NCCN

Basal Cell Skin Cancer, Version 1.2016

Clinical Practice Guidelines in Oncology

Christopher K. Bichakjian, MD; Thomas Olencki, DO; Sumaira Z. Aasi, MD; Murad Alam, MD, MSCI; James S. Andersen, MD; Daniel Berg, MD; Glen M. Bowen, MD; Richard T. Cheney, MD; Gregory A. Daniels, MD, PhD; L. Frank Glass, MD; Roy C. Grekin, MD; Kenneth Grossman, MD, PhD; Susan A. Higgins, MD, MS; Alan L. Ho, MD, PhD; Karl D. Lewis, MD; Daniel D. Lydiatt, MD, DDS; Kishwer S. Nehal, MD;

Abstract

Basal cell carcinoma (BCC) of the skin is the most common cancer, with a higher incidence than all other malignancies combined. Although it is rare to metastasize, patients with multiple or frequently recurring BCC can suffer substantial comorbidity and be difficult to manage. Assessment of risk is a key element of management needed to inform treatment selection. The overall management of BCC primarily consists of surgical approaches, with radiation therapy as an alternate or adjuvant option. Many superficial therapies for BCC have been explored and continue to be developed, including topicals, cryosurgery, and photodynamic therapy. Two hedgehog pathway inhibitors were recently approved by the FDA for systemic treatment of advanced and metastatic BCC, and others are in development. The NCCN Guidelines for Basal Cell Skin Cancer, published in full herein, include recommendations for selecting among the various surgical approaches based on patient-, lesion-, and disease-specific factors, as well as guidance on when to use radiation therapy, superficial therapies, and hedgehog pathway inhibitors.

J Natl Compr Canc Netw 2016;14(5):574–597

NCCN Categories of Evidence and Consensus

Category 1: Based upon high-level evidence, there is uniform NCCN consensus that the intervention is appropriate. **Category 2A:** Based upon lower-level evidence, there is uniform NCCN consensus that the intervention is appropriate. **Category 2B:** Based upon lower-level evidence, there is NCCN consensus that the intervention is appropriate.

Category 3: Based upon any level of evidence, there is major NCCN disagreement that the intervention is appropriate.

All recommendations are category 2A unless otherwise noted.

Clinical trials: NCCN believes that the best management for any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged. Paul Nghiem, MD, PhD; Elise A. Olsen, MD; Chrysalyne D. Schmults, MD; Aleksandar Sekulic, MD, PhD; Ashok R. Shaha, MD; Wade L. Thorstad, MD; Malika Tuli, MD; Marshall M. Urist, MD; Timothy S. Wang, MD; Sandra L. Wong, MD, MS; John A. Zic, MD; Karin G. Hoffmann, RN, CCM; Anita Engh, PhD

Overview

Basal cell carcinoma (BCC) is the most common cancer in the United States.¹ Experts estimate that BCCs occur in 2 million Americans annually; this exceeds the incidence of all other cancers combined.²⁻⁴ Due to its prevalence, treatment of nonmelanoma skin cancer (NMSC) in the United States costs Medicare more than \$400 million per year.^{5,6} Furthermore, the incidence of this common malignancy is rising rapidly.^{1,7–13} BCCs are at least 2 times

Please Note

The NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines[®]) are a statement of consensus of the authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult the NCCN Guidelines[®] is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient's care or treatment. The National Comprehensive Cancer Network[®] (NCCN[®]) makes no representation or warranties of any kind regarding their content, use, or application and disclaims any responsibility for their applications or use in any way.

© National Comprehensive Cancer Network, Inc. 2016, All rights reserved. The NCCN Guidelines and the illustrations herein may not be reproduced in any form without the express written permission of NCCN.

Disclosures for the NCCN Basal Cell Skin Cancer Panel

At the beginning of each NCCN Guidelines panel meeting, panel members review all potential conflicts of interest. NCCN, in keeping with its commitment to public transparency, publishes these disclosures for panel members, staff, and NCCN itself.

