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We analyze the conventional perturbative treatment of sphaleron-induced baryon number washout relevant

for electroweak baryogenesis and show that it is not gauge-independent due to the failure of consistently imple-

menting the Nielsen identities order-by-order in perturbation theory. We provide a gauge-independent criterion

for baryon number preservation in place of the conventional (gauge-dependent) criterion needed for success-

ful electroweak baryogenesis. We also review the arguments leading to the preservation criterion and analyze

several sources of theoretical uncertainties in obtaining a numerical bound. In various beyond the standard

model scenarios, a realistic perturbative treatment will likely require knowledge of the complete two-loop finite

temperature effective potential and the one-loop sphaleron rate.

I. INTRODUCTION

Explaining the cosmic baryon asymmetry remains an open

problem at the interface of cosmology with particle and nu-

clear physics. Among the several proposed scenarios, elec-

troweak baryogenesis (EWB) is particularly interesting as it

is conducive to experimental tests. The mechanism requires a

strong first order electroweak phase transition (EWPT) that

proceeds via bubble nucleation at temperatures ∼100 GeV

and sufficient CP violation. CP-violating interactions at the

bubble walls induce a net density of left handed fermions

(nL) that biases electroweak sphalerons into generation of

baryon number density. As the transition proceeds, baryon

number diffuses into the interiors of the expanding bubbles

where electroweak symmetry breaking slows the sphaleron

transitions. The latter leads to baryon number erasure as the

sphalerons try to restore chemical equilibrium. Thus, success-

ful EWB requires that the sphaleron rate is sufficiently sup-

pressed inside the bubbles to prevent this washout.

In the standard model (SM), the effects of CP-violation as-

sociated with the Cabibbo-Kobayashi-Maskawa (CKM) ma-

trix are too feeble to generate a sufficiently large nL to bias

the sphalerons in the first place. Even if this were not the

case, however, the finite temperature dynamics of the SM

scalar sector do not allow for a first order EWPT as needed

to prevent erasure of an initial baryon asymmetry. Conse-

quently, successful EWB requires both additional sources of

electroweak CP-violation and an augmented scalar sector. Ex-

perimentally, searches for the permanent electric dipole mo-

ments of the neutron, electron, and neutral atoms provide a

probe of the requisite new CP violation, while searches for

new scalar particles at the CERN Large Hadron Collider may

reveal the ingredients needed for the strong first order EWPT

that would preserve the resulting baryon asymmetry.

∗Electronic address: hhpatel@wisc.edu
†Electronic address: mjrm@physics.wisc.edu

In this work we focus on the theoretical analysis of the

washout of the baryon asymmetry during the phase transition.

The most theoretically robust approach to the study of EWPT

dynamics involves Monte Carlo lattice simulations. Several

such studies have been carried out in the SM, yielding re-

sults for the critical temperature, bubble nucleation rate, and

sphaleron rate [1–7]. These quantities depend critically on the

Higgs quartic self coupling, which also governs the value of

the Higgs boson mass, mH . Consequently, there exists a tight

connection between mH and baryon number washout. Lat-

tice results indicate that a strong first order EWPT as needed

for baryon number preservation requires mH . 70 GeV, well

below the current LEP lower bound of 114.4 GeV[8]. Thus,

EWB is only viable in the presence of an extended scalar sec-

tor that is not subject to the current LEP limits.

A number of extended scalar sector scenarios have been an-

alyzed that may successfully remedy the SM shortcomings.

The most widely considered are supersymmetric extensions

(see e.g. [9–15] and references therein), though recent work

has also included analysis of non-supersymmetric models (see

e.g. [16–18] and references therein) . While there exist a

handful of Monte Carlo studies of phase transition dynam-

ics in the minimal supersymmetric standard model (MSSM)

[19, 20], the majority of phase transition studies in extended

scalar sector scenarios have relied on the use of perturbation

theory. Moreover, non-perturbative calculations in the SM and

MSSM have generally concentrated on the thermodynamic

properties of a possible EWPT (such as the critical temper-

ature) rather than directly computing the sphaleron rate that

governs the degree of baryon number washout (for important

exceptions, see [2, 7, 21]).

This situation is not surprising, given the numerical cost

in performing non-perturbative computations. At present, it

is simply not feasible to survey the broad range of extended

scalar sector models and to analyze in each the often large,

multidimensional parameter space using Monte Carlo meth-

ods. In order to identify the EWPT-viable parameter space re-

gions and identify their phenomenological signatures for col-

lider searches, the reliance on perturbation theory appears to

http://arxiv.org/abs/1101.4665v2
mailto:hhpatel@wisc.edu
mailto:mjrm@physics.wisc.edu
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be unavoidable. Thus, it is desirable to arrive at the most

theoretically sound perturbative treatment of baryon number

erasure in order to identify candidate scenarios that are most

promising for EWB and to determine their prospective exper-

imental signatures.

In what follows, we revisit the conventional, perturbative

treatment of baryon number washout and observe that it suf-

fers from a serious theoretical shortcoming, namely, depen-

dence on the choice of gauge. Consequently, there exists rea-

son to question conclusions drawn about the EWB-viability

of scenarios analyzed according to the conventional perturba-

tive treatments. We subsequently show that there exist means

of arriving at a gauge-independent, perturbative treatment of

baryon number washout and we analyze one such approach in

detail. We argue that the use of this approach can provide a

theoretically unambiguous indication of the conditions under

which a given scenario may lead to baryon number preserva-

tion and can point to the relevant, but more limited, regions

of parameter space that should be explored with Monte Carlo

computations. In the course of our discussion, we also re-

visit the approximate criterion used to evaluate the efficacy

of baryon number preservation—henceforth referred to as the

“baryon number preservation criterion”, or BNPC. We also

argue that a realistic BNPC may be more stringent than the

one widely used in recent years and that there exist important

theoretical uncertainties that call for future study. As a practi-

cal matter, we provide an approximate BNPC that differs from

the standard formula used in the literature and that takes into

account the foregoing issues.

A. Brief Overview

Before analyzing these considerations in detail, we provide

a brief overview. If a first order EWPT occurs, it commences

via the formation of broken electroweak symmetry bubbles at

the nucleation temperature TN . The latter typically falls just

below the critical temperature TC at which the broken and

unbroken minima of the scalar effective potential become de-

generate. Inside the broken symmetry phase, the depletion of

baryon number density nB is expected to follow a first order

rate law

∂nB

∂t
= −k(T )nB , (1)

where k(T ) is the temperature-dependent rate constant[22]

k(T ) = −13nf

2

Γsph(T )

V T 3
∼ A(T )e−∆Esph/T , (2)

governed by the temperature T , number of fermion gener-

ations nf , and most importantly the sphaleron rate per unit

volume Γsph/V that depends exponentially on the sphaleron

energy relative to that of the electroweak vacuum,∆Esph. Ad-

ditional, non-exponential dependence on T is contained in the

prefactor A(T ).
The extent to which an initial baryon asymmetry is erased

over the duration of the transition, ∆tEW, is characterized by

the “washout factor”

S =
nB(∆tEW)

nB(0)
. (3)

Assuming for illustrative purposes that k(T ) is approximately

constant during the transition, integration of (1) yields

lnS ∼ e−∆Esph/TC (4)

where we have taken the critical temperature TC as a char-

acteristic temperature of the transition. The magnitude of an

initial baryon asymmetry, determined by the strength of the

CP-violating interactions and transport dynamics, will dictate

a lower bound on S

S > e−X , (5)

below which the final baryon asymmetry would be smaller

than the observed value. Baryon number preservation thus im-

plies roughly a requirement on ∆Esph/TC and thereby on the

underlying particle physics that determines the critical tem-

perature and the sphaleron energy at that temperature.

In the conventional perturbative analysis, the sphaleron en-

ergy ∆Esph is expressed in terms of φmin(TC), the classical

field that minimizes the finite temperature scalar effective po-

tential at the critical temperature. Taking X ≈ 10 (which we

question below) and including the dependence on the ∆tEW

and other factors that enter the rate equation via (1) (see Ap-

pendix A for details), one arrives at the following requirement:

φmin(TC)

TC
& 1.0 (conventional criterion) . (6)

As we discuss below, this criterion is open to question for

three reasons:

(1) The classical field φmin(T ) is inherently gauge-

dependent at any temperature.

(2) The method of computing TC introduces additional

gauge dependence that does not compensate the gauge-

dependence of φmin(TC).

(3) The choice of X ≈ 10 is overly optimistic for most

scenarios, and there exist additional uncertainties asso-

ciated with computing the prefactor A(T ) and integrat-

ing (1).

In what follows, we show that it is possible to obtain a

gauge-independent perturbative estimate of the sphaleron rate

and critical temperature and review both the theoretical uncer-

tainties alluded to in point (3) as well as the choice of X . In

brief,

(1) The sphaleron rate Γsph/V is obtained by evaluat-

ing the temperature-dependent effective action of the

sphaleron. A gauge-independent, perturbative compu-

tation of this quantity can be performed using a dimen-

sionally reduced 3D effective theory where only the
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gauge-independentO(T 2) terms are included in the ef-

fective action. As a result, the theory contains a gauge-

independent energy scale v̄(T ) that is non-vanishing be-

low a temperature T0 (different from TC) and that char-

acterizes the sphaleron energy.

Although additional gauge-independent, one-loop ther-

mal contributions to Γsph/V have been obtained numer-

ically for the minimal SM [23–25], similar perturbative

computations do not exist for its extensions. Conse-

quently, the conventional practice has been to estimate

these contributions by replacing the gauge-independent

sphaleron scale v̄(T ) with the gauge-dependent Higgs

field φmin(T ) that minimizes the full gauge-dependent

effective potential Veff(φ, T ). As a result, the standard

practice leads to a gauge-dependent estimation of the

sphaleron rate regardless of the temperature. Clearly,

a gauge-independent calculation requires utilizing the

gauge-independent scale v̄(T ) rather than φmin(T ).

(2) The critical temperature is obtained from the behavior

of the finite-temperature effective potential Veff(φ, T ).
Bubble nucleation characteristic of a first order phase

transition requires the existence of a barrier separating

the electroweak symmetry-broken and -unbroken min-

ima in Veff(φ, T ). At one-loop order in the SM, this

barrier is generated by non-analytic ∝ Tφ3 terms in the

potential. Since the early work of Dolan and Jackiw,

however, it has been known that this non-analytic part

of the potential is gauge-dependent [26], and the early

papers argued that one should drop these terms from

Veff(φ, T ) when deriving TC . Since doing so allows

only for a second order phase transition, the common

practice in EWB studies has been to retain the non-

analytic terms in Veff(φ, T ). This causes TC to inherit

the gauge-dependence.

A gauge-independent value for TC can be obtained in

perturbation theory by either using a gauge-invariant

source term jΦ†Φ in the generating functional or by

working with a source term jΦ which not gauge-

invariant, and consistently implementing the Nielsen’s

identity[27]. In this work, we follow the latter approach

and defer an exploration of the former to subsequent

study. Nielsen’s identity, derived shortly after the work

of Dolan and Jackiw, implies that the exact effective

action Γeff and potential Veff are gauge-independent at

their extremal points, but that mean fields (φmin) derived

from them remain gauge-dependent. Since TC is de-

fined in terms of minima of Veff and the sphaleron rate

is derived from the saddle point of Γeff, both quantities

are expected to be gauge-independent. However, naı̈ve

truncation of the perturbative series introduces spurious

gauge-dependence in TC . As we show below, it is pos-

sible to avoid this spurious gauge-dependence by deter-

mining TC from the extrema of Veff(φ, T ) in a manner

consistent with the ~-expansion.

(3) Provided that one obtains a gauge-independent com-

putation of the sphaleron rate and critical temperature,

there exist remaining uncertainties in using these quan-

tities to derive a BNPC. For example, the choice ofX ∼
10 derives from early work by Shaposhnikov[28], who

estimated the SM baryon asymmetry from the equation

of motion for Chern-Simons number. The computation

required an estimate of the quark-antiquark asymme-

try δms—produced by CP-violation associated with the

CKM matrix—that enters as a source term in the Chern-

Simons equation of motion. While a range of possi-

ble values for δms were considered in Ref. [28], the

most generous possibility allows for a significant over-

production of baryons in the SM and requires a large

washout of the baryon asymmetry (X ∼ 10). It was

subsequently argued, however, that CP-violation from

the CKM matrix would have been far too small to over-

come even a washout factor of O(1) (for a discussion,

see e.g. Ref. [29]).

Recent attention has focused on the production of CP-

violating asymmetries in supersymmetric models, gen-

erated by the scattering of superpartners from the bub-

ble walls (see Ref. [30] and references therein). Con-

straints on the supersymmetric CP-violating phases im-

posed by EDM searches generally imply that these

asymmetries are right on the edge, at best, of inducing

the observed baryon asymmetry. Consequently, in these

scenarios, a washout factor closer to O(1) (or X ≪ 1)

is likely to be more realistic. In addition, the work of

Ref. [7] suggests that at least in the Standard Model,

the duration of the transition is likely to be closer to

∆tEW ∼ 10−3tH , where tH is the Hubble time, rather

than ∆tEW ∼ tH as assumed in arriving at the criterion

in Eq. (6).

There exist additional uncertainties associated with the

frequency of the unstable sphaleron mode (known from

the work of Ref. [23] but not generally included) and

the evaluation of the sphaleron fluctuation determinant

(known and generally considered) that should be taken

into account when seeking to determine whether or not

the underlying particle physics dynamics lead to suffi-

cient preservation of an initial baryon asymmetry. The

approximate BNPC that we derive below attempts to

take these considerations fully into account.

The primary implications of our analysis of these issues

is to replace the gauge-dependent BNPC (6) with the gauge-

independent one and to include the aforementioned theoretical

uncertainties. In particular, in the LHS one should make the

replacement

φmin(TC ; ξ)

TC(ξ)
−→ v̄(TC)

TC
, (7)

where ξ is the gauge-fixing parameter and where the quanti-

ties to the right of the arrow are ξ-independent. On the RHS of

the BNPC (6), one replaces unity by a range of bounds deter-

mined by an appropriate choice of X and the other theoretical

inputs. The former will depend on the magnitude of the ini-

tial baryon number density nB(0) generated by CP-violating

interactions at the bubble walls as well as particle number
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changing reactions that extend into the unbroken phase where

sphaleron transitions are unsuppressed. We will provide an

expression for the BNPC that takes these considerations into

account in Section VI.

