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For neutron stars with hyperon-mixed cores, neutrino emissivity is studied using the
properties of neutron star matter determined under the equation of state, which is obtained
by introducing a repulsive three-body force universal for all the baryons so as to assure the
maximum mass of neutron stars compatible with observations. The case without a meson
condensate is treated. We choose the inputs provided by nuclear physics, with a reliable
allowance. Paying attention to the density dependence of the critical temperatures of the
baryon superfluids, which reflect the nature of the baryon-baryon interaction and control
neutron star cooling, we show what neutrino emission processes are efficient in regions both
with and without hyperon mixing. By comparing the calculated emissivities with respect to
densities, we can conclude that at densities lower than about 4 times the nuclear density,
the Cooper-pair process arising from the neutron 3P2 superfluid dominates, while at higher
densities the hyperon direct Urca process dominates. For the hyperon direct Urca process
to be a candidate responsible for rapid cooling compatible with observations, a moderately
large energy gap of the Λ-particle 1S0 superfliud is required to suppress its large emissivity.
The implications of these results are discussed in the relation to thermal evolution of neutron
stars.

§1. Introduction

Hyperon (Y ) mixing in the core of neutron stars (NSs) seems quite natural as
a manifestation of the strangeness degrees of freedom in high density baryonic mat-
ter. Hyperon mixing in neutron star matter brings about a dramatic softening of
the equation of state (EOS), because a substantial part of the repulsive contribu-
tions in the nucleon sector, growing at high density, is replaced by the attractive
contributions of the nucleon-hyperon (NY ) and hyperon-hyperon (Y Y ) interactions
since admixed hyperons are at low density. With such a too soft EOS the resulting
maximum value of the NS mass (M) becomes much smaller than the observed one,
Mobs(PSR1913 + 16) = 1.44M�. This crucial problem is an unavoidable feature ap-
pearing in an almost model-independent manner. To resolve this problem Nishizaki,
Yamamoto and Takatsuka introduced a repulsive part of three-body force acting uni-
versally among all baryons (equally in the NN , NY and Y Y parts), in their paper
here referred to as NYT02. 1) This introduction was made following the repulsive
part (TNR) of the three-nucleon interaction (TNI) given by Pandharipande and his
collaborators, who have shown the importance of three-body force in the nucleon
system. 2), 3)
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The observational data for the surface photon luminosities of NSs relevant to
surface temperatures suggest that there are at least two classes of NSs, hotter ones
and colder ones. A hyperon-mixed core affords a possibility to explain the colder
class data which are lower than those given by the so-called standard scenario of NS
cooling. In the standard cooling, NSs in the middle age cool slowly with the conven-
tional neutrino emission mechanism, such as the modified Urca, bremstrahlung and
plasmon decay processes. These processes take place in the NS core, whose central
density is not so high for less massive NSs, because the interior composition consists
predominantly of neutrons and of small fractions of protons, electrons and muons.
By contrast, in the non-standard cooling, a very fast cooling mechanism due to the
direct Urca processes acts in the possible presence of non-standard components, such
as pion condensates, kaon condensates, admixed hyperons, high fraction protons and
quarks, if the NS central density becomes sufficiently high for massive NSs. In order
to explain the colder class data, we need the non-standard cooling scenario, and at
the same time, we need some agent to suppress the enormous emissivity due to a
direct Urca process. Otherwise too rapid cooling incompatible with ovbservations
is realized. A most natural candidate to play this suppressive role is the baryon
superfluid (SF) associated with some non-standard component. Such a viewpoint
is traced back to the mid 1980s, when the NS surface temperature too cold to be
explained with the standard cooling scenario was first indicated by the observation
on the Vela pulsar: This finding was brought about through comparison with theo-
retical results obtained using the calculational code of thermal evolution which was
developed to properly take into account the finite time scale of thermal conduction
in the crust region. 4) Since then, in studies on various possibilities of nonstandard
cooling agents, the following characteristic aspects have been recognized as resulting
from rapid cooling almost universally unless an adopted EOS is extremely stiff or ex-
tremely soft: The sharp drop in the NS surface temperature appears at age of 101−2

years and the subsequent gentle decrease appears during the stage after the core and
the crust become isothermal, if suitable SF suppression is assumed to reproduce the
data points of the colder class. 5)– 10) Concerning studies on NS cooling problems up
to recent works, review articles are to be referred to, e.g., Refs. 11) – 13).

Although candidates for the non-standard components are many as mentioned
above, one lacking an appropriate SF cannot be a candidate. This is a key point
to discriminate a real candidate among possible ones. 12), 14) In previous studies on
such problems it has been discussed that nucleon matter with high proton fraction
and a kaon condensate is regarded as an unlikely candidate. 14), 15) In the present
study concerning the hyperon-mixed NSs, it is a crucial point whether or not the
emissivity due to the hyperon direct Urca is suitably suppressed by SF energy gaps
of hyperons.

In addition to the suppressive role on the neutrino emissivity, the baryon SF
palys a role to accelerate the NS cooling in later stages (age >∼104−5 years) through
reduction of specific heats of SF baryons, especially in the region where the main
component (normally neutron) is in the SF state. 16) In recent years attention has
been paid to another mechanism to accelerate NS cooling, Cooper-pair process due
to the neutral current of the weak interaction, originally pointed out in 1976 by
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Flowers, Ruderman and Sutherland. 17) In this process a νν̄-pair is emitted when
the two SF quasi-particles are recombined into the Cooper-pair in the BCS state.
Since such effect takes place in the presence of a SF whose critical temperature is
higher than but rather close to the internal temperature, its contributions to the
neutrino emissivity come from all density regions where such SFs exist. They are
larger than the modified Urca’s contributions by 1-2 orders of magnitude in many
cases. If the Cooper-pair process plays a significant role, the fit to the hotter class
NS data obtained using the standard cooling scenario may be spoiled. To avoid such
a situation Yakovlev and collaborators, 18)– 20) who analyzed the NS cooling aspects
in a simple model or a toy model, assumed that the maximum critical temperature of
the neutron 3P2 superfluid is lower than the internal temperature T , typically being
∼ 108 K. We consider that such an assumption is not easily acceptable from the
viewpoint of nuclear theory. Also, in order to explain the colder class NS data, they
made a fine tuning to the onset density of the nucleon direct Urca process together
with a critical temperature of the proton 1S0 SF, whose density-dependent features
are not realistic at the densities where the nucleon direct Urca process would occur.
Such an approach lacking due reliance on the nuclear physics inputs seems to cause
confusion in the understanding of NS cooling. 21) To study the Cooper-pair process
we need to adopt nuclear physics inputs carefully chosen.

Many factors come into play in the neutrino emissivity yielded in the NS core,
such as the equation of state (EOS), NS mass, composition of NS matter, neutrino
emission processes and baryon superfluidity. In this paper, treating the neutrino
emissivity of NSs, both with and without the hyperon-mixed core, we take the fol-
lowing viewpoint.

1. We study the problems on the basis of reliable information provided by nuclear
physics.

2. We adopt the composition of the baryonic matter determined by the EOS called
“TNI6u” constructed using NYT02 interaction model with the universal repul-
sive three-body force mentioned above and use the effective masses of con-
stituent baryons resulting from this EOS. We refer to this EOS as TNI6u-EOS
for short. 22)

3. We adopt the following pairing interactions. The NN potentials, AV18 23)

and OPEG, 24) are chosen under a reasonable restriction among the realistic
potentials reproducing the scattering phase shifts of the relevant partial waves
(1S0 and 3P2). As a Y Y interaction relevant to the 1S0 state, the potential
named ND soft is chosen since it is compatible with hypernuclear data. 25)

4. We pay special attention to the density dependence of the critical tempera-
tures of realized baryon superfluids. For the temperature dependence of energy
gaps, we take it into account by constructing a profile function in each pairing
state which is independent of the background such as the density, the pairing
interaction and the effective mass.

5. We calculate the emissivities of the following three neutrino emission processes
efficient in the NS core.
(1) The direct Urca process (DUrca): For TNI6u-EOS, because the nucleon
DUrca does not occur below about 6.5 times the nuclear density, only the Y
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sector contributes to DUrca. Further the hyperon DUrca is possible only in the
presence of Λ. The emissivity depends strongly on whether the Λ superfluidity
is realized or not. Paying attention to these points we study the hyperon DUrca
process.
(2) Modified Urca process (MUrca): As a representative emissivity in the stan-
dard cooling scenario, we treat the nucleon modified Urca process, because in
the normal nucleon matter its emissivity is larger by 1-2 orders of magnitude
than that of the nucleon bremsstrahlung process, 13) and in the SF nucleon mat-
ter this tendency holds for the case that the proton and/or neutron SF gaps
are not exceptionally small or large. We pay attention to the reduction of the
emisivity due to the nucleon superfluidity.
(3) Cooper-pair process (Cpp): This acts only in the presence of SFs. Since
the SFs exist for all the baryons (n, p, Λ and Σ−), the following points are
of interest: How large the total Cpp emissivity is in the realistic situation, at
what density the Cpp cooling is prominent, and what baryon gives main con-
tribution. Concerning the hyperon Cpp, we use the correct expressions for the
reaction constants for hyperons based on a work by Tatsumi and the present
authors (here referred to as TTT03), 26) not those taken under the mistaken
argument that Λ (also Σ0) does not couple with the neutral current, e.g., as in
Refs. 27), 28) and 13).

6. Finally, we compare the emissivities and discuss all aspects of emissivities and
their implications in neutron star cooling. In this paper we treat NS matter
without a meson condensate. In the last part, however, we illustrate an example
of the emissivity arising from charged-pion condensed matter and briefly discuss
it in comparison with the emissivities treated here.

This paper is organized along the line of the approach mentioned above. 29) In
§2, the basic properties contained in physical inputs are described: The equation
of state, composition of NS core with hyperon mixing, baryon effective masses and
chosen pairing interactions. In §3, the critical temperatures of baryon superfluids
existing in the NS core under TNI6u-EOS are presented. In §4, the temperature
dependence of energy gaps is treated and profile functions to describe it simply are
constructed. In §5, after the emissivity of each process mentioned above is shown,
comparison of the three processes is presented and discussed. The last section is
devoted to summary and concluding remarks related to NS cooling.

