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Abstract: During the last decade, gene expression profiling of breast cancer has revealed the existence of five 

molecular subtypes and allowed the establishment of a new classification. The basal subtype, which 

represents 15-25% of cases, is characterized by an expression profile similar to that of myoepithelial normal 

mammary cells. Basal tumors are frequently assimilated to triple-negative (TN) breast cancers. They display 

epidemiological and clinico-pathological features distinct from other subtypes. Their pattern of relapse is 

characterized by frequent and early relapses and visceral locations. Despite a relative sensitivity to 

chemotherapy, the prognosis is poor. Recent characterization of their molecular features, such as the 

dysfunction of the BRCA1 pathway or the frequent expression of EGFR, provides opportunities for optimizing 

the systemic treatment. Several clinical trials dedicated to basal or TN tumors are testing cytotoxic agents 

and/or molecularly targeted therapies. This review summarizes the current state of knowledge of this 

aggressive and hard-to-treat subtype of breast cancer. 
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INTRODUCTION 

Despite recent advances in screening and 
treatment, breast cancer remains the most deadly 
cancer in women worldwide. During follow-up, up to 
25% of patients experience a metastatic relapse from 
which they will succumb. Until recently, breast cancer 
was considered as a single disease with variable 
phenotype and expression of hormone receptors (HR; 
estrogen receptor, ER, and progesterone receptor, PR) 
and ERBB2 tyrosine kinase receptor. But breast cancer 
is a very heterogeneous disease and recent insights in 
our understanding of the disease were provided by 
genomics. Over the past decade, DNA microarrays [1] 
allowed genome-wide RNA expression profiling  
of breast cancer samples [2, 3], providing the 
unprecedented opportunity to tackle the complexity of 
the disease, and thus to improve the prognostic 
classification by identifying more homogeneous 
entities. In 2000, five molecular subtypes of breast 
cancer were recognized based on the gene expression 
patterns [4, 5]. The robustness and universality of this 
new taxonomy and its histoclinical correlations were 
then confirmed in different clinical forms of breast 
cancer and different ethnic populations [6]. Today, 
breast cancer is regarded as a collection of separate 
diseases, and subtyping is regarded as essential to 
better identify new molecular prognostic, predictive 
and/or therapeutic targets, an important step toward 
tailoring the treatment. 
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Among the subtypes, the basal subtype is 
particularly challenging. Basal tumors represent around 
15% of invasive ductal breast cancers. They display 
distinctive epidemiological, phenotypic and molecular 
features with distinctive patterns of relapse, and a poor 
prognosis despite a relative chemosensitivity. Despite 
their relative scarcity, basal tumors cause a 
disproportionate mortality among breast cancer 
patients. In contrast to ER-positive and ERBB2-positive 
tumors, no targeted therapy is currently available for 
these tumors. This review describes our present 
knowledge of basal breast cancers and potential 
research directions, notably at the therapeutic level.  

1. DEFINITION OF THE BASAL SUBTYPE 

The first definition of basal breast cancer came from 
genomics and the Perou’s publication in 2000 [4]. 
Using DNA microarrays, the authors profiled 78 tumor 
samples from 42 patients, most of them treated with 
primary chemotherapy. For 20 patients, the pre- and 
post-chemotherapy samples were analyzed, allowing 
the definition of an “intrinsic” 500-gene set that 
accounted for most of the differences between patients. 
Clustering based on the expression of these genes 
revealed five major subtypes, which were biologically 
and clinically relevant (Fig. 1). They were associated 
not only with the two principal normal epithelial 
mammary cell types (luminal and myoepithelial/basal) 
and with the two major molecular alterations of breast 
cancer (ER and ERBB2), but also with different clinical 
outcome. This new taxonomy confirmed the importance 
of hormone receptors and ERBB2, and provided new 
insights in the biology of disease. Two subtypes of 
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predominantly ER-positive tumors (luminal A and B) - 
named luminal because of similarity of expression 
profiles with those of luminal mammary epithelial cells - 
were identified and associated with different survival. 
Similarly, three subtypes of predominantly ER-negative 
tumors were identified: basal, ERBB2 and normal-like. 
The basal tumors expressed genes associated with 
normal myoepithelial cells of the outer layer of duct 
breast, such as high molecular weight cytokeratins 
(CK5, CK14, CK17), along with smooth muscle 
markers, P-cadherin, caveolin 1, CD10, 4 integrin. By 
contrast, they did not express ESR1, PGR and ERBB2. 
This novel classification and its histoclinical correlations 
were then reproduced in larger series, on different 
platforms and by using different sample predictors by 
the same group [5, 7-11], and others in early [12-14], 
inflammatory [15, 16], and in situ breast cancers [17, 
18], suggesting their robustness and universality. In 
most studies, the basal subtype was the most 
homogeneous of all subtypes in transcriptional term, 

even when three successively-published predictors [5, 
9, 19] were applied [20]. 

