C)T = -G(-q). 

Using (8) for the flavour summations and trTa = 0 equation (12) becomes 

'P(P' Pk)a = + _1_ J d4 q; f( qj - Pk)f( q; - qj )d(q· + Pk) 
, 2f2 (2rr)4 2 2 J 

x G(qj)G(q;)'P(P; q;)a + j - term, (13) 

which has solutions for which 'P(P; Pk)a = 'P(P; Pk), for all a, as expected for a 

baryon flavour octet, and then using the relationships between the various 

momenta we finally obtain 

1 J d4q P-p P-q 
'P(P; p) = f2 (2rr)4 f(-2- - q)f(-2- - p)d(P - q) 

x G(P - P - q)G(q)'P(P; q). (14) 

Fig. 1 e shows another choice of momentum variables, and as discussed in 

Burden et al. (1989, present issue p. 147), the choice of momentum variables 

is important in the numerical solution of (14). We note that for a flavour-singlet 

baryon we obtain, in an analogous calculation, (14) again but with the coefficient 

on the RHS multiplied by -2. The change of sign presumably means that this 

state is unbound. 

Equation (14) is a linear integral equation for the spinor 'P where the kernel 

describes the 'exchange' of a quark from a diquark to a quark, to form a new 

diquark, as shown in Fig. 1 e. The extended nature of the diquark state is 

described by the form factor r. It may offer some physical insight to consider 

the once iterated form of (14), 
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Fig. 2. Iteration of (14) produces an effective non-local exchange interaction between the 

quark and the diquark, (15). This interaction may be decomposed into scalar, vector, ... 

parts, denoted by the D summation, by means of a Dirac matrix decomposition. 

'P(P; p) = f d4q
4 X(P, p, q)d(P - q)G(q)'P(P; q), 

(2IT) 
(15) 

where the detailed form of the effective kernel is easily obtained from (14) 

and which is illustrated in Fig. 2. This kernel describes an effective interaction 

between a quark and a diquark, arising from a double quark 'exchange'. This 

X, which is a matrix acting on spinors, may be decomposed into scalar, 

vector, ... parts by using the completeness of the set {I,yll, .... } giving 

X(P,p,q) = Xo(P,p,q)l +XIl(P,p,q)yll + ..... 

This decomposition is illustrated in the lower part of Fig. 2. Hence our analysis 

shows that gluon exchange between the three quarks forming a baryon is 

ultimately manifested as an effective non-local scalar + vector +... exchange 

interaction between the quark and diquark. It is important to note however that 

this effective interaction is not related to meson exchange of scalar, vector, ... 

mesons which in the past have often been used in phenomenological models 

for baryons. If we were to construct a local approximation to x,; , ... and to 

consider the dependence, after Fourier transforming, on the distance between 

the quark and diquark we would find that this dependence is controlled by 

the form of the quark effective mass function m(q2). It is possible that this x 

dependence is responsible for the success of some phenomenological models 

for baryons. At this stage it is also useful to compare our results with some 

particular phenomenological models for baryon structure. Lichtenberg et al. 

(1982) have considered the quark-diquark picture of the baryon. However they 

used a gluon exchange between the quark and diquark, with an effective colour 

charge for the diquark. We believe that this approach is inconsistent with a 

proper Faddeev approach to three-body problems and the subsequent reduction 

to an effective two-body problem. Our analysis is also to be contrasted with 

the work of Weber (1987) who used the light-front formalism to achieve a 

reduction in the complexity of the calculations, but with a phenomenological 

confining scalar potential and at short distances a vector hyperfine interaction. 
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In our approach all the effects which Weber models using potentials are 

generated, in our analysis, by gluon exchanges so long as we include quark 

self-interactions via gluon exchange. 

Equation (4), for the jP = i + first baryon octet, is the major result of this 

paper. Analogous equations for the other baryon multiplets are easily derived, 

but are not presented here, except for the multiplet of parity partners to the 

above multiplet. 