§2. Equation of state, composition of neutron star matter,
baryon effective masses and pairing interactions

2.1. Equation of state for TNI6u and the central density-NS mass relation

In NYT02, the EOS of Y -mixed NSs has been calculated by a G-matrix based
effective interaction approach which constructs the density (ρ)-dependent effective
baryon-baryon (BB) interactions ṼBB (B ≡ N, Y ), supplemented by the ρ-dependent
three-nucleon interaction ṼTNI of Illinoi-group type so as to assure the saturation
property of symmetric nuclear matter. Three parameters inherent in ṼTNI are de-
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termined from the binding energy EB = −16.0 MeV, the saturation density ρs = ρ0

(the nuclear density) and a given nuclear incompressibility κ which measures the
stiffness of nucleon part of EOS. Two cases for κ are considered in NYT02, κ = 250
MeV (TNI2) and κ = 300 MeV (TNI3), which lead to the maximum mass Mmax for
NS models as Mmax = 1.52 M� (TNI2u) and Mmax = 1.83 M� (TNI3u), respec-
tively. The notation TNIu, instead of TNI, means that the repulsion from ṼTNI is
introduced universally for NN , Y N and Y Y parts. If TNI is restricted to NN part,
we have Mmax = 1.08 M� (TNI2) and Mmax = 1.10 M� (TNI3), clearly contra-
dicting the observations (Mmax < Mobs = 1.44 M�). As mentioned in the previous
section, in the present study we adopt the EOS named TNI6u, 22) which corresponds
to κ = 280 MeV and has the character intermediate between those of TNI2u and
TNI3u described in NYT02, although the aspects of Y -mixed core depend weakly on
the choice of EOS. Here its aspects directly related to the present study are given.

The maximum value of the NS mass (M) obtained for TNI6u-EOS is Mmax =
1.71M�, as shown in Fig. 1. If we use the TNR only for the nucleon part, Mmax �
1.1 M�, which is much less than Mobs. The numbers frequently referred in what
follows are the central densities ρc corresponding to M ∼ Mobs. Figure 1 shows that
ρc <∼4ρ0 for M <∼1.4 M�, ρc � 4.5ρ0 for M � 1.44 M�, and ρc >∼5ρ0 for M >∼1.5 M�,
where the nuclear density is taken as ρ0 = 0.17 fm−3.

2.2. Composition of neutron star matter

The composition of NS matter obtained under this EOS is shown by the fractions
y of the constituent particles in Fig. 2. Notable aspects are as follows:

1. Mixings of Λ and Σ− set in at almost the same density ρ � 4ρ0 near the central
density for the NS with M � 1.4M�. The threshold densities are ρt(Λ) = 4.02ρ0

and ρt(Σ−) = 4.07ρ0. The fractions yΛ and yΣ− increase abruptly to about 10%
as ρ → 6ρ0.
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2. The muon (µ−) exists for ρ >∼0.7ρ0.
3. Due to the Σ− mixing the proton fraction yp increases, but yp is still low so

that the nucleon direct Urca process does not act until about 6.5ρ0, where
the relation among the Fermi momenta, kF (n) > kF (p) + kF (�), holds for
� = e− and µ−. 22)

2.3. Effective masses of relevant baryons

The baryons existing in neutron star matter of our interest at ρ <∼6ρ0 are the
main component, neutrons, and small components of protons, Λ and Σ−. The
effective masses of these baryons M∗

i calculated for TNI6u-EOS are shown in Fig. 3
by using the effective mass parameters mi ≡ M∗

i /Mi for i = n, p, Λ and Σ−,
where Mi is the bare mass. As the density increases from the starting density of the
liquid core (ρ � 0.5ρ0), both m∗

n and m∗
p at densities of interest decrease gradually.

Moderately high values of m∗
n at low density and low values of m∗

p at densities of
interest are due to the difference between the effects of the np interaction to the one-
particle potentials. A moderately large value of mΛ � 0.8 comes from the attractive
n − Λ P -wave interaction. 30) We see the very large value of m∗

Σ− � 1.2 → 1.0 as
ρ � 4ρ0 → 6ρ0, as shown in NYT02. 1) These high effective masses of the mixed
hyperons are favorable for making their energy gaps larger, if the pairing interaction
is attractive enough.

2.4. Pairing potentials adopted

The pairing interactions needed in the present study are those in the 1S0 state
for the low density components, p, Λ and Σ− and those in the neutron 3P2 state
(rigorously the 3P2 + 3F2 coupled state). For the NN interaction, we adopt AV18
and OPEG potentials. The AV18 potential 23) is one of the modern potentials with
18 terms including the terms describing the charge dependence (CD). It reproduces
the NN data very well. The OPEG potential, 24) although charge-independent with
14 terms, is given in the same framework for AV18, apart from the CD terms, by
rewriting definitions of angular-momentum dependent terms, and it well reproduces
the solutions of the phase shift analysis (PSA). (For details, see Appendix A.)

In Fig. 4 the 3P2 phase shifts are shown together with the solutions of the
PSA. 31)– 33) The variation seen in the phase shifts for the three potentials in the
inelastic region (TLab >∼350 MeV) reflects the difference in the repulsive cores of the
potentials and related changes outside the core region. The stronger the repulsive
core is, the lower phase shifts becomes. OPEG-B gives the largest phase shifts very
close to those obtained with the CD-Bonn potential, 34) one of the modern potentials,
shown for reference. OPEG-A gives the phase shifts between the two, AV18 and
OPEG-B. We regard the hump in the solutions of the PSA above these curves at
TLab � 400 − 700 MeV as a result due to the effects of the channels opened in the
inelastic region, that is, these potential predictions merely represent the background
phase shifts. Therefore we can say that these three potentials cover the reliable
extent of the pairing potentials in this state.

In the NN 1S0 state we adopt the potentials of AV18 and OPEG . (A and B are
the same in this state.) Difference between the phase shifts in the inelastic region
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given by the two is small, but AV18 gives a slightly lower phase shifts than OPEG,
reflecting a little stronger repulsive core.

For the Y Y 1S0 potentials, we adopt that compatible with the available data
on hypernuclei, named ND-soft, 25) which consists of a repulsive soft core and a
moderate attraction weaker than the NN interaction. For other choices of Y Y
potentials, qualitatively different results do not come about as shown in previous
articles, 35)– 37) and we use preferentially the ND-soft potential here.

§3. Critical temperatures of baryon superfluids

Generally, energy gaps in the baryon superfliud (SF) are sensitive to the pairing
interaction and the baryon effective mass. In this section we show the density-
dependent features of the critical temperatures Tc related directly to the energy
gaps, because Tc are convenient in comparison with each other for different types of
energy gaps and also in direct comparison with the internal temperature T .

In calculating the energy gaps we use the effective mass approximation deduced
from the single-particle potentials for each baryon in TNI6u-EOS, since we use the
expressions of neutrino emissivity obtained in the approximation replacing all the
quantities slowly varying near the Fermi surface by those at the Fermi surface, and
the effective mass approximation is preferentially adopted in this treatment.

3.1. 1S0 superfluids of p, Λ and Σ−

For p, Λ and Σ−, because of their small fractions, the 1S0 SFs are realized for
each fractional density less than about 0.5ρ0, with the upper limit determined mainly
by the repulsive core effect. We define the effective critical temperatures T ∗

c (i) related
to the 1S0 energy gaps of the baryon (i) at zero temperature ∆i(kF , T = 0) as

kBT ∗
c (i) ≡ 0.57∆i(kF , T = 0), (i = p, Λ, Σ−) (3.1)
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where kB is the Boltzmann constant and kF is the Fermi momentum (i being sup-
pressed). The quantities T ∗

c (i) thus defined become the starting point for studying
the temperature dependence of the energy gaps, although the real critical tempera-
ture Tc is slightly shifted from T ∗

c (i) in most cases, as discussed in the next section.
The coefficient 0.57 on RHS of Eq. (3·1) is obtained in the well-known approxi-

mation that the gap equation with the bare 1S0- pairing interaction matrix elements
〈k′|V |k〉 over the full range of the momentum,

∆(k, T ) = − 1
π

∫
k′2dk′〈k′|V |k〉tanh(E(k′, T )/2kBT )∆(k′, T )/E(k′, T ), (3.2)

is replaced by the gap equation restricted to a narrow interval around the Fermi
momentum kF with effective pairing matrix elements. We call this approximation
the near-Fermi-surface approximation (abbreviated to NFSA).∗) Here E(k, T ) is the
qausi-particle energy E(k, T ) =

√
(εk − εF )2 + ∆(k, T )2, where we use the effective

mass (M∗
i ) approximation for the single-particle energy as εk − εF � (k2−k2

F )/2M∗
i .

The density dependence of T ∗
c (i) (i = p, Λ and Σ−) is shown in Fig. 5. The

following features are to be noted:
1. For the proton, T ∗

c (p) calculated using the NN 1S0 potentials of AV18 and
OPEG, gradually decreasing as ρ increases, drop sharply just beyond the thresh-
old density of Σ−, ρt(Σ−) = 4.07ρ0, because the increase of yp (and thus its
Fermi momentum) makes the repulsive core effect stronger, in addition to the
small effective mass as m∗

p � 0.6 → 0.5 at ρ � (4 → 6)ρ0.
2. For Λ, T ∗

c (Λ) calculated using the ND-soft ΛΛ potential is moderately large
(∼ 109 K � 0.1 MeV) because of the moderately large m∗

Λ � 0.8, but the Λ SF
exists only in the limited region ρ � (4.0 − 5.3)ρ0.

3. For Σ−, T ∗
c (Σ−) is very large (∼ 109 − 1010 K) due to the large m∗

Σ− � (1.2 →
1.0) as ρ � (4 → 6)ρ0.

There is room for modification from medium polarization not considered here.
For the 1S0 pairing in low density neutron matter in the NS crust, it has been shown
that there is an effect reducing the energy gap. 38) Although a similar effect would be
expected for low density p, Λ and Σ−, medium effect on T ∗

c is still an open question
since they are immersed in dense neutron matter. In any case, we have T ∗

c (p) <∼1×109

K for ρ >∼2ρ0, which differs largely from that assumed in Refs. 18) – 20).

3.2. Neutron 3P2 superfluid

For neutrons in the NS core (ρ >∼0.7ρ0), the 1S0 SF disappears due to the
repulsive core effect, and the 3P2 SF is realized up to several ρ0. Among five types
of possible solutions of the gap equation, 39) here the following two typical pairings
with different total angular momentum components are considered: The pairing
with J = 2, mJ = 0 and J = 2, mJ = ±2, because the former energy gap has
features close to the most general type solution without a node on the Fermi surface,
and the latter energy gap with the angular-momentum alignment has nodes at the
poles (θk = 0, π) on the Fermi surface. 40), 41) We discriminate them with the suffix

∗) The relations obtained in this approximation, which do not depend on the interval of the

integration, are useful. Such relations used in this paper are summarized in Appendix B.
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|mJ |=0 or 2 in relevant quantities, which correspond, respectively, to B and C used
in the works of Yakovlev and others. 42), 13) The two gap equations for mJ = 2 and
mJ = −2 do not couple and give independent solutions with same energy gaps.
The anisotropic energy gaps for the 3P2 pairing are written with different angular
functions Θ|mJ |(Ωk) of the solid angle Ωk = (θk, φk). In the two pairing types, the
gaps are axially symmetric and depend only on θk.