However, because DNA microarrays are not 
routinely available in clinical practice, efforts were 
made to define basal breast cancer with standard 
pathological techniques such as immunohistochemistry 
(IHC), a simpler and more accessible assay. A wide 
variety of IHC surrogates have been proposed. 
Because most of basal tumors do not express RNA for 
ESR1, PGR and ERBB2, the triple-negative (TN: ER-
/PR-/ERBB2-) definition, initially proposed, has been 
used widely. However, the overlap with the RNA-
defined basal subtype is incomplete (Fig. 2), with up to 
30% discordance between the two definitions (RNA 
and IHC) [21-23]. The incomplete overlap between 
basal and TN breast cancers could translate true 
differences in their biology. Triple-negative tumors 
represent a more heterogeneous group than basal 
tumors, and include basal and non-basal tumors very 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Whole-genome clustering and molecular subtypes. 

A/ Hierarchical clustering of 353 breast cancer samples profiled in our institution with 12.304 genes. Each row is a gene and 

each column a sample. The expression level of each gene in each sample is relative to its median abundance across the 

samples and is depicted according to the color scale shown under the matrix. Red and green indicate expression levels 

respectively above and below the median. Above the matrix, the dendrogram shows the degree of similarity between samples. 

To the right, vertical colored bars indicate gene clusters zoomed in C. B/ Dendrogram of samples. The branches are color-

coded according to the molecular subtype: red for basal and black for the other subtypes. Under the dendrogram, the subtypes 

are color-coded as follows: dark blue, lulinal A; light blue, luminal B; pink, ERBB2; red, basal; green, normal-like. The basal 

subtype is the most homogeneous subtype. C/ Gene clusters of interest: luminal/ER-related, ERBB2, basal, proliferation and 

immune clusters. Some genes of interest of four clusters are noted (EntrezGene symbol). 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this paper). 
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different both at the histoclinical and molecular level 
notably for expression of potential therapeutic targets 
[22]. Several new subtypes of TN tumors were 
identified. The claudin-low subtype was characterized 
by a low expression of many claudin genes (notably 3, 
4 and 7) involved in epithelial cell tight junctions [24-
27]. Six subtypes were identified in a large dataset of 
587 TN cases, including two subtypes resembling the 
basal subtype [28], Thus, to define a more 
homogeneous class of basal breast cancer while 
avoiding a definition based on negative staining, more 
sophisticated definitions have been proposed, which 
include positive staining for one or several 
basal/myoepithelial markers such as CK5, CK14, 
CK17, P-cadherin, KIT, EGFR and/or others. The most 
frequently quoted one defined basal-like tumors as ER 
and ERBB2-negative, CK5/6 and/or EGFR-positive 
[29]; this definition was recently modified by the 
addition of negative PR staining [30]. Other composite 
IHC basal-like definitions have been published (see 
[31] for a comprehensive list).  

Today, no consensus has been reached regarding 
the optimal definition of basal tumors, and although not 
completely synonymous, the RNA and IHC definitions 
are used interchangeably. If the goal is to define a 
homogeneous subtype of cancers due to specific 
molecular alterations and similarly sensitive to 
treatment, the RNA definition should be the gold 
standard. Compared to IHC, DNA microarrays are 
more quantitative, more prone to standardization and 
automatization, and associated with less pre-analytical 
and technical variability, less subjectivity, and higher 
reproducibility. The two major drawbacks of the RNA 
definition are the limitation of its application in clinical 
routine and the need for a better standardization. 
Reciprocally, two major drawbacks of the IHC 
definitions, beside the issue of standardization, are the 

potential for misclassification due to a less thorough 
definition, and for composite definition. Efforts are 
ongoing to develop assays able to define in routine 
practice the intrinsic molecular subtypes including the 
basal one. Ideally, it should combine the advantages of 
both DNA microarray technology and IHC. At least two 
assays that classify breast cancers into gene 
expression-based subtypes have been recently 
launched: Breast Bioclassifier (ARUP Laboratories, 
Salt Lake City, UT, USA), a 55-gene qRT-PCR assay 
that uses formalin-fixed, paraffin-embedded samples, 
and BluePrint (Agendia, Amsterdam, Netherlands), a 
80-gene DNA microarray assay that uses fresh 
samples fixed in an RNA-protective solution. To date, 
the most frequently used definition is the genomic one 
in research studies, and the IHC one in clinical trials. 
Because of this incomplete overlap it is important to 
precise the definition that is used in all reports. 
Hereafter, the term “basal” will refer to the genomic 
definition, “TN” to the triple-negative status, and “basal-
like” to the IHC definition (4 or 5 protein markers).  

2. MOLECULAR ASPECTS 

Basal tumors express low RNA levels of ESR1, 
PGR and ERBB2, and high levels of proliferation genes 
(Fig. 1). They also specifically overexpress a “basal” 
gene cluster. The high expression of some “basal” 
genes was confirmed at the protein level. Examples 
include P-cadherin [32], KIT [29], EGFR [33], MET [34], 
caveolin 1 and 2 [35], 4-integrin [36], -basic 
crystalline [37], and moesin [38]. Some of these 
proteins (EGFR, P-cadherin, -basic crystalline, and 
moesin) are independent poor-prognosis markers in 
breast cancer. Comparative analysis of whole-genome 
expression data of basal and luminal A samples 
showed a great extent of transcriptional differences 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (2). Overlap between basal breast cancers and TN tumors. 

A/ Distribution of molecular subtypes within TN tumors. B/ Distribution of IHC groups (based on HR and ERBB2) within basal 

tumors. Our database was combined with publicly available MDA data [183]. 