At this point we also comment on the effective mass of the three quarks 

constituting the bare baryon. It has been known for a long time (Close 1979) 

that baryons could be understood as three quark bound states, using simple 

non-relativistic models, provided these quarks were given a 'constituent' mass 

of some 300 MeV. These masses were also needed to understand nucleon 

magnetic moments and also, it seems, deep inelastic scattering data. However 

recently it was discovered that the formulation of QCD used here explains 

the origin of the quark constituent mass effect. In Praschifka et al. (988) 

calculations of the scalar diquark form factor are reported where it was 

observed that the form factor f(s) exhibits a dramatic peaking for (Euclidean) 

s"" 0.2 GeV2 which, in conjunction with the running mass m(s) emerging from 

0), was shown to signal the generation of a quark constituent mass of"" 270 

MeV. Thus the constituent quark mass turns out to be a uniquely quantum 

field theory effect, being due to the self-interaction of a quark by way of gluon 

emission and absorption. Initial studies (Burden et al. 1989) of the numerical 

solution of (4) show that, for example, 'P(q)t'P(q) exhibits peaking for q2 away 

from the origin in a similiar manner to the diquark, and so the constituent 

mass effect in baryon states is seen to emerge naturally from QCD. These 

constituent mass effects and their relationship to baryon form factors will 

be important to an understanding of deep inelastic lepton-nucleon scattering 

data when we finally move on from the simplistic parton type analysis, 

3. Baryon Octet Splitting 

Here we determine the mass splitting of the baryon octet due to the current 

masses of the quarks. It will be shown that the baryon masses satisfy the 

Gell-Mann-Okubo and Coleman-Glashow mass formulae. The magnitude of 

these mass splittings will provide a test of the quark-diquark picture of the 

baryons presented herein. We return to (12) which for non-zero quark masses 

{mf} becomes 

1 f d4q; qj - Pk q; - qj a b 
'P(P; pd = - 2f2 I (2rr)4 f(-2-)f(-2-)d(qj + Pk)r;k 'Ifkfij Tflfjk 

X Efijfrr;Efj.r;rkG(qj)r;G(q;)fI 'P(P; q;)b + j - term, (16) 

where the change is that now the quark and diquark propagators carry flavour 

labels. To first order in the current masses we can neglect changes in the 

diquark form factors. As discussed in Cahill et al. (1987) when m; t- 0 the 

quark propagators become 
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G( ) ::.: 1 
q f iA(q)l/ + mf + B(q) 

= G(q) - mfG(q)G(q) + ... , (17) 

to first order in mf where G(q) = (iA(q)l/ + B(qW1 • The vacuum is no longer 

degenerate and (1) (with the current mass term included) determines that 

V = 1. The mass dependence of these quark propagators in turn affects the 

diquark masses and from Cahill et al. (1987) we obtain for the mass of the 

diquark in flavour state fij composed of quarks in flavour states fi and O' to 

first order in the quark masses, 

where m is the diquark mass in the chiral limit and where 

Then for the diquark propagator 

1 
d(q)fij = 2 2 

q +mfij 

, mf;+mfj 
= d(q) - g L 2 I €fij(;{j I d(q)d(q) + ... (18) 

Equation (16) then becomes 

1f(p.p)a=~'f d4 q I/-P-q)[(P-q-p)d(P-q) 
• f2 L (2rr)4 2 2 

x G(P - P - q)G(q)1f(P; q)a 

1 'f d4q P-p P-q ,.,.-a,.,.-b 
+ 2f2 L (2rr)4 [(-2- - q)[(-2- - p).J. (du .J. flfJk €fijfffJ€fJkfJfk 

X [c(mfJ +mfl)+D(mfi +mfJ) +E(mfJ + 2mfk +mfl)] 1f(P; q)b, (19) 

where 

c = -d(p - q)G(P - P - q)2G(q), 

D = -d(p - q)G(P - P - q)G(q)2, 

E = -gd(p - q)2G(p - q - p)G(q). 

Equation (I9) involves the matrices 

Yab _ ,,.,.-a Tb ,( ) .' 
- L .l (dij flfJk €fijflf}€fJkfJfk mfl + mfJ ' 

Zab = L '1i:fu '1tfJk €fijflfJ€t'ikfJfkmfk' 

(20) 

(21) 
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The matrix set {Ta} in the Appendix diagonalises yab and zab independently 

of the values of {mf} = {m u, md, ms} except for the 3 and 8 (.,[0 and 1\) states 

for which, however, this mixing is small. Hence using this matrix set the 

eight coupled integral equations (19) may be uncoupled. The form of the 

perturbation due to the current masses is easily seen to give the following 

mass expressions for the the jP = i + baryon octet, 

M",- =Mx+2(y+z)ms+2ymd+ ... , 

M",o = Mx + 2(y + z)ms + 2ymu + ... , 

MJ:- = Mx + 2yms + 2(y+z)md + ... , 

Mxo = Mx + 2ym s + (y + z)(mu + md) + ... , 

MJ:+ = Mx + 2yms + 2(y + z)mu + .... , 

Mn = Mx + 2(y+z)md + 2ymu + ... , 

Mp = Mx + 2(y+z)mu + 2ymd + ... , (22) 