The 3P2 pairing is actually that in the 3P2 + 3F2 state coupled due to the tensor
force. In calculations of energy gaps, we solve the coupled gap equation, and in
calculations of neutrino emissivities, we use the expressions expressed in terms of
the main 3P2 component only. Here, first the expressions of energy gaps and critical
temperatures for the single 3P2 component are given and then relations to those
in the coupled case are mentioned as far as necessary in the present study. As for
detailed descriptions of the λ ≡ 3P2+3F2 pairing, see Refs. 43) and 44). Descriptions
at finite temperature are obtained by inserting the factor tanh(E(k, T )/2kBT ) into
the gap equation, where E(k, T ) is the quasi-particle energy with the anisotropic
energy gap Dλ(k, T ), E(k, T ) =

√
(εk − εF )2 + Dλ(k, T )2.
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The angle-dependent energy gap D|mJ |(k, T ) of a pure 3P2 component, being
approximatly equal to Dλ(k, T ), can be written as the following product form:

D|mJ |(k, T ) = ∆|mJ |(k, T )Θ|mJ |(Ωk), (3.3)

with the angular functions

Θ0(Ωk) =
√

(1 + 3cos2θk)/2, (3.4a)

Θ2(Ωk) =
√

3/2sinθk. (3.4b)

Here, ∆|mJ |(k, T ) represents the angle-averaged gap D̄|mJ |(k, T ), because

(D̄|mJ |(k, T ))2 ≡
∫

dΩk

4π
D|mJ |(k, T )2 = ∆|mJ |(k, T )2, (3.5)

since the angular integral divided by 4π gives unity. According to the general pre-
scription given in Refs. 43) and 44), ∆|mJ |(k, T ) are related to the gap amplitudes
∆λ

L,mJ
(k, T ) as the solution of the gap equation in the 3P2+3F2 coupled state, where

L = 1 and 3 denotes the orbital angular momenta. Extended forms of Eq. (3·5) for
the energy gap Dλ(k, T ) are given by

(D̄coupled
λ (k, T ))2 ≡

∫
dΩ

4π
Dλ(k, T )2 =

1
8π

∑
L=1,3

∑
mJ

|∆λ
L,mJ

(k, T )|2, (3.6)

which are written explicitly as sums of the 3P2-part and the 3F2-part. Focusing
attention into the aspects near the Fermi surface and taking k = kF (the Fermi
momentum of neutrons) for mJ = 0 and |mJ | = 2 pairings, we have

D̄coupled
λmJ=0(kF , T ) =

√
(∆λ

10(kF , T ))2 + (∆λ
30(kF , T ))2/

√
8π

� ∆λ
10(kF , T )/

√
8π, (3.7a)

D̄coupled
λ|mJ |=2(kF , T ) =

√
(∆λ

12(kF , T ))2 + (∆λ
32(kF , T ))2/

√
4π

� ∆λ
12(kF , T )/

√
4π. (3.7b)

Here, the difference of a factor of
√

2 in the denominators on RHS comes from the
degrees of freedom, namely, 1 (2) for the mJ = 0 (mJ = ±2) case. These approximate
expressions mean that the coupling to the 3F2-component by the tensor force plays
an important role to enlarge the main 3P2-component, but its squared magnitude
itself is much smaller than that of the main component (less than about 5% in
most cases). Thus we can simply write the last expressions on RHS of Eq. (3·7) as
∆|mJ |(kF , T ), corresponding to Eq. (3·3):

∆0(kF , T ) = ∆λ
10(kF , T )/

√
8π, (3.8a)

∆2(kF , T ) = ∆λ
12(kF , T )/

√
4π. (3.8b)

Since the actual solutions have the property at low temperature that 39)

∆λ
10(kF , T ) �

√
2∆λ

12(kF , T ), (3.9)
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the quantities ∆|mJ |(kF , T = 0) for the two types of pairing are very close, and
a slightly larger value for the mJ = 0 pairing gap just compensates for the small
difference in the coefficients of the definition of effective critical temperature T ∗

c (0.60
and 0.61), which are obtained in NFSA, as given below. This feature is confirmed in
numerical calculations. Thus we may take a single value for T ∗

c of the neutron 3P2

SF at a given density. This is quite reasonable because the critical temperature is
defined as the temperature at which the energy gap vanishes, for any value of |mJ |.
By writing kF as kF (n), the effective critical temperature of the neutron 3P2 SF can
be defined from the zero temperature energy gap:

kBT ∗
c (n) ≡ 0.60∆0(kF (n), T = 0) � 0.61∆2(kF (n), T = 0). (3.10)

The values of T ∗
c (n) obtained by solving the 3P2 + 3F2 coupled gap equation for

the mJ = 0 type pairing are shown in Fig. 5. The critical temperatures calculated
using AV18 and OPEG-A & -B are of moderate magnitude, exhibiting the peak
values � (6 − 8) × 108 K and decreasing gradually as ρ increases. The variety
displaced by the three curves reflects the feature that the stronger the short-range
repulsion, the smaller the energy gaps. We regard this extent as a reliable allowance
in T ∗

c (n) of the core neutrons that is acceptable from the viewpoint of nuclear theory.
In any case we can exclude such a possibility that T ∗

c (n) < 1× 108 K in the NS core
as assumed in Refs. 18) – 20).

Next we show the effective critical temperatures of the neutron 3P2 SF in pure
neutron matter (abbreviated as PNM) and compare them with those in NS matter
in the beta-equilibrium mentioned above. We have two aims here. Firstly, it is
meaningful to compare the two, because the neutron 3P2 SF plays a very important
role in the neutrino emissivity, and secondly, we show the zero temperature energy
gaps of this state in PNM for the OPEG-A potential, which are the revised versions
of the results published in 1972, often referred to as T72. 43)

In Fig. 6, we show the effective critical temperatures T ∗
c (n) versus the density

obtained in PNM by solving the 3P2 + 3F2 coupled gap equation for the mJ = 0
type pairing for AV18, OPEG-A and OPEG-B potentials. The lowest curve denoted
as T72 represents the results reported in T72, which should be replaced by the bold
solid curve denoted as OPEG-A. The reason for the lower values in T72 is that in
the 1972 work the mesh size adopted in numerical calculations was not sufficiently
fine. Such a choice is found to lead to an underestimation of the energy gap in some
cases, and the tendency is more pronounced as energy gaps become small.

Present calculations in PNM have been carried out by using the following effec-
tive mass parameters. With kF (n) in fm−1, they are given by Lagrange’s 4-point
interpolation formula in the region including the points m∗

n(kF (n)) =0.82(1.614),
0.78(1.915), 0.75(2.130) and 0.70(2.406), which were used in T72, and are extended to
the lower and the higher regions as follows: m∗

n = 1.03−0.13kF (n) for kF (n) ≤ 1.614
and m∗

n = 1.105 − 0.168kF (n) for kF (n) ≥ 2.406. These effective mass parameters
are a little larger than those shown in Fig. 3. This is the reason why the values of
T ∗

c (n) in Fig. 6 are a little higher than those in Fig. 5.
Comparing the three bold curves of T ∗

c in Fig. 6 with the corresponding curves
shown in Fig. 5, we notice that the neutron 3P2 SF in NS matter persists at higher
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Fig. 6. Density-dependence of the effective critical temperatures T ∗
c of 3P2 SF in pure neutron

matter for the three potentials indicated. The thin curve represents the results of T ∗
c for OPEG-

A given in T72.

densities than in PNM. This is because the mixing of protons and hyperons makes
the neutron density lower than in PNM. The termination density of the 3P2 SF in
PNM for AV18 is estimated as about 3.5ρ0 from Fig. 6. This is almost the same as
that inferred from the T = 0 gaps given by Baldo et al., who calculated T = 0 gaps in
PNM by solving the 3P2 + 3F2 gap equation in an angle-averaged approximation for
several potentials. 45) For ρ <∼3ρ0, T ∗

c converted from their gaps are somewhat larger
than those shown in Fig. 6, because values of m∗

n estimated from the single-particle
potential are larger than those shown in Fig. 3.

There is still some ambiguity coming from the effects untreated here, such as
effective interaction from medium polarization for the neutron 3P2 + 3F2 pairing.
Although enhancement effect was reported earlier, 46) recently there have been re-
ported different aspects; medium effect suppresses the 3P2 gap 47), while it brings
about a large P -wave pairing gap prior to the pion condensation. 48) Since these are
still open problems, we regard them as to be taken into account when a problematic
situation would be clear.

§4. Temperature dependence of energy gaps

Generally, the energy gap decreases smoothly as the temperature T increases
and vanishes at the critical temperature Tc. Superfluids in NS matter experience a
temperature change as NSs cool down. In calculations of the neutrino emissivity,
we need to take into account the temperature dependence of the energy gaps of
the baryon SFs as well as their density dependence shown in the previous section.
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For the 1S0 pairing, many investigations have been carried out for this problem, in
the cases of superconductors and nucleon matter. 49), 50) Because the T dependence
of the energy gap comes from the factor tanh(E(k, T )/2kBT ) in the gap equation,
some common feature of the T dependence is expected, although, in principle, the
details depend on the background provided by the pairing interaction, the Fermi
momentum, the effective mass and so forth. If a profile function almost independent
of such a background is found, it would be very useful to obtain the T dependence
from the energy gap at zero temperature (equivalently the critical temperature)
without solving the T -dependent gap equation many times in calculating for varying
densities and temperatures in the NS interior. In what follows, we can show that this
is the case. Levenfish and Yakovlev 51) gave such a numerical fit to the T dependence
of the energy gap relative to kBT for the nucleon SFs of 3P2 as well as 1S0 in
neutron star matter. Although their numerical fit is fairly good in a practical sense,
it has some unsatisfactory features from the theoretical point of view, and yields
considerably higher values near the critical temperature than the actual solutions
we have calculated. In this section, we report another numerical fit for the energy
gap at finite T relative to that at zero temperature. Here we present the expressions
which we have chosen and used in calculations of the neutrino emissivity in the next
section. Further details are given in Appendix C.

The form of the profile function we have chosen is given as a function P of the
argument τ ≡ T/Tc, which represents the ratio of the energy gap to the zero tem-
perature gap and has a two-region description, the one describing the side including
T = 0, and the other describing the side including Tc. It is given by

P (τ) ≡ ∆(kF , T )/∆(kF , T = 0) (4.1a)
= 1 −√

2πa0τ exp [−1/(a0τ)] (1 + α1τ + α2τ
2), (0 ≤ τ ≤ τb) (4.1b)

= a0C1

√
1 − τ

[
1 + β1(1 − τ) + β2(1 − τ)2

]
, (τb ≤ τ ≤ 1) (4.1c)

where a0, C1, α1, α2, β1 and β2 are constants. Equation (4·1b) assures that the
energy gap ratio decreases as T starts from T = 0.∗) The constant a0 is defined by
the coefficient appearing in the definition of T ∗

c in Eqs. (3·1) and (3·10) (0.57, 0.60
and 0.61, denoted by a∗0 hereafter), multiplied by Tc/T ∗

c :

a0 ≡ a∗0 (Tc/T ∗
c ). (4.2)

We can take the boundary value of the two regions as τb = 0.7. The numerical
values of the other constants are selected by the fitting to the T -dependent features
obtained from energy gap calculations. They are almost universal in a sense that
they are almost independent of the background mentioned above. The procedure to
fix the constants is as follows:

1. Among the calculated energy gaps for typical densities, we chose several points
that are used to determine the constants. Actually, we chose τ = 0.5, 0.7, 0.9,
in addition of the trivial points P (τ = 0) = 1 and P (τ = 1) = 0.

