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Baryons with Double Charm
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We use potential models and several versions of the bag model to calculate the mass spectrum
of baryons with two charmed quarks surrounded by an ordinary or strange quark. ~Such a system is
conveniently described in the Born-Oppenheimer approximation, where the light quark dynamics
provides an effective potential in which the two heavy quarks move non-relativistically. We survey
briefly the possibilities of producing such heavy baryons and discuss their decay properties.

§1. Introduction

The discovery of the J/¥ in November 1974 has opened a new era in hadron
spectroscopy.” The Charmonjum and Upsilon families provide unique information
on the interquark potential and Zweig-forbidden strong decays.? Particles with
naked heavy flavour, like D, B or A.” offer an interesting situation where the light
quarks acquire high velocities in the field of a static heavy quark,” whereas their
weak decays are carefully scrutinized to test the standard model and the subtle
interplay of strong interactions with electroweak processes.”

New type of hadrons containing heavy quarks are also impatiently awaited for.
The (ccc) baryons will provide the first clean baryon spectrum with several narrow
levels above the ground state® The possibility of stable multiquarks, like the
tetraquark (QQ77)” or the pentaquark (Qgaqq),” has also been studied.

In the mass range of 3-4 GeV, one should also find baryons with double charm, of
. quark content (ccg), where g denotes %, d or s. They combine the dynamics found
in the D meson, with a fast moving light quark surrounding a static colour 3 core, and
the dynamics-of Charmonium, with two heavy quarks experiencing the short range

QCD potential. It is thus rather interesting to confront in this sector various quark - -

models which describe successfully the hadrons which are already known exper-
imentally.

This paper is organized as follows. Section 2 is devoted to potential models.
We recall some rigorous inequalities and also compare the exact solution of the
three-body problem to the results obtained in the quark-diquark or in the Born-

Oppenheimer approximation. The latter turns out to be extremely well suited for.
this problem. We end this section by the numerical predictions based on realistic .

potential models. In § 3, we show how to use the bag model for those particular
baryons, and underline the sensitivity to the choice of parameters and to the strategy
used to treat the centre-of-mass motion and the zero-point energy. The properties of
the mass spectrum and, in particular, the stability of the levels are discussed at the end

*) Boursigre du Ministere des Affaires Etrangares (Paris).
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Baryons with Double Charm 761

of §3. We comment briefly in § 4 on the possibilities of producing these baryons in
electron or hadron machines. We also examine the weak decays of double charm
baryons in the light of the studies performed recently for mesons and baryons with
single charm. ' :

§ 2. Potential models

- 2.1.  Rigovous results

Let us assume here that the (QQg) system is bound by a Hamiltonian

H= pl ‘|‘ 5)54 + p3 T V(rl, T2, r3) . » (1)

Under reasonable assumptions,” one may expect that the correspondmg bound state
energy E(M, M, m) will satisfy the convexity relation

E(M, M, m)<2E(M, m, m)—E(m, m, m). : (2)
This gives, with appropriate spin averaging of experimental masses
M(ceu)<2(2.4 GeV)—1.1 GeV=3.7 GeV . : (3)

If, furthermore, one accepts the so-called “1/2 rule”'” relating the interquark potential
in baryons to the quarkonium potential v via

Vir, 1, r)=5 Solrs), , @
one gets:'V
Jn(ccu)z—%—m(c'a)ar-m(ca)zs.m GeV . o )

More precisely, if one takes spin forces into account,”

ﬂn(ccu, 23 ) S M)+ H(D*)~3.56 GeV ,

Jn(ccu, )= SHTI)+-FH(D+3 H(D)~345 Gev | (6)
It is very remarkable that, from the above inequalities, one predicts almost unam-
biguously the mass of the ground state (ccu) as: :

M=~3.6+0.1GeV . (7

Some generalizations involving excited states are possible. We refer to the papers
quoted in Refs. 9)~12).

2.2. Solving the three-body problem
a) The reduced hamiltonian

The Hamiltonian (1) is greatly simplified by introducing Jacobi variables
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762 S. Fleck and J. M. Richard

R— M(ri+r)+mrs
_ 2M+m ’
X=r:—"rn,
m
=Q2r—ri—r) S +m ‘ (8)

Since the pAotential is invariant under translation, the centre-of-mass motion can be
factorized in the wave-function, and one deals with the reduced hamiltonian

151 Y’
=4 i +v(x ). (9)

The details of the resolution of the three-body Schridinger equation z¢= E¢ are given
elsewhere.!® Let us present briefly some possible methods.
- b) Variational methods

One possibility consists of expanding the wave-function in terms of the eigen-
states ¢ of a symmetric harmonic oscillator (h.o.)