Individual disclosures for the NCCN Basal Cell Skin Cancer Panel members can be found on page 597. (The most recent version of these guidelines and accompanying disclosures are available on the NCCN Web site at NCCN.org.)

These guidelines are also available on the Internet. For the latest update, visit NCCN.org.

Journal of the National Comprehensive Cancer Network

NCCN Guidelines® Basal Cell Skin Cancer

more common than squamous cell carcinomas (SCCs), the second most common type of skin cancer.^{2–4,4–18} Although rarely metastatic, BCC can produce substantial local destruction along with disfigurement and may involve extensive areas of soft tissue, cartilage, and bone. Fortunately BCCs generally have a good prognosis due to low rates of metastasis.

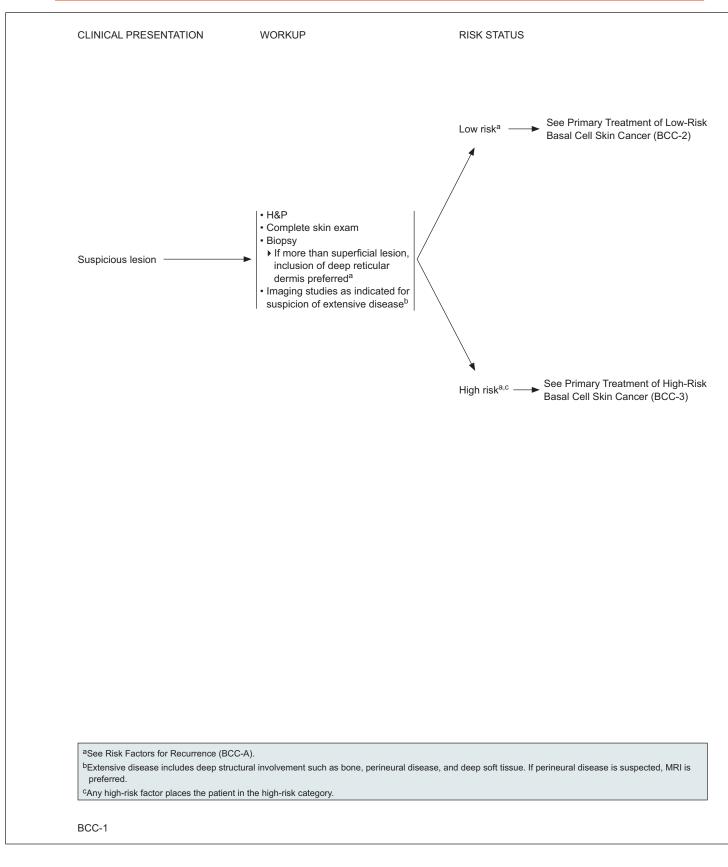
A number of risk factors are associated with development of BCC. The most recognized environmental carcinogen is sunlight. Evidence reveals that the relationship between sun exposure and BCC is complex, depending on timing, pattern, and amount of ultraviolet (UV) radiation.^{19–23} Fair skin, red or blond hair, and light eye color are associated with BCC as independent risk factors due to greater susceptibility to UV damage.^{21,23–29} BCC risk is increased by both UV-A and -B radiation as well as by ionizing radiation. Radiation treatment for other conditions, especially at

