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We consider aspects of dynamical baryons in a holographic dual of QCD that is formu-
lated on the basis of a D4/D8-brane configuration. We construct a soliton solution carrying a
unit baryon number and show that it is obtained as an instanton solution of four-dimensional
Yang-Mills theory with fixed size. The Chern-Simons term on the flavor D8-branes plays
a crucial role of protecting the instanton from collapsing to zero size. By quantizing the
collective coordinates of the soliton, we derive the baryon spectra. Negative-parity baryons
as well as baryons with higher spins and isospins can be obtained in a simple manner.

§1. Introduction

Since the discovery of the AdS/CFT correspondence1)–3) (For a review, see
Ref. 4).), it has been recognized that a gravity description is a promising frame-
work for understanding non-perturbative aspects of gauge theory. The application
of this idea to realistic models, like QCD, has attracted much attention. (See, for
example, Refs. 5)–9) for recent progress along this line.)

In Refs. 10) and 11), a holographic dual of QCD with Nf massless quarks is
constructed using a D4/D8-brane configuration in type IIA string theory. It has been
argued that the low energy phenomena of QCD, such as chiral symmetry breaking,
can be derived from this model. The key components of the D4/D8 model are the
G = U(Nf ) five-dimensional Yang-Mills (YM) and Chern-Simons (CS) theory on a
curved background, both of which originate from the low energy effective action on
the probe D8-branes embedded into the D4 background presented in Ref. 12). In
this model, the massless pion and an infinite tower of massive (axial-)vector mesons
are interpreted as Kaluza-Klein states associated with the fifth (or holographic)
direction, and the masses and couplings of the mesons are found to be in good
agreement with experiments. In addition to the mesonic states, dynamical baryons
are also studied in Ref. 10), where it is demonstrated that the baryon number can be
identified with the instanton number of the 5d YM, and hence it is concluded that
baryons can be described by a soliton with a non-trivial instanton number. (See also
Ref. 5).)
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1158 H. Hata, T. Sakai, S. Sugimoto and S. Yamato

In the context of the AdS/CFT correspondence, it has been argued that baryons
are constructed from D-branes wrapped on non-trivial cycles.13)–19) In the case of
the D4/D8 model, baryons are identified as D4-branes wrapped on a non-trivial
four-cycle in the D4 background. Such a D4-brane is realized as a small instanton
configuration in the world-volume gauge theory on the probe D8-brane. Also, it
has been found that the pion effective action obtained from the 5d YM theory is
identically that of the Skyrme model, in which baryons appear as solitons, called
Skyrmions.20)–22) It can be shown that the baryon number of a Skyrmion, which
is defined as the winding number carried by the pion field, is equivalent to the
instanton number in the 5d YM theory. In this way, the D4/D8 model connects
various descriptions of baryons. (For further studies of baryons in the AdS/CFT or
AdS/QCD, see Refs. 23)–28). Also, closely related works are presented in Refs. 5)
and 29).)

The purpose of this paper is to investigate aspects of baryons described as in-
stantons in the 5d YM-CS theory formulated in the D4/D8 model. For brevity, we
restrict ourselves to the two-flavor case, Nf = 2. We first construct a soliton solution
of the 5d YM that carries a unit baryon number. We show that for λ = g2

YMNc � 1,
which ensures the validity of the supergravity approximation, the soliton is repre-
sented by a BPST one-instanton solution30) with a fixed size of order λ−1/2 located
at the origin in the holographic direction. Here, the CS term and the U(1) part of the
gauge field play an important role in stabilizing the instanton size. We next quantize
the soliton by formulating a quantum-mechanical system that governs the collective
motion. A baryon is identified with a quantum state of this system. Note that this
procedure is a natural extension of the old, well-known idea of Adkins, Nappi and
Witten31) in the context of the Skyrme model.20)–22) In the original work, appearing
in Ref. 31), only the massless pion is taken into account. Therefore it is natural to
extend the analysis to include the contribution from massive (axial-)vector mesons.
Such an extension has been studied in Refs. 32)–35) (See Refs. 36) and 37) for re-
views and references therein.) using phenomenological effective actions including
the (axial-)vector mesons, such as the ρ, ω and a1 mesons. This paper proposes a
new approach for incorporating vector mesons. This approach utilizes the fact that,
in the D4/D8 model, the pion and an infinite number of the massive (axial-)vector
mesons are unified in a single 5d gauge field with a reasonably simple effective action.
Thus, it is expected that a thorough study of this model will allow us to gain some
new insight into baryon physics that cannot be captured by the Skyrme model.

The idea of describing baryons in terms of YM instantons was previously investi-
gated in Ref. 38), in which it is argued that the pion field configuration corresponding
to the Skyrmion is accurately approximated by integrating the one-instanton solu-
tion along an artificial fifth direction. Our approach is a manifestation of this idea,
although the motivation is completely different. An interesting point here is that the
introduction of the fifth direction is not just a mathematical trick. Rather, this direc-
tion has a physical interpretation as one of the spatial directions in the holographic
description of QCD.

Unfortunately, because the instanton size is of order λ−1/2, it is necessary to
incorporate an infinite number of higher-derivative terms into the 5d YM-CS theory
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Baryons from Instantons in Holographic QCD 1159

in order to derive quantitatively precise results concerning baryon physics. In this
paper, we do not attempt to resolve this issue. Instead, we mainly consider the 5d YM
theory with the CS term (although in Appendix B, we also analyze the non-Abelian
DBI action). For this reason, it may be the case that quantitative comparisons of our
results with experiments, which are made below for several examples, are of limited
physical meaning. However, even if this is the case, we believe that the qualitative
picture of baryon physics investigated in this paper is rather interesting and can help
us to gain deeper insight into it. In fact, the baryon spectrum obtained in this paper
seems to capture some characteristics of the baryon spectra observed in experiments,
although the predicted masses are not very close to the experimental values.

The organization of this paper is as follows. In §2, we formulate the 5d YM-
CS system that we treat throughout this paper. In §3, we show that baryons are
described by an instanton solution whose size is fixed by taking into account the effect
of the CS term. Section 4 is devoted to the construction of the Lagrangian of the
collective motion of the soliton. Quantization of the Lagrangian is performed in §5,
where the correspondence between each quantum state and a baryon is established.
There, we also make a quantitative comparison of our results with experimental
results for several cases. We end this paper with conclusions in §6. Some technical
details are summarized in the Appendices.