where as usual Mx is the chirally invariant mass for this particular baryon 

multiplet, determined by solving (14), and only terms up to first order in 

the quark masses are shown. Values for y and z are easily determined by 

solving (20) and clearly depend on the quark running mass, the diquark mass 

and form factor, and most importantly on the form of the spinor part of the 

baryon wave function 'P . All of these are ultimately determined by the form 

of the gluon propagator. It is easily checked that these mass formulae satisfy, 

for any value of y and z, the linear relations 

which is the Gell-Mann-Okubo mass formula for the baryon octet in which 

the mass splittings of the isospin multiplets are naturally included (but not 

electromagnetic contributions to the splittings), and 

which is the Coleman-Glashow formula. Curiously the Coleman-Glashow formula 

was originally attributed to electromagnetic interactions between the quarks, 

but here we see that the same formula also arises from current quark masses. 

As Mx,y and z are properties of the baryon octet in the chiral limit, it 

will be useful to extract these parameters from the experimental baryon octet 

mass spectrum. We have performed a least squares fit of the mass formulae 

in (22) to the known masses. This determines the ms/mu versus md/mu plot 
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shown in Fig. 3 and also fixes Mx at 912 MeV and the y/z ratio at 1.96, which 

is related to the usual F /D ratio by, 

f.- = y+z =-3.08. 
D z-y 

The quality of the fit may be judged from the results in Table 1, which are 

independent of the md/mu ratio. The value of this ratio is not determined 

by the above fit but may be determined when experimental masses for some 

other multiplet are simultaneously fitted to the appropriate mass formulae. 

For this the Nambu-Goldstone octet comprising the mesons rr+, rr-, rro, K+, 

K-, KO, 7<0, 17 are particularly useful. Extending the results in Cahill et al. 

70r----.----.----.---, 

50 

30 

10~ __ -L ____ L-__ ~ __ ~ 

123 
md/mu 

Fig. 3. The ms/mu versus md/mu 
relation from a least squares fit of the 

baryon octet mass formulae, in (22), 

to the corresponding ~ + experimental 

masses. Also shown is the one point 

from the Nambu-Goldstone octet 

(shown by Ell). Together the baryon 

and meson plots fix md/mu '" 1.6. 

Table 1. Least squares fit of the baryon mass formulae in (22) to the 

experimental JP; ! + masses (in MeV) 

Baryon Exp. mass Theor. mass % error 

- 1321.3 1323.4 +0.15 
;:-0 1314.9 1318.1 +0.25 
L- 1197.3 1196.3 -0.09 
LO 1192.5 1192.3 -0.01 
L+ 1189.4 1188.4 -0.08 

II 1115.6 1109.9 -0.51 

n 939.6 941.6 +0.22 

P 938.3 938.9 +0.07 
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(1987) to the case mu I- md we obtain the mass formulae 

where 

mko = if1(md + m s), 

m~ = f,f1(m u + md + 4ms), 

<qq> 
f1 = --2-' 

fIT 
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(23) 

Explicit expressions for < qq > and fIT in terms of A(s) and B(s) are also given 

in Cahill et al. (1987). We emphasise that while the meson masses of (23) are 

recognised as well known results from current algebra phenomenology, they 

have been determined in a manner completely analogous to that which we 

use to determine the baryon masses of (22). Hence it is completely consistent 

to use both (22) and (23) together in the analysis of experimental data. Then 

from (23) and the experimental masses we obtain 

(24) 

in which we have used the average pion mass mIT = 138 MeV. The above quark 

mass ratios are also plotted, as one point, in Fig. 3, and we see that the 

meson and baryon data are remarkably consistent, requiring md/mu "" 1.6. If 

we use a value of mu = 3.5 MeV, which is consistent with values determined 

by QCD sum rules (Reinders et al. 1985) then we find from the baryon fit 

that ms/mu = 30.3, md = 5.6 MeV, ms = 106 MeV and, as properties of the r 
multiplet, y = 1.24 and z = 0.63. For the jP = i-baryon octet the same mass 

formulae are obtained and using the experimental masses N(1535), 1\.(1670) 

and L(1750) we obtain, using the above quark masses, Y = l.06, Z = 0.47 and 

Mx- = 1511 MeV. 