∗) The numerical fit given in Ref. 51) does not necessarily insure this property; the ratio exceeds

unity for τ <∼ 0.3 for the pairings of 1S0 and 3P2 with mJ = 0.
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The dots represent the average of the calcu-

lated values of ∆(kF (p), T )/∆(kF (p), T =

0) over 12 densities for each τ and the two

potentials. The solid curve is the fit ob-

tained using Eq. (4·1) and Table I.

2. We take the average and the “spread” around the average taken from all the
calculated values of the gap ratio ∆(kF , T )/∆(kF , T = 0) over many densi-
ties for each τ , where the “spread” is the standard deviation assuming that
these values follow a normal distribution. They are summarized in Table II in
Appendix C. The calculated values are very close to each other as shown by
the small spread. Because such a feature is almost independent of the pairing
interactions used, we can find the same profile function for each pairing type.

3. The constants α1 and α2 are fixed by the fit to τ =0.5 and 0.7.
4. Using the derivative at the boundary, τb = 0.7, obtained on the T=0 side, and

the values at τ =0.7 and 0.9, C1, β1 and β2 are determined. At this step,
it is favorable to choose C1 not far from the value in the limit P (τ → 1) →
a0 C1

√
1 − τ which is obtained in NFSA. (See Appendix B for the NFSA

number.)

4.1. 1S0 pairing

For the proton SF in NS matter, Tc obtained by solving the gap equation is very
close to the effective critical temperature T ∗

c defined in Eq. (3·1), which is obtained
in NFSA, at densities where the SF exists and for the pairing potentials of AV18
and OPEG. Therefore, we can take the constant a0 as a0 = a∗0 = 0.57.

Examples of the T dependence of the proton 1S0 energy gaps for the two poten-
tials are shown in Fig. 7 at the three densities (ρ/ρ0 = 2, 3 and 4) in NS matter under



Baryon Superfluidity and Neutrino Emissivity of Neutron Stars 51

Table I. Constants in the profile function P (τ) given by Eq. (4·1) describing the temperature

dependence of the energy gaps for the pairing type listed in the first column. For the row of

the neutron 3P2, mJ = 0, Tc/T ∗
c given in Eq. (4·3) is used in actual calculations, where the

constants other than a∗
0 are slightly changed from those in this table.

Pairing type a∗
0 Tc/T ∗

c C1 α1 α2 β1 β2

Proton 1S0 0.57 1.00 2.9101 −0.5435 1.5008 −0.1483 −0.5273

Neutron 3P2, mJ = 0 0.60 1.05 2.2924 −0.2765 0.7693 0.5249 −1.6798

Neutron 3P2, |mJ | = 2 0.61 1.02 1.9940 −0.2015 0.8231 1.5563 −3.3774

TNI6u-EOS, where (kF (p) in fm−1, m∗
p) =(0.872, 0.557), (0.994, 0.565) and (1.085,

0.588), respectively. The averages of ∆(kF (p), T )/∆(kF (p), T = 0) taken over 12
densities are represented by the dots in Fig. 8. As shown in Table II of Appendix C,
the spread of deviation about the average at each value of τ is very small: less than
0.001 for τ <∼0.8 and less than 0.005 for τ >∼0.9, for any pairing potential, which are
smaller than the width of the dots in this figure. This means that a profile function
P (τ) can be determined. The solid curve in Fig. 8 is the profile function of Eq. (4·1)
with the constants given in Table I. The value C1 = 2.9101 is slightly shifted from
the value 3.06 obtained in NFSA [Eq. (B·4)], to make the fit better in the region
τ >∼0.9.

This profile function can be used for the Λ SF with the same order of energy
gaps as in the proton case. As for Σ− SF with the large energy gap, we may need
another profile function. 37) Such problems regarding the hyperons will be reported
elsewhere. 22) In this paper, we apply the 1S0 profile function found in the proton
case to the cases of Λ and Σ−.

4.2. 3P2 pairing

A typical example of the T dependence of the 3P2 energy gaps is shown in Fig. 9.
The density-dependent curves are ∆0(kF (n), T ) obtained from the solutions of the
coupled gap equation for mJ = 0 at T = (1, 3, 5, 8)× 108 K in PNM for the OPEG-
A potential. We can see the feature that an increase of T makes the SF-existence
region narrower, since it makes the gap much smaller as T approaches Tc. The same
feature is found for the other potentials. If we can plot the decrease in the ratio of
energy gaps for the variation of T = 0 → Tc in a manner almost independent of the
background (densities, potentials, effective masses and so forth), as in Fig. 7 of the
1S0 case, we could obtain a profile function of the temperature dependence of the
neutron 3P2 SF gaps. Actually, this is the case. We show the results in Fig. 11(a),
where the solid curve is the profile function P (τ) for the mJ = 0 pairing, which we
have obtained with use of the constants given in Table I.

The critical temperatures Tc obtained by solving the coupled gap equation for
mJ = 0 are slightly higher than T ∗

c converted from the zero temperature gaps as
shown in Fig. 10: Tc/T ∗

c � 1.08 → 1.01 as kF (n) = (1.2 → 3.0) fm−1. We should
take this density-dependent feature into account in the construction of the profile
function describing the T dependence of the energy gaps, and we use the equation
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c = 1.05 and (b) |mJ | = 2 pairing type

with Tc/T ∗
c = 1.02.

a0 = 0.60 ×
{

1 +
0.08

1 + exp [(kF (n) − 2.2)/0.3]

}
, (4.3)

which is shown by the curve in Fig. 10. In actual calculations of the neutrino emissiv-
ity we use this expression, although we show the profile function using the constants
for Tc/T ∗

c = 1.05 given in Table I.
We obtain a good profile function P (τ) with the numbers given in Table I, as



Baryon Superfluidity and Neutrino Emissivity of Neutron Stars 53

shown in Fig. 11(a), where the dots represent the average of ∆0(kF (n), T )/∆0(kF (n),
T = 0) calculated for 9 densities in pure neutron matter at each value of τ , for the
three potentials used in the previous section. The spread of the deviation at each
τ is listed in Table II of Appendix C. It is less than 0.01 for τ <∼0.8. For τ >∼0.9,
although the spreads increase, they are still not too large, and the profile function
can still be used. The constant C1 = 2.2924 is shifted from 2.80 [Eq. (B·5)] obtained
in NFSA, to give a better fit in this region.

The same procedure can be applied for the |mJ | = 2 pairing. We have treated
this case simply in an approximate way. Instead of solving the coupled gap equation,
we multiply the tensor potential term in the uncoupled 3P2 gap equation by a con-
stant (1 + α) with α = 0.5 (0.47) for OPEG-A & -B (AV18), so as to reproduce the
scattering phase shifts in the 3P2 state. 52) The obtained profile function is plotted
in Fig. 11(b), where we have used Tc/T ∗

c = 1.02, found using gap calculations in
this approximation and the constants given in Table I. A fit to the results (given in
Table II and shown by the dots in this figure) with almost the same quality as in the
mJ = 0 case is obtained. Although Yakovlev et al. used a function form with powers
of τ for |mJ | = 2 case, 51), 42) their numerical fit to the results we have obtained by
solving the gap equation is worse than the present one, especially for large τ .

We have found that the profile function of the form given by Eq. (4·1) gives a
description of the temperature dependence of the energy gaps equally well for the
pairings of 1S0 and 3P2 with |mJ | = 0 and 2. This fact means that the angle-
average approximation works considerably well for the 3P2 pairing, as long as we are
concerned with the magnitude of the gap, ∆|mJ |(k, T ), with the property shown in
Eq. (3·9).

§5. Emissivities of neutrino emission processes efficient in the core
of hyperon-mixed neutron stars

In this section we study the emissivities (denoted by E) due to three neutrino
emission processes efficient in the NS core. They depend strongly on the density ρ
and the internal temperature T . Our central interest is to ascertain what process
plays an important role in the regions with and without hyperon mixing. In doing
so, we pay attention to the strong ρ dependence of the critical temperatures of the
baryon superfluids (SFs) and the T dependence of the energy gaps, obtained under
TNI6u-EOS in the previous sections. For the T dependence each emissivity contains
a factor representing the SF effect sensitive to the ratio ∆i/kBT , where ∆i is the T -
dependent energy gap, as well as the well-known factor of Tn with n = 6− 8 specific
to each process. In calculations of emissivities we take the internal temperature in
the region T � (1−5)×108 K as typical values in the NS interior of the middle-aged
NSs, where the effects of nonstandard cooling and SF suppression are examined in
comparison with observations.

5.1. Direct Urca process of hyperons

The direct Urca (abbreviated as DUrca) process in NS matter 53) is expressed
as B1 → B2 + �− + ν̄� and B2 + �− → B1 + ν� with � = e, µ. We write this as
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B1 ↔ B2 for short. In the baryon composition under TNI6u-EOS shown in Fig. 2,
due to the momentum conservation condition, the nucleon DUrca does not occur,
and the hyperon DUrca is possible only for Λ ↔ p and Σ− ↔ Λ transitions. Here,
we treat these two processes.

The formulas of neutrino emissivity due to the hyperon DUrca in hyperonic
matter in the normal phase are given, e.g., by Prakash. 54) The emissivity for a
specific lepton � and the relevant baryons in the normal phase is given as follows: In
units of erg/(cm3s), we have

EDU = 4.00 × 1027
(

yeρ

ρ0

)1/3 M∗
B1

M∗
B2

M2
n

R(B1 → B2)T 6
9 Θ�, (5.1)

where ye is the electron fraction, T9 ≡ T/109 K and Θ� = 1 (0) for the process allowed
(not allowed) by the so-called triangle condition satisfying momentum conservation.
The factor (yeρ/ρ0)1/3 comes from the lepton chemical potential µ� [µµ = µe �
kF (e)]. The masses of the relevant baryons (i) in NS matter should be the effective
ones, M∗

i . The quantity R(B1 → B2) is the ratio of the factor composed of the weak
interaction coupling constants for this process to that for the n ↔ p process.