NCCN Basal Cell Skin Cancer Panel Members

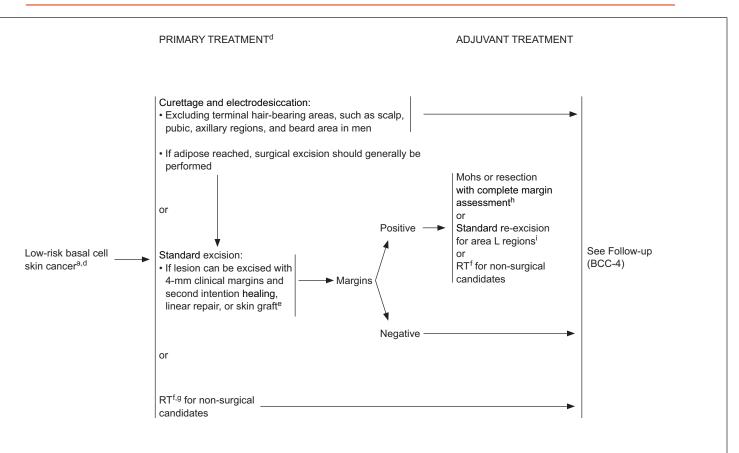
Christopher K. Bichakjian, MD/Chaira University of Michigan Comprehensive Cancer Center Thomas Olencki, DO/Vice-Chairt The Ohio State University Comprehensive Cancer Center -James Cancer Hospital and Solove Research Institute Sumaira Z. Aasi, MDo Stanford Cancer Institute Murad Alam, MD
^α¶ζ Robert H. Lurie Comprehensive Cancer Center of Northwestern University James S. Andersen, MD¶ City of Hope Comprehensive Cancer Center Daniel Berg, MDo University of Washington/ Seattle Cancer Care Alliance Glen M. Bowen, MDo Huntsman Cancer Institute at the University of Utah Richard T. Cheney, MD≠ **Roswell Park Cancer Institute** Gregory A. Daniels, MD, PhD†‡Þ UC San Diego Moores Cancer Center L. Frank Glass, MD∞≠ Moffitt Cancer Center Roy C. Grekin, MD@¶ UCSF Helen Diller Family Comprehensive Cancer Center Kenneth Grossman, MD, PhD† Huntsman Cancer Institute at the University of Utah Susan A. Higgins, MD, MS§ Yale Cancer Center/Smilow Cancer Hospital Alan L. Ho, MD, PhD† Memorial Sloan Kettering Cancer Center Karl D. Lewis, MD[†] University of Colorado Cancer Center Daniel D. Lydiatt, MD, DDS¶ζ Fred & Pamela Buffett Cancer Center

a young age, is also associated with an increased risk for developing BCC.^{30–35} Most BCC tumors develop on skin sites exposed to radiation, -either from the sun or from therapy.^{30–32,34} BCC tends to occur in the head and neck area and within the treatment field of prior radiation therapy.^{8,9,11,15,19–21,36–38}

All patients should be made aware of the various resources that discuss skin cancer prevention. Some of the useful resources are:


- Skin cancer prevention and early detection. American Cancer Society. Available at: http://www.cancer.org/ acs/groups/cid/documents/webcontent/003184-pdf.pdf
- SPOT skin cancer. American Academy of Dermatology. Available at: http://aad.org/spot-skin-cancer
- Prevention Guidelines. Skin Cancer Foundation. Available at: http://www.skincancer.org/prevention

Text cont. on page 583.


Kishwer S. Nehal, MD@¶
Memorial Sloan Kettering Cancer Center
Paul Nghiem, MD, PhDळ
University of Washington/Seattle Cancer Care Alliance
Elise A. Olsen, MDo
Duke Cancer Institute
Chrysalyne D. Schmults, MDបា
Dana-Farber/Brigham and Women's Cancer Center
Aleksandar Sekulic, MD, PhD🛛
Mayo Clinic Cancer Center
Ashok R. Shaha, MD¶ζ
Memorial Sloan Kettering Cancer Center
Wade L. Thorstad, MD§
Siteman Cancer Center at Barnes-Jewish Hospital and
Washington University School of Medicine
Malika Tuli, MDo
St. Jude Children's Research Hospital/
University of Tennessee Health Science Center
Marshall M. Urist, MD¶
University of Alabama at Birmingham
Comprehensive Cancer Center
Timothy S. Wang, MDល
The Sidney Kimmel Comprehensive Cancer Center at
Johns Hopkins
Sandra L. Wong, MD, MS¶
University of Michigan Comprehensive Cancer Center
John A. Zic, MD🛛
Vanderbilt-Ingram Cancer Center
NCCN Staff: Karin G. Hoffmann, RN, CCM, and Anita Engh, PhD
KEY:
*Discussion Section Writing Committee Specialties: @Dermatology; ¶Surgery/Surgical Oncology; ζOtolaryngology; ≠Pathology/Dermatopathology; †Medical Oncology; PInternal Medicine; §Radiotherapy/Radiation Oncology; ‡Hematology/Hematology Oncology.