In organizing our discussion of these issues in the remain-

der of the paper, we will be somewhat pedagogical since the

issue of gauge-independence, though clearly of fundamental

importance, is subtle. Consequently, some of the material

consists of a review of earlier work, where we collect and re-

cast in this context results that have been previously derived

in the literature. In addition, we observe that although the

complete evaluation of Γsph is vastly more difficult than de-

termining TC , it appears that at least in the SM the numerical

impact of the treatment of TC appears to be significantly more

important than the one-loop contributions to Γsph associated

with fluctuations about the sphaleron. Consequently, most of

our discussion is focused on TC and Veff.

To that end, in section II, we discuss the effective poten-

tial and the Nielsen identities using a general model that ac-

commodates an arbitrary extension of the SM. We identify

the gauge-independent quantities derivable from the poten-

tial. We also discuss how a failure to consistently imple-

ment the Nielsen identities leads to gauge-dependence in TC .

We subsequently outline our gauge-independent treatment of

the critical temperature in section III, and discuss the gauge-

independent sphaleron rate in section IV. We provide a con-

crete, numerical application of the gauge-independent analy-

sis of the SM in section V, and we discuss the practical im-

plications and theoretical limitations of our procedure – along

with the modified BNPC – in section VI. In that section, we

also examine the dependence of the BNPC on a variety of the-

oretical inputs. Finally, we conclude in section VII. Several

formal results are contained in the Appendix.

II. GAUGE PROBLEM IN THE STANDARD ANALYSIS

We begin our discussion by focusing on the effective poten-

tial Veff, since it from this quantity that the critical temperature

TC and the background field φmin are derived. The standard

practice has been to work in Landau gauge (ξ = 0), but we

will leave ξ arbitrary to illustrate how gauge dependence of

TC and φmin appear in the standard analysis. For pedagogical

purposes, we will first derive the zero-temperature effective

potential in a general gauge and follow up with its general-

ization to finite temperature. After briefly discussing implica-

tions of the gauge problem in the standard analysis, we will

discuss how Nielsen’s identities shed light on this problem.

A. Zero temperature effective potential

We will work in a very general 4D theory[31] (“general

model”) containing an arbitrary number, n, of real scalar de-

grees of freedom, which are assembled into a column vec-

tor, Φi(x) (with i = 1, . . . , n), transforming under a general

(possibly reducible) real representation of an arbitrary (semi-

simple) gauge group, G with N generators. In the real repre-

sentation, the generators ta, a = 1, . . . , N are purely imag-

inary and antisymmetric. For convenience a negative imag-

inary unit, −i, is factored out, so that generators are purely

real and antisymmetric ta = −i T a. All gauge bosons of the

theory are assembled into a vector, Aa
µ, so that the generating

functional and Lagrangian of the theory may be written in a

compact manner:

Z[j] =

∫

DΦDAei
∫
d4xL(x; j) (8)

L =
1

2
DµΦiD

µΦi −
1

4
F a
µνF

µν a − V (Φ) + jiΦi (9)

Our convention for the gauge covariant derivative and field

strength tensor is1 DµΦi = ∂µΦi+Aa
µ(gT

a)ijΦj , and F a
µν =

∂µA
a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν , where fabc are the structure

constants of G. The effective potential is obtained by pass-

ing from the generating functional of connected Greens func-

tions W [j] = −i lnZ[j] to the generating functional of proper

(1PI) vertices, Γ[φcl] via a Legendre transformation

Γ[φcl(x)] = W [j]−
∫

d4x j(x)φcl(x) , (10)

where φcl(x) ≡ ∂W [j]/∂j(x) is the classical field conju-

gate to the source, j(x). For space-time homogenous clas-

sical fields φcl(x) ≡ φcl, we obtain the effective potential,

Γ(φcl) = −(vol)Veff(φcl). To properly define the functional

integral in (8), we must factor out a set of redundant gauge

configurations. Doing so introduces the gauge-dependence

that is the central focus of our analysis.

To make this gauge-dependence explicit, we derive the ef-

fective action following the background field method, where

the scalar fields are (homogeneously) shifted as a change

of variables under the functional integral in (8). We write

Φi(x) = φ̄i + φi(x), where φ̄i are space-time independent

background fields2 and φi(x) represent quantum fluctuations

around the background field.

Organized by powers of quantum fields, the resulting la-

grangian after shifting and before gauge-fixing is

L(x; j) = −V (φ̄) + jφ̄+ φi

(

− ∂V

∂Φi

∣
∣
∣
φ̄
+ ji

)

+
1

2
φi

[
− ∂2 −M2

ij(φ̄)
]
φj − ∂µφiA

a
µ(gT

aφ̄)i

+
1

2
Aa

µ

[
(∂2gµν − ∂µ∂ν)δab +m2

A(φ̄)
abgµν

]
Ab

ν , (11)

1 In general, different gauge coupling constants are assigned to each simple

subgroup of G. To avoid notational clutter, all coupling constants are iden-

tically denoted as g and it should be clear which one we refer to, based on

the generator or gauge field appearing adjacent to it.
2 More precisely, one should write the background field as being dependent

on the source, φ̄ ≡ φ̄(j). The dependence on j is chosen so that, upon

performing the Legendre transformation, φ̄ precisely coincides with φcl ,

facilitating the evaluation of the perturbative loop expansion of the effective

action Γ[φcl] [32].
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where

M2
ij(φ̄) = ∂2V/∂φi ∂φj |φ̄

m2
A(φ̄)

ab = (gT aφ̄)i(gT
bφ̄)i

are field-dependent mass matrices for the scalar and vector

gauge bosons, respectively. Terms cubic and higher order in

quantum fields are not shown.

We now impose the background-field dependent gauge con-

dition3,

Fa ≡ ∂µA
µ a − ξφi(gT

aφ̄)i = 0 (12)

on the quantum fields. This choice, motivated by the Rξ

gauges, has the advantage that adding Lgf = −(Fa)2/2ξ to

the Lagrangian cancels the −∂µφiA
a
µ(gT̃

aφ̄)i mixing term

appearing in (11). The compensating ghost Lagrangian is

Lgh = η†a
[
− ∂2δab − ξm2

A(φ̄)
ab
]
ηb

+ gfabc(∂µη†a)ηbAc
µ − ξ(gT aφ̄)iη

†aηb(gT b
ijφj) . (13)

Upon adding Lgf and Lgh to (11), the gauge-fixed generat-

ing functional is

Z[j] =

∫

DφDADηDη†ei
∫
ddx

(
L(x;j,ξ)

)

, (14)

with

L(x; ξ, j) = −V (φ̄) + jφ̄+ φi

(

− ∂V

∂Φi

∣
∣
∣
φ̄
+ ji

)

+
1

2
φi

[
− ∂2 −M2

ij(φ̄)− ξm2
A(φ̄)ij

]
φj

+
1

2
Aa

µ

[(
∂2gµν − (1− 1

ξ
)∂µ∂ν

)
δab +m2

A(φ̄)
abgµν

]
Ab

ν

+ η†a
[
− ∂2δab − ξm2

A(φ̄)
ab
]
ηb + . . . , (15)

where we have suggestively written

ξm2
A(φ̄)ij = ξ(gT aφ̄)i(gT

aφ̄)j (16)

as the additional gauge-dependent scalar boson mass matrix

arising from Lgf. We prove in appendix B that since they are

both built out of the same object, (gT aφi), the mass matrices

m2
A(φ)ij and m2

A(φ)
ab share the same non-zero eigenvalues.

To obtain the one-loop effective potential, we perform the

Legendre transform, and the functional integrals are carried

out in the gaussian approximation; terms cubic and higher or-

der in quantum fields are dropped from (15). Formally, the

result is a sum of functional logarithmic determinant ratios

3 It is more general to choose the fixed-vector gauge condition: ∂µA
µ a −

ξφiv
a
i = 0 originally proposed in [33]. However, it was pointed out in

[34] that the fixing condition does not allow for a consistent analysis of the

vacuum structure under the homogeneity condition.

(from now, we drop the ‘cl’ label and bars off the classical

background fields):

Veff(φ) = Vtree +
i

vol

[

− 1

2
ln

(
detOsc(φ)

detOsc(0)

)

− 1

2
ln

(
detOgau(φ)

detOgau(0)

)

+ ln

(
detOFP(φ)

detOFP(0)

)]

, (17)

where

Osc(φ) = −∂2 −M2
ij(φ) − ξma

A(φ)ij

Ogau(φ) = (∂2gµν − (1− 1

ξ
)∂µ∂ν)δab +m2

A(φ)
abgµν

OFP(φ) = −∂2δab − ξm2
A(φ)

ab (18)

are the fluctuation differential operators appearing in (15).

The functional determinants may be computed by going to

Fourier space, and diagonalizing the mass matrices [35]. The

result is

Veff(φ) = Vtree(φ)

+
−i

2
µ2ǫ

∫
ddp

(2π)d

[

Tr ln
(
p2 −M2

ij(φ)− ξm2
A(φ)ij

)

+ (d− 1)Tr ln
(
p2 −m2

A(φ)
ab
)
+Tr ln

(
p2 − ξm2

A(φ)
ab
)

− 2 Tr ln
(
p2 − ξm2

A(φ)
ab
)
− “free”

]

, (19)

where the UV-divergent momentum integrals are dimension-

ally regulated (d = 4 − 2ǫ), and “free” refers to the field-

independent subtractions arising from determinant ratios in

(17). In our notation, the trace-log of a matrix means to sum

over the logs of eigenvalues of the matrix. We note that each

term in (19) represents fluctuations of specific degrees of free-

dom in the theory: the first term represents scalar and Gold-

stone fluctuations; the second arises from the transverse and

longitudinal fluctuations of gauge fields, while the third term

corresponds to the scalar (time-like) gauge field fluctuations;

and the fourth term represents fluctuations of the Faddeev-

Popov ghosts fields.

After adding together the last two logs with identical argu-

ments, we perform the momentum integrals using the standard

formula (already expanded in powers of ǫ),

−i

2
µ2

∫
ddp

(2π)d
ln(p2 −m2) =

−1

4(4π)2
(m2)2

(
1

ǫ
− γE − ln 4π − ln

(
m2

µ2

)

+
3

2

)

(20)

The 1/ǫ poles are cancelled against appropriate counter-terms

by choosing a renormalization scheme. We choose the conve-

nient MS-scheme in which the 1/ǫ−γE +ln4π are removed.
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a
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b

FIG. 1: a. Gauge-dependent scalar-QED type graph describing φφ-

scattering that contributes to Γ[φ, A]. b. External-leg corrections

necessary to remove gauge-dependence from φφ-scattering ampli-

tude, but absent from Γ[φ,A].

The result is

Veff(φ) = Vtree(φ)

+
∑

scalars,i

1

4(4π)2
[
m2

i (φ; ξ)
]2

[

ln

(
m2

i (φ; ξ)

µ2

)

− 3

2

]

+
∑

gauge,a

3

4(4π)2
[
m2

a(φ)
]2

[

ln

(
m2

a(φ)

µ2

)

− 5

6

]

−
∑

gauge,a

1

4(4π)2
[
ξm2

a(φ)
]2

[

ln

(
ξm2

a(φ)

µ2

)

− 3

2

]

, (21)

where m2
i (φ; ξ) are eigenvalues of the scalar mass matrix

M2
ij(φ)+ξm2

A(φ)ij , and m2
a(φ) are eigenvalues of the gauge-

boson mass matrix m2
A(φ)

ab. The sums run over these eigen-

values.

B. Origin of gauge dependence

Before generalizing to finite temperature, we pause to com-

ment on the gauge-dependence of the zero-temperature effec-

tive potential. The essential structure is shown in (19). There

are three sources of the gauge parameter: from the scalar mass

matrix ξm2
A(φ)ij in the first log, from the time-like gauge

boson mass matrix ξmA(φ)
ab in the third log, and from the

Faddeev-Popov mass matrix ξmA(φ)
ab in the fourth log. As

m2
A(φ)ij andm2

A(φ)
ab have identical non-vanishing eigenval-

ues (appendix B), one could in principle arrange a cancellation

among these logs by writing

Tr ln
(
p2 −M2

ij(φ)− ξm2
A(φ)ij

)
−→

Tr ln
(
p2 −M2

ij(φ)
)
+Tr ln

(
p2 − ξm2

A(φ)ij
)

(22)

provided m2
A(φ)ij and M2

ij(φ) are simultaneously diagonal-

izable and that their eigenvalues live in distinct subspaces.

However, for general φ, the mass matrices do not decouple,

and thus, the effective potential remains gauge-dependent. We

show in Appendix B that in the specific case when φ extrem-

izes the tree level effective potential, the mass matrices decou-

ple, leading to the necessary cancellation.

The dependence of Veff(φ) on ξ may be traced down to

the dependence of the effective action, Γ[φ,Aµ]. We provide

two equivalent ways of understanding the origin of its depen-

dence on ξ. First [32], the effective action, defined as the sum

of 1-PI graphs, includes a scalar QED-type graph shown in

Fig. 1a, which is gauge dependent. The graph describes a

physical scalar-scalar scattering process that cannot be gauge-

dependent. The sort of graphs needed to cancel gauge depen-

dence from the scattering amplitude is shown in Fig. 1b. Since

external leg corrections are not 1-PI graphs, they do not enter

the effective action, leading to gauge dependence.

Second, the effective action is equivalently defined as the

Legendre transformation of the generating functional of con-

nected Green’s functionsW [j] with respect to the source j(x),
where

W [j] = −i ln

∫

DφDADηDη†ei
∫
ddx

(
L(ξ)+jiφi

)

. (23)

Unlike the gauge-fixed Lagrangian, L(ξ), the source term,

φiji, appearing in the generating functional is not BRST in-

variant since the source transforms as a gauge singlet. As a

result, the effective action derived from the generating func-

tional in this way will depend on the gauge-fixing procedure,

and hence, the gauge parameter.