(For interpretation of the references to color in this figure, the reader is referred to the web version of this paper). 
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between the two subtypes, with more than 5.500 of 
30.000 probe sets found as differentially expressed 
[39]. Genes associated with signal transduction, 
angiogenesis, cell cycle and proliferation, cell survival, 
DNA replication and recombination, motility and 
invasion, and NFkB signaling are overexpressed in 
basal tumors. Interestingly, several of them code for 
therapeutic targets (see below). In a pooled analysis of 
2,485 invasive breast cancer samples, the highest 
PARP1 mRNA expression was observed in the basal 
subtype compared to the other subtypes, with strong 
association between mRNA expression and gene copy 
gain [40].  

Loss of PTEN and activation of the PI3K/AKT 
pathway [41], and TP53 mutations are frequent in basal 
breast cancers [5, 8]. ArrayCGH-based profiling [42-45] 
showed a high degree of genomic instability in the 
basal subtype (“complex pattern”) with frequent low-
level gene copy number alterations (gains and losses), 
but less frequent high-level alterations (amplifications 
and deletions). Similarly, a high rate of loss of 
heterozygosity (LOH) was reported [46]. Regions 
altered in basal samples such as 6p21-p25, 12p13 
(gained) or 5q11 (lost) likely harbor candidate 
oncogenes and tumor suppressor genes respectively, 
which remain to be identified. Inactivation of the RB 
pathway is also frequent and constitutes another 
reason of genome instability [47, 48]. However, not all 
basal breast tumors have a highly rearranged genome 
[49].  

Sporadic basal breast cancers and hereditary 
BRCA1-associated breast cancers share several 
morphological, immunohistochemical and biological 
features including high proliferation, poor 
differentiation, high grade, triple negativity, TP53-
positivity, expression of basal cytokeratins and markers 
[50] and cell-of-origin (see below). This community is 
reflected at the genomic and transcriptional levels with 
genome instability, similar patterns of X-chromosome 
inactivation [51], and presence of BRCA1-mutated 
tumors within the basal subtype [5]. Other 
resemblances lie in the clinical outcome with similar 
poor prognosis, and a similar pattern of metastatic 
relapse [52, 53]. All these similarities strongly suggest 
a fundamental defect in the BRCA1 DNA-repair 
pathway in sporadic basal breast cancers [54]. BRCA1 
is rarely mutated in sporadic mammary tumors overall, 
but more frequently in TN tumors [55, 56]. Other 
mechanisms of BRCA1 inactivation in basal tumors 
include BRCA1 promoter methylation [57, 58], 
transcriptional inactivation due to the overexpression of 
ID4 (negative regulator of BRCA1 transcription) [54], 
and other mechanisms such as BARD1 inactivation 
[59]. Whether BRCA1 inactivation is a cause or a 
consequence of the basal phenotype is not clear. Two 
hypotheses have been formulated to explain these 
resemblances: i) better tolerance to loss of BRCA1 
function in basal tumors, perhaps due to the 
inactivation of other tumor suppressor genes such as 
TP53, ii) absence of differentiation of epithelial cells 
due to loss of BRCA1, and absence of transition from 

ER-negative to ER-positive status, leading to tumors 
with a stem cell-like basal phenotype [60-62]. The 
inactivation of BRCA1, involved in repair of double-
strand DNA breaks, partially explains the genomic 
instability of basal breast cancers, and theorically 
confers sensitivity to chemotherapy agents causing 
inter-strand and double-strand breaks [63] and to 
PARP inhibitors (see below). 

In addition to these distinctive molecular features of 
cancer cells themselves, basal breast cancers also 
present distinctive microenvironment and stromal-
epithelial interactions [64]. Comparative co-cultures of 
basal and luminal breast cancer cell lines with 
fibroblasts showed differential expression of numerous 
interleukines and chemokines (including IL-6, IL-8, 
CXCL1, CXCL3, and TGF ) by basal cell lines and 
increased migration in vitro in basal tumors. These 
phenotypes and gene expression changes invoked by 
cancer cell interactions with fibroblasts support the 
microenvironment and cell-cell interactions as intrinsic 
features of breast cancer subtypes. 

3. CELL-OF-ORIGIN OF THE MOLECULAR 
SUBTYPES 

The epithelium of the mammary gland has two 
layers of cells. The inner, luminal layer lines the lumen 
of the breast duct and lobule. Luminal cells express the 
ER, low molecular weight cytokeratins (CK7, CK8, 
CK18 and CK19) and PGR, GATA3, BCL2 and other 
ER-induced genes. Luminal tumors express these 
genes. The outer layer of mammary epithelium is the 
myoepithelial layer. Myoepithelial cells express CK5/6, 
CK14, alpha-smooth actin, P-cadherin and CD10. 
Adjacent to the basement membrane, they are 
sometimes confusingly called basal cells. Other basal 
cells expressing basal cytokeratins CK5/6 and CK14 
are interspersed in the two layers. These basal cells 
are thought to be immature progenitors and stem cells. 
Breast cancers that express basal cytokeratins have 
been called basal but their cell-of-origin is not known 
[65, 66].  