2 2
: 1 |
=Bt Bt K (2% + 57) | (10)

with K being adjusted to optimized the convergence of

o(x, )= 3 Crun-d(N, b b5 2, 9), _ (11)

where the summation contains obvious restrictions due to parity and angular momen-
tum conservation. The convergence as a function of the total number N of quanta
in (11), is shown in Table I for a typical choice

with M =1.0 and m=0.2, in arbitrary units.
The use of a symmetric h.o. allows one to make use of the powerful machinery of

Table 1. Convergence of the harmonic oscillator Table II. Convergence of the gaussian expansion
expansion for the potential (12), for mi=m.=1 (14) for the ground-state of (ggg’) bound by
and m3;=02. The results concern the ground- - potential of Eq. (12). The notation is the fol-
state, whose energy and correlation coefficients lowing: 2S+1D, for instance, means that 2
85=X8( r,-j» are displayed as a function of the terms with /=0 and 1 term with /=2 have been
maximum number of quanta N allowed in the introduced in the expansion of the wave-
expansion (11). function.

N E Sz X 10%) S1s( X 10%) - E 812 X 10%) S3( X 10%)
0 1.9502 0.9781 0.1882 1S 1.9480 - 0.7100 0.2304
2 1.9485 0.7495 0.2187 28 - 1.9460 -, 0.8078 . 0.2791
4 1.9459 0.8891 0.2495 3S . 1.9459 0.8284 0.2867
6 1.9457 0.8739 0.2623 1S+1D | 1.9479 0.7066 0.2384
8 1.9454 0.9179 0.2736 2S+1D | 1.9460 0.8079 0.2810°
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Baryons with Double Charm : 763

the Talmi-Brody-Moshinsky' coefficients to compute the matrix elements of v(x, ¥).
However, the expansion (11) does not easily reproduce the propetry <Jx|><<|¥|> of the
wave-function and, as seen in Table I, the convergence is rather slow.

A variant consists of gaussians with different range in the x and y coordinates.
We restrict the discussion here to the ground state but the generalization to other
levels is straightforward.'® The first approximation consists of

#(x, 9)= 5} Casexp( —flaa®+85)) @)
and then, the possibility of internal orbital excitations can be introduced

Pz, )= B ConslwyVexp—plaz™+BNYHD Y (Db, (1)
where the brackets denote the appropriate Clebsch-Gordan couplings. The results!®
are shown in Table II. Clearly this method which is empirical but flexible enough to
adjust itself to the dissymmetry of the (ccg) baryon, turns out to be more efficient than
the “brute force” (but eventually convergent) h.o. expansion (11).

The hyperspherical formalism'® provides another variational’ method. The
Jacobi variables x and » are re-expressed in terms of 6-dimensional spherical coor-
dinates, consisting of an hyperradius » =(x*+ »*)"? and 5 angles 2={Z, 7, tg”(z/y)}.
The wave-function is thus expanded into generalized partial-waves

9, ) =r""Fue(7) Pua( ). (15)

This results in an infinite set of coupled fadial equations

[ d?>  (K+3/2)(K+5/2)
dr? 7?

+E—=Viauw(7) luw(r)=_ 2 Viauwn(r)uw(7),
e
(16)

where
Viuo(r)= [aQPR( @ V(r, DPun(@). . a7 -

In the above equations, [K] denotes the grand orbital momentum K as well as the
associated magnetic numbers. In prac-

Table III. Convergence of the hyperspherical tice, a very good convergence is already
expansion (15) for the potential of Eq. (12). achieved with only a few coupled partial-
The ground-state energy and correlation waves, as illustrated in Table III. Of
coefficients are shown as a function of the course, the convergence is slower for the

maximal grand orbital K. The case K=8 . . .
corresponds to 9 coupled radial equations. Wave'fun.Ctlon than for the blndlng energy.

X = o109 (X109 . One may m(?ntlon that the h.o. expan-
sion (11) is nothing but the hyperspherical

0 1.5481 1.189 0.2289 expansion (14) with the u(#)s taken as

2 1.9463 0.8866 0.2706 b . ... .