C. Finite temperature effective potential

We now apply these arguments to the finite temperature ef-

fective potential. The minimizing field φmin(T ) and the criti-

cal temperature TC are obtained from the finite temperature

effective potential. The latter is derived from the partition

functionZ = Tr[e−H/T ] that is expressed as a Euclidean path

integral over field configurations satisfying periodic boundary

conditions in Euclidean time.

The generalization to finite temperature is achieved by re-

peating the steps leading to (19), but with the energy integral

replaced by a sum over Matusbara modes:
∫

dp0

2π −→ T
∑

n.

The potential is computed in the background field method

with the appropriate gauge fixing as before. We mention

that to retain BRST symmetry at finite temperature, the ghost

fields must satisfy periodic boundary conditions, despite being

Grassmann-valued [36]. After making these modifications,

the generalization of (19) is
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Veff(φ, T ) = Vtree(φ) +
T

2

+∞∑

n=−∞
µ2ǫ

∫
dd−1

p

(2π)d−1

[

Tr ln
(
ω2
n + p

2 +M2
ij(φ) + ξm2

A(φ)ij
)

+ (d− 1)Tr ln
(
ω2
n + p

2 +m2
A(φ)

ab
)
+Tr ln

(
ω2
n + p

2 + ξm2
A(φ)

ab)
)
− 2 Tr ln

(
ω2
n + p

2 + ξm2
A(φ)

ab
)
− “free”

]

, (24)

where ωn = (2πnT ) are the bosonic Matsubara frequencies and where “free” is the free-field subtraction. After performing the

frequency sum, the one-loop contribution separates into a zero-temperature part and a temperature-dependent part,

Veff(φ, T ) = Vtree(φ) + VCW(φ) +
T 4

2π2

[ ∑

scalar,i

JB
(
m2

i (φ; ξ)/T
2
)
+ 3

∑

gauge,a

JB
(
m2

a(φ)/T
2
)
−

∑

gauge,a

JB
(
ξm2

a(φ)/T
2
) ]

, (25)

where Vtree(φ) + VCW(φ) is the Coleman-Weinberg effective potential in Eq. (21), JB(z
2) =

∫∞
0 dxx2 ln(1− e−

√
x2+z2

) is the

bosonic thermal function, and where m2
i (φ; ξ) and m2

a(φ) are, respectively, the eigenvalues of the scalar and gauge boson mass

matrices as defined below Eq. (21). The thermal functions are typically numerically integrated or approximated using a Bessel

function representation.

Clearly, the finite-temperature effective potential (25) is

gauge dependent. The dependence appears for precisely the

same reasons described in the previous section. The scalar

trace-log represented by the first term under the integral in

Eq. (24) cannot be split in a manner similar to Eq. (22) be-

cause the scalar mass matrices M2
ij(φ) and m2

A(φ)ij are gen-

erally not simultaneously diagonalizable with eigenvalues liv-

ing in distinct subspaces.

D. Implications for the standard analysis

We now show that the gauge-dependence of the effective

potential leads to an unphysical treatment of the BNPC in the

standard analysis. For the sake of clarity we temporarily re-

strict our discussion to the SM.

The critical temperature TC marking a phase transition be-

tween two phases φ
(1)
i and φ

(2)
i , derived from (25), is defined

by

Veff(φ
(1)
i , TC ; ξ)− Veff(φ

(2)
i , TC ; ξ) = 0 (26)

∂Veff

∂φi

∣
∣
∣
φ
(1)
i ,TC

=
∂Veff

∂φi

∣
∣
∣
φ
(2)
i ,TC

= 0 . (27)

In the SM, φ(1) = 0 is the symmetric phase, while φ(2) ≡
φmin(TC) characterizes the broken phase. In the standard anal-

ysis, (26) and (27) are simultaneously solved to obtain both

TC and φmin(TC). Their ratio is compared to the bound (6)

required for preservation of the baryon asymmetry.

It is straightforward to see that naı̈vely inverting these equa-

tions at one-loop order leads to a gauge-dependent estimate

of the sphaleron rate. To that end, we consider the high-

T approximation to the full effective potential. The thermal

bosonic function JB(z
2) admits a high-temperature expan-

sion [26]

JB(z
2) = −π4

45
+
π2

12
z2− π

6
(z2)3/2− 1

32
z4 ln z2+. . . , (28)

with which the effective potential (25) may be cast as a poly-

nomial in φ:

Veff(φ, T ) = D(T 2 − T 2
0 )φ

2 − ETφ3 +
λ̄

4
φ4 + . . . . (29)

The coefficients D, T 2
0 , E and λ̄ depend on the parameters of

the underlying model. In the SM, the coefficients are [37]

D =
1

32
(g21 + 3g22 + 4y2t + 8λ) ,

T 2
0 = µ2/2D ,

E =
3− ξ3/2

96π

(
2g32 + (g21 + g22)

3/2
)
,

and λ̄ = λ+ (ξ-dep. log) ,

(30)

where yt is the top yukawa coupling; g1 and g2 are the U(1)

and SU(2)L gauge coupling constants; and the scalar quartic

self coupling λ̄ picks up a logarithmic ξ-dependence.

We observe that the coefficient of the quadratic term

is gauge-independent, as one expects based on the gauge-

independence of thermal masses (see e.g., Ref. [38]). In Ap-

pendix C, we explicitly demonstrate this property for the gen-

eral model. As we will discuss below, we take advantage of

this property to define the high-temperature effective theory

used to obtain a gauge-independent sphaleron scale.

Unfortunately, the coefficient E is not only gauge-

dependent but strongly so. For example, by choosing ξ = 32/3

the E-coefficient can be made to vanish, and the barrier nec-

essary for a first order phase transition is permanently ab-

sent. One might hope that the ratio φmin(TC)/TC removes

this gauge-dependence. However it is straightforward to show

that this hope is not realized. A simple calculation gives (for

a pedagogical review, see Ref. [9])

φmin(TC)

TC
=

2E

λ̄
, (31)

which remains gauge dependent. Hence the standard analysis

leads to an unphysical treatment of the BNPC.
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In various Standard Model extensions where either new

scalar loops or tree-level operators generate large contribu-

tions to the cubic term, it is conceivable that the impact of

the gauge dependence is numerically minimized so long as

one works in a region near ξ = 0. Nevertheless, such a sit-

uation would be wholly unsatisfying as one would not know

whether a perturbative computation near ξ = 0 reflects reality

or introduces a substantial gauge-dependent artifact. Instead,

one should endeavor to maintain strict gauge-independence

throughout the analysis in order to avoid any ambiguity. Be-

fore moving on to our proposal for a gauge-independent anal-

ysis, we briefly review some theoretical properties of the ef-

fective potential that will prove useful later.

E. Nielsen identities

The dependence of the effective action on the gauge-fixing

parameter is described by the Nielsen identity [27] [34], and

its precise form depends on the gauge fixing condition im-

posed on the quantum fields. The identity follows directly

from the BRST (non)invariance of the sourced generating

functional. For the general class of linear gauges, the iden-

tity reads

∂Γ

∂ξ
=

∫

ddx ddy
[

Ci(φ,A; x, y)
δΓ

δφi(x)

+ Ea
µ(φ,A; x, y)

δΓ

δAa
µ(x)

]

, (32)

where, C and E stand for field-dependent vacuum correlators.

The interpretation of the identity is clear: the value of the ef-

fective action evaluated at its stationary points, i.e. at points

where the classical fields satisfy δΓ/δφi(x) = δΓ/δAa
µ(x) =

0, is gauge-independent. This is as it should be since physical

quantities are derived from the stationary points of the effec-

tive action [39].

To compute the effective potential, the vector potentials are

taken to vanish Aµ(x) = 0, and the scalar fields assumed to

be homogenous φ(x) ≡ φ. In this case, the effective action

reduces to the effective potential, Γ[φ]/vol = −Veff(φ), and

the Nielsen identity simplifies to

∂Veff

∂ξ
= −Ci(φ, ξ)

∂Veff

∂φi
, (33)

which carries the same interpretation: the effective potential is

gauge-independent where it is stationary. Note, however, that

the point in field space minimizing (or extremizing) the effec-

tive potential φmin(ξ) is not gauge independent; as the gauge

parameter is varied, the effective potential compresses or ex-

pands along the φ-axis (see Fig. 2), while maintaining gauge

independence of the energy density at its extremal points.

The derivation of (32) and (33) does not rely on per-

forming any non-trivial space-time or energy-momentum in-

tegrations. Thus, Nielsen’s identities are valid at finite tem-

perature upon the standard replacement
∫

dp0

2π −→ T
∑

n.

An immediate consequence, proven in Appendix D, is the

Φ

Veff

Ξ1Ξ2

FIG. 2: A schematic illustration of the behavior of the exact effective

potential as the gauge parameter ξ is varied according to Nielsen’s

identity. The values of the potential at its extrema stay unchanged

but the fields extremizing the potential are gauge-dependent.

gauge-independence of the critical temperature. However, as

mentioned above, the precise value of the minimizing field

φ(TC) remains gauge dependent (see Appendix E for details).

Thus, the ratio φ(TC)/TC conventionally used to establish the

BNPC is inherently gauge dependent.

F. Artificial violations of Nielsen’s identities

Although gauge independence of physical quantities is an

exact statement following from Nielsen’s identities, gauge de-

pendence may be introduced to physical quantities as an arti-

fact of an approximation scheme. In particular, naı̈vely trun-

cating the perturbative effective potential at a finite order in

perturbation theory leads to apparent violations of Nielsen’s

identity. In fact, we identify this naı̈ve truncation as the princi-

pal source of gauge dependence in the standard determination

of TC .

Such effects may be deduced directly from Nielsen’s iden-

tity. By expressing Veff(φ) and C(φ, ξ) in (33) as a series in

~,

Veff(φ) = V0(φ) + ~V1(φ) + ~
2 V2(φ) + . . . (34)

C(φ, ξ) = c0 + ~ c1(φ) + ~
2 c2(φ) + . . . , (35)

and retaining terms through O(~) in both sides of (33), we

find

∂V0

∂ξ
+ ~

∂V1

∂ξ
= −c0

∂V0

∂φ
− ~

(

c0
∂V1

∂φ
+ c1

∂V0

∂φ

)

. (36)

Since the tree-level potential V0 is strictly gauge independent,

setting O(~0) terms equal implies c0 = 0. Upon setting

O(~1) terms equal we have

∂V1

∂ξ
= −c1

∂V0

∂φ
; (37)

that is, the one-loop potential is gauge-independent only

where the tree-level potential is extremized, and not where the

one-loop potential is extremized. Therefore, the critical tem-

perature based on the one-loop extremum is gauge-dependent.

We note that gauge dependence appears formally at a higher
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order than the order of approximation. Yet, numerically, there

is no limit to its sensitivity, and one should necessarily strive

to obtain a critical temperature that strictly maintains gauge-

independence at each order in perturbation theory.

III. GAUGE-INDEPENDENT DETERMINATION OF TC

In the following sections, we detail one method for per-

forming a gauge-independent perturbative analysis of the

EWPT. As discussed above, exact expressions for the criti-

cal temperature and sphaleron rate are not at our disposal;

each has to be computed in an approximation scheme. We

focus on the critical temperature in this section, and discuss

the sphaleron scale in the next section. We stress that the

computation of the critical temperature and the temperature-

dependent sphaleron energy are two independent calculations,

and that each should separately be gauge-independent. Since

they are derived from different quantities – one from the effec-

tive potential, the other from the effective action – the analysis

should be treated as such, by computing both quantities sepa-

rately.

A. The ~ expansion

The key to extracting a gauge-independent critical tempera-

ture is to invert the defining equations (26) and (27) in a man-

ner consistent with the ~-expansion. To that end, we start by

computing the effective potential to the desired order in per-

turbation theory as outlined in Sec. II:

Veff(φ, T ) = V0(φ) + ~V1(φ, T ) + ~
2 V2(φ, T ) + . . . (38)

We wish to minimize this function,

∂Veff

∂φ

∣
∣
∣
φmin

= 0 . (39)

We then write φmin as a series in ~

φmin = φ0 + ~φ1(T, ξ) + ~
2 φ2(T, ξ) + . . . , (40)

where φ0 represents any one of the minima of the tree-level

effective potential. Upon substitution into (39), we find

∂V0

∂φ

∣
∣
∣
φ0+~φ1+...

+ ~
∂V1

∂φ

∣
∣
∣
φ0+~φ1+...

+ . . . = 0

∂V0

∂φ

∣
∣
∣
φ0

+ ~

(∂V1

∂φ

∣
∣
∣
φ0

+ φ1
∂2V0

∂φ2

∣
∣
∣
φ0

)

+O(~2) = 0 , (41)

where in the second line, we have expanded and organized

in powers of ~. The requirement that each coefficient must

vanish individually determines the position of the minimum

φmin at each order in perturbation theory:

O(~0) : 0 =
∂V0

∂φ

∣
∣
∣
φ0

O(~1) : φ1(T, ξ) = −
(∂2V0

∂φ2

)−1

φ0

∂V1(T, ξ)

∂φ

∣
∣
∣
φ0

(42)

Here, φ1(T, ξ) represents the genuine, albeit gauge-

dependent, one-loop correction to the tree-level VEV φ0 at

zero temperature, or to the background field at finite temper-

ature. After substituting these back into (38) and expanding

again in ~, we find

Veff(φmin(T ), T ) = V0(φ0) + ~V1(φ0, T )

+ ~
2
[
V2(φ0, T, ξ)− 1

2φ
2
1(T, ξ)

∂2V0

∂φ2 |φ0

]
+O(~3) . (43)

This formula for Veff(φmin(T ), T ) appears in Ref. [40], ap-

plied to the high-temperature effective theory.

At each order in ~, the RHS of Eq. (43) is gauge indepen-

dent in accordance with Nielsen’s identity. An explicit ver-

ification of this for the O(~) term is as follows. The one-

loop expression is shown in (24) and must be evaluated at the

tree level minimum φ0. Thus, the mass matrices M2
ij(φ0) and

m2
A(φ0)ij in (24) are evaluated at φ0. At that point, these

mass matrices are simultaneously diagonalizable and eigen-

values live in distinct subspaces (Appendix B). As discussed

in section II B, this situation allows us to split the scalar log

into two terms as in (22) and finally achieve the needed can-

cellation among the gauge-dependent logarithms.