For the allowed processes under TNI6u-EOS, (a) Λ ↔ p and (b) Σ− ↔ Λ,
adopting the values of R(B1 → B2) given in Table 2 of Ref. 54), i.e. R(Λ →
p)=0.0394 and R(Σ− → Λ)=0.2055, we have the following expressions [with T8 ≡
T/108 K]:

EDU(Λ ↔ p) = 0.158 × 1021T 6
8 (yeρ/ρ0)

1/3

×m∗
Λm∗

p

(
MΛMp/M

2
n

)
RAA(Λ, p)(Θe + Θµ), (5.2a)

EDU(Σ− ↔ Λ) = 0.822 × 1021T 6
8 (yeρ/ρ0)

1/3

×m∗
Σ−m∗

Λ

(
MΣ−MΛ/M2

n

)
RAA(Σ−, Λ)(Θe + Θµ). (5.2b)

Both the processes for � = e and � = µ are allowed above the threshold densities of
Λ and Σ−, that is, with ρ > ρt(Λ) = 4.02ρ0 for (a) and with ρ > ρt(Σ−) = 4.07ρ0

for (b), and we can take Θe + Θµ = 2 there.
For the hyperons in the SF phase, we should multiply (5·2a) and (5·b) by a reduc-

tion factor representing SF suppression effects, denoted as RAA(B1, B2), where AA
means that both B1 and B2 are in the 1S0 SF, following Levenfish and Yakovlev. 55)

This is the ratio of the integral of the statistical factors in the SF phase (Is) to that
in the normal phase (I0), RAA(B1, B2) ≡ Is/I0. It represents the decrease of the
number density around the Fermi surface due to the energy gap. We calculate it
numerically as follows.

In writing the integral, we use the dimensionless energy variables, xν , x�, x1 and
2, which are the energies of the neutrino, associated lepton � and the two baryons (B1,
B2) measured from the respective Fermi energy, divided by kBT . Is is obtained by
using the distribution functions of the normal leptons, f(x) = 1/(1+exp(x)), and the
distribution functions of the SF baryons, f(zi) = 1/(1+exp(zi)), for i = 1, 2, with the
quasi-particle energy variables, zi ≡ sign(xi)

√
x2

i + d2
i . Here, di = ∆i(kF , T )/kBT ,
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where the profile function P (τ) obtained in §4 is used to describe the T dependence
of the energy gap:

Is =
∫ ∞

0
dxνx

3
ν

∫ ∞

−∞
dx1f(z1)

∫ ∞

−∞
dx2f(z2)

∫ ∞

−∞
dx�f(x�)δ(xν − z1 − z2 −x�). (5.3)

If both baryons are normal, this integral with use of xi in place of zi leads to the
value in the normal phase, I0 = 457π6/5040. If one of the baryons is normal, we can
use an analytic expression for the integral over x1 or x2.

Sometimes, to estimate the SF suppression effect, instead of the reduction factor
RAA, a factor including exp(−∆i/kBT ) is used. This procedure gives an overesti-
mate of the SF suppression, compared with R(B1, B2), if this exponetial factor only
is used. 55) For the hyperon DUrca emissivities treated here, we find the following
discrepancy, using the larger of the B1 and B2 gaps as ∆i. For ∆i/kBT ∼ (5 − 10)
the procedure gives a value smaller by (1-3) orders of magnitude, and for ∆i/kBT <∼4
it gives a value smaller by several, although for ∆i/kBT � 1 the emissivity is almost
completely suppressed in any way.

The calculated emissivities of the two DUrca processes are shown in Fig. 12, for
three temperatures, T = (1, 3, 5)× 108 K. Under TNI6u-EOS, Λ and Σ− appear for
ρ/ρ0 >∼4 and their fractions increase similarly. Of the two possible DUrca processes,
the Λ ↔ p plays a much more decisive role than the Σ− ↔ Λ, because firstly
Σ− ↔ Λ takes place only with the existence of Λ and secondly, the large Σ− gap
strongly suppresses EDU(Σ− ↔ Λ). Therefore Λ plays a key role. Bearing this
situation in mind, we note the following points:

1. At T = 1× 108 K, the strong SF suppression of EDU imparted by the reduction
factor RAA appears in the range ρ � (4.2 − 4.7)ρ0 for the Λ ↔ p process and
in the range ρ � (4 − 5.7)ρ0 for the Σ− ↔ Λ process, where their values of Tc

are >∼10T .
2. In the Λ ↔ p process, the sharp drop of Tc(p) just beyond the onset density of

Λ leads to the vanishing of the proton SF suppression, except in the vicinity of
ρ = 4ρ0, and the SF suppression comes only from the Λ SF.

3. Even though the density region with moderately large Tc(Λ) >∼5 × 108 K is
included, the region in which EDU (Λ ↔ p) is efficiently suppressed is rather
limited, as ρ � (4 − 5)ρ0. If we use a more attractive ΛΛ 1S0 interaction such
as that of Ehime or Funabashi-Gifu A potential, the SF suppression becomes
stronger than presented here. 35) By contrast, if the ΛΛ 1S0 interaction is much
weaker than this ND-soft potential, as suggested by “NAGARA” event, 56) the
vanishing of the Λ energy gap results in no SF suppression to this process, and
EDU (Λ ↔ p) becomes very large, as shown by the flat dotted lines.

4. As T becomes higher, the SF suppression becomes less pronounced, especially
for the Λ ↔ p process, and finally tends to the limit of the normal phase, but
it persists for the Σ− ↔ Λ process because of the large Tc(Σ−). Since the
total DUrca emissivity is mainly determined by the part with the weakest SF
suppression, we should consider seriously the behavior of EDU (Λ ↔ p).

5. The vanishing of the Λ SF brings about a too rapid cooling of NSs incompatible
with observations, if the mass of NS is large enough to include a hyperon-mixed
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core of considerable size, e.g., larger than about 1.5M�, with central density
ρc � 5ρ0. Nonstandard cooling due to the hyperon DUrca compatible with
observations is possible if a limited region of the central core of NSs contains
admixed Λ with moderately large SF gaps. In this sense, the hyperon-mixing
effects on NS cooling strongly depend on NS masses.

6. In summary, the key point relevant to the nonstandard cooling of NSs with a
hyperon-mixed core is the magnitude of Tc(Λ) provided by the attractive nature
of the ΛΛ 1S0 interaction. This problem is intimately linked to hypernuclear
physics.

5.2. Modified Urca process of nucleons

Modified Urca (abbreviated as MUrca) process of nucleons, which plays impor-
tant roles in the standard cooling scenario, is expressed as n+B → p+B+�−+ν̄� and
p+B +�− → n+B +ν� with � = e, µ, where B represents a bystander baryon. Here
we treat the most efficient case in which B = n, p. Many authors already studied
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the emissivity of the MUrca process, which provides a standard of comparison for
the emissivities of various processes. 12), 13), 42) The formulas for the emissivity, EMU,
are given by a product of the value in the case that all the associated nucleons are
in the normal phase (denoted by the suffix 0) and a reduction factor describing the
suppression due to the superfluidity of nucleons (denoted by R). For the former part,
we use the results obtained in the model describing the momentum transfer between
the associated two nucleons with one pion exchange, which was studied by Friman
and Maxwell 57) and is referred to in a recent review article. 13) EMU consists of the
sum of two contributions for B = n and for B = p, which are called the “neutron
branch” and the “proton branch”.

The emissivities for nucleons in the normal phase and � = e are given as fol-
lows, when the momentum conservation condition is satisfied in addition to the
β-equllibrium condition, µ� = µn − µp. The expression for the neutron branch
E(n)

0,e is valid under the condition kF (n) > kF (p) + kF (e), implying that the nu-
cleon DUrca process does not occur. This is satisfied for ρ <∼ 6.5ρ0 in the case of

TNI6u-EOS. The expression E(p)
0,e for the proton branch holds under the condition

kF (n) < 3kF (p) + kF (e), which is satisfied for the Fermi momenta obtained from
TNI6u-EOS, in addition to kF (n) > kF (p) + kF (e). In units of erg/(cm3s), we have

E(n)
0,e � 8.1 × 1021(m∗

n)3m∗
p(ρyp/ρ0)1/3T 8

9 C
(n)
MU, (5.4a)

E(p)
0,e � E(n)

0,e (m∗
p/m∗

n)2RF (n, p, e)(C(p)
MU/C

(n)
MU), (5.4b)

where C
(n)
MU and C

(p)
MU are the correction factors, including short-range correlation

effects, which we take as 0.77. 42) The factor RF (n, p, e) represents the ratio of the
angular integral for the proton branch to that for the neutron branch, appearing in
the phase space calculation: 13) RF (n, p, e) = (3kF (p)+kF (e)−kF (n))2/8kF (p)kF (e)
for 3kF (p) < kF (n) + kF (e) holding at low and intermediate densities (ρ <∼4.25ρ0),
and otherwise RF (n, p, e) = (3 − kF (n)/kF (p))/2 (for ρ >∼4.5ρ0), where the density
boundary is for TNI6u-EOS. The factor (m∗

p/m∗
n)2 is about 0.6-0.7 and the factor

RF (n, p, e) changes as � 0.2 → 0.7 for ρ � ρ0 → 6ρ0. Then the product of the two
factors reduces E(p)

0,e as � 0.15 → 0.5, compared with E(n)
0,e . Although the MUrca

emissivity in the proton branch in the normal matter is moderately suppressed at
low density, stronger suppression comes from the nucleon SF, as given below.

The total MUrca emissivity in the presence of the nucleon SF is represented as

EMU,e = E(n)
MU,e + E(p)

MU,e, (5.5a)

E(n)
MU,e = E(n)

0,e R
(n)
A|mJ |, (5.5b)

E(p)
MU,e = E(p)

0,e R
(p)
A|mJ |, (5.5c)

where R
(n)
A|mJ | and R

(p)
A|mJ | are the reduction factors due to the proton 1S0 SF and

the neutron 3P2 SF with |mJ |, for the neutron branch and the proton branch,
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respectively.∗) For descriptions of these reduction factors, we use the approximate
numerical fit recently obtained by Gusakov. 58) We note that R

(p)
A|mJ | is substantially

smaller than R
(n)
A|mJ |, and this difference is pronounced at lower densities [ρ <∼3ρ0

where Tc(p) >∼Tc(n)] and lower temperatures.
The presence of the muon in NS matter causes a contribution to the nucleon

MUrca emissivity, because the process occurs when the muon begins to appear (ex-
cept just beyond the muon threshold density near 0.7ρ0). The emissivities for the
� = µ and the normal nucleons are expressed as the ratio to the � = e case:

E(n)
0,µ � E(n)

0,e (kF (µ)/kF (e)), (5.6a)

E(p)
0,µ � E(p)

0,e [RF (n, p, µ)/RF (n, p, e)] (kF (µ)/kF (e)). (5.6b)

The factor (kF (µ)/kF (e)) = (yµ/ye)1/3 represents the suppressive effect coming from
the muon mass much larger than the electron mass which restricts the available
momentum space, especially at low density, while the chemical equilibrium condition
is the same for � = e. The ratio [RF (n, p, µ)/RF (n, p, e)] is slightly smaller than
(equal to) unity for ρ <∼4ρ0 (ρ >∼4.5ρ0). Because the SF reduction factors are the
same as in the � = e case, the muon contribution is expressed in the same form as
EMU,e. Thus the total emissivity of the nucleon DUrca is given by

Etotal
MU = EMU,e + EMU,µ � EMU,e(1 + (yµ/ye)1/3). (5.7)

From the lepton fractions shown in Fig. 2, the muon contribution is suppressed just
above the muon threshold, but the total emissivity in npeµ matter quickly approaches
1.7-1.8 times that in npe matter.