4. Conclusions 

We have shown herein that it is possible to express the problem of calculating 

the structure and masses of bare-baryon states in QCD as a practical three-body 

Faddeev-typeformulation. The most important feature of our approach is 

that it is systemically derived from QCD and is the beginning of a systematic 

study of baryon structure. Until now this has not been possible because 

of the absence of a direct connection between QCD and a viable analytical 

reformulation of QCD appropriate to baryon structure. The only alternative 

formulation is the lattice technique which is, however, at its weakest in the 
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chiral limit. In contrast, our analytic approach is particularly suited to the 

chiral limit and to current quark mass induced perturbations about that limit. 

The formulation also reveals the three-bound-quark nature of bare baryons, 

which become 'physical' baryons after meson dressing, but even at the bare 

baryon level the constituent quark mass effect is emerging. The details of 

the meson 'dressing' calculations will be presented elsewhere together with a 

re-evaluation of the parameters Mx, Y and z which these dressings necessitate. 

Here we have only used the baryon integral equation formulation to 

determine multiplet splitting and we have shown that the Gell-Mann-Okubo 

and Coleman-Glashow mass relationships emerge. The derivation of the 

Gell-Mann-Okubo relation settles a long standing debate concerning the early 

phenomenological mass relations as to whether these should be linear or 

quadratic in the masses. Our results here for baryons, and the analogous 

derivation for mesons, show that one obtains, in QCD, linear mass relations 

for baryons and quadratic mass relations for mesons. The baryon splitting 

formulae allow a determination of the baryon chiral mass and the y/z ratio 

(related to the usual F /D ratio). In conjunction with the Nambu-Goldstone 

boson splitting formulae and using mu = 3.5 MeV, we determine the values of 

y and z as well. These various parameters associated with the baryon octets 

will allow a testing of detailed computations. While we have only considered 

the f = i + and i-baryon multiplets the analysis is easily extended to other 

baryon multiplets, particularly the i +. 

Because our formulation is a systematic development from QCD we avoid all 

of the ad hoc phenomenological assumptions which to date have characterised 

theoretical investigations of baryons and mesons. It is worthwhile to re­

emphasise those features of QCD which have been naturally retained in our 

analysis; namely the dynamical consequences of the colour algebra, of the 

chiral invariance and of Lorentz covariance. It is of course the colour algebra 

which allows three quarks to be bound into colour singlet states by exchange 

of colour octet gluons. This is because in such states any two quarks 

are necessarily in a colour "3 state and they are bound into diquark states 

by the gluon exchange, and hence all three quarks are mutually attracted. 

Surprisingly many phenomenological models for baryons actually make no use 

of this significant property of the colour dynamics. Indeed, in the topical 

Skyrmion model for baryons, in which the baryon is considered to be a 

mesonic topological soliton, no use is made of those aspects of the colour 

algebra which are essential to the binding of colour-singlet three-quark states. 

Indeed only those trivial aspects of the colour algebra which arise in the 

meson sector are used. Along these lines we have discussed in some detail 

in Cahill et al. (1988) why baryons, as QCD states, cannot be modelled 

as Skyrmions, but we also note that the Skyrmion model does not lead to 

the successful baryon multiplet mass splitting formulae of Section 3. Chiral 

invariance is particularly important as illustrated, for example, by the result 

that the nucleon mass of 940 MeV would only be reduced to 912 MeV if the 

quarks were massless. Hence to understand baryon structure it is necessary 

for any theoretical analysis to be well suited to the chiral limit. As well, the 

dynamical breaking of chiral symmetry and the consequent emergence of the 

NG bosons and their coupling to baryons are also most easily studied using 
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the formalism herein. The importance of a Lorentz covariant treatment of 

baryons needs little emphasis. We note that there is also a natural description 

of quark confinement in our formulation and that recently the dynamical origin 

of the quark constituent mass effect has been determined (Praschifka et al. 

1988). 
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Appendix 

The following set of matrices {'1Q; a = 1, ... 8} serve as generators for SU(3) 

and for which tr('1Q'1bT) = 8ab: 

'11 = (! 0 

~), '12 = (~ 1 0) 
0 o 0 , 

0 o 0 

'14 = (~ 
0 

~), '1
5 

= (~ 
0 

~), 0 0 

0 0 

'16 = (~ 
0 D, r7=G 

0 D, 0 0 
• 0 0 1 

r3~1> G 0 

D' r s = 1< G 
0 

~ ). -1 1 

0 0 -2 
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