Equation (43) provides a gauge-independent closed-form

expression for the value of the effective potential at its local

minimum (or maximum) as a function of temperature. Since

the function may be computed from any extremum φ0 derived

from the tree-level potential V0, equation (43) defines a family

of curves which follow the temperature evolution of the ex-

tremal points. At each intersection point, the degeneracy con-

dition (26) is satisfied, and that point potentially corresponds

to a critical temperature. Since phase transitions typically take

the system from one global minimum of Veff to another, criti-

cal temperatures occur when the two lowest curves intersect.

Fig. 3 depicts a scenario for a hypothetical theory with three

phases. Evolution of the universe proceeds from right to left.

In this example, the phase transition occurs in two steps. First,

a transition occurs from phase 1 to phase 2 at temperature

TC, 1. Then a second transition takes place from phase 2 to

phase 3 at temperature TC, 2.

Note that, in stark contrast with the current analysis which

focuses on the complicated multivariable function Veff(φ, T )
to follow the free energy of each phase, the foregoing method

deals with a family of functions dependent on the single vari-

able T . Because numerical algorithms that find intersection

points of two curves are significantly more efficient than those

that find global minima of multivariable functions, our method

to find critical temperatures is substantially faster than the

standard methods. This is an added benefit of the gauge-

independent approach discussed above, as it would speed up

the analysis of multi-step phase transitions in complicated ex-

tensions of the SM that are subject to extensive parameter

scans.
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T

Veff(ϕmin)

phase 1
ph
as
e
2

ph
as
e
3

TC, 1TC, 2

FIG. 3: Value of Veff(φmin) for three different phases as a function

of T as determined by (43) in a hypothetical theory. Evolution of

the universe proceeds from right to left, following the direction of

the arrows. Intersections of the two lowest curves define the critical

temperatures (there are two in this example).

B. Qualitative analysis of the gauge-independent critical

temperature

One may get a sense of the behavior of the critical tem-

perature at O(~) by analyzing (43) in the high-T limit. We

shall restrict ourselves to a single degree of freedom and study

a phase transition from the symmetric phase to the broken

phase. We normalize the potential such that it vanishes at the

origin at all temperatures, so that the degeneracy condition

(26) to O(~) reads

Veff(φ, TC) = V0(φ0) + ~V1(φ0, T ) = 0 . (44)

After applying the high-temperature expansion of the thermal

bosonic function (28) to the LHS of (44) we have

D(T 2 − T 2
0 )φ

2
0 − ETφ3

0 +
λ̄

4
φ4
0 = 0 . (45)

Note that gauge-independence of this expression is ensured

only when the fields are evaluated at their tree-level minima

φ0 = T0

√

2D/λ̄ as dictated by the ~-expansion. Solving

this equation for T yields two roots; only one gives a positive

critical temperature

TC = T0

(
ET0

λ̄φ0
+

√
(
ET0

λ̄φ0

)2

+
1

2

)

, (46)

where D was eliminated in favor of φ0. Assuming no tree-

level cubic terms, we may take E small, since it is loop-

suppressed. We the find

TC =
T0√
2
≈ 0.71T0 , (47)

that the critical temperature is approximately 30% lower than

T0 (the critical temperature in the second-order limit). Our

one-loop numerical study of TC presented in Section V con-

firms these expectations. Writing T0 = φ0

√

λ̄/2D, we find

the scaling behavior of the critical temperature

TC =
φ0

2

√

λ̄

D
. (48)

As the quartic coupling λ̄ is increased, the critical temperature

rises, too.

C. Higher-order contributions

When analyzing the behavior of the effective potential, it is

instructive to investigate the impact of higher-order contribu-

tions and to explore the limits of validity of perturbation the-

ory. In this section we study these higher-order contributions

to assess their importance to (43).

It is well-known that at high temperatures the perturbative

expansion breaks down due to uncontrolled g2T 2/m2 terms

appearing at higher orders[26][41][42]. These “plasma damp-

ing” contributions are induced by fluctuations of n > 0 Mat-

subara modes at high temperature. This malady is cured by re-

summing these terms to all orders to obtain a “ring-improved”

effective potential V ring
eff (φ, T ) that includes the damping ef-

fects. In this subsection, we will discuss two possible gauge-

independent methods of including such effects. We will then

conclude by briefly discussing the O(~2) term of (43).

1. High-T effective theory

One may include damping effects by going to the high-T ef-

fective theory by integrating out the heavy Matsubara modes

via dimensional reduction. Nielsen’s identities (32) and (33)

apply to any gauge theory, including effective theories. Pro-

vided no explicit gauge-dependence is introduced in the Wil-

son coefficients of the effective theory, stationary points of

the effective potential derived from it will remain gauge-

independent. For the same reasons that the effective action

is gauge-dependent, so is the effective potential obtained with

the dimensional reduction procedure. Indeed, the Wilson co-

efficients of all terms, apart from the O(T 2) terms are gauge-

dependent. However, by working in the limit T ≫ mT=0
W , one

can justify retaining only these O(T 2) terms of the effective

theory. These terms are gauge independent because thermal

masses are gauge independent. In principle, then, it is possible

within this limit to derive a gauge-independent critical tem-

perature from the high-T effective theory with the g2T 2/m2

terms implicitly re-summed.

This procedure has been applied to the SU(2) Higgs model

in Ref. [40] , where it was argued that the ~ expansion for TC

breaks down at two-loop order. We revisit this analysis briefly

below and also conclude that this approach is not useful for

obtaining information about the phase transition.

To proceed, we start with the effective lagrangian, where

the heavy Matsubara modes are integrated out[40, 43, 44]:

L3 =
1

2
( ~DΦi)

2 + V (Φ) +
1

2
Σij(T )ΦiΦj

+
1

4
F
↔

a.F
↔

a +
1

2
( ~DAa

0)
2 +

1

2
Πab(T )Aa

0A
b
0

+ ΛabcdAa
0A

b
0A

c
0A

d
0 +Hab

ij A
a
0A

b
0ΦiΦj + jiΦi , (49)
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where F
↔

is the 3D field strength tensor, Σ(T ) and Π(T ) are

scalar and gauge-boson thermal mass matrices, respectively;

Hab
ij gives the tree-level quartic coupling of the scalar and

time-like gauge fields; and Λabcd is a T -independent loop in-

duced quartic interaction of the time-like gauge fields. Note

that we have not yet performed the integration over the n = 0
Matsubara modes. In this theory, the tree-level scalar potential

is

V
high-T
0 (Φ, T ) = V (Φ) +

1

2
Σij(T )ΦiΦj . (50)

In the standard SU(2) model with a single degree of freedom,

this potential may be written in a form similar to the high

temperature-expansion of the effective potential derived from

the full theory (29):

V
high-T
0 (φ, T ) = D(T 2 − T 2

0 )φ
2 +

λ̄

4
φ4 , (51)

where DT 2
0 = −µ2/2 and where DT 2 incorporates the effect

of the scalar thermal mass with D being given in (30). In

contrast to the high-T expansion of the full gauge-dependent

effective potential (29), the RHS of Eq. (51) contains no Tφ3

term. Its appearance in (29) is due to Matsubara zero modes,

which we have not yet integrated out to derive (51). Thus, at

tree level, the phase transition is second order and the critical

temperature is T0.

The one-loop effective potential is computed following the

background field method, with an Rξ gauge fixing condition

similar to (12). Upon performing the functional integration

over the zero modes, the high-T effective potential acquires

the non-analytic terms necessary for a first order phase transi-

tion.

V high-T
eff (φ, T ) = V high-T

0 (φ, T )

− T

12π

∑

e-values

[
(
M2

ij(φ) + ξm2
A(φ)ij +Σij(T )

)3/2

+ 2
(
m2

A(φ)
ab
)3/2

+
(
m2

A(φ)
ab +Πab(T )

)3/2

−
(
ξm2

A(φ)
ab
)3/2

]

, (52)

where the sum runs over the eigenvalues of the field-

dependent mass matrices defined in below (11) and (15).

The potential is gauge dependent as expected. Neverthe-

less, one might expect to obtain a gauge independent crit-

ical temperature by applying the ~-expansion (43) on the

high-T effective potential and determining intersection points

as outlined section III A. Indeed, the cancellation of gauge-

dependence operates in a manner analogous to that in the

full 4D theory. The difference in this case is the tree-level

extrema derived from (50) are now temperature dependent

φ0 ≡ φ0(T ). So, when the scalar mass matrices are evalu-

ated at these points in accordance with (43), the eigenvalues

of M2
ij

(
φ0(T )

)
+ Σij(T ) and ξm2

A

(
φ0(T )

)

ij
decouple, al-

lowing us to write

[
M2

ij

(
φ0(T )

)
+ ξm2

A

(
φ0(T )

)

ij
+Σij(T )

]3/2 −→
[
M2

ij

(
φ0(T )

)
+Σij(T )

]3/2
+
[
ξm2

A

(
φ0(T )

)

ij

]3/2
, (53)

and arrange a cancellation with the last term of (52) after ap-

plying theorem 2 in Appendix B.

Before discussing the physical implications of the above

procedure, we contrast this method with the approach taken

in Ref. [40], which, in addition to Veff and φmin, TC is itself

written in powers of ~:

TC = T0 + ~T1 + ~
2T2 + . . . . (54)

As before, the leading order critical temperature is T0 and

the transition is second order. Inclusion of the O(~) terms

yields a contribution T1 proportional to the product4 of Hab
ij

and Πab(T ). At O(~2), the scalar mass acquires a logarith-

mic dependence on the renormalization scale µ as needed to

maintain the renormalization group invariance of the poten-

tial. Ref. [40] finds that this is associated with a two-loop

contribution to the potential of the form

ln

(
D(T 2 − T 2

0 )

µ2

)

. (55)

When solving for T2, the argument of the logarithm must be

evaluated at T = T0 in order to maintain consistency with

the ~-expansion of TC . In this case, the argument of the log-

arithm vanishes, signaling the presence of an IR divergence.

As Ref. [40] concludes, the ~ expansion clearly fails when

implemented in this manner.

We believe that our method proposed in section III A does

not suffer from this breakdown. Note that our method of de-

termining the critical temperature just requires the analysis of

the ~ series expansion of Veff(φmin) in (43). Since this quantity

is already gauge-independent at any value of the temperature,

a series expansion of TC is not needed. Instead we take the

temperature as an external parameter and then numerically

solve for TC that satisfies the degeneracy condition (26). In

general, then, the value of TC appearing in the argument of

the logarithm in Eq. (55) will differ from its leading order

value T0, and so one should not encounter an IR divergence

with this method. One must of course separately treat the spe-

cific case when the solution of the degeneracy condition gives

TC = T0 exactly. As we also note below, we do not encounter

any IR divergences at O(~2) when determining TC using the

full theory in the high-T regime. Thus, it appears to us that

the breakdown of the ~ expansion as obtained in Ref. [40] is a

consequence of expanding TC itself.

We emphasize that these observations do not constitute a

criticism of the work of Ref. [40]. In that work, the full O(~2)
contributions to the minima of the effective potential in the di-

mensionally reduced effective theory were computed explic-

itly and shown to be gauge-independent and an expression for

4 In the notation of [40] these are denoted h3 and mD , respectively.
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FIG. 4: A representative ring diagram contributing to ∆Vring(φ,T ).
The Matsubara n = 0 mode propagates in the lower loop. The

smaller loops are hard thermal loops, each of which contributes a

factor of g2T 2/m2.

the value that minimum similar to Eq. (43) appears. Moreover,

a careful discussion of IR divergences for T in the vicinity of

T0 was given. We merely differ on the application of the ~-

expansion to TC itself.

That being said, we also conclude that this approach using

the dimensionally-reduced, high-T effective theory is unlikely

to yield useful information about the true critical temperature.

The reason is that in the dimensionally reduced theory, at lead-

ing order in ~ in the SM, there exists only one minimum at

any given temperature. At T > T0, this minimum lies at

φ0 = 0. For T < T0, φ0 = 0 gives a local maximum while

φ2
0 = 2D(T 2

0 − T 2)/λ. At T = T0 the two coincide, and

one encounters the IR divergence when evaluating the higher

order terms at φ0 = 0. It is unlikely that for T < T0 the

higher order corrections convert the tree-level local maximum

at the origin into a local minimum, so that one expects the

only critical temperature that ever appears is T0. Thus, we

abandon this approach for incorporating the plasma damping

effects into the determination of TC .

2. A ring-sum prescription

The second alternative to including the damping effects en-

tails a variant on the conventional approach based on the full

4D theory. In this approach, the g2T 2/m2 terms are under-

stood to arise from the high temperature limit of ring (or daisy)

graphs shown in Fig. 4. The summation of these graphs to all

orders results in an additional contribution to the potential (25)

of the form

∆Vring(φ, T ) = V
[B]

ring (φ, T )− V
[A]

ring (φ, T ) , (56)

where

V
[A]

ring (φ, T ) = −~
T

12π

∑

e-values

[(
M2

ij(φ) + ξm2
A(φ)ij

)3/2

+ 3
(
m2

A(φ)
ab
)3/2 −

(
ξm2

A(φ)
ab
)3/2

]

, (57)

is the non-analytic part of Veff(φ, T ) in (C4) and gets replaced

by the thermal damping expression

V
[B]

ring (φ, T ) =

− ~
T

12π

∑

e-values

[
(
M2

ij(φ) + ξm2
A(φ)ij +Σij(T )

)3/2

+ 2
(
m2

A(φ)
ab
)3/2

+
(
m2

A(φ)
ab +Πab(T )

)3/2

−
(
ξm2

A(φ)
ab
)3/2

]

, (58)

which coincides with the 1-loop expression of V high-T
eff (φ, T )

in (52). These may be added to bring ∆Vring(φ, T ) into a more

recognizable form

∆Vring(φ, T ) =

− ~
T

12π

∑

scalars, i

[(
m2(φ, ξ) + Σ(T )

)3/2

i
−m2

i (φ; ξ)
3/2

]

− ~
T

12π

∑

longit.
gauge, a

[(
m2

A(φ) + Π(T )
)3/2

a
−m2

A(φ)
3/2
a

]

, (59)

where m2(φ; ξ) = M2(φ) + ξmA(φ) is the scalar mass ma-

trix, mA(φ) is the gauge boson mass matrix, and Σ(T ) and

Π(T ) are their gauge-independent thermal self-energy matri-

ces which start at O(~). The sums run over the eigenvalues of

these matrices.