4 19453 0.9972 0.2932 polynomials multiplied by a gaussian, the

5 1.9452 0.9853 0.2980 degree of the polynomial being consistent-

8 1.9452 -0.9983 0.3018 ly adjusted to the maximum number of
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764 S. Fleck and J. M. Richard

quanta.

c) The quark-diquark approximation

There are many reasons for attempting a description of baryons as consisting of
a quark and a diquark.' It has recently’® been investigated to what extent the
conventional three-quark picture induces a dynamical diquark clustering leading to a
quasi two-body structure of baryons. :

In the sector of interest here, it is undeniable that the ground state of (ccq)
consists of a localized (cc) cluster surrounded by the light quark ¢, with the average
distance {7g> much smaller than {#¢,>. However, when radial or orbital excitation
is involved in the baryon, it turns out to be much more economical to promote the
relative motion between the heavy quarks rather than the motion of the light quark
around them. As a consequence, the average separation between the heavy quarks
increases, and the quark-diquark structure disappears. More importantly, a spec-

trum computed with the (Q&) diquark frozen would not approximate the true excita- '

tion spectrum.

d) The Born-Oppenheimer approximation

In fact, a dramatic simplification of the (QQg) dynamics is obtained in the
Born-Oppehheimer or adiabatic approximation. The two heavy quarks have much
lower velocity than the light quark. When they move, the light quark wave-function
readjusts itself almost immediately to the state of minimal energy. The computation
can thus be done in two steps: For any given &, one computes the binding energy &(x),
which is then used as the effective potential governing the relative motion of the heavy
quarks.

To be more specific, one expands the wave-function on a complete basis with
respect to the y variable

where, for any given x, the f. are the eigenfunctions of
hofole, )=( Lo+ v v o, 9) =@, ). | (19)

Solving Eq. (19), which is a one-body problem in a non-central potential, can be done
by partial-wave expansion or by using elliptic coordinates. Keeping only the first
term in Eq. (18) results into the variational approximation (sometlmes referred to as
the uncoupled adzabatzcw))

"—A;f;> |esta)=Egu). (20)

[—A—ﬂ;-i— 1)12(.1‘) +e(x)— <f0

Now, if one neglects the last term in the effective potential, which is a part 'of the
kinetic energy, one gets the 51mp1est form of the approximation (sometimes referred
to as the extreme adiabatic'®) :

[‘%‘F vie(x) + 6(1’)} do(x)=Edo(x) C 1)
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Table IV (b).

Baryons with Double Charm

Table IV (a). Ground-state energy for (gqq’) cal-
culated from potential (12) with two versions
of the Born-Oppenheimer approximation and

compared to the exact result.
masses are mi=me=m and ms=m’".

The constituent

m m’ extreme _| uncoupled exact
adiabatic | adiabatic

, 1 0.2 1.9450 1.9453 1.9452

1 0.5 1.9037 1.9045 - 1.9042

1 1 1.8794 1.8810 1.8802

765

Masses and properties of the double charm baryons calculated either exactly or in the
Born-Oppenheimer approximation. We use the potential of Eqgs. (22) and (23), and, for the
ground-state, the hyperfine correction of Eq. (24).

Mass {rbpli? {obd'? M M

. L=0 L=]1

ground-state ground-state ground-state n=l =0

., | adia 3.6840 2.3303 0.1197 41092 3.9689
€4 | exact 3.6848 2.3256 0.1337 41096 3.9712
adia 1.4272 3.7968 0.4478 1.9408 1.7669

1 exact 1.4300 3.7808 0.5601 1.9333 1.7718
adia 1.0804 5.1084 0.9885 1.6489 1.4560

97 | exact 1.0856 5.0766 1.3430 1.6154 1.4636

which overestimates the binding, i.e., is antivariational (to obtain Eq. (21) from the
initial hamiltonian, one gives up a -positive definite piece of the kinetic energy
operator). : :

For illustration, we use in Table IV the power law potential (12). In TableIV (a)
a detailed comparison of the binding energies of the ground state in various approxi-
mations is presented, whereas (b) exhibits, in the extreme adiabatic approximation,
some observables for this ground state as well as the masses of the first radial and
orbital excitations. In (b), we use by anticipation the scale factors which will be
presented in the next paragraph.