§2. The model

Our model consists of the following YM-CS theory with gauge group U(Nf ) in
a five-dimensional curved background:

S = SYM + SCS ,

SYM = −κ
∫
d4xdz tr

[
1
2
h(z)F2

µν + k(z)F2
µz

]
,

SCS =
Nc

24π2

∫
M4×R

ω
U(Nf )
5 (A) . (2.1)

Here, µ, ν = 0, 1, 2, 3 are four-dimensional Lorentz indices, and z is the coordinate
of the fifth-dimension. The quantity A = Aµdx

µ +Azdz is the 5-dimensional U(Nf )
gauge field, and F = dA + iA∧ A is its field strength. The constant κ is related to
the ’t Hooft coupling λ and the number of colors Nc as∗)

κ =
λNc

216π3
≡ aλNc . (2.2)

The functions h(z) and k(z) are given by

h(z) = (1 + z2)−1/3 , k(z) = 1 + z2 , (2.3)

∗) In Refs. 10) and 11), we used κ = λNc/(108π3), which is due to the misleading factor of 2

appearing in Eq. (5.1) of Ref. 10).
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and ωU(Nf )
5 (A) is the CS 5-form for the U(Nf ) gauge field defined as

ω
U(Nf )
5 (A) = tr

(
AF2 − i

2
A3F − 1

10
A5

)
. (2.4)

This theory is obtained as the effective action of Nf probe D8-branes placed in the
D4-brane background studied in Ref. 12) and is supposed to be an effective theory of
mesons, including an infinite number of (axial-)vector mesons as well as the massless
pion, in four-dimensional QCD with Nf massless quarks. In Refs. 10) and 11), it is
argued that much of the low energy behavior of QCD is reproduced by this simple
action. Here we employ units in which MKK = 1, where MKK is the single mass
parameter of the model, which specifies the Kaluza-Klein mass scale. The MKK

dependence can easily be recovered through dimensional analysis.
Note that it is also possible to extend our investigation to cases of more general

functions h(z) and k(z), as in the phenomenological approach to holographic QCD
given in Ref. 5). However, in this paper we use the functional forms given in Eq. (2.3)
for definiteness.

It is useful to decompose the U(Nf ) gauge field A into its SU(Nf ) part A and
its U(1) part Â as

A = A+
1√
2Nf

Â = AaT a +
1√
2Nf

Â , (2.5)

where T a (a = 1, 2, · · · , N2
f − 1) are the generators for SU(Nf ) normalized as

tr(T aT b) =
1
2
δab . (2.6)

The action is then written as

SYM = −κ
∫
d4xdz tr

[
1
2
h(z)F 2

µν + k(z)F 2
µz

]
−κ

2

∫
d4xdz

[
1
2
h(z)F̂ 2

µν + k(z)F̂ 2
µz

]
, (2.7)

SCS =
Nc

24π2

∫ [
ω

SU(Nf )
5 (A) +

3√
2Nf

Â trF 2 +
1

2
√

2Nf

Â F̂ 2

+
1√
2Nf

d

(
Â tr

(
2FA− i

2
A3

))]
. (2.8)

As mentioned above, we consider only the Nf = 2 case in the present paper. In
this case, ωSU(2)

5 (A) vanishes, and the CS term reduces to

SCS =
Nc

24π2

∫ [
3
2
Â trF 2 +

1
4
Â F̂ 2 + (total derivatives)

]
=

Nc

24π2
εMNPQ

∫
d4xdz

[
3
8
Â0 tr(FMNFPQ) − 3

2
ÂM tr(∂0ANFPQ)
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Baryons from Instantons in Holographic QCD 1161

+
3
4
F̂MN tr(A0FPQ) +

1
16
Â0F̂MN F̂PQ − 1

4
ÂM F̂0N F̂PQ + (total derivatives)

]
,

(2.9)

with M,N = 1, 2, 3, z and ε123z = +1.

§3. Classical solution

3.1. Soliton solutions for SY M

In our model, λ is assumed to be large, and we employ the 1/λ expansion. Since
SYM ∼ O(λ1) and SCS ∼ O(λ0), it is expected that the leading contribution to the
soliton mass comes from SYM. Let us first consider the system without the CS term.
In this case, the U(1) part, Â, of the gauge field is decoupled from the SU(2) part,
and thus it is consistent to set Â = 0. We are interested in the minimal energy static
configuration carrying a unit baryon number, NB = 1, where the baryon number
NB is equal to the instanton number and is given by

NB =
1

32π2

∫
d3xdz εMNPQ tr(FMNFPQ) . (3.1)

If the five-dimensional space-time were flat and the functions h(z) and k(z) were
trivial (i.e. h(z) = k(z) = 1), the solution would be given by the BPST instanton
solution30) of arbitrary size ρ and position in the four-dimensional space parame-
terized by xM (M = 1, 2, 3, z). However, in the present case with Eq. (2.3), it can
be shown that the minimal energy configuration is given by a small instanton with
infinitesimal size, ρ→ 0.

To illustrate this fact, we first examine the ρ dependence of the energy calculated
by inserting the BPST instanton configuration as a trial configuration. The BPST
instanton configuration is given by

AM (x) = −if(ξ) g∂Mg
−1 , (3.2)

where

f(ξ) =
ξ2

ξ2 + ρ2
, ξ =

√
(�x− �X)2 + (z − Z)2 , (3.3)

g(x) =
(z − Z) − i(�x− �X) · �τ

ξ
, (3.4)

and its field strengths are

Fij =
2ρ2

(ξ2 + ρ2)2
εijaτ

a , Fzj =
2ρ2

(ξ2 + ρ2)2
τj . (3.5)

Here �τ = (τ1, τ2, τ3) are the Pauli matrices, and we have �x = (x1, x2, x3) and
a, i, j = 1, 2, 3. The constants ( �X,Z) and ρ denote the position and the size of the
instanton, respectively. This is the one-instanton solution for the SU(2) Yang-Mills
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1162 H. Hata, T. Sakai, S. Sugimoto and S. Yamato

theory in flat four-dimensional space. Assuming �X = 0 and Z = 0 for simplicity, the
energy of this configuration is calculated as

E(ρ) = κ

∫
d3xdz tr

[
1
2
h(z)F 2

ij + k(z)F 2
iz

]
= 3π2κρ4

∫
dz (z2 + ρ2)−5/2(h(z) + k(z))

= 3π2κ

[√
π Γ (7/3)
Γ (17/6)

F

(
1
3
,
1
2
,
17
6

; 1 − ρ2

)
+

4
3

+
2
3
ρ2

]
. (3.6)

It can be shown that E(ρ) is a monotonically increasing function of ρ whose minimal
value is E(ρ = 0) = 8π2κ.

It is also possible to show that the minimal value of the energy E = 8π2κ found
above is actually the absolute minimum in the sector with a unit instanton number.
In fact, the SU(2) part of the YM action has the following bound for any static
configuration:

κ

∫
d3xdz tr

[
1
2
h(z)F 2

ij + k(z)F 2
iz

]
≥ κ

2

∫
d3xdz

√
h(z)k(z)

∣∣∣εijkF a
jkF

a
iz

∣∣∣
≥ 8π2κ|NB| . (3.7)

Here we have used the relation h(z)k(z) ≥ h(0)k(0) = 1. The lower bound of (3.7)
is realized only in the case of a (anti-)self-dual instanton with an infinitesimal size
located at z = 0.