Note that since Σ(T ) and Π(T ) are O(~), the procedure of

re-summing these graphs necessarily departs from the strict ~-

expansion needed to ensure gauge-independence. Thus, it is

a non-trivial problem to implement the re-summation into the

gauge-independent analysis as one would have to analyze the

all-orders expression of (43) and identify the g2T 2/m2 terms

that need to be re-summed.

Instead we provide a gauge-independent prescription for

its inclusion based on the following observation. Earlier, we

pointed out that V
[B]

ring (φ, T ) is just the one-loop expression

of the effective potential derived from the high-T theory, and

V
[A]

ring (φ, T ) is the O(T ) part of the effective potential derived

from the full 4D theory. Thus, if we evaluate V
[B]

ring at φ0(T ),

which minimizes the tree-level high-T potential V high-T
0 (φ, T )

in (50), we may apply (53) to cancel the gauge-dependence in

V
[B]

ring (φ0(T ), T ). Similarly, if we evaluate V
[A]

ring at φ0, which

minimizes the tree-level potential of the full 4D theory (9), we

may apply

(
M2

ij(φ0) + ξm2
A(φ0)ij

)3/2 −→
(
M2

ij(φ0)
)3/2

+
(
ξm2

A(φ0)ij
)3/2

,

the 4D analog of (53), to cancel the gauge-dependence in

V
[A]

ring (φ0, T ). Therefore, the prescription we propose for ob-

taining the gauge-independent expression for ∆Vring is

∆V G.I.
ring (T ) = V

[B]
ring (φ0(T ), T )− V

[A]
ring (φ0, T ) , (60)
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so that the expression for the gauge-independent one-loop

ring-improved effective potential at its minima is

Veff(φmin(T ), T ) = V0(φ0)+~V1(φ0, T )+∆V G.I.
ring (T ) . (61)

As it stands, the construction of ∆V G.I.
ring is somewhat ad hoc

as we have not yet rigorously demonstrated that (60) is the

result of re-summing the g2T 2/m2 terms in (43) to all orders

in ~. Instead, using a simple φ4 theory, we illustrate that our

prescription correctly gives the hard thermal loop contribution

to the O(~2) term of the series in (43).

Starting with the tree-level potential of φ4 theory,

V0(φ) = −µ2

2
φ2 +

λ

4
φ4 , (62)

we find that the tree-level minimum φ0 and the field-

dependent mass m2(φ) are given by

φ0 =
√

µ2/λ m2(φ) =
∂2V0

∂φ2
= −µ2 + 3λφ2 . (63)

Following the procedure outlined in section II, a little work

shows that the one-loop finite temperature effective potential

(25) is given by

V1(φ, T ) = VCW(φ) +
T 4

2π2
JB

(
m2(φ)/T 2

)

= −π2

90
T 4 +

T 2

24
m2(φ)− T

12π
m2(φ)3/2 + . . . ,

(64)

from which we derive the one-loop correction to the VEV

(42),

φ1(T ) = −
√
λ

8µ
T 2 +

3
√
2λ

8π
T +O(T 0). (65)

We also find the tree-level potential (50) of the high tem-

perature effective theory to be

V high-T
0 (φ, T ) =

1

2

(
− µ2 +Σ(T )

)
φ2 +

λ

4
φ4 , (66)

where Σ(T ) = ~λT 2/4 is the thermal mass. The tree-level

minimum of this potential is given by

φ0(T ) =
√
(
µ2 − Σ(T )

)
/λ . (67)

Then, the result of re-summing the ring diagrams Fig. 4 gives

(56)

∆Vring(φ, T ) = V
[B]

ring (φ, T )− V
[A]

ring (φ, T )

= −~
T

12π

[(
m2(φ) + Σ(T )

)3/2 −
(
m2(φ)

)3/2
]

. (68)

The prescription to construct the gauge-independent poten-

tial is to evaluate the first term term in (68) at φ0(T ) given by

(67) and the second term at φ0 given by (63). The result is

∆V G.I.
ring (φ, T ) = −~

T

12π

[(

2µ2 − ~
λT 2

2

)3/2

− (2µ2)3/2

]

= ~
2 λµ

8
√
2π

T 3 +O(~2) . (69)

We now show that this O(~2T 3) term is precisely what is con-

tained in the O(~2) term of (43)

O(~2) :
[
V2(φ0, T )− 1

2φ
2
1(T )

∂2V0

∂φ2 |φ0

]
. (70)

An explicit calculation of the two-loop bubble graph of the

type in Fig. 4 contributing to V2(φ0) yields

V2(φ0, T )|bubb. =

�

=
−λµ

16
√
2π

T 3 . (71)

Then, substituting (63), (65) and (71) into (70) we find

(eqn. 70) = . . .+
λµ

8
√
2π

T 3 +O(T 4) , (72)

that the O(~2T 3) term is in agreement with (69).

We have carried out a similar analysis, drawing on the re-

sults in Ref. [45], to show that the prescription given in (60)

yields the O(~2T 3) in the SM. We remind the reader that

while this result is not a rigorous demonstration of the va-

lidity of this prescription, it does indicate that the gauge-

independent quantity ∆V G.I.
ring gives an all-orders estimate of

the effects of plasma screening which correctly reproduces the

correspondingO(~2T 3) contribution arising from the full po-

tential. In section V A, we will study the numerical impact of

including ∆V G.I.
ring when determining TC .

3. Two-loop order

In addition to investigating the all-orders re-summation of

the plasma damping corrections, one may also inquire about

the remaining higher-order corrections. To that end, we con-

sider the explicit O(~2) terms in Eq. (43). We first observe

that this contribution contains the term

− 1

2
φ2
1

∂2V0

∂φ2
|φ0 (73)

which is manifestly negative due to the concavity of V0 at the

minimum. By itself, this negative contribution will lead to

an increase in TC , and is therefore suggestive of the impor-

tance of remaining O(~2) contributions. Of course, gauge-

invariance requires inclusion of the explicit two loop term

V2(φ0, T ). At present, we are not aware of any computation

of V2 in an arbitrary gauge in the full theory5 and are unable

to rigorously demonstrate the gauge-invariance determination

of the O(~2) contribution.

On the other hand, the authors of Ref. [45] have computed

this contribution in the full theory for the SM using the Lan-

dau gauge. Thus, use of their results in combination with a

5 The corresponding computation in the dimensionally-reduced, high-T ef-

fective theory has been carried out in Ref. [40]; see above.
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computation of (73) in the SM with same gauge should yield a

gauge-independent result. Unfortunately, only expressions for

V2(φ, T ) in the high-T expansion are available from Ref. [45],

so it is not possible in the present study to provide a gauge-

independent determination of the complete O(~2) contribu-

tions. We again defer a full two-loop computation to future

study. Nevertheless, to the extent that the high-T approxi-

mation to V2(φ, T ) provides a numerically realistic estimate

of the full result, one may use the former – together with our

computation of (73) to obtain an indication of completeO(~2)
impact. In Section V A we show that the trend from the O(~2)
terms is to raise TC , though the precise value should be taken

with a grain of salt.

IV. GAUGE-INDEPENDENT SPHALERON ENERGY

SCALE

The second factor appearing in the BNPC (6) is the

sphaleron scale, commonly taken to be the scalar field

φmin(TC) minimizing the effective potential. As empha-

sized above, Nielsen’s identity for Veff(φ, T ) implies that the

background field is an inherently gauge-dependent quantity.

Therefore, we abandon φmin(TC), and we revisit the compu-

tation of the sphaleron rate in search for a gauge-independent

scale. In doing so, we recapitulate the work of Refs. [23,

46, 47], wherein an appropriately gauge-independent formu-

lation of a perturbative sphaleron rate computation is devel-

oped. Along the way, we point out what we believe has mo-

tivated a departure from this framework, leading to the intro-

duction of additional gauge-dependence via the appearance

of φmin(TC) in the BNPC. We then advocate a return to the

gauge-independent treatment.

The sphaleron rate Γsph is proportional to the free energy

of the sphaleron gas Fs.g. . For a dilute gas, it is related to

the effective action for one sphaleron Γeff[φ
sph] normalized by

the energy density of the electroweak broken phase Γeff[φ
EW ]

[46]:

Γsph =
ω−
πT

Im Fs.g. =
ω−
π

Im
Zsph

Z0

=
ω−
π

Im e−Γeff[φ
sph]−Γeff[φ

EW] , (74)

where ω− is the frequency associated with the unstable mode

of the sphaleron. Since the sphaleron represents a saddle point

of the energy functional, the rate is expected to be gauge-

independent on account of Nielsen’s identity. In order to en-

sure gauge-independence within the perturbative context, the

effective action must be computed in manner that is consistent

with the ~-expansion in analogy with (43):

Γeff[φ
sph;T ] = S[φsph

0 ] + ~Γ1[φ
sph
0 ] +O(~2) . (75)

Here, S[φsph
0 ] is the tree-level action and Γ1[φ

sph
0 ] is the one-

loop fluctuation determinant, both evaluated around the tree-

level sphaleron configuration φsph
0 .

A. Dimensional reduction

For any extension of the SM, the electroweak sphaleron

lives in an SU(2) subgroup of the full gauge group. Hence, we

shall simplify our analysis by restricting ourselves to the mini-

mal standard SU(2) model. The task at hand is to compute the

path integral in (8) and (10) around the sphaleron background.

In general, including finite temperature loop contributions to

Γeff[φ
sph] is considerably more challenging than doing so for

Veff(φ, T ). The calculation may be simplified, however, when

temperatures are sufficiently high such that the n > 0 Mat-

subara modes may safely be integrated out. As discussed in

the previous section, this dimensional reduction procedure is

gauge-dependent, but the Wilson coefficients of the O(T 2)
terms are gauge-independent. Gauge independence is main-

tained by retaining just these terms in the effective theory.

After imposing the temporal-axial gauge Wµ=0 = 0 on the

SU(2) gauge fields W a
µ , the path integral for static field con-

figurations reads

Z[j] =

∫

DH DW e−S3[H,W ;T ] (76)

S3 =
1

T

∫

d3x
[

|DiH |2 + 1

4
W a

ijW
a
ij + V (H,T )

]

, (77)

with

V (H,T ) = 2D(T 2 − T 2
0 )H

†H + λ(H†H)2 +
D2T 4

0

λ

= λ(H†H − v̄(T )2/2)2 , (78)

where as before 2DT 2 is the Higgs thermal mass; 2DT 2
0 =

µ2 is the zero-temperature Higgs mass parameter; and

v̄(T ) = v0

√

1− T 2/T 2
0 , (79)

with v0 = 246 GeV being the tree-level expectation value of

the Higgs field. Notice that HT = (0, v̄(T )/
√
2) minimizes

V (H,T ) for T < T0. It is over this action that the path inte-

gral is performed to obtain the sphaleron rate.

B. Tree-level sphaleron energy ∆Esph

We search for the tree-level sphaleron solution around

which the path integral is to be computed. The Klinkham-

mer and Manton[48] ansatz for the sphaleron, motivated by

the electroweak instanton, is6

W a
i (x) = −2

g

f(x2)

x2
ǫaijxj (80)

H(x) = h(x2)x̂iσi

(
0

v̄(T )/
√
2

)

, (81)

6 The minus sign in the ansatz for W a
i is due to our sign convention of the

covariant derivative Di = ∂i + igWi.
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which we collectively denote as φsph
0 . Here, f(x2) and h(x2)

are the gauge and Higgs field radial profile functions, respec-

tively. They are determined by imposing the stationary condi-

tions on the energy functional and satisfy the boundary condi-

tions,

f(0) = h(0) = 0 (82)

f(∞) = h(∞) = 1 . (83)

Substituting (80) and (81) into (77) yields the energy func-

tional in terms of the radial profile functions,

S3[φ
sph
0 ] ≡ ∆Esph

T
=

4πv̄(T )

gT
B

(
λ

g2

)

, (84)

with

B
( λ

g2

)

=

∫ ∞

0

dr̄
[

4
(df

dr̄

)2

+
8

r̄2
f2(1− f)2

+
r̄2

2

(dh

dr̄

)2

+ h2(1− f)2 +
1

4

( λ

g2

)

r̄2(1− h2)2
]

, (85)

where r̄ = gv̄(T )|x| is a dimensionless radial coordinate. The

stationary condition for the radial profile functions are

r̄2
d2f

dr̄2
= 2f(1− f)(1− 2f)− 1

4
r̄2h2(1− f) (86)

d

dr̄

(

r̄2
dh

dr̄

)

= 2h(1− f)2 − λ

g2
r̄2h(1− h2) (87)

and must be solved numerically. With the radial profile

functions, f(r̄) and h(r̄) known, the function B(λ/g2) may

be numerically evaluated, providing a quantitative result for

S3[φ
sph
0 ]. The dimensionless function B(λ/g2) is an O(1)

weakly varying function of its argument [48]. Therefore, the

quantity which sets the scale of the sphaleron energy is v̄(T ).
Two points about v̄(T ) and T0 should be emphasized. First,

because the scale v̄(T ) introduced by dimensional reduc-

tion minimizes V (H,T ), it is tempting to interpret v̄(T ) as

φmin(T ), the value background Higgs field at temperature T .

As discussed above, however, they only coincide in the high-

T effective theory where the Tφ3 terms essential to bubble

nucleation are absent. Consequently, it is best within the con-

text of the calculation of the sphaleron rate to treat v̄(T ) as an

auxiliary quantity that sets the scale of the sphaleron energy.

Similarly, the temperature T0 that appears in the expres-

sion (79) for v̄(T ) is not the same as the critical tempera-

ture. Rather, T0 is the temperature at which the sphaleron en-

ergy (84) vanishes at tree-level in the dimensionally reduced,

high-T effective theory. At sufficiently high temperatures

(T ≥ T0), the sphaleron rate contains no exponential sup-

pression that is crucial for preservation of the baryon asym-

metry. As the transition becomes more weakly first order TC

approaches T0 from below, leading to greater washout of the

baryon asymmetry.