NCCN NCCN NCCN Network[®]

Basal Cell Skin Cancer, Version 1.2016

Clinical trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged. All recommendations are category 2A unless otherwise indicated.

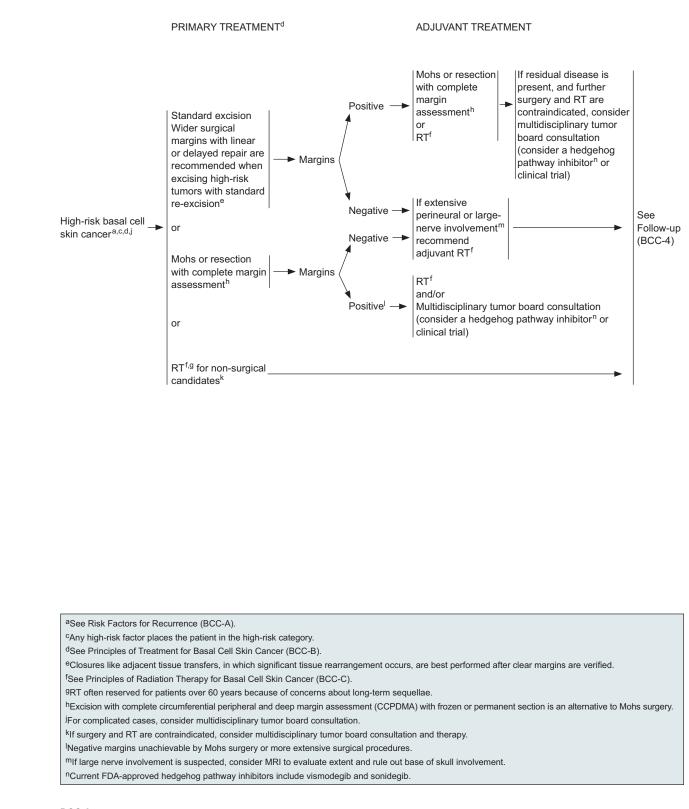
^aSee Risk Factors for Recurrence (BCC-A).

^dSee Principles of Treatment for Basal Cell Skin Cancer (BCC-B).

eClosures like adjacent tissue transfers, in which significant tissue rearrangement occurs, are best performed after clear margins are verified.

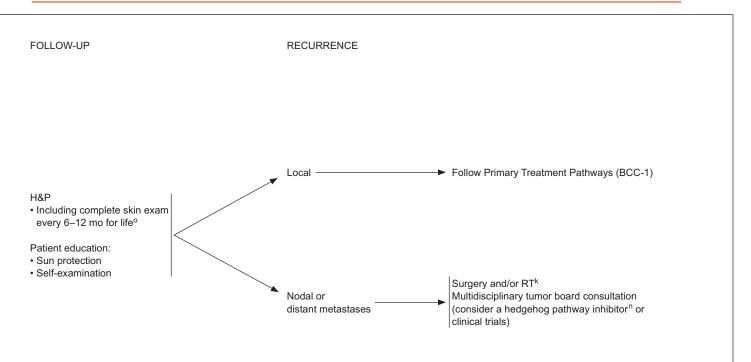
^fSee Principles of Radiation Therapy for Basal Cell Skin Cancer (BCC-C).

^gRT often reserved for patients over 60 years because of concerns about long-term sequellae.


^hExcision with complete circumferential peripheral and deep margin assessment (CCPDMA) with frozen or permanent section is an alternative to Mohs surgery. ⁱArea L = trunk and extremities (excluding pretibia, hands, feet, nail units, and ankles). (See BCC-A)

BCC-2

577


Version 1.2016, 10-26-15 ©2016 National Comprehensive Cancer Network, Inc. All rights reserved. The NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN®.

BCC-3

Clinical trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged. All recommendations are category 2A unless otherwise indicated.