It has been suggested that the different subtypes of 
breast cancer originate from mammary stem or 
progenitor cells at different stages of lineage 
differentiation [67]. Mammary stem cells express 
several genes in common with basal breast cancers 
[68]. Reciprocally, basal breast cancers express stem 
cell genes [69, 70]. These similarities do not 
necessarily imply derivation, but provide a working 
hypothesis. A basal breast cancer probably derives 
from a stem or progenitor cell that has never expressed 
ER. BRCA1 breast cancers derive from an ER-negative 
luminal progenitor [71, 72]. BRCA1 may be required for 
the transition from an ER-negative to an ER-positive 
progenitor [73]. Loss of BRCA1 function in basal breast 
cancer is in agreement with this finding. In contrast, 
luminal cancers may derive from an ER-positive 
luminal progenitor [74]; due to specific alterations [75], 
in luminal B breast cancers this progenitor may have 
lost ER expression. A basal tumor may represent cells 
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arrested at an early stage of differentiation and devoid 
of differentiation markers and hormone receptors. The 
extent of difference in gene expression we have 
evidenced between basal and luminal breast cancers 
[39] is compatible with this possibility. No doubt that the 
elucidation of the cellular hierarchy in both normal 
human mammary gland and in the different breast 
cancer subtypes will improve our understanding of 
breast cancer.  

4. EPIDEMIOLOGICAL ASPECTS AND PRECU-
RSOR LESIONS 

Basal breast cancers represent 15-25% of breast 
cancers, whatever the definition used. Significant 
interactions of the basal subtype with age and race 
have been evidenced (Table 1). The average age of 
patients with basal invasive breast cancer is or tends to 
be younger than the age of other patients [39, 76-78]. 
Large population-based studies have reported a higher 
frequency of basal breast cancers among 
premenopausal women [8, 79-81]. Higher incidence is 
also found in African American women when compared 
with non-African American women [8, 79, 81-83]. For 
example, the respective frequency of basal tumors is 
26% versus 16% in the Carolina Breast Cancer Study 
(CBCS) [8], and 21% versus 10% in the SEER 
(Surveillance Epidemiology and End Results) database 
[81]. In the CBCS, the patients at highest risk to have a 
basal breast cancer are premenopausal African 

American women, in whom they represent 27 to 47% of 
cases [8].  

Reanalysis of classical risk factors for breast cancer 
in two large population-based studies revealed 
differences according to the IHC-defined subtypes. In 
the CBCS [8, 84], the risk factors associated with basal 
tumors, but not with luminal A tumors, included a 
younger age (inferior to 26 years) at first full-term 
pregnancy, higher parity, absence of or shorter 
duration of breast-feeding, lower number of breast-fed 
children, younger age at menarche, the use of 
medications to suppress lactation and higher body 
mass index (BMI). The younger age at menarche and 
the high BMI were confirmed in the Polish Breast 
Cancer Study [77]. The existence of various, distinct 
and sometimes opposite risk factors between the 
subtypes, notably basal and luminal A, further suggests 
etiologic heterogeneity of breast cancer, and call for 
subtype-specific epidemiological studies and 
approaches of prevention.  

At the molecular level, the presence of a BRCA1 
mutation strongly increases the risk to develop a basal 
breast cancer. Genome-wide association studies in 
unselected populations have reported other 
associations with genetic loci [85, 86], with several links 
found in ER-positive tumors [87, 88]. A significant 
association between the G/G genotype (combination of 
G and G alleles at the locus) of a non-synonymous 
MYBL2 germline variant and an increased risk of basal 

Table 1. Characteristics of Basal/TN Breast Cancers 
 

Younger age 

Pre-menopausal status 

African-American race 

High BMI 

Epidemiological features 

Younger age at menarche 

Ductal carcinoma (and medullary) 

High-grade 

High mitotic index 

Nuclear pleomorphism 

Pushing margins of invasion 

Central necrosis 

Negative ER, PR and ERBB2 IHC staining 

Histoclinical features 

Poor correlation between pathological tumor size and axillary lymph node status 

TP53 mutations 

BRCA1-deficiency 

RB inactivation 

Molecular features 

Genome instability (« complex pattern ») 

Poor prognosis 

Early relapses (first 3 years) 

Prognosis  

Visceral metastases (brain, lung) 

Sensitive to primary chemotherapy Therapeutic response 

No validated targeted therapy (ongoing trials) 
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breast cancer was recently reported [89]. Further 
studies in subtype-specific series are awaited. 

Regarding the precursor lesions of invasive basal 
breast cancers, several studies have demonstrated that 
a subset of in situ ductal carcinomas (DCIS) are basal 
as defined by using a genomic [17, 18] or an IHC 
definition [90-94]. In most cases, basal DCIS were 
associated with unfavorable prognostic variables such 
as high nuclear grade, presence of necrosis, high 
proliferative index and p53 overexpression. In the 
CBCS, the prevalence of basal DCIS was 8% [92], 
inferior to that observed for invasive basal tumors 
(20%) [8]. Interestingly, the age of patients with basal 
breast cancer at diagnosis was similar to that of 
patients with another cancer subtype for in situ tumors 
[92], whereas it was lower in case of invasive tumors 
[8]. These two discrepancies (prevalence and age) 
likely reflect the more rapid progression rate of basal 
breast cancers. The identification of basal DCIS 
intimately admixed with invasive basal breast cancers 
suggests that basal DCIS could serve as precursor 
lesions for invasive cases [92]. Earlier precursor 
lesions, such as atypical ductal hyperplasia, for basal 
DCIS remain to be identified. 