C. One-loop fluctuation determinant

The calculation of one-loop effective action Γeff(φ
sph) is

performed following the background field method, in which

the background field is the tree-level sphaleron configuration

φsph
0 determined above. The functional integration is per-

formed in the gaussian approximation, formally giving ratios

of functional determinants

Γeff[φ
sph] = S3[φ

sph
0 ] +

~

2
ln

(
detObos(φ

sph
0 )

detObos(φEW)

)

− ~ ln

(
detOFP(φ

sph
0 )

detOFP(φEW)

)

, (88)

where Obos and OFP are the bosonic and ghost fluctuation op-

erators, whose eigenvalues are proportional to (v̄/gT )1/2 as a

result of coordinate rescaling.

A precise calculation of these determinants is challenging,

but the essential structure is as follows. The sphaleron back-

ground breaks three rotational and three translational symme-

tries of the system, giving rise to six zero modes in the spec-

trum of Obos(φ
sph
0 ). The integration over these modes give rise

to volume prefactors (NV) and six factors of the proportional-

ity constant (v̄/gT )1/2. Here, N and V are normalization and

dimensionless integration volume factors, respectively. Let-

ting κ denote the ratio of fluctuation determinants with zero

modes removed, the sphaleron rate (74) then takes the form

Γsph =
ω−
2π

(NV)tr(NV)rot

(
v̄

gT

)3

κe−∆Esph/T

=
ω−
2π

(NV )tr(NV)rot(gv̄)
3

(
v̄

gT

)3

κe−∆Esph/T ,

(89)

where in the second line we have expressed the dimensionless

volume factor Vtr in terms of the physical volume Vtr using

r̄ = gv̄(T )|x|. The factor of 1/2 arises from an analytic con-

tinuation of the integration over the negative mode.

The technically involved and numerically intensive task of

evaluating κ for the standard SU(2) model was achieved by

Carson, Li, McLerran and Wang[23], and by Baacke and

Junker[24, 25]. To our knowledge, similar perturbative com-

putations do not exist for SM extensions. Rather, the conven-

tional practice has been to attempt to approximate the one-

loop contribution by replacing the potential V (H,T ) in (78)

with the one-loop effective potential Veff(φ, T ) in (25) derived

from the full theory. In principle, doing so includes some

part of the one-loop fluctuation determinants, but clearly ne-

glects contributions involving spatial variations in the scalar

and gauge fields.

Following this practice and repeating the steps leading to

(84) gives a similar result but with the gauge-independent

scale v̄(T ) replaced by the gauge-dependent Higgs field

φmin(T ), leading to

Γsph →
ω−
2π

(NV )tr(NV)rot(gφmin)
3

(
φmin

gT

)3

κe−∆Esph/T ,

where

∆Esph

T
→ 4πφmin(T )

gT
B̃

(
λ

g2

)

.
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For a given choice of gauge, φmin(T ) naı̈vely approximates

the full background field more closely than does v̄(T ), so it

may seem plausible that the replacement would lead to a bet-

ter estimation of the sphaleron rate. By integrating the rate

law using this expression for the sphaleron rate to derive the

washout criteria (details in Appendix A), one arrives at the

criterion in equation (6).

In view of our discussion of Veff(φ, T ) it is immediately

apparent that making the foregoing replacement introduces

gauge-dependence into ∆Esph/T—and thereby into Γsph—

at any temperature. Moreover, as observed in Ref. [49] in

the context of false vacuum decay, this procedure double

counts the n = 0 Matsubara contributions to the sphaleron

rate. Since these degrees of freedom already contribute

non-analytic terms to Veff(φ, T ) from which φmin(T ) is ob-

tained, including them in the fluctuation determinant calcula-

tion would count them twice.

In light of these two problems, we advocate abandoning the

ad hoc replacement V (H,T ) → Veff(φ, T ) in favor of adher-

ing to the gauge-independent formulation of Ref. [46] and

using v̄(T ) instead of φmin(T ) to characterize the sphaleron

rate. When attempting to approximately establish the effi-

cacy of baryon number preservation, one should then use the

gauge-independent ratio of v̄(TC)/TC with TC computed us-

ing the ~-expansion as above and v̄(T ) obtained from the

dimensionally-reduced effective theory in the high-T approx-

imation. IncludingO(~) contributions to Γsph associated with

Matsubara zero mode fluctuations about the sphaleron the re-

quires a careful evaluation of the functional determinant.

V. AN ILLUSTRATIVE APPLICATION: v̄(TC)/TC IN THE

STANDARD MODEL

As an illustrative application, we now apply our gauge-

independent method to analyze the EWPT at O(~) in the SM,

and estimate the impact of higher order contributions. Since

there exist Monte Carlo results for both TC and Γsph in the

SM, we may compare the corresponding quantities obtained

with the gauge-independent perturbative analysis to assess the

reliability of the latter. As a result, we will conclude that in-

clusion of two-loop contributions to Veff(φ, T ) is likely to be

essential for obtaining a reasonable value of TC . Later, when

discussing the criteria for preservation of the baryon asym-

metry (section VI), we will argue that a reliable perturbative

computation of the fluctuation determinant is also likely to be

important, though probably less decisive than the evaluation

of TC . We also argue that even when gauge-independence is

maintained, a perturbative treatment is at best indicative and

that definitive statements about baryon number preservation

are likely to require non-perturbative studies.

The two ingredients needed for this analysis are the crit-

ical temperature and the sphaleron scale. While contribu-

tions from fermions have been previously omitted, our nu-

merical results include effects from the top quark. We be-

gin by computing the effective potential for the neutral Higgs

field, including the effects of the top quark. In the standard

SU(2) × U(1) model, the four real degrees of freedom

H =
1√
2

(
Φ1 + iΦ2

Φ3 + iΦ4

)

(90)

are placed into a vector Φi = (Φ1, Φ2, Φ3, Φ4) . Explicitly,

the generators T a in the real representation (−i factored out)

are

T 1 = 1
2

( −1
1

−1
1

)

T 3 = 1
2

( −1
1

1
−1

)

T 2 = 1
2

(
1
1

−1
−1

)

T 4 = 1
2

( −1
1

−1
1

)

,

where the {T 1, T 2, T 3} are generators of isospin and T 4 is

hypercharge. The Euclidean Lagrangian takes the form

LE =
1

2
(DµΦ)i(DµΦ)i + V (Φ) , (91)

with V (Φ) = −1

2
µ2ΦiΦi +

1

4
λ(ΦiΦi)

2 , (92)

where Dµ = ∂µ + gT aW a
µ , and W a

µ = {W 1
µ ,W

2
µ ,W

3
µ , Bµ}.

We shift the scalar fields following the background field

method,

Φi(x) → φi(x) + φ̄ , (93)

φ̄ = (0, 0, h, 0) , (94)

and we immediately obtain the tree-level potential in terms of

the classical field h,

V0(h) = −1

2
µ2h2 +

1

4
λh4 . (95)

We record here the extrema of the tree-level potential:

h
(1)
0 = 0 , h

(2)
0 = ±

√

µ2/λ = ±246 GeV. (96)

Next we impose the gauge-fixing condition, ∂µW a
µ +

ξφi(gT
aφ̄)i = 0 on the quantum fields. Retaining terms

quadratic in fluctuations, we read off the field-dependent mass

matrices necessary to construct the effective potential:

M2
ij(h) =






−µ2 + λh2

−µ2 + λh2

−µ2 + 3λh2

−µ2 + λh2




 (97)

m2
A(h)ij =

1

4






g2

g2

0
(g′2 + g2)




 h2 (98)

m2
A(h)

ab =
1

4






g2

g2

g2 −gg′

−gg′ g′2




h2 . (99)

After abbreviating their eigenvalues

m2
H(h) = −µ2 + 3λh2 ,

m2
G(h) = −µ2 + λh2 ,

m2
γ(h) = 0 ,

m2
Z(h) =

1
4 (g

2 + g′2)h2 ,

m2
W (h) = 1

4g
2h2 ,

(100)
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we write down the 1-loop finite-temperature effective poten-

tial (25)

Veff(h) = V0(h) + ~
[
V T=0
1 (h) + V T 6=0

1 (h, T )
]
, (101)

where explicit expressions in the MS renormalization scheme

are provided in Appendix F. To determine the critical tem-

perature, we use (43) to follow the temperature-evolution of

the free energy of the symmetric h
(1)
0 and broken h

(2)
0 phases.

Then the O(~) degeneracy condition defining the critical tem-

perature of the phase transition reads

V0(h
(1)
0 ) + ~V1(h

(1)
0 , TC) = V0(h

(2)
0 ) + ~V1(h

(2)
0 , TC) .

(102)

Before we proceed with numerical results, we explicitly

show that both sides of (102) are gauge-independent, refer-

ring to (F1) and (F2). The statement is trivial for the LHS,

since the one-loop potentials V T=0
1 (h) and V T 6=0

1 (h, T ) are

evaluated at the origin h
(1)
0 = 0. At that point, m2

W and m2
Z

both vanish and all gauge-dependent terms that multiply them

disappear. In the RHS, the potential is evaluated at the tree-

level broken phase minimum h
(1)
0 =

√

µ2/λ. In this case

m2
G = 0, and the gauge-dependent terms cancel.

Let us illustrate how theorem 1 in Appendix B operates

for the matrices in eqns. (97) and (98). Notice that the

sum M2
ij(h) + ξm2

A(h)ij that goes into the computation of

the effective potential (24), for general values of the Higgs

background field h, has mixed dependence on the gauge-

parameter. This blocks us from being able to split logarithms

as in (22). However when evaluated at the tree-level minimum

h
(2)
0 = ±

√

µ2/λ, we find

M2
ij(h

(2)
0 ) = diag

(
0, 0, 2µ2, 0

)

m2
A(h

(2)
0 )ij =

µ2

4λ
diag

(
g2, g2, 0, (g′2 + g2)

)
,

that these matrices are (trivially) simultaneously diagonaliz-

able, and more importantly, their non-zero eigenvalues reside

in distinct subspaces. This property enables us to split the

logarithm as in (22).

We can also verify theorem 2 for the matrices in Eqs.

(98) and (99) by diagonalizing the gauge boson mass matrix

m2
A(h

(2)
0 )ab via a rotation through the weak mixing angle θW :

Rabm2
A(h)

bc(RT)cd =
1

4






g2

g2

0
(g′2 + g2)




 h2 ,

where

Rab =






1
1

cos θW − sin θW
sin θW cos θW




 , tan θW = g′/g .

Therefore, the matrices m2
A(h

(2)
0 )ab and m2

A(h
(2)
0 )ij have the

same non-zero eigenvalues. Thus, when carrying out the sum
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FIG. 5: A comparison of the critical temperatures as computed using

the following methods: the standard method (solid line); the gauge-

independent methods described in the text, derived from the full the-

ory (dashed lines); and by performing lattice simulations (arrow).

Note that the lattice result is much higher than the perturbative esti-

mations and is displayed on a separate scale.

over eigenvalues in (21) and (25), the gauge-dependent terms

cancel.

Finally, as outlined in section IV, the gauge-independent

sphaleron scale v̄(T ) is derived from the high-temperature ef-

fective theory. In the standard model, the sphaleron scale is

given by (79) and (30).

A. Numerical results

In Fig. 5, we compare critical temperatures derived follow-

ing our gauge-independent method with the one derived using

the conventional procedure as a function of the gauge parame-

ter ξ. In this example, we have chosen λ = 0.035 correspond-

ing to a low Higgs mass of approximately 65 GeV – close to

the phase transition end-point according to lattice studies.

In this plot, we display the gauge-independent results for

TC at two levels of approximation: at O(~) using (102), and

an estimate at O(~2) with ring re-sum (60) using

V
O(~2)

eff (h(1), TC) = V
O(~2)

eff (h(2), TC) , (103)

where

V
O(~2)

eff (h, T ) = V0(h0) + ~V1(h0) + ∆V G.I.
ring (T )

+ ~
2
[
V2(h0, T )− 1

2h
2
1(T )

∂2V0

∂h2 |h0

]
−O(~2T 3) . (104)

The O(~2T 3) subtraction represents a careful removal of that

term so as to not double-count the contribution in ∆V G.I.
ring (T ).

At present we are able to provide only a rough estimate of

the O(~2) contribution since the expression for V2(h, T ) in
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FIG. 6: Gauge-independent one-loop critical temperature as a func-

tion of the SM Higgs quartic self-coupling.

Ref. [45] is given in the high-T limit only. Nonetheless, we

expect this estimate to provide an indication of magnitude of

effects associated with higher order contributions.

Also included are lattice results, that yield a critical tem-

perature of 126.8 GeV, independent of ξ by construction. Our

estimate of the higher-order contributions included in (104)

leads to a substantially larger value of TC , suggesting that the

difference between the non-perturbative and O(~) perturba-

tive results arises in part from the omission of higher-order

contributions. In addition, we note that the precise definition

of TC as obtained from the lattice studies differs from the one

we have employed here as well as in other perturbative anal-

yses (For a discussion of the lattice determinations, see, e.g.,

Refs. [4, 6, 7]). We speculate that part of the difference be-

tween the lattice and perturbative results may also be due to

this difference in definition.

While the gauge-independent perturbative estimation of TC

falls below the lattice value, it is interesting that the depen-

dence on the relevant couplings follows the trend observed

in non-perturbative studies. To illustrate, we plot the one-loop

TC as a function of the Higgs quartic self-couplingλ in Fig. 6.

We observe that increasing λ increases TC in agreement with

our qualitative expectations in (48). As we discuss shortly, this

trend implies that the efficiency of sphaleron-induced baryon

number washout increases with λ and, thus, with the value of

the Higgs boson mass. This trend is also observed in non-

perturbative studies as well as in earlier gauge-dependent per-

turbative analyses.