It is interesting that the minimal value 8π2κ is equal to the baryon mass obtained
in Ref. 10) from the mass of a D4-brane wrapped around an S4 that surrounds the
color D4-branes. This fact suggests that the soliton mass 8π2κ is not modified even if
we include higher derivative terms in the DBI action, because the wrapped D4-brane
can be regarded as a small instanton on the probe D8-branes.39),40) More evidence
supporting this conjecture is given in Appendix B.

3.2. Contribution from SCS

Let us next consider the contribution from the CS term, (2.9). It is important
to note that this term includes a term of the form

εMNPQ

∫
d4xdz Â0 tr(FMNFPQ) . (3.8)

This shows that the instanton configuration induces an electric charge coupled to the
U(1) gauge field Â. As is well known from the theory of electrodynamics, the energy
possessed by the electric field of a point charge diverges. In the 1+4 dimensional
case, the energy behaves as E ∼ ρ−2 for a charged particle of radius ρ. Then,
taking this contribution into account, it follows that the minimal energy configuration
representing a baryon must have a finite size. This reasoning is analogous to that
used to argue the stability of a Skyrmion via the ω meson presented in Ref. 32).

In fact, as we show below, the classical solution at leading order in the 1/λ
expansion is given by a BPST instanton in the flat space whose size ρ is of order
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Baryons from Instantons in Holographic QCD 1163

λ−1/2. For this reason, in order to carry out a systematic 1/λ expansion, it is
convenient to rescale the coordinates xM as well as the U(2) gauge field AM as

x̃M = λ+1/2xM , x̃0 = x0 ,

Ã0(t, x̃) = A0(t, x) , ÃM (t, x̃) = λ−1/2AM (t, x) ,

F̃MN (t, x̃) = λ−1FMN (t, x) , F̃0M (t, x̃) = λ−1/2F0M (t, x) , (3.9)

and regard the quantities with tildes as being O(λ0). Hereafter, we omit the tilde
for simplicity. We then find that for λ� 1, the YM part becomes

SYM = − aNc

∫
d4xdz tr

[
λ

2
F 2

MN +
(
−z

2

6
F 2

ij + z2F 2
iz − F 2

0M

)
+ O(λ−1)

]
− aNc

2

∫
d4xdz

[
λ

2
F̂ 2

MN +
(
−z

2

6
F̂ 2

ij + z2F̂ 2
iz − F̂ 2

0M

)
+ O(λ−1)

]
, (3.10)

with i, j = 1, 2, 3, while the CS term takes the same form as that given in Eq. (2.9).
Here we have used Eq. (2.2). The equations of motion for the SU(2) part read

DMF0M +
1

64π2a
εMNPQF̂MNFPQ + O(λ−1) = 0 , (3.11)

DNFMN + O(λ−1) = 0 . (3.12)

Also, the equations of motion for the U(1) part are

∂M F̂0M +
1

64π2a
εMNPQ

{
tr(FMNFPQ) +

1
2
F̂MN F̂PQ

}
+ O(λ−1) = 0 , (3.13)

∂N F̂MN + O(λ−1) = 0 . (3.14)

Now we solve the equations of motion, (3.11)–(3.14) in order to derive a static
soliton solution corresponding to a baryon. First, let us consider Eq. (3.12). In this
paper we expand the action about the baryon solution and keep only the terms of
orders λ1 and λ0. For this purpose, we have only to solve the equation DNFMN = 0
on flat space while ignoring the O(λ−1) term in Eq. (3.12), because the correction to
the solution from the O(λ−1) term in Eq. (3.12) gives only an O(λ−1) correction to
the action. Therefore, a solution that carries a unit baryon number is given by the
BPST instanton solution (3.2). Here, the parameters ( �X,Z) and ρ are also rescaled
as in Eq. (3.9).

For the U(1) part, the finite energy solution of the Maxwell equation (3.14)
is given by F̂MN = 0, which yields the trivial solution ÂM = 0, up to a gauge
transformation. Then the Gauss’s law equation (3.11) is reduced to

D2
MA0 = 0 , (3.15)

whose solution is given in terms of a linear combination of the functions Φa given
in Eq. (A.20) of Appendix A. We are interested in the solution that vanishes at
infinity, and it is given by A0 = 0.
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1164 H. Hata, T. Sakai, S. Sugimoto and S. Yamato

We are thus left with Eq. (3.13) for Â0:

∂2
M Â0 +

3
π2a

ρ4

(ξ2 + ρ2)4
= 0 . (3.16)

This equation can easily be solved, and the regular solution that vanishes at infinity
is given by

Â0 =
1

8π2a

1
ξ2

[
1 − ρ4

(ρ2 + ξ2)2

]
. (3.17)

Note that we could add a constant term to Eq. (3.17) if we allow Â0 that are non-
vanishing at infinity. The physical interpretation of this constant term is that it
is the chemical potential µ associated with the baryon number,∗) since Eq. (3.8)
induces the µNB term in the action.

Now we have obtained the configurations (3.2) and (3.17), together with A0 =
ÂM = 0, which solves the leading-order equations of motion, (3.11)–(3.14). Although
this solution is sufficient for calculating the O(λ1) and O(λ0) terms of the energy, as
mentioned below Eq. (3.14), the resultant energy depends on ρ and Z, which have
not yet been fixed. In fact, the soliton mass M is obtained by evaluating the action
on shell, S = − ∫ dtM :

M = 8π2κ+ κλ−1

∫
d3xdz

[
−z

2

6
tr(Fij)2 + z2 tr(Fiz)2

]
− 1

2
κλ−1

∫
d3xdz

[
(∂M Â0)2 +

1
32π2a

Â0 εMNPQ tr(FMNFPQ)
]

+ O(λ−1)

= 8π2κ

[
1 + λ−1

(
ρ2

6
+

1
320π4a2

1
ρ2

+
Z2

3

)
+ O(λ−2)

]
. (3.18)

The values of ρ and Z for the solution should be determined by minimizingM , which
is equivalent to solving the sub-leading part of the equations of motion, (3.12) and
(3.14), projected on to the space of the deformations of the solution in the ρ and Z
directions.