What is really astonishing is that the Born-Oppeénheimer treatment works with
such a high accuracy for (ccg) and also quite well for the = baryons (ssg) and even
for the ordinary baryons. This illustrates once more the well-known theorem®” in
few-body physics; The Born-Oppenheimer approximation works always better than

expected. -

This adiabatic treatment, which provides a nice simplification in non-relativistic
posential models, will be very useful in bag models, allowing for a relativistic treat-
ment of the light quark motion followed by a non-relativistic approximation for the
heavy quarks. This will be done in § 3. _

An interesting limit®" consists of m/M—0, as already considered in Ref. 8) for
different purposes. The contribution &(x) to the effective potential runs over a range
in x which is small compared to the average separation {x) between the flavoured
core and the light quark ¢g. The spectrum is essentially given by the direct interac-
tion vi2(xr) between the heavy quarks, shifted by a constant &(0).
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766 S. Fleck and J. M. Richard

2.3.  Predictions of potential models

A smooth potential V(7)cc %! was introduced by Martin® to describe quarkonia
like s3, ¢Z, bb.or ¢§ and also used in the baryon sector.?® We adopt here the set
of parameters used in Ref. 23) to fit the existing ground state baryons. They are:

V=43 A+Brf | | (22)

with
- B=01, A=-8337GeV, B=6.9923GeV'** 6 (C=2572GeV?,
mqe=0.300 GeV , ms=0.600GeV, vmc=1.895 GeV, m»=5255GeV. (23)

The central potential, which is nothing but a rescaled version of the potential (12), is
supplemented by standard hyperfine corrections, treated to first order:

_1s C N5
V=32 e, 8(r4)0:0; | (24)
with C=2.572.

For comparison, we use also a potential modelvproposed by Badhuri et al.,?” in an
attempt (not fully successful) to reproduce all known hadrons, light and heavy. It
reads ' :

_ .. —TiilTo
2%2[ K'i"—r%—D Ko _e 7 Gidj], (25)

+
i<il. ¥ a mim; Vii¥o

|4

- K=Ks;=-—05203, 1/a°=0.1857 GeV?, D= —0.9135‘GeV . 1 '=04341GeV,
me=0.337GeV ; ms=0.600GeV ; m.=1.870 GeV ; m»=5.259 GeV . (26)

The results for ground-states of (ccg) and (ces) configurations are displayed in
Table V. Some differences between the two models might be noted. The potential
(25) with a smeared spin-spin interaction gives much smaller hyperfine splittings.
Already, in the meson sector, the potential underestimates the J/%-7. splitting and
thus fails in fitting accurately the heavy quark sector. On the other hand, both
potentials give comparable radial and orbital excitation energies, which are shown in

Table V. Masses of ground-state baryons with double charm, as
calculated from the power-law potential (22), supplemented by a
contact term (24) for the hyperfine corrections, and from the
potential (25) with a Coulomb-plus-linear central term and a
spin-spin term with Yukawa shape.  Masses are in GeV.

Potential power-law Coulomb
centre-of-mass +hyp. corr. .+Linear
- Bee 3.613 3.635
«“? g 3.685 3.741 3.717
$ec 3.703 3.740
s o 3176 - 38% 3.802
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Baryons with Double Charm 767

4135GeV
4110GeV
3,971 GeV 3.909 Ge¥
b — n z /
n// /
3.685GeV y, 7 3,596 GeV §
L=0 L=1 L=0 L=1
ccq (potential) ccq (bag)
4.281 GeV
4,235 GeV
4,084 GeV 4,054 GeV
3,776 GeV 3.735 GeV ’
L=0 . L=1 L=0 L=1
ccs (potential) ) ccs (bag)

Fig. 1. Radial and orbital excitation spectrum of (ccg) and (ccs) baryons in a potential and in a bag
model. Units are GeV and GeV™.

Fig. 1. The discussion on the spectrum‘ is postponed to the end of the following
section, where an alternative calculation is proposed, based on the bag model.

§3. Bag models

3.1. Mini-review on bags

The bag model® is a rather popular tool designed to describe the confinement of
quarks and gluons inside hadrons. In the first phenomenological applications, devot-
ed to the ground-state of light mesons and baryons,®® the M.LT. group used the
approximation of a rigid cavity with spherical shape. Many variants have been
proposed, to improve or to complicate the bag picture, with centre-of-mass correc-
tions, gluonic corrections, partial restoration of the chiral symmetry, etc.?”