^kIf surgery and RT are contraindicated, consider multidisciplinary tumor board consultation and therapy. ⁿCurrent FDA-approved hedgehog pathway inhibitors include vismodegib and sonidegib. ^oIf no further skin cancers are identified in the first 2 years, then less frequent follow-up may be appropriate.

BCC-4

Version 1.2016, 10-26-15 ©2016 National Comprehensive Cancer Network, Inc. All rights reserved. The NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN®.

RISK FACTORS FOR RECURRENCE

H&P	Low Risk	<u>High Risk</u>
Location/size	Area L <20 mm	Area L ≥20 mm
	Area M <10 mm ¹	Area M ≥10 mm
	Area H <6 mm ¹	Area H ≥6 mm
Borders	Well defined	Poorly defined
Primary vs. Recurrent	Primary	Recurrent
Immunosuppression	(-)	(+)
Site of prior RT	(-)	(+)
Pathology		
Subtype	Nodular, superficial ²	Aggressive growth pattern ³
Perineural involvement	(-)	(+)

Area H = "mask areas" of face (central face, eyelids, eyebrows, periorbital, nose, lips [cutaneous and vermilion], chin, mandible, preauricular and postauricular skin/sulci, temple, ear), genitalia, hands, and feet.

Area M = cheeks, forehead, scalp, neck, and pretibia.

Area L = trunk and extremities (excluding pretibia, hands, feet, nail units, and ankles).

¹Location independent of size may constitute high risk.

²Low-risk histologic subtypes include nodular, superficial, and other non-agressive growth patterns such as keratotic, infundibulocystic, and fibroepithelioma of Pinkus.

³Having morpheaform, basosquamous (metatypical), sclerosing, mixed infiltrative, or micronodular features in any portion of the tumor. In some cases basosquamous (metatypical) tumors may be prognostically similar to SCC. Clinicopathologic consultation is recommended.

BCC-A

Clinical trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged. All recommendations are category 2A unless otherwise indicated.

PRINCIPLES OF TREATMENT FOR BASAL CELL SKIN CANCER

- The goal of primary treatment of basal cell skin cancer is the cure of the tumor and the maximal preservation of function and cosmesis. All treatment decisions should be customized to account for the particular factors present in the individual case and for the patient's preference. Customary age and size parameters may have to be modified.
- Surgical approaches often offer the most effective and efficient means for accomplishing cure, but considerations of function, cosmesis, and patient preference may lead to choosing radiation therapy as primary treatment in order to achieve optimal overall results.
- In certain patients at high risk for multiple primary tumors, increased surveillance and consideration of prophylactic measures may be indicated.
- In patients with low-risk, superficial basal cell skin cancer, where surgery or radiation is contraindicated or impractical, topical therapies such as 5-fluorouracil, imiquimod, photodynamic therapy (eg, aminolevulinic acid [ALA], porfimer sodium), or vigorous cryotherapy may be considered, even though the cure rate may be lower.

BCC-B

581

Version 1.2016, 10-26-15 ©2016 National Comprehensive Cancer Network, Inc. All rights reserved. The NCCN Guidelines[®] and this illustration may not be reproduced in any form without the express written permission of NCCN[®].

PRINCIPLES OF RADIATION THERAPY FOR BASAL CELL SKIN CANCER

	<u>Dose a</u>	nd Field Size
Tumor Diameter	Margins	Examples of Electron Beam Dose and Fractionation
<2 cm	1–1.5 cm ¹	64 Gy in 32 fractions over 6–6.4 weeks ² 55 Gy in 20 fractions over 4 weeks 50 Gy in 15 fractions over 3 weeks 35 Gy in 5 fractions over 5 days
≥2 cm	1.5–2 cm ¹	66 Gy in 33 fractions over 6–6.6 weeks 55 Gy in 20 fractions over 4 weeks
Postoperative adjuvant		50 Gy in 20 fractions over 4 weeks 60 Gy in 30 fractions over 6 weeks

· Protracted fractionation is associated with improved cosmetic results.