Our main interest on the nucleon modified Urca process is to see the density
dependence and the temperature dependence of the SF suppression effects on EMU

when the physical inputs obtained for TNI6u-EOS and the realistic pairing potentials
chosen in §2.4 are used. In Fig. 13 the calculated results for the density dependence
of the MUrca emissivities are shown for the |mJ | = 2 case, at three temperatures
[T = (1, 3, 5) × 108 K] and for three potentials (AV18, OPEG-A and OPEG-B)
as an example. Qualitatively different aspects are not seen for the mJ = 0 case.
Comparing EMU with the dash-dot-curves for the case in which both neutrons and
protons are in the normal phase, the following points are noted:

1. At T = 1 × 108 K, the SF suppression of EMU appears strongly for ρ <∼3ρ0

where the critical temperatures of the neutron 3P2 SF and the proton 1S0 SF
are moderately large, as Tc >∼5T . As T increases, the SF suppression becomes
more gradual.

2. The variation for different NN potentials faithfully reflects the magnitude of
the critical temperatures shown in Fig. 5: As the short-range repulsion becomes
stronger, Tc decreases, and thus the SF suppression becomes weaker.

3. Because EMU is not large and, further, the SF makes it less efficient, the emis-
sivity of the MUrca process of nucleons is small.

∗) R
(i)

A|mJ | with |mJ | = 0 (|mJ | = 2) are the same as R
(i)
AB (R

(i)
AC) for i = n, p in Refs. 42) and

58).
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5.3. Cooper-pair process

Cooper-pair process (abbreviated as Cpp) caused by the neutral current of the
weak interaction is described as the process of neutrino pair emission when two
excited SF quasiparticles are recombined into the Cooper pair in the BCS state.
The importance of this process pointed out already in 1976 17) has been overlooked
for a long time. In recent years, it has attracted much attention as a candidate to
make the neutrino emissivity larger than the modified Urca emissivity. 59), 60) Here we
recapitulate the formula we use in the calculations, following the paper by Yakovlev,
Kaminker and Levenfish, who made the formulation applicable to the 3P2 SF(denoted
as YKL99). 28) The unique feature of Cpp lies in the effect appearing only in the
presence of the SF. Because the dominant contribution comes from the neutron 3P2

SF, and also there is some problematic point concerning the hyperon sector in the
description of YKL99, we treat the nucleon sector and the hyperon sector separately,
after mentioning common parts in the formula.

5.3.1. Formula for neutrino emissivity of the Cooper-pair process
The emissivity of Cpp arising in the i-th baryon SFs is written as [in units of

erg/(cm3s)]

ECpp(i) = 1.17 × 1021T 7
9 m∗

i

kF (i)
Mic

NνR(i), (5.8)

where the nonrelativistic approximation is taken for the baryon part, and Nν = 3 is
the number of the associated neutrinos (� = e, µ, τ). R(i) is a dimensionless factor
that contains the information concerning the coupling coefficients, transition matrix
elements and Fermion distribution functions. Although it gives the SF suppression
when the critical temperature Tc(i) is much larger than the internal temperature T
(Tc(i) >∼10 T ), it brings about some enhancement due to the SF when the critical
temperature Tc(i) is not so large in comparison with T (T < Tc <∼5 T ). We have

R(i) =
1
8π

∫
dΩk

∫ ∞

0
dx

z6

(ez + 1)2
(CV (i)2I00 + CA(i)2I), (5.9)

where Ωk is the solid angle necessary to describe the anisotropic energy gaps appear-
ing for the 3P2-pairing, z is the quasi-particle energy divided by kBT , the quantities
CV (i) (CA(i)) are the coupling coefficients of the i-th baryon with the neutral cur-
rent of the vector (axial-vector) interaction, and I00 and I are the quantities given
by the u, v factors used in the pairing theory. Note that these quantities depend on
the associated baryon i, although this specification is often suppressed to simplify
the expressions, if evident. Denoting the baryon momentum by k and the baryon
chemical potential by µi, we have

z =
√

x2 + d2
i , with x ≡ (εk − µi)/kBT, (5.10)

where di is the temperature-dependent gap divided by kBT . Hereafter, in the integral
over x we take the approximation that integrands that are slowly varying around
kF (i) are replaced by the values at kF (i).

For the 1S0-pairing with an isotropic gap, di, z, I00 and I are angle-independent.
The axial-vector term vanishes because I contains factors 2(ukvk′ − vkuk′ )2 which
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are vanishingly small for k � k′ � kF (i). The vector term with I00 contains the
factors 2(ukvk′ + vkuk′ )2 which are nonvanishing. We have I00 = 8u2

kv
2
k = 2d2

i /z2

and I = 0, and thus

R(i) = CV (i)2Fs(i), Fs(i) ≡ d2
i

∫ ∞

0
dx

z4

(ez + 1)2
, (5.11)

where di = ∆i(kF , T )/kBT .
For the 3P2-pairing, di, z, I00 and I are angle-dependent, and are given by

I00 = 8u2
kv2

k = 2d2
i /z2 and I = 16u2

kv2
k = 4d2

i /z2. Thus, we have

R(i) = (CV (i)2 + 2CA(i)2)Ft(i), Ft(i) ≡ 1
4π

∫
dΩk d2

i

∫ ∞

0
dx

z4

(ez + 1)2
, (5.12)

where di = D|mJ |(kF , Ωk, T )/kBT with use of Eqs. (3·3) and (3·4).
In YKL99, these two relations are expressed in a unified manner with use of

a(i), named the reaction constants, as R(i) = a(i)F (i):

a(i) = CV (i)2, F (i) = Fs(i) for 1S0-pairing, (5.13a)
a(i) = CV (i)2 + 2CA(i)2, F (i) = Ft(i) for 3P2-pairing. (5.13b)

As already noted in Ref. 17), the function F (i) is sensitive to di: It increases steeply
from 0, reaches its peak value � 4.3 at di � 3.0, diminishes in a manner like expo-
nential decay and fades away for di >∼10. Thus the emissivity is very sensitive both
to the energy gap and T . This is the most important feature in Cpp. In the absence
of SF for Tc(i) ≤ T , the function F (i) is to be taken as zero.

5.3.2. Nucleon sector
The reaction constants for the proton and neutron, a(n) and a(p) we use are the

same in the vector part but numerically different in the axial vector part, compared
with those in Table 1 of YKL99. We take the vector coefficients as CV (n) = −1,
CV (p) = 1 − 4sin2θW = 0.08 (θW being the Weinberg angle with sin2θW =0.23) and
the axial vector coefficients as CA(n) = −gA +∆Σ = −1.14 and CA(p) = gA +∆Σ =
1.40, where gA = 1.27 and ∆Σ = 0.127. Here ∆Σ represents the shift from the SU(3)
value, which is inferred from the nucleon spin problem, as studied in TTT03. 26)

Using the values given above, we have

a(n) = 1, a(p) = (1 − 4sin2θW )2 = 0.0064 for 1S0-pairing, (5.14a)
a(n) = 1 + 2CA(n)2 = 3.60,

a(p) = (1 − 4sin2θW )2 + 2CA(p)2 = 3.93 for 3P2-pairing. (5.14b)

The notable property here is the very small reaction constant for the proton SF of
the 1S0-pairing, which implies a small contribution from the proton SF to ECpp. The
neutron 3P2-pairing SF contributes largely to ECpp because the reaction constant is
of order of unity.

ECpp from the neutron 3P2 SF The Cpp emissivity in the neutron 3P2

SF is given as [in units of erg/(cm3s)]

ECpp(n) = 3.07 × 1014T 7
8 (kF (n)/fm−1)m∗

nFt(n), (5.15)
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where T8 ≡ T/108 K.
Because the 3P2 SF gaps are anisotropic, the emissivity ECpp(n) is affected by

the angle dependence of the energy gaps, and ECpp(n) differs for the two types with
mJ = 0 and |mJ | = 2. This difference comes from the angular integrals giving the
Ft(n) functions in Eq. (5·12), because the magnitudes of two gaps are almost same.
Due to the exponential in the denominator, the integral for the mJ = 0 gaps without
a node on the Fermi surface is smaller than that for |mJ | = 2 gaps with nodes at
the poles. Therefore ECpp(n) for mJ = 0 is smaller than that for |mJ | = 2.

The calculated results are shown for T = (1, 3, 5)×108 K and for three potentials
in Fig. 14. The bold curves represent ECpp(n) for mJ = 0, and the thin curves are
ECpp(n) for |mJ | = 2. As is expected, the emissivities for mJ = 0 are smaller than
those for |mJ | = 2, as clearly seen for T = 1 × 108 K. The correspondence to the
potentials is shown by the dotted (AV18), solid (OPEG-A) and dashed (OPEG-B).
At T = 1×108 K, we can see the clear difference depending on the magnitude of the
energy gaps; the larger the energy gap, the smaller the emissivity. As T increases,
this difference becomes less pronounced, but the difference in the density region
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where ECpp(n) is nonvanishing appears clearly in accordance with the width of the
region where the 3P2 SF exists [Tc(n) > T ]. It is widest for OPEG-B, middle for
OPEG-A and narrowest for AV18. When T >∼8 × 108 K, the emissivity vanishes
completely.

ECpp from the proton 1S0 SF The Cpp emissivity arising in the proton
1S0 SF is given as [in units of erg/(cm3s)]

ECpp(p) = 4.72 × 1011T 7
8 (kF (p)/fm−1)m∗

pFs(p). (5.16)

The calculated results are shown at T = (1, 3, 5) × 108 K and for two potentials in
Fig. 15. The bold solid (dotted) curves are obtained using the OPEG (AV18) poten-
tial. Because of the small reaction constants, ECpp(p) is smaller than the modified
Urca emissivity without SF suppression by at least one order of magnitude and much
smaller than ECpp(n). Also, the contributions are limited in the region where the
proton 1S0 SF exists, i.e. ρ <∼4ρ0. At T = 1 × 108 K, up to baryon density ρ <∼3.5ρ0

where Tc(p) >∼5T , the proton gap strongly suppresses ECpp(p), while at T >∼3×108 K
ECpp(p) spread over ρ <∼4ρ0.