It is worth emphasizing that the term in Eq. (3.18) proportional to ρ−2 results
from the Coulomb interaction Â0 εMNPQ tr(FMNFPQ) in the CS term, while the ρ2

and Z2 terms are due to the warped geometry employed here. Without the Coulomb
interaction, the soliton mass is minimized by the instanton with infinitesimal size,
i.e. ρ → 0, located at the origin, Z = 0, as we saw in §3.1. However, with the
Coulomb interaction, the instanton is stabilized at a finite size ρ given by

ρ2 =
1

8π2a

√
6
5
. (3.19)

Going back to the original variable [see Eq. (3.9)], ρ2 is rescaled as ρ2 → λ+1ρ2, en-
suring that the soliton is given by an instanton with size of order λ−1/2, as mentioned

∗) See Refs. 41)–43) for recent developments concerning the D4/D8 model with a chemical

potential.
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Baryons from Instantons in Holographic QCD 1165

above. Then, inserting Eq. (3.19) into Eq. (3.18), the mass of the soliton becomes

M � 8π2κ+

√
2
15
Nc . (3.20)

We conclude this section with a few remarks on higher-order derivative terms.
The action (2.1) is obtained by omitting the higher derivative terms from the D-
brane effective action. This corresponds to keeping only the leading-order terms in
the 1/λ expansion. However, in our case, because the size of the soliton solution is
small, the derivative of the gauge field is enhanced and may become important in the
analysis. Actually, we have seen that the size of the soliton solution is of order λ−1/2,
which in turn implies that an infinite number of higher-derivative terms involved in
the D-brane effective action are of the same order in the 1/λ expansion. To see
this, recall that each derivative and gauge field is accompanied by the string length
ls =

√
α′ in the DBI action, for example, ls∂M , lsAM and α′FMN . As explained

in Ref. 11), α′ can be regarded as a parameter of order λ−1. Therefore, after the
rescaling of Eq. (3.9), ls∂M and lsAM become O(λ0) in the rescaled variables, and
hence the higher-order derivative terms can appear at the same order. Such terms
may also contribute to the equations of motion, (3.11)–(3.14), and the soliton mass
(3.18). On the other hand, there are some arguments indicating that, in the case of
D-branes in a flat space-time, neither the BPST instanton solution nor its energy is
modified, even if all the higher derivative corrections are taken into account.44)–47)

In Appendix B, we investigate the non-Abelian DBI action and obtain some evidence
that the analysis based on the Yang-Mills action given in Eq. (2.1) is not modified.
It is important to carry out a more systematic analysis in order to make precise
quantitative predictions. We leave this task for a future study.

§4. Lagrangian of the collective modes

The moduli space of the one-instanton solution for the SU(2) Yang-Mills equa-
tion (3.12), ignoring the O(λ−1) terms, is given by

M = R
4 × R

4/Z2 . (4.1)

The first R
4 here corresponds to the position of the instanton parameterized by

( �X,Z), and R
4/Z2 consists of the size ρ and the SU(2) orientation of the instanton.

(See, for example, Ref. 48) for a review.) Let us parameterize R
4/Z2 by yI (I =

1, 2, 3, 4), which are transformed as yI → −yI under Z2. The size of the instanton
corresponds to the radial coordinate, ρ =

√
y2
1 + · · · + y2

4, and the SU(2) orientation
is parameterized by aI ≡ yI/ρ, with the constraint

∑4
I=1 a

2
I = 1.

To analyze slowly moving solitons, we adopt the moduli space approximation
method.49),50) With this method, we treat the collective coordinates ( �X,Z, yI) as
time-dependent variables and consider a quantum mechanical description of a parti-
cle in the moduli space M. The situation here is analogous to that of monopoles50)

(See, for example, Refs. 48), 51) and 52) for a review.) and also that of the
Skyrmions.31) In the present case, the size ρ and the position Z in the z-direction are
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1166 H. Hata, T. Sakai, S. Sugimoto and S. Yamato

not genuine collective coordinates, because of the ρ and Z dependent terms in the
energy (3.18), which arises from the non-trivial warp factors h(z) and k(z). As seen
at the end of this section, the excitations associated with ρ and Z are much lighter
than those associated with the other massive modes around the instanton for large
λ. For this reason, we treat ρ and Z as collective coordinates, along with ( �X, aI).

Now we calculate the effective Lagrangian of these collective modes, presenting
the derivation of Eq. (4.1) for completeness. We work in the A0 = 0 gauge, which
should be accompanied by the Gauss’s law constraint (3.11). Also, Eq. (3.13) gives
a constraint for obtaining Â0 and singles out the physical degrees of freedom.

The basic idea employed in this calculation is to approximate the slowly moving
soliton by the static classical solution, with the constant moduli Xα = ( �X,Z, yI)
promoted to the time-dependent collective coordinates Xα(t). Thus, the SU(2)
gauge field is assumed to be of the form

AM (t, x) = V Acl
M (x;Xα(t))V −1 − i V ∂MV

−1 . (4.2)

Here, Acl
M (x;Xα(t)) is the instanton solution (3.2) with time-dependent collective

coordinates ρ(t), �X(t) and Z(t). The quantity V = V (t, x) is an element of SU(2)
that is necessary for imposing the Gauss’s law constraint (3.11) for Eq. (4.2). It also
specifies the SU(2) orientation and hence includes the collective coordinates aI(t).
To see this, we first note that

FMN = V F cl
MNV

−1 , F0M = V
(
Ẋα∂αA

cl
M −Dcl

MΦ
)
V −1 , (4.3)

where ∂α = ∂/∂Xα, the dot denotes the time derivative ∂0, Dcl
M is the covariant

derivative with the gauge field Acl
M (x;Xα(t)), and we have

Φ ≡ −iV −1V̇ . (4.4)

For a given Φ, V can be obtained as

V −1 = P exp
(
−i
∫ t

dt′Φ(t′, x)
)
. (4.5)

It then follows that Eq. (3.11) becomes

Dcl
M

(
ẊN ∂

∂XN
Acl

M + ρ̇
∂

∂ρ
Acl

M −Dcl
MΦ

)
= 0 , (4.6)

where XN = ( �X,Z), and we have used F̂ cl
MN = 0. As shown in Appendix A, this

equation is solved by choosing

Φ(t, x) = −ẊN (t)Acl
N (x) + χa(t)Φa(x) , (4.7)

where Φa (a = 1, 2, 3) are the solutions of Dcl
MD

cl
MΦa = 0 given in Eq. (A.20), and

χa (a = 1, 2, 3) are related to the collective coordinates aI as

χa = −i tr(τaa−1ȧ) = 2(a4ȧa − ȧ4aa + εabcabȧc) , (4.8)
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Baryons from Instantons in Holographic QCD 1167

with
a ≡ a4 + iaaτ

a ∈ SU(2) . (4.9)

Then, F0M in Eq. (4.3) can be expressed as

F0M = V

(
ẊNF cl

MN + ρ̇
∂

∂ρ
Acl

M − χaDcl
MΦa

)
V −1 , (4.10)

where we have used (∂/∂XN)Acl
M = −∂NA

cl
M .

It is also necessary to impose the condition represented by Eq. (3.13), which
reads

−∂2
M Â0 +

1
64π2a

εMNPQ tr(F cl
MNF

cl
PQ) = 0 . (4.11)

This shows that Â0 is again given by Eq. (3.17), except that in the present case, all
the instanton moduli are time dependent.