We now turn our attention to the sphaleron scale, v̄(T ),
which we plot in Fig. 7. We observe that in the vicinity of

the TC obtained at O(~) in the full theory, v̄(T ) drops rapidly

to zero. This behavior makes the perturbative estimate of the

sphaleron rate at the critical temperature highly sensitive to

small changes in TC . Therefore, statements about the efficacy

of baryon number preservation susceptible to large uncertain-

ties. To illustrate, we first consider the value of this scale at
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FIG. 7: Gauge-independent sphaleron scale, v̄(T ) in Eq. (79) as

a function of temperature. Also shown are the gauge-independent

O(~) (solid circle) and approximate O(~2) (open circle) estimates

of TC derived from the full theory, and the lattice result (star).

the one-loop TC in the full theory, 95.4 GeV. We then obtain

for the ratio

v̄(TC)

TC

∣
∣
∣
∣
O(~)

= 1.35 , (105)

implying that, at this level of approximation, sphaleron pro-

cesses may be sufficiently quenched in the standard model to

preserve the baryon asymmetry (see Section VI). This con-

clusion stands in stark contrast to the conclusion one would

reach from the results of Monte Carlo studies, which give a

much larger TC—well above T0 = 76.6 GeV at which v̄(T )
vanishes. On the other hand, if we take the estimate of TC at

O(~2) using (104), we observe that it falls above T0, suggest-

ing unsuppressed sphaleron transitions that would completely

erase the baryon asymmetry.

In light of this strong sensitivity to higher-order contribu-

tions in the vicinity of T0, one should evaluate the degree to

which a perturbative analysis is indicative. To gain insight, we

again turn to results of Monte Carlo simulations carried out in

Ref. [7], which found that for a range of values for λ that in-

cludes the choice used here, the sphaleron rate Γsph would be

sufficiently quenched so as to preserve an initial baryon asym-

metry, even though the O(~) gauge-independent value of TC

falls well below the result of Monte Carlo studies. This sit-

uation suggests that higher order contributions to Γsph may

compensate for the larger value of TC , resulting in stronger

quenching of the sphaleron transitions at a given temperature

than one might infer from perturbation theory.

It appears, then, that one should treat with caution any con-

clusions drawn from perturbation theory about the degree of

baryon washout for critical temperatures in the vicinity of T0,

even when gauge-independence is fully maintained. We be-

lieve, nevertheless, that perturbation theory retains some util-
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ity in providing guidance as to the relevant regions of param-

eter space where baryon number preservation is likely to be

more or less effective. To illustrate this point, we consider

two examples.

First, in Fig. 8 we plot the ratio v̄(TC)/TC as a function of

λ. As expected from Monte Carlo studies, this ratio decreases

with λ, implying an increase in the sphaleron rate with mH .

The precise value of λ at which baryon number preservation

is too weak to be phenomenologically viable is uncertain – a

point we elaborate in Section VI. Nevertheless, the trend is

indicative and suggests that any extension of the SM scalar

sector that reduces the effective quartic coupling at T ∼ TC is

likely to enhance baryon number preservation. As discussed

in Ref. [16], for example, the inclusion of new tree-level op-

erators involving singlet degrees of freedom may lead to just

such a weakening of λeff(TC) while respecting the LEP lower

bound on the SM-like Higgs boson mass.

As a second illustration, we consider the MSSM. It has been

thought for some time that the presence of a light right-handed

top squark is needed in order to preserve a sufficiently large

initial baryon asymmetry (see Ref. [9] and references therein).

In the conventional, gauge-dependent analysis, this conclu-

sion can be seen by considering the top squark contribution to

the ring re-sum

−~
T

12π

[(
m2

t̃+y2t̃ φ
2+Σt̃(T )

)3/2−
(
m2

t̃+y2t̃ φ
2
)3/2

]

, (106)

where the second term cancels against the corresponding term

in the high-T expansion of the potential. Then, the stop

soft mass parameter m2
t̃

must be negative with a magnitude

roughly needed to cancel the stop Debye mass contribution

Σt̃(T ) in the first term. In this region of parameter space, the

stop contribution to the ring potential leads to an approximate

Tφ3 term in the high-T effective potential needed for a first

order EWPT. Since the stop Yukawa coupling is O(1), this

contribution can be particularly pronounced. Phenomenolog-
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FIG. 9: a. Behavior of (107) as a function of stop mass parameter

m2

t̃
. b. Broken phase free energy curve (relative to the symmetric

phase) as a function of temperature T . A rise in the free energy

curve (from solid to dotted line) results in a drop of TC (indicated by

the arrow).

ically, the soft mass parameter m2
Q̃3

for the left-handed third

generation squark doublet must be positive and relatively large

in order to generate a phenomenologically allowed mass for

the lightest Higgs, leaving a tachyonic right-handed stop as

the only alternative.

Since we have argued that the foregoing analysis is gauge-

dependent, one may rightly question whether this scenario re-

mains valid when a gauge-independent perturbative treatment

is followed. We believe that it does. We reconsider (106)

and apply the prescription (60) to construct the ring-improved

gauge independent potential. We evaluate the resulting con-

tribution to the difference between the energies of the elec-

troweak symmetric and broken minima giving

Veff(φmin, T )− Veff(0, T ) ∼

− ~
T

12π

[(
m2

t̃ + y2t̃ φ
2 +Σt̃(T )

)3/2 −
(
m2

t̃ +Σt̃(T )
)3/2

]

.

(107)

Referring to Fig. 9a, for any m2
t̃
> −Σt̃(T ) the difference is

negative. But, as m2
t̃

is lowered closer to −Σt̃(T ), the differ-

ence in free energy rises; i.e. the free energy curve of the bro-

ken phase is pushed up relative to that of the symmetric phase.

As a result TC decreases (Fig. 9b). This drop in TC with an

increasingly negative soft mass-squared is, in fact, observed

in Monte Carlo studies (see, e.g., Fig. 9 of Ref. [19]). Since

v̄(TC)/TC correspondingly increases, the baryon asymmetry

is more efficiently preserved.

VI. BARYON NUMBER PRESERVATION CRITERION

In previous sections, we have discussed at length the issue

of gauge-dependence and its impact on the LHS of the bound

in Eq. (6). In this section, we revisit the assumptions used to

obtain a numeric value appearing on the RHS of the bound. In

Appendix A, we have collected and somewhat re-organized

previously-employed results for the BNPC in a manner that

makes various sources of uncertainty more apparent. The ap-
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proximate BNPC, given in (A4) is

4πB

g

v̄(TC)

TC
− 6 ln

v̄(TC)

TC
>

− lnX − ln
(∆tEW

tH

)

+ lnZ + ~ lnκ . (108)

Here, X = − lnS characterizes the dilution of an initial

baryon asymmetry during the transition as per (3), ∆tEW/tH
gives the duration of the transition in units of the Hubble time

tH , and κ is the ratio of fluctuation determinants in (88) af-

ter separating out the zero-mode contributions. The factor Z
collects a number of remaining terms that enter into the per-

turbative rate calculation:

Z =

(
13nf

2

)

Ntr (NV)rot
(
ω−tH
π

)

, (109)

where, Ntr and Nrot are normalization factors associated with

translational and rotational zero mode fluctuations about the

sphaleron, Vrot is the corresponding rotational volume, nf is

the number of families of fermions, and ω− is the frequency

associated with the unstable mode of the sphaleron. Taking

tH ≈ (3 × 10−2)MPl/T
2 with MPl being the Planck mass,

and

ω− = gv̄F (110)

with F being a function of T , v̄ and the SM couplings, we

arrive at

4πB

g

v̄(TC)

TC
− 7 ln

v̄(TC)

TC
>

− lnX − ln
(∆tEW

tH

)

+ lnQF + ~ lnκ , (111)

with

Q = (3× 10−2)×
(
13nf

2

)

Ntr (NV)rot
(
gMPl

T

)

.

(112)

From Eqs. (111) and (112) one may attempt to derive a re-

quirement on the ratio v̄(TC)/TC . The rotational and trans-

lational model factors have been computed in Ref. [47] as a

function of λ/g2. These authors find that Ntr (NV)rot ≈
7000 and nearly constant for a substantial range in λ/g2. The

remaining terms in Eqs. (111) and (112) contain a stronger

dependence on the couplings and larger theoretical uncertain-

ties. We have explored the quantitative impact in each case

and discuss each below. Before doing so, we adopt a repre-

sentative set of “benchmark” values:

F = 1 , X = 1

∆tEW/tH = 1 , TC = 100 GeV (113)

λ/g2 = 1 , κ = 10−8

For this choice, the inequality in Eq. (111) leads to

v̄(TC)

TC
> 0.73 . (114)

We observe that this requirement is somewhat more relaxed

than the one usually quoted in the literature. As we now dis-

cuss, however, there exists considerable room for variation in

the RHS of Eq. (114), which may be nearly a factor of two

larger under certain circumstances.

(i) The function F depends strongly on which fluctuations

dominate the unstable direction, namely, those associ-

ated with the Higgs scalar or those associated with the

gauge degrees of freedom. The authors of Ref. [46] ar-

gue that in the former instance one has F = 1 [“case

(a)”] while in the latter F ≈ (v̄/T )2 × (1/2π) [“case

(b)”]. Our benchmark choice corresponds to case (a).

Generally speaking, case (b) leads to a more relaxed re-

quirement on v̄(TC)/TC , reducing the RHS by ∼ 0.1.

(ii) The benchmark critical temperature lies between the

one-loop, gauge-independent perturbative value and the

value obtained from Monte Carlo studies. Increasing it

to the lattice value lowers the RHS of Eq. (114) five

percent or less.

(iii) Our choice of X = 1 corresponds to allowing an ini-

tial baryon asymmetry to be diluted by a factor of 1/e
over the course of the EWPT. In earlier work (see, e.g.,

Ref. [9]), a value of X ≈ 10 was used, corresponding

to a dilution of roughly five orders of magnitude. In

this case, the RHS of Eq. (114) becomes smaller by ten

percent or more. However, recent computations of the

initial baryon asymmetry using state-of-the art transport

theory imply that such a dilution is likely to be wildly

unrealistic (see, e.g., Ref. [30] and references therein).

In the MSSM, for example, one requires a rather nar-

row window on the relevant CP-violating parameters

to obtain an initial baryon asymmetry that is close to

the present value [30, 50]. A more realistic value of X
would likely lie in the range 0.01 to 0.1, corresponding

to a dilution of one to ten percent. Choosing X = 0.01
increases the RHS of Eq. (114) by order 30%.

(iv) According to the numerical work of Ref. [23], the value

of the fluctuation determinant ratio κ depends strongly

on λ/g2. For a Higgs mass of ∼ 65 GeV, one has

κ ≈ 10−8, which we have used as our benchmark

value. Increasing mH to the LEP lower bound (or

λ/g2 ≈ 0.3), increases κ to ∼ 10−2 (see Fig. 3 of

Ref. [23]) where it is nearly maximal, while it falls back

again to ∼ 10−4 for λ/g2 ∼ 1. Taking κ close to its

maximal value leads to the most restrictive requirement

on v̄(TC)/TC , raising the RHS of Eq. (114) by ∼ 0.5.

(v) The duration of the transition is often taken to be of or-

der tH , and we have correspondingly used∆tEW/tH =
1 as our benchmark value. However, the analysis of

Ref. [7] suggests that the transition could be as much as

three orders of magnitude shorter. In this case, the re-

quirement on v̄(TC)/TC could be weakened by nearly

a factor of two.

In short, there exists considerable latitude in the require-

ment for baryon number preservation. Based on the forego-
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ing numerical exploration we take the corresponding RHS of

Eq. (114) to vary between 0.4 and 1.4 as a reasonable range

for the Standard Model. This range depends on the value of

the scalar self-coupling(s), the duration of the transition, and

the degree of baryon number preservation needed as dictated

by the CP-violating transport dynamics. In any realistic analy-

sis, one must treat all of these considerations self-consistently.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we have identified the origin of gauge depen-

dence of the BNPC. We resolve these issues by (1) satisfy-

ing degeneracy and minimization conditions at each order in

the loop expansion and (2) identifying the gauge-independent

sphaleron scale which arises from dimensional reduction. As

an added bonus, our method to determine the critical temper-

ature is substantially faster than the currently employed gauge

dependent methods.

After a comparison of the gauge-independent TC in the

SM with the results of lattice computations [51][7], we find

that the one-loop result appears to underestimate the value of

the critical temperature and that a two-loop determination is

likely to be required for a realistic perturbative approxima-

tion. Using existing results in the literature for Veff(φ, T ) at

two-loop order in the high temperature regime, we estimate

the numerical impact of going beyond one-loop order. We em-

phasize, however, that a robust, gauge-independent treatment

of TC at this order will require a future complete two-loop

computation. When analyzing the dependence of the gauge-

independent, perturbative computations of TC and v̄(TC) on

the underlying parameters, we also find that the results repro-

duce the trends obtained from Monte Carlo studies.

Nevertheless, we believe the precise quantitative impli-

cations of a perturbative computation for baryon number

preservation are subject to considerable uncertainties, partic-

ularly for TC in the vicinity of T0. Consequently, perturba-

tive computations—while necessary when carrying out phe-

nomenological investigations of the EWPT—should be taken

as indicative rather than definitive. This need for such cau-

tion is even more apparent when one applies the results to the

BNPC.

Looking to future phenomenological studies that rely on

perturbation theory, it is apparent that previous work rely-

ing on the use of Eq. (6) to determine the viability of EWB

in given BSM scenarios should be revisited, taking into ac-

count the foregoing considerations: an appropriately gauge-

independent determination of TC ; use of a gauge-independent

scale—analogous to v̄(T )—for the sphaleron rate; utilization

of a appropriate values of X and F in (111); and evaluation

of the dependence of the fluctuation determinant κ on the rel-

evant couplings. As emphasized above, obtaining a realistic

value of TC is likely to require computation of the two-loop,

finite-temperature effective potential, at least in cases such as

the MSSM wherein the dynamics of symmetry-breaking are

dominated by loop effects. Determining the analog of v̄(T )
will necessitate obtaining the sphaleron solution to the classi-

cal equations of motion in the presence of the extended scalar

sector. Arriving at the appropriate value of X will rely on the

results of quantum transport computations that yield the initial

baryon asymmetry, while obtaining the value of F will require

more carefully identifying the degrees of freedom that dom-

inate the unstable mode of fluctuations about the sphaleron.

Together with the computation of κ, this program is likely to

be numerically intensive. We expect that the results will at

least be indicative of the regions of parameter space that are

most likely to preserve an initial baryon asymmetry, pointing

the way to more focused and robust non-perturbative calcula-

tions.
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Appendix A: Approximate BNPC

In this appendix, we summarize the steps to derive the

washout criterion in Eqn. (6) in the standard model. We are

generally following the discussion found in the pedagogical

review by Quirós [9].