Meanwhile, the bag model was adapted to heavy quarks systems by Kuti et al.*
For each interquark separation, the bag parameters (size, shape) are adjusted to
minimize the bag energy, which is used as a Born-Oppenheimer potential to compute
the mass spectrum and wave-functions of the heavy hadrons such as (QQ) or (QQQ).
The quarkonium potential exhibits the standard Coulomb behaviour at short dis-
tances and at large @-Q separation, a linear rise. This latter effect is associated with
an elongated bag. - However, for most quarkonium calculations, the spherical approx-
imation turns out to be quite accurate.”®*”

The so-called heavy-light or open-flavour sector was treated by Izatt et al*® In
their approach, (Q7) or (Qgq) systems are described by fixed spherical bags with the
heavy quark @ fixed at the centre and the light quarks moving relativistically up to
the border. More precisely, the mass Ms is computed as the minimum with respect to
the bag radius R of

M(R)=So—2+1Zpr, (27)

where w:=M for the heavy quark, and w:=+x+ (m:R)* /R for the light quarks. As
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768 S. Fleck and ]J. M. Richard

in the original MIT bag,™ y; is determined by a boundary condition linking the upper
and lower components of the free Dirac wave-function, leading for instance to o
=2.042 for massless quarks.

Chromoelectric and chromomagnetic corrections aré then applied to M. In
Ref. 30), the coupling constant s was chosen to depend on the bag radius R, to imitate
the effect of a “running” coupling constant.

3.2. Bag model for double charm ;

For (QQq) baryons, we have designed a model which combines the methods used
for quarkonia and for naked flavours, and is reminiscent of the Born-Oppenheimer
approximation to non-relativistic hamiltonians.

For any given Q@ separation x, we compute the minimal bag energy. We
restrict consideration to spherical bags, centred at the middle of the two heavy
quarks, so that the expression of the bag energy is similar to Eq. (27). We learned
from the charmonium case®®*® that the spherical approximation is adequate for the
small heavy quark separations x involved in the lowest states of the spectrum.

As usual,*®” the minimal bag energy is computed in the approximation where
the light quark is free. Chromoelectric and chromomagnetic corrections to Eo(x),
due to the Qg interactions, are computed to first order.

Finally, the direct central potential between the heavy quarks is added, resulting
in an effective’ Ver(x) which is used to compute the energy spectrum and the QQ
relative wave-function. The ultimate correction accounts for the hyperfine repulsion
between the heavy quarks, when they are in a relative s-wave. ,

For the numerical calculations, we selected three sets of parameters. The set
(28) corresponds to the charmonium calculation of Hasenfratz et al.? and is well-
suited for heavy quark systems. The light quark masses have been chosen empirical-
o ly.

© 2=0.385, me=1.35GeV
(Set1) BY=0235, - ms=0279GeV,
Zo=0, mqe=0GeV . (28)

The second set corresponds to the original MIT bag, which reproduces the lightest
mesons and baryons in the fixed cavity approximation. It is supplemented by an
ad-hoc value of m., which gives a correct mass for the ground state of (cc), in the
adiabatic approximation.

a@s=0.55, me=1.55GeV ,
(Set 2) BY=0.145, = ms=0.279GeV,
Z=181, mo=0GeV . v (29)

The last set of parameters is taken from the fit by Izatt et al. of ordinary and naked
~ flavour hadrons®” (for ordinary hadrons, some centre-of-mass corrections are applied
in Ref. 30))
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- Baryons with Double Charm 769

Table VI. Comparison of ground-state baryons
with double charm, using different set of pa-. -
rameters for the bag model; Set 1 given by
Eq. (28), Set 2 given by Eq. (29) and Set 3 given

by Eq. (30).
ccq Set1l | Set2 Set 3
1=y "1 3.596 3.249 2.895
N n=2 4135 3.788 3.639
1, 7=l 3.909 3.722 3525
- n=2 4422 4.034 3.943 _
[, n=l | 4183 | 393 | 3829 37 QQ potential
N n=2 4.695 4.208 4.186 2
S 11 //
ces Set 1 Set 2 Set 3 1.% o 1 i
1—o "1 3.735 3.377 2.978 4 ‘
B n=2 | 4281 |- 3.932 3.743 ,
Loy 7=l | ot | sser | s ]
- n=2 4571 4184 4.056 3 ——— T T
0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0
L=2 n=l 4.332 4.087 3.937 Fig. 2. Effective Q@ potential for the (QQq)
n=2 4.846 4.363 4.308 L
: baryons in the bag model.
2= 2n Me=2.004 GeV
9In(1+1/(AR)) ’ ’
A=0.4199, . ms=0.273GeV,
(Set 3)
B'*=0.1383,
Zy=0.574, me=0GeV . (30)

The comparison is shown in Table VI. Dramatic differences appear between the
various calculations. First the ground state (ccq) lies much higher in models where
me is fitted to the J/¥ than in model (30) where m. is adjusted from charmed hadrons
D and A.. The spacings obtained in model (30) are also systematically larger.