· Radiation therapy is contraindicated in genetic conditions predisposing to skin cancer

(eg, basal cell nevus syndrome, xeroderma pigmentosum) and connective tissue diseases (eg, scleroderma)

¹When using electron beam, wider field margins are necessary than with orthovoltage x-rays due to the wider beam penumbra. Tighter field margins can be used with electron beam adjacent to critical structures (eg, the orbit) if lead skin collimation is used. Bolus is necessary when using electron beam to achieve adequate surface dose. An electron beam energy should be chosen that achieves adequate surface dose and encompasses the deep margin of the tumor by at least the distal 90% line. Appropriate medical physics support is essential.

²Electron beam doses are specified at 90% of the maximal depth dose (Dmax). Orthovoltage x-ray doses are specified at Dmax (skin surface) to account for the relative biologic difference between the two modalities of radiation.

BCC-C

Clinical trials: NCCN believes that the best management of any cancer patient is in a clinical trial. Participation in clinical trials is especially encouraged. All recommendations are category 2A unless otherwise indicated.

Text cont. from page 575.

Genetics

Extensive research has led to advances in the understanding of the genetics of BCC. The sonic hedgehog signaling pathway has emerged as playing a pivotal role in the pathogenesis of BCC, and mutations in a number of molecules in this pathway have been implicated in the development of the disease.^{39–41} Mutations in the *PTCH1* (patched 1) gene on chromosome 9q, which codes for the sonic hedgehog receptor, are the underlying cause of nevoid BCC syndrome and are present in approximately 30% to 90% of sporadic BCCs.^{40–57} Specific UV-induced mutations in the tumor suppressor gene *p53* appear to be a common event in BCC development.^{46,52,55,58–60}

Finally, certain genetic syndromes greatly predispose affected individuals to skin cancer formation, including BCC, such as albinism (in which skin pigment is absent),^{61,62} and xeroderma pigmentosum (in which defects exist in UV light-induced unscheduled DNA repair).^{56,63–75}

Clinical Presentation and Workup

On clinical presentation of the patient with a suspicious lesion, workup for BCC begins with a history and physical examination, with an emphasis on a complete skin examination. A full skin examination is recommended because individuals with a skin cancer often have additional, concurrent precancers or cancers located at other, usually sun-exposed skin sites. These individuals are also at increased risk of developing cutaneous melanoma.⁷⁶ A skin biopsy is then performed on any suspicious lesion. The biopsy should include deep reticular dermis if the lesion is suspected to be more than a superficial process. This procedure is preferred because an infiltrative histology may sometimes be present only at the deeper, advancing margins of a tumor, and superficial biopsies will frequently miss this component.77,78 Skin lesions in high-risk populations may be difficult to assess clinically; therefore, a low threshold for performing skin biopsies in these patients is necessary. Imaging studies should be performed when extensive disease such as bone involvement, perineural invasion, or deep soft tissue involvement is suspected. MRI is preferred over CT scan if perineural disease is suspected, because of its higher sensitivity.^{79,80}

Risk Stratification

After workup, a risk assessment should be performed to determine the treatment plan. The NCCN Panel examined risk factors for BCC associated with recurrence. These are listed in table format in the algorithm (see page 580). If any high-risk feature is present, the patient should be managed according to the high-risk treatment pathway.

Risk Factors for BCC

Location and Size: Anatomic location has been known to be a risk factor for BCC recurrence and metastasis for many years.^{81–86} In general, BCCs that develop in the head and neck area are more likely to recur than those developing on the trunk and extremities. Compared with SCC, BCCs are much less likely to metastasize, with a metastatic rate of less than 0.1%.^{87–89} The concept of a so-called high-risk "H zone" or "mask area" of the face dates back at least to 1983.^{90,91} Size also has been shown to be a risk factor for BCC recurrence.^{84–86,92–94} Various different divisions have been used; the most commonly used has been greater than or less than 2 cm in diameter.