The SM expression of the baryon density nB depletion rate

(1) is given by

dnB

dt
= −13nf

2

Γsph

V T 3
nB , (A1)

where nf = 3 is the number of standard model generations.

Upon integrating, we find that the dilution at time ∆tEW after

the onset of the transition at time t = 0 is

nB(∆tEW)

nB(0)
= exp

[

−13nf

2

∫ ∆tEW

0

dt
Γsph(T (t))

V T 3(t)

]

, (A2)

where T (t = 0) = TN ≈ TC . The washout criterion corre-

sponds to imposing a lower bound e−X on the dilution factor

nB(∆tEW)

nB(0)
> e−X . (A3)

To obtain an approximate expression for the washout criterion

we assume that the integrand in (A2) is approximately con-

stant over the time of the transition. After taking the double

logarithm of both sides and using (89) we find the following

bound on v̄(TC)/TC (the baryon number preservation crite-

rion — BNPC):

4πB

g

v̄(TC)

TC
− 6 ln

v̄(TC)

TC
>

− lnX − ln
(∆tEW

tH

)

+ lnZ + ~ lnκ , (A4)
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where we have chosen to normalize the duration of the phase

transition ∆tEW against the Hubble time tH , and

Z =

(
13nf

2

)

Ntr (NV)rot
(
ω−tH
π

)

(A5)

contains the normalizations of the transitional and rotational

modes of the sphaleron. As emphasized in the main text,

the ratio v̄(TC)/TC is gauge-independent only when the

spahleron scale v̄(T ) arising from dimensional reduction is

used (section IV), and when the critical temperature is com-

puted in a manner consistent with Nielsen’s identity (section

III).

Appendix B: Identities in the general model

In this appendix, we derive two useful theorems involving

the field-dependent mass matrices in the general model, intro-

duced in section II A. The definitions of the mass matrices are

reproduced here for convenience:

M2
ij(φ) =

∂2V (φ)

∂φi∂φj

m2
A(φ)ij = (gT aφ)i(gT

aφ)j

m2
A(φ)

ab = (gT aφ)i(gT
bφ)i,

(B1)

where T a are real-valued, and antisymmetric.

Theorem 1. Mass matrices M2
ij(φ) and m2

A(φ)ij are simul-

tanesouly diagonalizable when fields are set equal to their

tree-level minimum.

Proof. Since V (Φ) belongs in the Lagrangian, it is invariant

under transformations of G,

V ′(Φ′) = V (Φ) , (B2)

where Φ′
i = (1+αagT a)ijΦj is the infinitesimal transforma-

tion law for scalar fields. Then,

V ′(Φ′) = V ′((1 + αagT a)Φ
)

= V (Φ) + αa(gT aΦ)i
∂V

∂Φi
(B3)

implies

(gT aΦ)i
∂V

∂Φi
= 0 . (B4)

We differentiate with respect to Φj to find [31]

gT a
ij

∂V

∂Φi
+ (gT aΦ)iM

2
ij(Φ) = 0 , (B5)

where we have used ∂2V
∂Φi∂Φj

= M2
ij(Φ). When Φi is set equal

to the tree-level minimum, (φ0)i, the first term vanishes. After

multiplying from the left by (gT aΦ)k and summing over a we

find, after using (gT aφ)k(gT
aφ)i ≡ m2

A(φ)ki ,

m2
A(φ0)kiM

2
ij(φ0) = 0 ,

that the mass matrices are not only simultaneously diagonal-

izable, but their eigenvalues live in distinct subspaces.

Theorem 2. The gauge boson mass matrix m2
A(φ)

ab and the

gauge-fixing scalar boson mass matrix m2
A(φ)ij share identi-

cal non-zero eigenvalues. This holds for any value of φ.

Proof. Let ωb be an eigenvector of m2
A(φ)

ab with eigenvalue

λ:

m2
A(φ)

abωb ≡ (gT aφ)i(gT
bφ)iω

b = λωa . (B6)

Now multiply at left by (gT aφ)j and sum over a.

(gT aφ)j(gT
aφ)i

︸ ︷︷ ︸

m2
A
(φ)ji

(gT bφ)iω
b = (gT aφ)jω

a (B7)

Then, defining (gT bφ)iω
b ≡ Nωi, we have

m2
A(φ)ji Nωi = λNωj , (B8)

that is, Nωi is an eigenvector of m2
A(φ)ij with the same

eigenvalue λ.

Similarly, we could have started by letting ωi be an eigen-

vector of m2
A(φ)ij with eigenvalue λ. Then, by multiplying at

left (gT bφ)i, we find after defining (gT aφ)jωj ≡ Nωa

m2
A(φ)

ba Nωa = λNωb , (B9)

the same result.

We note that although (m2
A)

ab and (m2
A)ij have the same

non-zero eigenvalues, multiplicities of the zero eigenvalues

are expected to be different, as they have different dimensions.

Appendix C: High-T expansion of Veff in the general model

In this appendix, we derive the high-tempreature expansion of the finite temperature effective potential in the general model

and prove that the O(T 2) terms (thermal masses) are gauge-independent. We start with the expression given in (25),

Veff(φ, T ) = Vtree(φ) + VCW(φ) +
T 4

2π2

[ ∑

scalar,i

JB
(
m2

i (φ; ξ)/T
2
)
+3

∑

gauge,a

JB
(
m2

a(φ)/T
2
)
−

∑

gauge,a

JB
(
ξm2

a(φ)/T
2
) ]

, (C1)
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and use the high temperature expansion of the thermal bosonic functions given in (28)

JB(z
2) = −π4

45
+

π2

12
z2 − π

6
(z2)3/2 − 1

32
z4 ln z2 + . . . , (C2)

to obtain

Veff(φ, T ) ≈ Vtree(φ) + VCW(φ)− π2T 4

90
(ns + 2ng) +

T 2

24

[ ∑

scalars,i

m2
i (φ; ξ) + (3− ξ)

∑

gauge,a

m2
a(φ)

]

− T

12π

[ ∑

scalars,i

(
m2

i (φ; ξ)
)3/2

+ (3− ξ3/2)
∑

gauge,a

(
m2

a(φ)
)3/2

]

− 1

64π2

[ ∑

scalars,i

[m2
i (φ; ξ)]

2 ln
(
m2

i (φ; ξ)/T
2
)

+ 3
∑

gauge,a

[
m2

a(φ)
]2

ln
(
m2

a(φ)/T
2
)
−

∑

gauge,a

[
ξm2

a(φ)
]2

ln
(
ξm2

a(φ)/T
2
)]

, (C3)

where ns and ng are numbers of scalar and gauge degrees of freedom as determined by the size of their respective mass matrices.

The last three terms proportional to ln(m2/T 2) combine with the Coleman-Weinberg potential VCW(φ) in (21) to cancel field-

dependence inside the logarithms to generate terms of the form ln(T 2/µ2). We chose the renormalization scale µ = T so that

these logarithmic terms vanish. The Stefan-Boltzmann T 4 terms are also independent of the mean field φ. Thus, they do not

influence the phase transition and may be dropped from the high-T expansion. Thus, at high temperature, the effective potential

is dominated by Vtree(φ) and by O(T 2) and O(T ) terms.

Veff(φ, T ) ≈ Vtree(φ) +
T 2

24

[ ∑

scalars,i

m2
i (φ; ξ) + (3− ξ)

∑

gauge,a

m2
a(φ)

]

− T

12π

[ ∑

scalars,i

(
m2

i (φ; ξ)
)3/2

+ (3− ξ3/2)
∑

gauge,a

(
m2

a(φ)
)3/2

]

(C4)

We demonstrate the gauge-independence of O(T 2) terms in the following way: since the sums run over the eigenvalues of the

mass matrices, we may write them as traces of corresponding mass matrices.

O(T 2) =
T 2

24

[

Tr
ij

(
M2

ij(φ) + ξm2
A(φ)ij

)
+ (3− ξ)Tr

ab
m2

A(φ)
ab
]

=
T 2

24

[

TrM2
ij(φ) + 3Trm2

A(φ)
ab
]

In the second line, we have used theorem 2 to cancel the gauge dependent terms, thus completing our explicit proof for gauge-

independence of thermal masses at O(~).
Therefore, the high-T expansion of Veff reads

Veff(φ, T ) ≈ Vtree(φ)+
T 2

24

[

TrM2
ij(φ)+3Trm2

A(φ)
ab
]

− T

12π

[ ∑

scalars,i

(
m2

i (φ; ξ)
)3/2

+(3− ξ3/2)
∑

gauge,a

(
m2

a(φ)
)3/2

]

(C5)

In the language of (29), the D-coefficient is derived from the gauge-independent O(T 2) term; T0 is, in part, governed by the

tree-level mass terms present in Vtree(φ); the E-coefficient comes from the non-analytic O(T ) terms; and the λ̄-coefficient also

comes from Vtree(φ) and additional terms not displayed in (C5).

Appendix D: Gauge independence of the critical temperature

The critical temperature is defined when two points in the

effective potential are degenerate (26) and stationary (27). In

this appendix we show that it follows from Nielsen’s identity

that the critical temperature is gauge-independent.

Let Veff(φi, T ; ξ) denote the gauge-dependent finite-

temperature effective potential. Suppose the phase transition

takes the system from the first phase φ
(1)
i to the second phase

φ
(2)
i at the critical temperature Tc defined by conditions (26)

and (27) reproduced here,

Veff(φ
(1)
i , Tc; ξ)− Veff(φ

(2)
i , Tc; ξ) = 0 (D1)

Veff

∂φi

∣
∣
∣
φ
(1)
i ,Tc

=
∂Veff

∂φi

∣
∣
∣
φ
(2)
i ,Tc

= 0 . (D2)

For now, we assume that simultaneously inverting these equa-

tions will yield gauge dependent field-values and critical tem-



24

perature, φ
(•)
i ≡ φ

(•)
i (ξ), and Tc ≡ Tc(ξ). A total differential

of (D1) with respect to ξ gives

( Veff

∂φi

∂φ
(1)
i

∂ξ
+

∂Veff

∂T

∂Tc

∂ξ
+

∂Veff

∂ξ

)

φ(1),Tc

−
( Veff

∂φi

∂φ
(2)
i

∂ξ
+

∂Veff

∂T

∂Tc

∂ξ
+

∂Veff

∂ξ

)

φ(2),Tc

= 0 (D3)

By the stationarity condition (D2) and Nielsen’s identity (33)

the first and third terms vanish in each set of brackets, leaving

us with

(∂Veff

∂T

∣
∣
∣
φ(1)

Tc

− ∂Veff

∂T

∣
∣
∣
φ(2)

Tc

)∂Tc

∂ξ
= 0 . (D4)

The difference inside the brackets is, in general, non vanish-

ing. Hence we must have

∂Tc

∂ξ
= 0, (D5)

the critical temperature is gauge independent.

Appendix E: Gauge dependence of scalar minimizing field φmin

In this section, we show that the field φmin that minimizes

the effective potential at finite temperature is gauge depen-

dent. Start by differentiating (D2) with respect to ξ.

∂2Veff

∂φi ∂φj

∣
∣
∣
φ(1)

Tc

∂φ(1)
j

∂ξ
+

∂2Veff

∂φi ∂φj

∣
∣
∣
φ(1)

Tc

∂Tc

∂ξ
+

∂2Veff

∂ξ∂φi

∣
∣
∣
φ(1)

Tc

= 0

(E1)

By (D5) the second term vanishes. We can re-express the third

term by differentiating Nielsen’s identity (33), and evaluating

the result at φ(1) and Tc:

∂2Veff

∂ξ∂φi
= −∂Cj

∂φi

∂Veff

∂φj
− Cj

∂2Veff

∂φi∂φj
, (E2)

where the second term vanishes at the minimumφ(1). So, (E1)

becomes

(∂φ
(1)
j

∂ξ
− Cj(φ

(1), ξ)
) ∂2Veff

∂φi∂φj

∣
∣
∣
φ(1)

Tc

= 0 (E3)

Then, provided the curvature ∂2Veff

∂φi∂φj
is non-vanishing at the

minimum, we have

∂φ
(1)
j

∂ξ
= Cj(φ

(1), ξ) . (E4)

that the minimizing field is inherently gauge-dependent.

Appendix F: One-loop effective potential in the Standard Model

In this appendix, we provide expressions for the one-loop effective potential, with the dependence on the gauge parameter

ξ shown explicitly needed for the discussion in section V. In terms of the field dependent masses in (100), the temperature-

independent and -dependent parts of the one-loop potential are

V T=0
1 (h) =

1

4(4π)2
(m2

H)2
[
ln(

m2
H

µ2 )− 3
2

]
+

2× 1

4(4π)2
(m2

G + ξm2
W )2

[
ln(

m2
G+ξm2

W

µ2 )− 3
2

]

+
1

4(4π)2
(m2

G + ξm2
Z)

2
[
ln(

m2
G+ξm2

Z

µ2 )− 3
2

]
+

2× 3

4(4π)2
(m2

W )2
[
ln(

m2
W

µ2 )− 5
6

]
+

3

4(4π)2
(m2

Z)
2
[
ln(

m2
Z

µ2 )− 5
6

]

− 2× 1

4(4π)2
(ξm2

W )2
[
ln(

ξm2
W

µ2 )− 3
2

]
− 1

4(4π)2
(ξm2

Z)
2
[
ln(

ξm2
Z

µ2 )− 3
2

]
− “free” , (F1)

and

V T 6=0
1 (h, T ) =

T 4

2π2

[

JB

(m2
H

T 2

)

+ 2×JB

(m2
G + ξm2

W

T 2

)

+ JB

(m2
G + ξm2

Z

T 2

)]

+
3T 4

2π2

[

2×JB

(m2
W

T 2

)

+ JB

(m2
Z

T 4

)

+ JB

(m2
γ

T 4

)]

− T 4

2π2

[

2×JB

(ξm2
W

T 2

)

+ JB

(ξm2
Z

T 2

)

+ JB

(ξm2
γ

T 2

)]

− “free” , (F2)

where “free” represents a free-field subtraction.
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