Inserting into the action the above soliton configuration with time-dependent
collective coordinates, we obtain the quantum mechanical system

L =
mX

2
gαβẊ

αẊβ − U(Xα) + O(λ−1) , (4.12)

where mX ≡ 8π2κλ−1 = 8π2aNc and gαβ is the metric for the instanton moduli
space (4.1), given by

ds2 = gαβ dX
αdXβ

= d �X2 + dZ2 + 2(dρ2 + ρ2da2
I)

= d �X2 + dZ2 + 2 dy2
I . (4.13)

(See Appendix A for more details.) The potential U(Xα) is given by Eq. (3.18),

U(Xα) = U(ρ, Z) = M0 +mX

(
ρ2

6
+

1
320π4a2

1
ρ2

+
Z2

3

)
, (4.14)

with M0 = 8π2κ. The Lagrangian (4.12) can also be written as

L = LX + LZ + Ly + O(λ−1) , (4.15)

LX = −M0 +
mX

2
�̇X2 ,

LZ =
mZ

2
Ż2 − mZω

2
Z

2
Z2 ,

Ly =
my

2
ẏ2

I − myω
2
ρ

2
ρ2 − Q

ρ2
=
my

2
(
ρ̇2 + ρ2ȧ2

I

)− myω
2
ρ

2
ρ2 − Q

ρ2
, (4.16)

where

M0 = 8π2κ , mX = mZ = my/2 = 8π2κλ−1 = 8π2aNc ,

ω2
Z =

2
3
, ω2

ρ =
1
6
, Q =

N2
c

5mX
=

Nc

40π2a
. (4.17)
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1168 H. Hata, T. Sakai, S. Sugimoto and S. Yamato

A few comments are in order. First, if we write the above Lagrangian in terms
of the original variable before the rescaling described in Eq. (3.9), mX is replaced

with M0, and then the �̇X2 term becomes the usual kinetic term for a particle of
mass M0. Second, note that the Lagrangian for aI is the same as that in the case
of a Skyrmion31) with a moment of inertia myρ

2/4, although this moment of inertia
depends on the coordinate ρ, which is promoted to an operator upon quantization.
Third, as mentioned above, ρ and Z are not the collective modes in the usual sense,
since they have the non-trivial potential (4.14). The reason that we focus only on
ρ and Z among the infinitely many massive fluctuations about the instanton is the
following. Because the Lagrangian for ρ and Z in Eq. (4.15) is of order λ0, the
energy induced by the excitation of these modes is also of order λ0. On the other
hand, the other massive fluctuations are all massive, even for a flat background, and
hence the mass terms come from the O(λ) term in Eq. (3.10). This implies that their
frequencies are of order λ1/2. Therefore, the excitations of these modes are much
heavier than the excitations of Z and ρ for λ� 1.

§5. Quantization

In this section, we quantize the system (4.15) in order to derive the spectra of
baryons. The Hamiltonian for a baryon placed at �X = 0 is

H = M0 +Hy +HZ , (5.1)

where

Hy = − 1
2my

4∑
I=1

∂2

∂y2
I

+
1
2
myω

2
ρρ

2 +
Q

ρ2
, (5.2)

HZ = − 1
2mZ

∂2
Z +

1
2
mZω

2
ZZ

2 . (5.3)

As argued in Appendix A, a point aI in S3 and its antipodal point, −aI , are to
be identified in the instanton moduli space. This implies that the wave function of
the system must satisfy the condition

ψ(aI) = ±ψ(−aI) . (5.4)

Following Ref. 31) (see also Ref. 53)), we impose the anti-periodic boundary condition
ψ(aI) = −ψ(−aI), since we are interested in fermionic states.

5.1. Solution to the Schrödinger equation

As a warm-up, let us first consider Hy with Q = 0. Then, the system is reduced
to the 4-dimensional harmonic oscillator:

Hy|Q=0 =
4∑

I=1

(
− 1

2my

∂2

∂y2
I

+
1
2
myω

2
ρy

2
I

)
. (5.5)

We know that the energy eigenvalues of this system are given by

Ey|Q=0 = ωρ(N + 2) , (5.6)
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Baryons from Instantons in Holographic QCD 1169

with
N = n1 + n2 + n3 + n4 , (5.7)

where nI = 0, 1, 2, · · · (I = 1, 2, 3, 4). The degeneracy of the states with a given N
is

dN =
1
6
(N + 3)(N + 2)(N + 1) . (5.8)

Next, we solve this problem using polar coordinates. The Hamiltonian is then
written

Hy|Q=0 = − 1
2my

(
1
ρ3
∂ρ(ρ3∂ρ) +

1
ρ2

∇2
S3

)
+

1
2
myω

2
ρρ

2 , (5.9)

where ∇2
S3 is the Laplacian for a unit S3. It is known that the scalar spherical

harmonics for S3 are given by

T (l)(aI) = CI1···Il
aI1 · · · aIl

, (5.10)

where CI1···Il
is a traceless symmetric tensor of rank l. They satisfy

∇2
S3T

(l) = −l(l + 2)T (l) , (5.11)

and the degeneracy is (l+1)2. Under the isomorphism SO(4) � (SU(2)×SU(2))/Z2,
the rank l traceless symmetric tensor representation of SO(4) corresponds to the
(Sl/2, Sl/2) representation of (SU(2) × SU(2))/Z2. Here, Sl/2 denotes the spin l/2
representation of SU(2), and its rank is dimSl/2 = l+ 1. Writing the eigenfunctions
of the Hamiltonian as

ψ(yI) = R(ρ)T (l)(aI) , (5.12)

R(ρ) is found to satisfy
HlR(ρ) = Ey|Q=0R(ρ) , (5.13)

with

Hl ≡ − 1
2my

(
1
ρ3
∂ρ(ρ3∂ρ) − l(l + 2)

ρ2

)
+

1
2
myω

2
ρρ

2 . (5.14)

The eigenvalue equation (5.13) for R(ρ) is reduced by substituting the form

R(ρ) = e−
myωρ

2
ρ2
ρl v(myωρρ

2) . (5.15)

This yields the confluent hypergeometric differential equation for v(z),{
z∂2

z + (l + 2 − z)∂z +
1
2

(
Ey|Q=0

ωρ
− l − 2

)}
v(z) = 0 . (5.16)

A normalizable regular solution to Eq. (5.16) exists only when (1
2) (Ey|Q=0/ωρ − l − 2)

= n = 0, 1, 2, · · · , and it is given by

v(z) = F (−n, l + 2; z) , (5.17)

where F (α, γ; z) is the confluent hypergeometric function defined by

F (α, γ; z) ≡
∞∑

k=0

(α)k

(γ)k

zk

k!
, (5.18)
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1170 H. Hata, T. Sakai, S. Sugimoto and S. Yamato

with (α)k ≡ α(α+1) · · · (α+ k− 1). Note that F (−n, γ; z) is a polynomial of degree
n. The corresponding energy eigenvalue is

Ey|Q=0 = ωρ(l + 2n+ 2) , (5.19)

which coincides with Eq. (5.6). It is easy to see that the degeneracy (5.8) is repro-
duced by summing (l + 1)2 with l = N − 2n over n = 0, 1, · · · , [N/2].