Unlike the naive potential model, which exhibits an unexpected extrapolating
power, the bag model does not lead to very safe predictions. First, different approx-
imations (sometimes rather drastic) are applied in the various sectors; rigid cavity for
ordinary hadron, spherical shape, recoilless heavy quarks in the naked flavour sector,
Born-Oppenheimer approximation for quarkonia, etc. This results in a renormaliza-
tion of the parameters which differs from one sector to another. Also, with various
improvements to the nucleon picture such as centre-of-mass corrections, zero point
energy, gluonic corrections, running s, etc., the bag model involves now many
parameters, whose phenomenological determination is ambiguous. As a conse-
quence, the extrapolation towards other hadrons cannot be performed reliably.

For the rest of the calculation, we restrict ourselves to~the set 1, which corre-
sponds to the minimal number of parameters, and is fitted to the quarkonium spec-
trum.® The effective (QQ) potential is exhibited in Fig. 2. The spectrum, with or
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Table VII.

S. Fleck and J. M. Richard

Bag model calculation (with parameter set P1) of s-wave {ccq) and

(ccs) baryons. The results are obtained without chromomagnetic interac-
tion (column 1), with chromomagnetic corrections to the light quark (column
2), and finally, with spin-spin repulsion between the heavy quark (column 3).

Masses are in GeV.

- State Mo M, Mo
L,yn S +hyp. corr. on ¢ +hyp. corr. on ¢
-+hyp. corr. on QQ
0,05 3.636 3.667
1 3.596
0,0, 5 3.516 3.547
g
01,5 4.166 4201
1 4.135 .
0,1, o 4.073 4.108
0,05 3.774 3.805
1 3.735
0,0, 5 3.657 3.689
8
0,1+ 4311 4.347
1 4.281
0,1, a5 4.221 4.257

Table VIII. Masses of ground-state baryons with
double charm, calculated either with a poten-
tial model (Eq. (25)) or with the bag model,
using the parameter given in Eq. (28).

Potential Bag

B Bee 3,613 3516
7 = 3.741 3.636
| 3.703 3.657
% 3.835 3.805

without hyperfine corrections, is given in
Table VIL

3.3. Discussion on double charm spectros-
copy '

We restrict discussion to the two
models we consider as the most representa-
tive: the potential model of Eqs. (22)~(24)
and the bag model with the parameters
(28). The ground state masses are sum-
marized in Table VIII. The first spin

average levels are displayed in Fig. 1. The following comments are in order:

i) The spin excitation 5% is stable against pionic decay Z&— Fec+7. It should
then decay radiatively to the ground state. The same is true for £2F.

ii) The orbital and radial excitation of (ccq) are broad, since pionic transitions
to the ground state are allowed. '

iii) The radial excitation of 2.(ccs) is also unstable, since the transition Q&
- 5.+ K is allowed. However, the orbital excitation should be quite narrow, since
it can only decay by emitting a photon or through the isospin violating Q&*— Qc.+ 7

reaction.
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Baryons with Double Charm 771

§4. Production and decay

4.1. Rewmarks on production of double charm

Charmed particles have been produced by various means:” e*e” collision, ha-
dronic beams, neutrino production, decay of excited charmonia, weak decay of
beauty, etc. It would be beyond the scope of the present paper to review the corre-
sponding mechanisms and to compute the production rates. We shall restrict discus-
sion to some common sense remarks concerning baryons with double charm.

i) Hyperon beam experiments®** have been successful in producing charmed-
strange baryons.¥”**® The next step in difficulty, beside beauty, will consist of two
units of charm. - _ _

ii)  (csq) configurations have also been identified using neutron beams?’ z~-
beams®™ and in e*e” collisions.*® ,

iii) In J/¥ decay, baryonic modes (BB) are not very rare. Also, hadronization
does not distinguish between the different flavours, as seen in the approximate
equality of rates® (the phase-space corrections are minor here)