5. HISTOCLINICAL ASPECTS 

Data are rather consistent in the histoclinical 
characteristics of the basal subtype, regardless of the 
definition used (Table 1). Most basal tumors are 
invasive ductal cancers, but occasionally may be 
typical or atypical medullary [95, 96], metaplastic, 
adenoid cystic, squamous-cell, or mucoepidermoid 
[97]. Classically, they are high-grade tumors, with more 
than 75% being grade III [8, 39, 76, 98]. They display a 
high mitotic index – which likely explains their 
overrepresentation among the cancers diagnosed 
between annual mammograms (“interval cancers”) [99] 
– as well as high nuclear/cytoplasmic ratio, pushing 
margins of invasion, central necrosis, lymphocyte-rich 
stroma, and frequent apoptotic cells [100].  

Results are more conflicting regarding the 
correlation of basal subtype with the pathological tumor 
size as compared to other subtypes: some studies 
identified correlation with higher size [9, 76, 98] 
whereas others did not find any correlation [80, 101, 
102]. In a pooled series of 480 luminal A cases and 
285 basal cases defined upon the intrinsic gene set 
[39], we observed a higher size for basal tumors at a 
discriminatory threshold of 2 cm. Data also vary 
regarding the pathological axillary lymph node status, 
with either lower rates of positivity as compared with 
other subtypes [39, 76, 102], or similar rates [8, 80]. 
Interestingly, correlation between pathological tumor 
size and axillary lymph node status is absent [39] or 
weak [103] in basal tumors, whereas it is present in 
luminal A tumors. This uncoupling of size and node 
involvement in basal tumors, combined with their high 
metastatic risk, might reflect a preferentially 
hematogeneous metastatic spread and/or an 
underlying disproportionate relationship between the 

number of cancer cells with lymph metastatic potential 
and the size of the cancer. 

6. THERAPEUTIC RESPONSE 

The frequent ER-negativity of basal breast cancers 
as well as their high grade with high proliferative index 
[104] should theoretically confer them sensitivity to 
chemotherapy, notably to drugs classically used in 
breast cancer. This was confirmed by most neo-
adjuvant anthracycline and/or taxane-based 
chemotherapy studies, which documented a higher rate 
of pathological complete response (pCR) in the basal 
subtype than in any other subtype [14, 15, 105]. In a 
small series of 21 inflammatory breast cancers (IBC), 
we reported a pCR rate of 80% in the basal subtype 
and 27% in the luminal A subtype after anthracycline-
based chemotherapy [15]. In a series of 100 non-IBCs 
treated with paclitaxel followed by anthracycline-based 
regimen, pCR rate was 45% in basal tumors and in 
ERBB2+ tumors, but only 6% in luminal tumors and 0% 
in normal-like tumors [14]. However, the basal subtype 
did not remain an independent predictor of pCR after 
adjustment for other histoclinical features. Higher 
response rates were reported for TN breast cancers 
compared to non-TN cases [106-109]. Finally, in a 
pooled analysis of eight German neo-adjuvant trials, 
patients with TN breast cancer benefited more than the 
other patients from dose-intense chemotherapy [110]. 
However, despite this relatively high rate of pCR, basal 
tumors are associated with a relatively poor prognosis: 
this is the “triple-negative paradox” [105]. In fact, the 
prognosis is similarly good for patients with pCR 
regardless of subtype, but is worse in TN cancers as 
compared with non-TN cancers in those patients in 
whom pCR is not achieved [105, 108].  

This higher relapse rate among patients with basal 
breast cancer calls for the development of more 
effective first-line chemotherapy regimens, all the more 
so that these patients who usually relapse shortly after 
(neo)adjuvant chemotherapy should be considered as 
resistant to anthracyclines and taxanes. In the 
metastatic setting, the notions of disease 
aggressiveness, relatively young age, visceral 
locations, and TN status call more for the use of 
combination chemotherapy than single-agent 
sequential chemotherapy. In the case where the tumor 
is resistant to anthracycline and taxane, other available 
drugs include capecitabine, vinorelbine, Nab-paclitaxel, 
ixabepilone, and gemcitabine. However, it remains 
unclear whether one of them is more efficient as single-
agent in basal/TN breast cancers, and today there is no 
regimen specifically recommended for metastatic TN 
patients. The promising effect of platinum salts 
according to BRCA-deficiency is described in the last 
section dedicated to therapeutic perspectives. 

In the adjuvant setting, some groups have 
addressed the benefit of different regimens of 
chemotherapy according to the subtypes. Data come 
from large retrospective series of samples deposited 
onto tissue microarrays and analyzed using IHC. In this 
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setting, present data are more complex to interpret 
than in the neo-adjuvant setting. Most studies showed 
a benefit of adjuvant chemotherapy in TN or basal-like 
tumors [29, 30, 111-116]. They also suggested a 
relative benefit of non-anthracycline regimen (CMF: 
cyclophosphamide, methotrexate, 5-fluorouracil) [29, 
30, 113, 114] and a relative anthracycline resistance 
[101, 111], a benefit of high-dose regimens [112, 115, 
117, 118], and a benefit of paclitaxel [116] or docetaxel 
[119, 120] addition to anthracyclines. To date, these 
data remain too preliminary to draw any conclusion. 
They call for larger prospective studies to validate or 
not the predictive value – independent or not - of basal 
subtype for tumor chemosensitivity, and to define the 
optimal regimen. 