Now we turn back to the Hamiltonian (5.2) with Q > 0. Using polar coordinates,
it is written

Hy = − 1
2my

(
1
ρ3
∂ρ(ρ3∂ρ) +

1
ρ2

(∇2
S3 − 2myQ)

)
+

1
2
myω

2
ρρ

2 . (5.20)

Again, the wave function can be written as Eq. (5.12), and R(ρ) should satisfy

Hel
R(ρ) = EyR(ρ) , (5.21)

where Hel
is now given by Hl (Eq. (5.14)), with l replaced by l̃, defined as

l̃ ≡ −1 +
√

(l + 1)2 + 2myQ , (5.22)

which satisfies

l̃(l̃ + 2) = l(l + 2) + 2myQ . (5.23)

Therefore, the eigenfunctions and the energy eigenvalues are obtained by simply
replacing l with l̃ in the previous results for Q = 0, and thus the energy spectrum
becomes

Ey = ωρ(l̃ + 2nρ + 2)

=

√
(l + 1)2

6
+

2
15
N2

c +
2nρ + 1√

6
, (5.24)

with nρ = 0, 1, 2, · · · and l = 0, 1, 2, · · · . As discussed above, the fermionic baryons
correspond to the wave functions that are odd in aI , which implies that l should be
odd. We see in the next subsection that this yields baryons with half-integer spin
and isospin. Finally, the quantization of Z is trivial:

EZ = ωZ

(
nz +

1
2

)
=

2nz + 1√
6

, (5.25)

with nz = 0, 1, 2, · · · . Adding Eqs. (5.24) and (5.25), we obtain the following baryon
mass formula:

M = M0 +

√
(l + 1)2

6
+

2
15
N2

c +
2(nρ + nz) + 2√

6
. (5.26)
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Baryons from Instantons in Holographic QCD 1171

5.2. Physical interpretation

The physical interpretation of the baryon spectrum found in the previous sub-
section is as follows. As mentioned above, each mass eigenstate belongs to the
(Sl/2, Sl/2) representation of SO(4) � (SU(2)I × SU(2)J )/Z2, which acts on the
SU(2)-valued collective coordinate a defined by Eq. (4.9) as

a → gI a gJ , gI,J ∈ SU(2)I,J . (5.27)

This implies that SU(2)I and SU(2)J are identified with the isospin rotation and
the spatial rotation, respectively, as in Ref. 31). This can be understood from the
ansatz (4.2) and Eq. (A.21) in Appendix A, relating a and V : The spatial rotation
of the BPST instanton configuration (3.2) gives rise to the transformation of V as

V → V gJ , gJ ∈ SU(2)J , (5.28)

while the isospin rotation of the gauge field (4.2) is induced by

V → gIV , gI ∈ SU(2)I . (5.29)

This transformation property, together with Eq. (A.21), implies Eq. (5.27). With
this identification, we find that the spin J and isospin I of the soliton are both l/2.
The l = 1 states correspond to I = J = 1/2 states, which include nucleons, and the
l = 3 states correspond to I = J = 3/2 states, which include ∆. These are the states
considered in Ref. 31).

Heavier baryons with a common spin and isospin are represented by states with
non-trivial nρ and nz. It is interesting that the excited states with odd nz correspond
to odd parity baryons, as the parity transformation induces z → −z, as shown in
Ref. 10).

For the comparison with our mass formula (5.26) to be made below, we list
baryons with I = J in the PDG baryon summary table,54) along with a possible
interpretation of the quantum numbers (nρ, nz).

(nρ, nz) (0, 0) (1, 0) (0, 1) (1, 1) (2, 0)/(0, 2) (2, 1)/(0, 3) (1, 2)/(3, 0)
N (l = 1) 940+ 1440+ 1535− 1655− 1710+, ? 2090−∗ , ? 2100+

∗ , ?
∆ (l = 3) 1232+ 1600+ 1700− 1940−∗ 1920+, ? ?, ? ?, ?

(5.30)
The superscripts ± represent the parity. The subscript ∗ indicates that evidence of
the existence of the baryon in question is poor.

5.3. Comments on the baryon mass formula

Let us first discuss the Nc dependence of the mass formula (5.26) in the large Nc

limit. For Nc � l, the mass formula (5.26) has the following approximate expression:

M �M0 +

√
2
15
Nc +

1
4

√
5
6

(l + 1)2

Nc
+

2(nρ + nz) + 2√
6

. (5.31)

Note that the O(Nc) terms are identical to the classical formula, (3.20). It is inter-
esting that the mass formula (5.31) is consistent with the expected Nc dependence
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1172 H. Hata, T. Sakai, S. Sugimoto and S. Yamato

in large Nc QCD.31),55) It is known that the mass splittings among the low-lying
baryons with different spins are of order 1/Nc, while those among excited baryons
are of order N0

c . This is exactly what we observe in Eq. (5.31).
The states considered in Ref. 31) correspond to the states with nρ = nz = 0.

The l-dependent term in their mass formula is proportional to l(l+ 2), which is also
reproduced in Eq. (5.31).

It is important to understand the extent to which we can trust the mass formulas
(5.26) and (5.31). First, in order to approximate Eq. (5.26) with Eq. (5.31), the
inequality

(l + 1)2

6
<

2
15
N2

c (5.32)

must be satisfied. For real QCD with Nc = 3, it is satisfied only for l = 1. For this
reason, we mainly consider the formula (5.26) in the following. However, we have
to keep in mind that there may be 1/Nc corrections to the action (2.1) that become
important for large quantum numbers l, nz and nρ in the mass formula (5.26).

Another uncertainty in the mass formula regards the zero-point energy. Note
that the zero-point energy in Eq. (5.26) is of order N0

c , which is the same order as
possible 1/Nc corrections to the classical soliton mass M0. Furthermore, an infinite
number of the heavy modes around the instanton that have been ignored to this
point give a divergent contribution to the total zero-point energy of order N0

c . What
we really need is the difference between the energy in the presence of a soliton and
that in the vacuum, and hence the divergence in the zero-point energy in the presence
of a soliton should be removed by subtracting the zero-point energy of the vacuum.
In this paper, we do not attempt to analyze such contributions. Instead, we only
consider the mass differences among the baryons and treat M0 as a free parameter.

5.4. Numerical estimates

As suggested in §§3.2 and 5.3, we cannot fully justify the quantitative prediction
for the baryon mass, especially in the case of large masses, because the contribution
from higher-derivative terms, as well as the 1/Nc corrections, may become important.
Nevertheless, here we report some numerical estimates to gain some insight from the
baryon mass formula (5.26).