5.3.3. Hyperon sector
The formulas for the Cpp emissivity in the hyperon sector, where SF is of the

1S0 pairing, are the same as those for the proton case, but the reaction constants
are different. Concerning the reaction constants for Λ, there has been reported a
mistaken statement that the Λ (also Σ0) does not couple with the neutral current
(NC) of the weak interaction. 27), 28), 13) First of all this should be corrected before
numerical calculations.

On the basis of TTT03, we use the correct expressions of the vector and axial
vector coefficients, CV and CA. The proper choice of the quark NC 61) naturally leads
to the inclusion of the part originating from the GIM term of the quark NC (JGIM

µ ) in
addition to the quark flavor SU(3) octet term (Joctet

µ ). The matrix elements of Joctet
µ

for Λ and Σ0 vanish, while those of JGIM
µ do not. The mistaken statement stems

from overlooking JGIM
µ . For the nucleon, this does not contribute, because JGIM

µ

is described by the s quark operator only. Thus, the correct expressions needed in
the present study are: CV (Λ) = −1, CV (Σ−) = −(3 − 4sin2θW) = −2.08, CA(Λ) =
−(D/3 + F ) + ∆Σ = −0.61, and CA(Σ−) = D − 3F + ∆Σ = −0.48, where D =
0.80, F = 0.47 and ∆Σ = 0.127 are chosen. CV and CA of the other octet baryons,
except n and p, should be corrected. The resulting reaction constants for the Cpp
process are summarized in Table III of Appendix D.

We have the following reaction constants for Λ and Σ− arising in the 1S0 SF:

a(Λ) = CV (Λ)2 = 1, a(Σ−) = CV (Σ−)2 = 4.33. (5.17)

The emissivities of Cpp for Λ and Σ− are described in the same way as in the proton
case, with R(i) = a(i)Fs(i) (i = Λ, Σ−). The results are shown in Fig. 15 with the
solid thin curves for Λ and with the dashed curves for Σ−. At T = 1×108 K, because
the 1S0 SF gaps strongly suppress the emissivities, ECpp(Λ) becomes appreciable only
at the densities where the energy gap just starts (ρ � 4.0ρ0 − 4.1ρ0) and fades away
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(ρ � 5.0ρ0 − 5.2ρ0). ECpp(Σ−) is completely suppressed, except ρ � 5.7ρ0 − 6.0ρ0,
where the gap tends to vanish. Peak values of these emissivities are comparable
with ECpp(n), but the active regions are very narrow, and their contributions to
the luminosity are expected to be small. As T increases, the active regions become
wider, but the emissivities are still much smaller than ECpp(n).

5.4. Comparison of emissivities and discussion

Now we can compare the efficient neutrino emissivities of the hyperon DUrca,
the nucleon MUrca and the Cooper-pair processes. The main results are compiled in
Fig. 16 at two internal temperatures, (a) T = 1×108 K and (b) T = 3×108 K. Here
we omit some emissivities, which can be easily inferred from the figures given in the
previous sections. The nucleon MUrca EMU only for OPEG-A is shown and the Cpp
emissivity of the proton (hyperon) is not shown because it is much smaller than the
more efficient ECpp(n) (EDU). The situation for the associated matter, superfluids
(SFs) or normal, is indicated inside the figure. In addition, an example for the direct
Urca emissivity in the presence of the charged-pion condensates is illustrated for
discussion given below. The following points are to be noted:

1. At low and intermediate densities (0.5ρ0 <∼ρ <∼4ρ0), the Cooper-pair process in
the neutron 3P2 SF dominates, being (1-2) orders of magnitude larger than the
normal value of the nucleon EMU in most cases. Reflecting the different features
of the Tc(n) of the 3P2 SF by the pairing potentials, the neutron ECpp varies
in (1-2) orders of magnitude at T � 1 × 108 K, while its active density regions
vary at T � (3 − 5) × 108 K. Although its magnitude is still intermediate, the
active density region is rather wide, especially for the potentials giving large
Tc(n), and the contribution to the luminosity is expected to be large.

2. At higher densities (4ρ0 <∼ρ <∼6ρ0), the direct Λ ↔ p Urca process dominates if
Tc(Λ) <∼1× 109 K, while it is completely suppressed if Tc(Λ) � 1× 109 K. The
direct Σ− ↔ Λ URca process is active only if the NS mass M is large enough
to have a central density with ρc >∼5.5ρ0 for M >∼1.5M� for TNI6u-EOS. For
Tc(Λ) <∼T , EDU(Λ ↔ p) is very large near the value for the normal Λ matter.
In such a case, the NS mass M plays a crucial role as to whether the central
density exceeds the onset density of Λ or not, namely, ρc � 4ρ0 or not, for
TNI6u-EOS.

3. We have studied the features of the neutrino emissivities without a meson con-
densate which provides the nonstandard cooling. For meson condensates, the
charged-pion condensation has the most important relevance to the present con-
text, because it provides the pion Durca emissivity and also its onset density
is considered to be ρt(πc) � (2.0 − 2.5)ρ0. Many works have been done on this
problem, 62)– 66) but there are still unsolved problems to be studied further. The
recent study based on laboratory experiments on the spin-isosin excitation of
nuclei 67), 68) suggests that the onset densities of both the neutral- and charged-
pion condensations are even lower than the value mentioned above. A large
emissivity from the pion-DUrca process comes about for ρ >∼2ρ0. If the super-
fluid gap vanishes or is small, the emissivity is given by the large values indicated
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1 × 108 K and (b) at T = 3 × 108 K, where minor contributions are omitted. The bold dotted,

solid and dashed curves represent ECpp in the neutron 3P2(mJ = 0) SF for the AV18, OPEG-A

and OPEG-B potentials, respectively. The solid curve with (without) squares represents EMU

in the neutron 3P2 and proton 1S0 SFs (normal n, p). The Dash-dot curve with (without)

triangles shows EDU in Λ 1S0 SF (normal Λ) for Λ decay. The dash-dot-dot vertical line shows

EDU for Σ− decay. The short dashed curve with (without) circles illustrates an example of the

emissivity of pion direct Urca for charged-pion condensed quasi-nucleon matter with (without)

SF suppression.

by the short-dashed curves in Fig. 16, being of the same order as EDU(Λ ↔ p)
for the normal Λ matter. The short-dashed curves with the filled circles in
Fig. 16 show an example of the emissivity for the existence of the 3P2 SF of
the quasi-nucleons (in a particular mixed state of the nucleon and the ∆-isobar
due to the pion condensation, which we have denoted as an η-particle 63), 65))
with a moderate SF energy gap which is an optimum case among those hitherto
studied. 69) The resulting emissivity increases as the density increases, because
the critical temperature of the η-particle decreases gradually. Clearly, the pion
direct Urca is a candidate as an agent of nonstandard NS cooling if a suitable
SF coexists. 9) Concerning this point, we need further study on the superfluidity
of the baryons accompanying the ∆ mixing under the combined pion conden-
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sation, where the charged and neutral pion condensates coexist.∗)

§6. Summary and concluding remarks related to neutron star cooling

We studied the features of neutron star matter with hyperon mixing whose
maximum mass compatible with observations is assured by introducing the universal
repulsive three-body force. In this study, we treated the case without a meson
condensate. With the equation of state obtained by this interaction model (which
we call TNI6u-EOS), we obtained the composition of particles which leads to the
following important features of the neutron star matter: The mixing of Λ and Σ−

starts at � 4ρ0, the nucleon direct Urca process does not occur up to � 6.5ρ0 and
the hyperon direct Urca process is possible only for the Λ ↔ p and the Σ− ↔ Λ
transitions. The critical temperatures of the baryon superfluids (the neutron 3P2

pairing and the 1S0 pairing of p, Λ and Σ−), were obtained by the pairing interaction
carefully chosen with a reliable allowance, and their density dependence provides
the basic nuclear physics inputs for calculations of neutrino emissivities. For the
temperature dependence of the energy gap, we obtained the profile functions are
independent of the background (densities, effective masses and pairing interactions)
for the proton 1S0 pairing and the neutron 3P2 pairing.

The neutrino emissivities of three processes efficient in the neutron star core,
the hyperon direct Urca, the nucleon modified Urca and the Cooper-pair processes,
were calculated. After the emissivity of each process was studied, main features of
the results were presented and a comparison was made. In the last part of the pre-
vious section we summarized the main features. At low and intermediate densities
(ρ <∼4ρ0), the Cooper-pair emissivity arising from the neutron 3P2 superfluid domi-
nates. At higher densities (ρ >∼4ρ0) the emissivity of the Λ ↔ p direct Urca domi-
nates, but its magnitude depends strongly on the 1S0 energy gap of Λ which reflects
sensitively the attractive feature of the ΛΛ interaction acting in double Λ hypernu-
clei.

In the course of the present study, we have revised the T72 results of the zero-
temperature energy gap of the 3P2 pairing in pure neutron matter, which was re-
ported in 1972. 43) We presented the new expressions for the reaction constants for
the hyperon Cooper-pair process, after correcting a mistaken statement appeared
previously that the neutral current of the weak interaction does not couple to Λ and
Σ0.

The features of the emissivities for neutron stars (NSs) with and without hyperon-
mixed core have been taken into account in recent calculations performed by Tsuruta
and her collaborators 71) concerning the thermal evolution of NSs. The thermal evo-
lution curves describe the change of surface photon luminosity (L) corresponding to
surface temperature as a function of age of neutron stars (t). Comparison of the
calculated results with the observational data leads to the following points to be

∗) The study in Ref. 9) was performed with use of the SF critical temperatures under the pion

condensation, which is based on the results of a simple model approach done in 1980-82 70) and is

extended phenomenologically to high density region.
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noted:
1. The colder class NS data (Lobs ∼ 1033→31.5 erg/s for t = 103→5.5 years) are

reproduced well by taking a neutron star mass M � (1.5 − 1.6)M� with the
hyperon-mixed core providing the neutrino emission due to the hyperon direct
Urca process, if suppressed properly by the Λ 1S0 superfluid with its critical
temperature T

(Λ)
c ∼ 109 K. If we take a less attractive ΛΛ interaction lead-

ing to T
(Λ)
c <∼ [internal temperature], we face such serious contradiction with

observations that all the colder class NSs are too cold to be observed.
2. The hotter class NS data (Lobs ∼ 1034→32 erg/s for t = 103→6 years) can be re-

produced by taking a neutron star mass M <∼1.4M� without the hyperon-mixed
core, since the cooling effect due to the Cooper-pair process is qualitatively in
balance with the effect due to the vortex creep heating with a heating parameter
of the order of K = 1037erg m−3/2s2. 10)

3. The small ΛΛ-bond energy in 6
ΛΛHe suggested by “NAGARA” event 56) leads

to a vanishing energy gap of Λ, if this feature is attributed only to the decrease
of the ΛΛ 1S0 attraction. Then, the NSs with the hyperon-mixed core become
unobservable due to the very large emissivity of the direct Λ ↔ p Urca process,
and the hyperon-mixed core cannot be a candidate responsible for the nonstan-
dard cooling. In the context of NS cooling, therefore, it is important to study
the possibility that this aspect provided by the “NAGARA” event is explained
without reduction of the ΛΛ 1S0 attraction, e.g. by introducing a repulsive
ΛΛN three-body interaction and some many-body effect not explored yet.