7. PATTERN OF RELAPSE AND SURVIVAL  

The prognosis of basal subtype is poorer than that 
of other subtypes (Table 1). Most of gene profiling 
studies have repeatedly reported a shorter metastasis-
free survival (MFS) and overall survival (OS) among 
basal breast cancer patients [5, 7, 9, 12, 15, 39, 80, 
121, 122]. According to three different multigene 
expression signatures (70-gene signature, recurrence 
score and wound response signature) most of the 
tumors predicted as poor-prognosis were basal [123]. 
In our pooled series of 480 luminal A and 227 basal 
breast cancers, the 5-year OS was 88% for patients 
with luminal A subtype and 58% for patients with basal 
subtype, and the 5-year MFS was of 82% and 66%, 
respectively [39]. Data are less consistent with the IHC 
definitions. Most studies [8, 29, 98, 101, 108, 113, 114, 
124-127] showed that the clinical outcome of TN breast 
cancers is less favorable than that of non-TN cancers. 
However, some studies did not find such association 
[76, 102, 128]. This discrepancy of outcome for basal 

subtype between the gene and IHC definitions is well 
evidenced by our study in which the basal subtype was 
defined using the intrinsic gene set [39]. No difference 
for MFS existed among the 160 basal tumors between 
those with and those without the TN status. 
Conversely, there was a significant difference between 
123 TN samples defined as basal (shorter MFS) and 
49 TN samples defined as non-basal. This observation 
was confirmed using an IHC definition of basal 
(positivity of EGFR and/or CK5/6) within a series of TN 
samples [129]. A confrontation of two IHC definitions of 
basal breast cancers in a series of 3744 cases [30] 
revealed that the five-biomarker definition (ER, PR, 
ERBB2, CK5/6 and EGFR) had superior prognostic 
value than the TN one. 

Basal breast cancers have a pattern of metastatic 
relapse distinct from the luminal cancers. Regarding 
the timing, they are more likely to metastasize during 
the first 3 years of follow-up (Fig. 3). The risk of 
recurrence declines thereafter, conversely to luminal A 
cancers that display a more consistent rate over the 
follow-up [8, 39, 108]. This observation explains the 
absence of difference in survival reported by some 
studies between basal and luminal tumors after a 10-
years follow-up [121, 125]. Regarding the location of 
metastases, basal breast cancers develop visceral 
metastases, notably brain and lung, more frequently 
than the luminal cancers, but develop less frequently 
bone and axillary lymph node metastases [102, 108, 
130-133]. In a series of 3000 breast cancer patients 
with brain metastasis [134], the TN status was the 
strongest risk factor for brain relapse. These 
observations and the difference in pathological tumor 
size / lymph node status correlation between the basal 
and luminal subtypes suggest different routes for 
metastasis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Survival according to molecular subtypes. 

Kaplan-Meier curves for metastasis-free survival (A) and overall survival (B) according to subtypes in our series of 353 patients 

treated in our institution. The color legend is similar to Fig. (2). 

(For interpretation of the references to color in this figure, the reader is referred to the web version of this paper). 
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Although the discrepancies reported across studies 
regarding the prognosis and the response to 
chemotherapy may reflect differences in treatments 
and populations, they may also reflect the 
heterogeneity of basal breast cancers. Not all patients 
have an unfavorable clinical outcome. To date, reliable 
identification of basal breast cancer patients with a 
good or a poor prognosis is difficult and based only 
using histoclinical features, which are far from being 
optimal [135-137]. But these reported prognostic 
studies have so far concerned basal tumors defined 
using the TN definition only. We [39] and others [30, 
129] showed that the basal subtype was associated 
with poor survival within TN cancer women. A pooled 
analysis [138] showed that seven tested prognostic 
multigene expression signatures [69, 139-145] 
performed very well in the ER+/ERBB2- subgroup 
(probably because they all measure proliferation, a 
major factor of prognosis in this population), but were 
not at all informative for the TN subgroup. In this 
subgroup, the major prognostic factor was an immune 
response module, the expression of which is 
associated with better survival. Similar results were 
observed in the rare studies dedicated to ER- tumors 
[146-150], which in fact, for three of them, included 
basal and ERBB2+ tumors. In two studies dedicated to 
basal tumors only, we confirmed the favorable 
prognostic impact of activation of cytotoxic tumor-
infiltrative lymphocytes [151, 152].  

Few data exist regarding the association of basal 
subtype with the rate of loco-regional recurrence. Some 
groups have reported the absence of differences with 
the other subtypes (IHC definition) [98, 153]. But many 
others have shown an increased risk of local and/or 
regional recurrences after breast-conserving therapy 
[114, 127, 154, 155], and after mastectomy with and 
without radiation therapy suggesting that TN breast 
cancers do not benefit form radiation therapy after 
mastectomy [156].  