The difference between the masses of the l = 3 and l = 1 states is

Ml=3 −Ml=1 =

√
8
3

+
6
5
−
√

2
3

+
6
5
� 0.600 � 569MeV . (5.33)

The difference between the masses of the (nρ, nz) = (1, 0) or (0, 1) state and the
(0, 0) state with a common l is

M(1,0)/(0,1) −M(0,0) =
2√
6
� 0.816 � 774MeV . (5.34)

Here, we have used 1 = MKK � 949 MeV, which is consistent with the ρ meson
mass.10),11) Unfortunately, these values are slightly too large compared with the
experimental values. If MKK were 500 MeV, the predicted values obtained using
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Baryons from Instantons in Holographic QCD 1173

Eq. (5.26) would become very close to those listed in Eq. (5.30):∗)

(nρ, nz) (0, 0) (1, 0) (0, 1) (1, 1) (2, 0)/(0, 2) (2, 1)/(0, 3) (1, 2)/(3, 0)
N (l = 1) 940+ 1348+ 1348− 1756− 1756+, 1756+ 2164−, 2164− 2164+, 2164+

∆ (l = 3) 1240+ 1648+ 1648− 2056− 2056+, 2056+ 2464−, 2464− 2464+, 2464+

(5.35)

§6. Conclusion and discussion

In this paper, we have investigated dynamical baryons within the context of the
holographic description of QCD proposed in Refs. 10) and 11). A key observation in
this treatment is that the baryon number is provided with the instanton number in
the five-dimensional YM-CS theory (2.1). This implies that baryons can be described
as large Nc solitons, as in Refs. 20)–22), 55) and 31). We explicitly constructed a soli-
ton solution with a unit baryon number and found that it corresponds to the BPST
instanton with a size of order λ−1/2. It was stressed that the Coulomb interaction in
the CS term plays a crucial role in obtaining the regular solution. Although regular,
the instanton is not large enough that we can employ the YM-CS theory with all
the higher-order derivative terms omitted. As a first step toward the full incorpo-
ration of the infinitely many higher derivative terms, we consider the non-Abelian
DBI action56) in Appendix B. There, we verify that the energy contribution of the
static baryon configuration computed with the non-Abelian DBI action is the same
as that computed with the YM action. We leave the more thorough analysis of this
problem as a future work, with the goal of carrying out a precise quantitative test
of the present model regarding baryon physics by properly treating all the relevant
higher derivative terms.

We quantized the collective coordinates of the instanton to obtain the baryon
spectrum in the hope that the model (2.1) captures some qualitative features of
baryons. In fact, the Nc dependence of the baryon mass formula (5.26) is consistent
with the results of the analyses of large Nc baryons in the literature. Furthermore,
our model describes negative-parity baryons as the excited states of the instanton
along the holographic direction z. Unfortunately, the best fit of the parameter MKK

to the experimental data for baryons is inconsistent with that found in Refs. 10) and
11), which comes from the ρ meson mass. This may be due to the fact that the
higher derivative terms have not been incorporated into the YM-CS theory.

We end this paper with some comments on future directions. It is important to
analyze static properties of baryons, such as the charge radii and magnetic moments,
as done in Ref. 31) for the Skyrme model. Also, extension of the one-instanton
solution to multi-instanton cases is quite interesting for the purpose of exploring
multi-baryon systems. (See Refs. 38) and 57) for related works.) Moreover, in the
present model, the role of the infinite number of (axial-)vector mesons in obtaining
the soliton solution is not difficult to elucidate. It would be interesting to compare
this role with the recent analysis given in Ref. 28), in which baryons are constructed

∗) The nucleon mass 940 MeV is used as an input to fix M0.
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as Skyrmions in the effective action including the pion and ρ meson on the basis of
the D4/D8 model.
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Appendix A
Metric of the Instanton Moduli Space

In this appendix, we outline the derivation of the metric of the instanton moduli
space given by Eq. (4.13). (See, e.g., Ref. 48) for a review.) This metric can be read
from the kinetic term of the Lagrangian of the collective coordinates, which follows
from the F 2

0M term in Eq. (3.10) as

mX

2
gαβẊ

αẊβ = κλ−1

∫
d3xdz trF 2

0M

= κλ−1

∫
d3xdz tr

(
Dcl

MΦ− Ȧcl
M

)2
, (A.1)

where F0M is given by Eq. (4.3). We solve the Gauss’s law constraint (4.6) to obtain
Φ (Eq. (4.4)) for each instanton moduli and then calculate the corresponding metric
using Eq. (A.1). To do this, we first decompose Φ as

Φ = ΦX + Φρ + ΦSU(2) , (A.2)

and impose the conditions

Dcl
M

(
ẊN ∂

∂XN
Acl

M −Dcl
MΦX

)
= 0 , (A.3)

Dcl
M

(
ρ̇
∂

∂ρ
Acl

M −Dcl
MΦρ

)
= 0 , (A.4)
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Dcl
MD

cl
MΦSU(2) = 0 . (A.5)

The following formula for g(x) given in Eq. (3.4) is useful in the derivation below:

g∂Mg
−1 =


i

ξ2
(
(z − Z)τ i − εija(xj −Xj)τa

)
, (M = i)

− i

ξ2
(xa −Xa)τa . (M = z)

(A.6)

• Instanton center XM = ( �X,Z)
We find that the form

ΦX = −ẊNAcl
N (A.7)

satisfies Eq. (A.3), since we have (∂/∂XN )Acl
M = −∂NA

cl
M , and hence

Dcl
MΦX − ẊN ∂

∂XN
Acl

M = −ẊNF cl
MN . (A.8)

The corresponding metric is

gMN =
2κλ−1

mX

∫
d3x dz trF cl

MPF
cl
NP = δMN . (A.9)

• Instanton size ρ
Using the relation

∂

∂ρ
Acl

M = − 2ρ
ξ2 + ρ2

Acl
M (A.10)

and the formula

∂M (g ∂M g−1) ∝ (xM −XM ) g ∂M g−1 = 0 , (A.11)

we find that Eq. (A.4) is satisfied by

Φρ = 0 . (A.12)

Further, the metric is given by

gρρ =
2κλ−1

mX

∫
d3x dz tr

(
∂

∂ρ
Acl

M

)2

= 2 . (A.13)

• SU(2) orientation
The SU(2) rotation of the instanton solution is implemented by a global gauge

transformation. To solve Eq. (A.5), it is convenient to move to the singular gauge
obtained through the gauge transformation

ΦSU(2) → ΦSU(2) ≡ g−1ΦSU(2) g ,

Acl
M → AM ≡ g−1Acl

M g − ig−1∂Mg = −i(1 − f(ξ))g−1∂Mg , (A.14)

where f(ξ) is given by Eq. (3.3). Then, Eq. (A.5) can be recast as

DMDMΦSU(2) = 0 , (A.15)
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with DM = ∂M + i[AM , ]. It is not difficult to see that Eq. (A.15) is solved by