4. If meson condensation takes place, it gives rise to strong direct Urca coolin-
gand leads to too rapid cooling, if superfluid suppression is absent or weak.
Therefore, the persistence of baryon SF in the meson-condensed phase is nec-
essary. Since realization of pion condensation is expected above about twice
the nuclear density, it is important to confirm the persistence of the superfluid
under the pion condensed phase that has the energy gap large enough to give
a moderately strong suppression to the pion direct Urca emissivity.
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Appendix A
On NN Potentials Adopted as the Pairing Interaction

Here we mention detailed properties of the NN potentials adopted as the pairing
interaction in this paper. OPEG potential 24) is of the charge-independent v-14 type
and is given by the following five terms:
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V (1, 2) = VC + S12VT + (L · S)VLS + W12VW + L2VLL, (A.1)

where two-nucleons are denoted by 1 and 2. L (S) is the relative orbital (total spin)
angular momentum in unit of h̄. S12 is the tensor operator and W12 is the quadratic
spin-orbit operator whose matrix elements are given by

W12 = (L · S)2 − {δL,J + σ1 · σ2/3}L(L + 1),

with the magnitude of the orbital (total) angular momentum L (J). Also, the
quantities Va with a = C, T, LS, W and LL are functions of the internucleon
distance r, which are given for each state with spin S and isospin T (or equivalently,
parity Π). The potential has no explicit momentum dependence, and the momentum
dependence is involved only in L implicitly.

AV18 23) is one of the modern charge-dependent NN potentials which contains
the charge dependence (CD) in the static OPEP through its pion masses, the CD
from the electromagnetic interaction and the CD in the central term of nuclear
interaction restricted to the S-wave. The nuclear part of AV18 is defined as

V (1, 2) = vc + vl2L2 + vtS12 + vls(L · S) + vls2(L · S)2. (A.2)

Because (L · S)2 is related to W12 as

(L · S)2 =
1
2
W12 +

2
3
L2 − 1

2
(L · S), (A.3)

the following relations hold:

VLS = vls − vls2/2, VW = vls2/2, VLL = vl2 + 3vls2/2. (A.4)

In the neutron star matter, the electrons and muons making the negative-
charge background smear out most of the effects from the electric field including
the Coulomb potential between protons. In calculations for NS matter, therefore,
we use only the nuclear part of the nn potential of AV18 as the nuclear part of the
pp potential, because of the good charge symmetry in NN interaction. In this paper
we treat the pp 1S0 and the nn 3P2 + 3F2 interactions. OPEG have two versions (A
and B) in the 3P2 + 3F2 state, but they are the same in the 1S0 state.

In the 1S0 state, AV18 and OPEG give almost the same scattering phase shifts
in the elastic region. If we extend calculations to the inelastic region using the NN
channel only, AV18 gives somewhat lower phase shifts than those by OPEG (e.g.,
about 5 degrees at TLab = 600 MeV), because it has a stronger repulsive core and a
slightly deeper attraction just outside the core than OPEG, in this state.

In the 3P2 + 3F2 state, we adopt three potentials, AV18, OPEG-A and OPEG-B
whose repulsive cores become weaker in this order. Although these three potentials
give almost the same scattering phase shifts and mixing parameters in the elastic
region, they give different 3P2 phase shifts δ(3P2) for TLab >∼400 MeV, as shown in
Fig. 4, if we extend calculations using the NN channel only. The largest δ(3P2)
shown for OPEG-B are near those given by the CD-Bonn potential 34) at such TLab.
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These values thus obtained are the so-called background phase shifts, upon which
effects of open channels are superimposed. Therefore, the broad hump-like behavior
of δ(3P2) seen for TLab >∼500 MeV is not to be explained by the NN potential only,
but to be explained by the resonance-like effects reflecting the N∆ state in the NNπ
channel. There is no reason to regard such a potential yielding high values to δ(3P2)
for TLab >∼500 MeV (e.g., like Nijmegen I, II 72)) as realistic. We regard the variety
seen in the three potentials (AV18,OPEG-A and OPEG-B) as a reliable allowance
in the 3P2 pairing interaction.

Appendix B
Relations in NFSA (Near-Fermi Surface Approximation)

Used in the Text

Here, we treat three energy gaps at the Fermi surface for temperature T , which
are denoted in §3 by (∆, ∆0, ∆2) for the (1S0, 3P2 with mJ = 0, 3P2 with |mJ | =
2), in a parallel way. There, we have written the relations of the effective critical
temperature T ∗

c to the zero temperature energy gap as

kBT ∗
c = (0.57∆(kF , T = 0), 0.60∆0(kF , T = 0), 0.61∆2(kF , T = 0)). (B.1)

The coefficients denoted as a∗0 in §4 are given in NFSA as follows. By solving the
gap equation in a small interval εk − εF = (−ξ, +ξ) with the effective partial-wave
pairing matrix element 〈kF |Ṽλ|kF 〉, we have the well-known equation

kBT ∗
c � 1.14 ξ exp(−1/ρ(0)Uλ), (B.2)

where ρ(0) = M∗kF /2π2h̄2 and Uλ ≡ −4π〈kF |Ṽλ|kF 〉. The zero temperature energy
gaps are obtained as

(∆,
√

4π∆0,
√

4π∆2)kF ,T=0 = 2ξ (1, Γ0, Γ2) × exp(−1/ρ(0)Uλ), (B.3)

where Γ0 = 3.39 and Γ2 = 3.32. These numbers come from the angle dependence
of the gaps: lnΓ|mJ | ≡ − ∫

dΩkf(θk)2 lnf(θk) with
√

4πf(θk) = Θ|mJ |(θk) used in
Eqs. (3·4). Eliminating ξ from (B·2) and (B·3) we obtain the relation (B·1).

The behavior of the energy gap near Tc is obtained by studying the thermody-
namic potential near Tc (T ∗

c in our sense):

∆(kF , T ) �
√

8π2

7ζ(3)
kBT ∗

c

(
1 − T

T ∗
c

)1/2

= 3.06 a∗0 ∆(kF , 0)
(

1 − T

T ∗
c

)1/2

, (B.4)

where ζ is the zeta function, as is well known in the 1S0 case. 49), 50) Similarly, we
have

∆|mJ |(kF , T ) �
√

20π2

21ζ(3)
kBT ∗

c

(
1 − T

T ∗
c

)1/2

= 2.80 a∗0 ∆|mJ |(kF , 0)
(

1 − T

T ∗
c

)1/2

(B.5)
for the 3P2 pairing. The coefficients (3.06 and 2.80) correspond to the values of C1

appearing in Eq. (4·1c), which are obtained in NFSA and are the same as those used
in Ref. 51).
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The limiting form for τ → 0 of Eq. (4·1b) is the familiar one for the 1S0 pairing.
For the 3P2 pairing too, the same form is obtained if we use the angle average
approximation in the procedure in deriving the limiting form. A quality test of this
approximation done numerically shows that it is fairly good, as the errors are at
most about 5%.

Appendix C
On Construction of Profile Function to Describe the Temperature

Dependence of the Energy Gap

Here, the numerical basis for the construction of the profile functions P (τ) de-
scribing the temperature dependence of energy gaps is explained. In Table II we
give the average and the spread of the deviation from the average for the ratios
∆(kF , T )/∆(kF , T = 0) in the 1S0 calculated over the 12 proton fractional densities
with yp and the proton effective mass parameter m∗

p under TNI6u-EOS for the two
potentials indicated. Similarly, for the three pairing potentials indicated, we give
the same quantities on the ratios ∆|mJ |(kF , T )/∆|mJ |(kF , T = 0) for the 3P2 pairing
with mJ = 0 (|mJ | = 2), which are obtained by solving the 3P2 + 3F2 coupled gap
equation (the uncoupled 3P2 gap equation) over 9 densities in pure neutron matter
with m∗

n as explained in the text.

Table II. Average and spread of deviation from the average taken for the ratios of the calculated

energy gaps at T to those at T = 0 for each τ = T/Tc and for the pairing type and the potential,

indicated in the first row. Here [0] and [2] represent |mJ |. In each frame, the upper (lower)

number is the average (spread).

Case 1S0
1S0

3P2 [0] 3P2 [0] 3P2 [0] 3P2 [2] 3P2 [2] 3P2 [2]

τ AV18 OPEG AV18 OPEG-A OPEG-B AV18 OPEG-A OPEG-B

0.3 0.9970 0.9970 0.993 0.992 0.992 0.992 0.992 0.992

0 0 1 1 1 0 0 0

0.5 0.9558 0.9558 0.938 0.938 0.939 0.938 0.938 0.938

1 2 1 2 3 1 0 0

0.7 0.8250 0.8250 0.797 0.795 0.797 0.790 0.790 0.790

4 6 4 4 3 1 2 1

0.8 0.7046 0.7046 0.673 0.668 0.671 0.657 0.658 0.656

8 10 7 7 5 1 3 2

0.9 0.5141 0.5141 0.477 0.467 0.474 0.441 0.432 0.439

16 20 13 13 10 5 8 5

0.95 0.3603 0.3604 0.314 0.297 0.312 0.251 0.250 0.244

27 33 23 24 14 20 23 18

0.97 0.270 0.270 0.213 0.195 0.204 0.116 0.108 0.097

4 5 35 29 28 53 56 51

Appendix D
Reaction Constants for the Cooper-Pair Process

The reaction constants a(i) of the Cooper pair process are given in Table III.
These values were obtained on the basis of CV and CA for the octet baryon (i) given
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in the tables of TTT03. 26) Chosing D = 0.80, F = 0.47 and Σ = 0.23, we use
gA ≡ D +F = 1.27 and ∆Σ ≡ −D/3+F −Σ = 0.13, together with sin2θW = 0.23.

Table III. Reaction constants of the Cooper-pair process.

Baryon Pairing a(i)

n, Ξ0 1S0 1

n 3P2 1 + 2(−gA + ∆Σ)2 = 3.60

p, Σ+ 1S0 (1 − 4sin2θW )2 = 0.0064

p 3P2 (1 − 4sin2θW )2 + 2(gA + ∆Σ)2 = 3.93

Σ−, Ξ− 1S0 (3 − 4sin2θW )2 = 4.33

Λ, Σ0 1S0 1
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