8. SYSTEMIC TREATMENTS: PERSPECTIVES 

The frequent triple-negativity of basal breast 
cancers does not render them candidate to hormone 
therapy and anti-ERBB2 therapies, and until now, 
chemotherapy represented the sole available systemic 
treatment. However, the recent insights in the 
pathogenesis of these tumors are being translated into 
the development of new therapeutic strategies 
targeting molecular alterations (Fig. 4). Clinical trials 
are underway, which undoubtedly, will contribute to 
enlarge our therapeutic armamentarium in a near 
future. We present here some promising research 
directions (for more exhaustive reviews, see [157, 
158]). 

The first strategies exploit the defect in double-
strand DNA break repair mechanisms. Regarding 
chemotherapy, this defect should confer sensitivity to 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
Fig. (4). Therapeutic strategies under assessment in basal and/or TN breast cancer. 

White: tumor cells; light grey: tumor microenvironment. 
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certain drugs [63, 159], notably the DNA-damaging 
agents like platinum compounds [160], mitomycin-C 
[161], anthracyclines, etoposide and bleomycin. To 
date, a few clinical data, if any, support these in vitro 
observations. For platinum salts, two neo-adjuvant 
trials of single-agent cisplatinum reported high pCR 
rates: 90% in a series of 10 BRCA1-mutated TN 
patients [162], and 22% in a series of 28 TN patients 
unselected for the BRCA mutation status [163], further 
reinforcing the hypothesis that, among the TN patients, 
those with a BRCA1-deficient tumor such as basal 
tumors, are highly sensitive to platinum [28]. That was 
confirmed in a retrospective study, which revealed that 
such tumors are more sensitive to platinum compounds 
than to non-platinum-based regimens [164]. In the pre-
treated metastatic setting, two trials reported clinical 
response rates of 17% and 30% after respectively 
carboplatin plus cetuximab [165] and carboplatin plus 
irinotecan [166]. Larger and comparative series are 
required, and several clinical trials are ongoing with 
platinum salts, such as the CALGB 40603 trial, a 2 x 2 
randomized neo-adjuvant trial that plans to enrol 362 
TN patients (NCT00861705). Another promising 
alkylating agent is trabectedin [167]. Several other 
drugs, such as taxanes, gemcitabine, and metronomic 
chemotherapy, are under evaluation. 

The other way to exploit the DNA repair defect is 
the use of poly (ADP-ribose) polymerase (PARP1) 
inhibitors. This enzyme is critical in the base excision 
repair of single-strand DNA breaks. In its absence, 
single-strand breaks degenerate to double-strand 
breaks, which are not repaired if BRCA1 is deficient 
[168]. Several PARP1 inhibitors (iniparib, olaparib, and 
veliparib), alone (as agent causing synthetic lethality) 
or in combination with chemotherapy (as 
chemopotentiating agent), are in clinical development 
in patients with TN or BRCA1-associated breast 
cancers. Promising results were initially reported with 
iniparib (BSI-201) and olaparib. A phase II study of oral 
olaparib in pretreated metastatic BRCA-mutated 
patients (57% were TN) showed 41% response rate 
with the 400-mg dose [169]. In a phase II trial of 123 
metastatic TN patients [170], a combination of 
intravenous iniparib and chemotherapy (carboplatin-
gemcitabine) improved the rates of response (from 16 
to 48%) and of clinical benefit (21 to 62%), as well as 
the progression-free survival (PFS: median: 3.6 months 
to 5.9) and overall survival (median: 7.7 months to 
12.3) compared with chemotherapy alone. However, 
these results did not hold up in the following phase III 
trial that enrolled 519 TN patents pretreated with two or 
fewer metastatic regimens [171]. All patients received 
gemcitabine and carboplatin and were randomized to 
iniparib or placebo. The one-month improvement in 
PFS (median: 4.1 to 5.1 months) with iniparib and the 
increase of less than one month in OS (median: 11.1 to 
11.8 months) did not meet the prespecified definition of 
statistical significance. An exploratory analysis 
suggested that patients who received iniparib as 
second- or third-line therapy might have benefited from 
treatment, Another PARP inhibitor, veliparib, given in 

combination with temozolomide in a phase II trial of 
metastatic breast cancer patients showed that 
responses were limited to BRCA-associated cases 
[172], further suggesting the need for proper patient 
selection. Resistance to PARP inhibitors has been 
observed in vitro due to the restoration of a functional 
BRCA2 isoform resulting from a gene deletion [173].  

Anti-angiogenic agents are under evaluation in TN 
breast cancers. In the ECOG 2100 trial, which 
compared weekly paclitaxel with and without 
bevacizumab, a monoclonal antibody directed against 
VEGF, TN patients benefited from bevacizumab as 
much as the average [174]. In a neo-adjuvant phase II 
study, bevacizumab associated with cisplatinum led to 
37% pathological responses [175]. In a phase II study, 
the multikinase VEGFR inhibitor, sunitinib, given as 
single agent in anthracycline and taxane-pretreated 
metastatic patients, yielded a 15% response rate in the 
TN subgroup, slightly higher than the 11% rate 
observed in the whole population [176]. Two studies 
assessing sorefenib in the metastatic setting gave 
discordant results regarding the benefit in the TN 
subgroup [177, 178]. To date, it remains unclear 
whether TN/basal breast cancers are more sensitive 
than others to anti-angiogenic drugs. Bevacizumab is 
being tested in the neo-adjuvant CALGB 40603 trial, 
which includes a second randomization (with vs. 
without the drug) in each chemotherapy arm.  