Φa = u(ξ)
τa

2
, (a = 1, 2, 3) (A.16)

with u(ξ) satisfying

1
ξ3
∂ξ(ξ3∂ξ u(ξ)) = 8

(1 − f(ξ))2

ξ2
u(ξ) . (A.17)

The regular solution of this equation is

u(ξ) = C
ξ2

ξ2 + ρ2
= C f(ξ) , (A.18)

with a constant C. Therefore, ΦSU(2) can be written

ΦSU(2) = χa(t)Φa(x) , (A.19)

with
Φa = f(ξ) g

τa

2
g−1 (A.20)

and t-dependent real coefficients χa(t).
We choose the SU(2)-valued collective coordinate a(t) = a4(t) + iaa(t)τa as

V (t, �x, z) → a(t) . (z → ∞) (A.21)

Comparing this with (A.19), we find

χa = −i tr (τaa−1ȧ
)

= 2 (a4ȧa − ȧ4aa + εabcabȧc) . (A.22)

This gives
(χa)2 = 4ȧ2

I . (A.23)

Then, the metric for aI is obtained as

gIJ ȧI ȧJ =
2κλ−1

mX

∫
d3xdz tr

(
Dcl

MΦSU(2)

)2
= 2ρ2ȧ2

I , (A.24)

with the constraint a2
I = 1.

It is easy to see that the off-diagonal components of gαβ, connecting different
kinds of moduli, vanish. Collecting these results, we find that the metric of the
moduli space is given by

ds2 = gαβdX
αdXβ

= d �X2 + dZ2 + 2(dρ2 + ρ2da2
I)

= d �X2 + dZ2 + 2 dy2
I , (A.25)

with yI = ρaI . Note that aI parameterizes not S3 but S3/Z2, with Z2 being the
center of SU(2), which acts as aI → −aI . In fact, the configuration (4.2) is un-
changed under the Z2 transformation V → −V . Hence, the one-instanton moduli
space coincides with R

4 × R
4/Z2.
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Appendix B
Higher Derivative Terms

As we have seen in §3, higher derivative terms in the D-brane action also con-
tribute to the soliton mass at the same order in the 1/λ expansion. However, it
is difficult to include all the higher-order derivative terms, since the exact deriva-
tive corrections in the D-brane action are not known. (See, e.g., Ref. 58) and the
references therein.) Among the various sources of higher derivative corrections in
the D-brane action, here we consider the contributions from the non-Abelian DBI
action56) as a first step toward a complete analysis.

The non-Abelian DBI action for the probe D8-branes is given by

SDBI = −µ8

∫
d9x e−φ str

√
−det(gab + 2πα′Fab) , (a, b = 0, 1, · · · , 8) (B.1)

where µ8 = 1/((2π)8l9s), and str denotes the symmetrized trace. Here, gab is the
induced metric on the D8-brane world-volume, given by10)

ds29 dim =
λl2s
3

[
4
9
k(z)1/2 ηµνdx

µdxν +
4
9
k(z)−5/6 dz2 + k(z)1/6 dΩ2

4

]
, (B.2)

and the dilaton on it reads

e−φ =
33/2πNc

λ3/2
k(z)−1/4 . (B.3)

After integrating over the S4 directions, we obtain the five-dimensional non-Abelian
DBI action

SDBI = −Ncλ
3

39π5

∫
d4xdz k(z)1/12 str

√
−det

(
g
(5)

M̂N̂
+

27π
2λ

FM̂N̂

)
, (B.4)

where M̂, N̂ = 0, 1, 2, 3, z, and the five-dimensional metric g(5)

M̂N̂
is given by

ds25 dim = k(z)1/2 ηµνdx
µdxν + k(z)−5/6 dz2 . (B.5)

Here, for simplicity, we have kept only the gauge potentials AM̂ non-zero.
The above expressions are written in terms of the original variables, before the

rescaling (3.9). Upon the rescaling, it is found that the non-Abelian DBI action
(B.4) can be expanded as

SDBI = − λNc

39π5

∫
d4xdz

(L0 + λ−1L1 + O(λ−2)
)
, (B.6)

where L0 and L1 are given by

L0 = str
√

det (BMN ) , (B.7)

L1 = str

[√
det (BMN )

(
2
3
z2 − 1

2

(
27π
2

)2

GMNFM0FN0
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+
z2

2

(
27π
2

)2{
−1

2
GMNFMiFNi +

5
6
GMNFMzFNz

})]
, (B.8)

with M,N = 1, 2, 3, z and i = 1, 2, 3, and we have the definitions

BMN ≡ δMN +
27π
2

FMN , GMN ≡ (B−1)(MN) . (B.9)

From Eq. (B.7), we find that the leading-order term in the 1/λ expansion is given by
the non-Abelian DBI action in a flat space-time. It is known that the BPST instanton
configuration (3.2) is a solution for the non-Abelian DBI action (B.7).45)–47)

Inserting the BPST instanton configuration (3.2) into the action (B.4), we obtain

SDBI = − λNc

39π5

∫
d4x dz k2/3

× 2
(

1 + 2
∂

∂s

)√
1 + s

(
27π
4

)2

k−1ω2

√
1 + s

(
27π
4

)2

k1/3ω2

∣∣∣∣∣
s=1

,

(B.10)

where

ω =
4ρ2

(ξ2 + ρ2)2
, (B.11)

and ξ is defined as in Eq. (3.3). Here, we are using the rescaled variables, and we
have k = k(λ−1/2z) = 1 + λ−1z2. Hence, the energy contribution is

E =
λNc

39π5

∫
d3x dz k2/3

×2
(

1 + 2
∂

∂s

)√1 + s

(
27π
4

)2

k−1ω2

√
1 + s

(
27π
4

)2

k1/3ω2 − 1

∣∣∣∣∣∣
s=1

=
λNc

18π2

∫ ∞

−∞
dz

∫ ∞

0
dr

[
r2
(

1 +
z2

3λ

)
ω2 + O(λ−2)

]
= 8π2κ

[
1 + λ−1

(
ρ2

6
+
Z2

3

)
+ O(λ−2)

]
, (B.12)

where we have used∫ ∞

−∞
dz

∫ ∞

0
dr r2ω2 =

2π
3
,

∫ ∞

−∞
dz

∫ ∞

0
dr r2z2ω2 =

2π
3
Z2 +

π

3
ρ2 . (B.13)

The expression (B.12) is identical to (3.18), except for the contribution from the
CS term. This result is highly non-trivial, since the non-Abelian DBI action (B.4)
contains infinitely many higher derivative terms, while our previous analysis is based
on the YM action in Eq. (2.1). This finding suggests that our previous results may
not be significantly modified even if we include all of the higher derivative terms.
However, because there are still infinitely many higher derivative terms that have
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not been included in the non-Abelian DBI action, we cannot definitively confirm the
quantitative results obtained in this paper, such as the baryon mass formula (3.18).
Nonetheless, we expect that these results will be useful in more systematic studies
of the higher derivative terms.
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