- e(pp) = Tye(nit) = Tw(AN)=T+(EE) . (31)

It is thus reasonable to expect a decent rate for 7 decay into EeeFec Or 2eoec.

iv) In fact, production rates of charm or double charm should be high enough
with present day energies and intensities. The background should also be very small.
The difficulties lies in the multiplicities associated with two cascades where charm
decays into strangeness and strangeness, in turn, into ordinary hadrons. The recon-
struction of double charm events seems a little delicate with present detectors and
reconstruction programs. In view of the recent progress in the field, this should
however become standard with the next generation of heavy flavour experiments. -

v) The decay As— EZec+D seems energetically possible since one expects '?
m(As)=5.6 GeV. Possible mechanisms are depicted in Fig. 3.

We
b c
. f1
u u
f2
c S
b c

u %w- — d -—
¢ q q

d d

Fig. 3. Possible mechanisms for A, decay into

double charm baryon Fig. 4. Spe&ator diagram fo; charm decay.
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c_ s c u

W+ ...............
u_ d s

Q

Fig. 5. W-exchange diagram. Fig. 6. Annihil_ation diagram.

4.2. Decay of double charm baryons

Charm decay is a rather hot topic. When it was announced that charged D and
neutral D do not have the same lifetime,” many scenatios were proposed for explain-
ing that the charmed quark does not decay independently of its environment. The
starting point is the spectator diagram of Fig. 4, where f f: denotes the standard
fermion-antifermion pair in which the virtual W decays; ud, %5, e*v, etc.

Strong interactions might now play a role. If, for instance, f.= 7 in Fig. 4 the
Pauli principle applies so that interference effects are expected. Interferences alone
act mostly on the hadronic decay of the D* (the mode F>= 5 is Cabbibo-suppressed,
so the effect on the Ds is negligible), and lead to I'(D°) = I'(Ds), which is observed and
also to a leptonic branching ratio R.=I"(D—-e*X)/'(D) normal for both D°® and Ds

and anomalous for D*, in contradiction with experiment.®" So, other effects have to"

contribute.

First, the D° can benefit from W-exchange, as depicted in Fig. 5. This effect, by
itself, would produce

1) (D)< (DY) =1(Ds),

i) RU(D°)<R.(D")=R.(Ds)=20%. :

Annihilation diagrams (see Fig. 6) can also occur, mostly for the Ds, since they
are Cabbibo-suppressed for the D™. _

Finally, there are Penguin diagrams, but they are not very important for charm
and they affect equally all types of charmed particles.

The sector of single charm baryons allows further tests of the decay mechanisms.
For instance, W-exchange diagrams contribute more for baryons, since the helicity
suppression does not hold as in mesons. An analysis of charmed baryon decay has
been carried out by Guberina et al.*” Their conclusion is that '

()= 1(E)<r(AH)<r(E:"). (32)

To obtain the above hierarchy, the effects accounted for are in order:

i) Interference effects of the s-quark obtained from c-decay with existing s-
quark. This affects the £2.° and, to a lesser extent, the 5¢’s.

ii) W-exchange contributes to /. and =5.°. '

iii) There are some interference effects between existing quarks and quarks
produced by the decay of the virtual W. This affects A" and =.".

The analysis of Ref. 37) is slightly model-dependent. For instance in the A.
lifetime, there is a cancellation between W-exchange and interference effects and the
result depends on the wave-function and other hadronic parameters.

The extension to double charm is in fact much safer.
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i) W-exchange gives a sizable contribution to =& decay.

ii) Positive interference will occur between the s- quark resulting from c-decay
and the exsting s-quark in 2.

iii) The Z&* decays only via the spectator diagram.

Our prediction is thus:

T(‘_:cc) < T(-Qcc) < Z'(:ct:+) ‘ : (33)
§5. Conclusion

Double charm baryons will certainly illuminate many aspects of quark physics.
In spectroscopy, we have made quantitative predictions, based on the observation that
in current models, the light quark dynamics decouples itself from the relative motion
of the heavy quarks. A departure would indicate a more intimate connection
between these interactions, for instance three-body forces not reducible to effective
two-body terms.

The debate is even more open concerning the weak decays of those baryons. Our
discussion on the comparison of the (ccu), (ccd) and (ccs) lifetimes and leptonic
branching ratio remains rather ‘qualitative. Detailed calculations of specific modes
like Bt - A+ K* would help in testing our understanding of hadronization.
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