Several other potential targets for TN tumors are 
involved in signal transduction pathways. EGFR is 
frequently overexpressed in basal breast cancers [29], 
and EGFR inhibitors are under evaluation. In the 
completed TBCRC 001 study, cetuximab, a monoclonal 
antibody directed against EGFR, was given alone and 
in association with carboplatin in pretreated TN 
metastatic patients [165]. The response rate was 
modest (17%) with the combination; it was even lower 
(6%) with cetuximab alone, but suggested some 
activity in selected patients. Interestingly, when serial 
tumor biopsies could be done, a perfect correlation was 
observed between the clinical benefit and the 
demonstration of an EGFR pathway deactivation 
(observed in 25% of cases). Another completed phase 
II trial compared irinotecan plus carboplatin with versus 
without cetuximab [166]: the response rate was higher 
with the antibody (49 vs. 30%), but the PFS was 
similar. The high failure rate with EGFR inhibitors 
relatively to the frequent overexpression may be due to 
the absence of pathway activation (EGFR gene 
amplification is rare) or the existence of alternative 
activation pathways such as the frequently observed 
PTEN inactivation and AKT activation in TN breast 
cancers. Several other EGFR inhibitors are being 
assessed in TN patients such as erlotinib and 
panitumumab.  

Other inhibitors of signal transduction under 
development target second messengers. Examples 
include everolimus, a mammalian Target Of 
Rapamycine (mTOR) inhibitor, and dasatinib, which 
inhibits ABL and SRC family kinases. Indeed, the 
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frequent mTOR activation observed in TN breast 
cancers, and the fact that mTOR activation has been 
associated with cisplatinum resistance, which can be 
overcome with mTOR inhibitors [179], argue for the 
ongoing development of everolimus in TN breast 
cancer, alone and in combination with cisplatinum-
based regimen. Regarding dasatinib, pre-clinical data 
have shown that basal breast cancer cell lines are 
particularly sensitive to this inhibitor [180, 181]. In a 
phase II trial of single-agent dasatinib in pretreated 
metastatic TN patients, the response rate was low 
(4.7%) with a median PFS of 8.3 weeks [182]. 

Other examples of potential therapeutic targets 
overexpressed in basal breast cancers include the 
NFkB pathway, the tyrosine kinase receptor MET, or 
the chemokine receptor CXCR4 and its ligand 
CXCL12/SDF1. Finally, the favorable prognostic impact 
of the lymphocyte activation in basal breast cancer and 
the identification of new antigens suggest that 
strategies aimed at stimulating the immune system 
should be tested. Identification of protein networks and 
pathways that control breast cancer stem cells should 
also help design new drugs.  

Most of trials are ongoing, and many others will be 
soon activated in the metastatic, neo-adjuvant and also 
adjuvant settings. Given the results of the first 
completed trials, caution is required for the 
interpretation of the results and the selection of patients 
in future trials for at least two reasons. First, initial 
studies were not directed specifically at TN breast 
cancers but at all breast cancers, arising the issue of 
unplanned subset analyses that often do not have the 
statistical power to detect significant differences. 
Second, the inclusion criteria of theorical basal tumors, 
which use the imperfect TN definition, led in fact to the 
enrollment of basal and non-basal tumors very different 
at the histoclinical level, but also for the RNA 
expression of the theorical therapeutic target [22]. 
Ideally, the development of a companion molecular test 
for better selecting the patients should be associated to 
better understand the impact of the drug. In this context 
a retrospective evaluation of basal markers and the 
search for companion markers will have to be done, 
notably in the negative or non-significant trials to 
attempt to document a positive impact in the basal 
population or the marker-positive subset, provided that 
tissue samples have been collected prospectively.  

CONCLUSION 

Genomics has modified our view of breast cancer, 
which is currently considered as a group of molecularly 
distinct diseases. The basal subtype represents a 
challenging subtype with distinctive epidemiological, 
histoclinical, and molecular features, with distinctive 
patterns of relapse, poor prognosis despite relative 
chemosensitivity, and no available targeted therapy. 
Currently, no routine diagnostic procedure exists 
specifically for this subtype, and the patients’ 
management is similar to that of other subtypes 
regarding prevention, prognostic assessment and 

treatment. A detailed molecular characterization of 
basal tumors is ongoing, both to better understand their 
different biology and clinical outcome, and to identify 
specific diagnostic, prognostic, and therapeutic targets. 
Today, no cytotoxic or targeted agent has yet been 
registered specifically in TN or basal breast cancer 
patients, but several targeted drugs are under 
development, which might improve the patients’ 
survival. 
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ABBREVIATIONS 

ArrayCGH = array-based comparative genomic 
hybridization 

BMI = body mass index 

CBCS = Carolina Breast Cancer Study 

CMF = cyclophosphamide, methotrexate, 5-
fluorouracil 

DCIS = ductal carcinoma in situ 

ER = estrogen receptor 

HR = hormone receptor 

IBC = inflammatory breast cancer 

IHC = immunohistochemistry 

LOH = loss of heterozygosity 

MFS = metastasis-free survival 

OS = overall survival 

pCR = pathological complete response 

PFS = progression-free survival 

PR = progesterone receptor 

TN = triple-negative 
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