The location and size criteria are mainly based on a 27-year retrospective review of 5755 BCCs by the Skin and Cancer Unit of the New York University School of Medicine.^{83,95} The high-risk sites correspond roughly to the mask areas of the face. Recurrences in the NYU study were significantly more common when tumors in high-risk locations were 6 mm or more in diameter and when tumors in moderate-risk locations were 10 mm or more in diameter. More recently, the American Academy of Dermatology (AAD), in collaboration with American College of Mohs Surgery, American Society for Dermatologic Surgery Association, and American Society for Mohs Surgery, developed an appropriate use criteria (AUC) document in the treatment of cutaneous neoplasms.⁹⁶ This was based on 270 clinical scenarios including 69 BCCs. Areas of the body are described in detail in the algorithm section "Risk Factors for Recurrence" (see page 580).

Clinical Borders and Primary Versus Recurrent Disease: The risk factors of well-defined versus illdefined clinical tumor borders and primary versus recurrent disease have been extensively documented in the literature.^{85,92,97–101}

Immunosuppression: Settings of immunosuppression, such as organ transplantation and long-term

use of psoralen and UV-A light (PUVA), increase the incidence of BCC.^{17,102–108} Incidence of BCC among patients who have undergone organ transplantation is approximately 5- to 10-fold higher than in the general population,^{109–111} occurring in up to half of patients during the 10 years after transplantation.^{112–115}

Several large retrospective studies compared BCC in patients with or without a history of organ transplant.¹¹⁶⁻¹¹⁸ These found that BCCs in patients who had received organ transplants were more likely to have the superficial histologic subtype (and be thinner), more likely to occur in extracephalic locations, and more likely to occur in younger patients (mean age of onset, 15 years lower).^{116,117} Two of these studies showed similar low recurrence rates for transplant recipients and controls.^{117,118} Nevertheless, because of anecdotal experiences from panel members, the panel decided to classify BCCs developing in settings of immunosuppression as potentially high-risk tumors.

Site of Prior Radiotherapy: Tumors developing in sites of prior radiotherapy refer to primary BCCs arising in areas within radiation fields given previously for unrelated conditions. All recurrent tumors, irrespective of prior therapy, are defined as high risk. Data from a number of studies with large sample sizes support that prior radiotherapy for unrelated (frequently benign) conditions is a risk factor for BCC development.^{30–36,119}

Perineural Involvement: Perineural involvement is uncommon in any NMSC (2%–6%), and develops less frequently and is less aggressive in BCC versus SCC.^{120–125} BCC with perineural involvement poses a greatly increased risk of recurrence and is associated with other risk factors, including previous recurrent tumors, high-grade, larger lesion size, and infiltrating, morpheic, and basosquamous subtypes.^{125–127} If large nerve involvement is suspected, MRI should be considered to evaluate extent and rule out skull involvement.^{80,128–130}

Young Age Is Not a Risk Factor: Whether young age (typically, younger than 40 years) is an independent risk factor for aggressive BCC behavior is debatable. Studies report conflicting results regarding the relationship between age and other high-risk features. For example, analysis of a large database of patients with BCC (N=3381) by Leffell et al¹³¹

documented an increased percentage of BCC with aggressive histologic growth patterns in young persons. In contrast, results from several other analyses of large databases (1000 to >10,000 patients with BCC) indicate that patients presenting with BCC at a young age are more likely to have the superficial subtype.¹³²⁻¹³⁵ Still other analyses report no significant differences in BCC histologic subtype among young versus older patients.^{136–138} The relationship between tumor location and age is also unclear, as several studies showed that younger patients were more likely to have BCCs that were on the trunk or extremities at presentation, 132, 137, 139, 140 but other studies found no significant association.¹³⁶ Moreover, histologic subtype and tumor location are already separate risk factors in the algorithm.

The effect of age on likelihood of recurrence has been evaluated in studies with sample sizes ranging from 50 to 2000 patients, and most of these have shown no significant association between age and recurrence rate.^{85,98,136,138} One multivariate analysis, however, showed a positive relationship between increasing age and likelihood of recurrence.141 The prognostic value of age has also been evaluated in analyses of potential risk factors for developing a second or multiple BCCs.^{92,138,140-148} Many of these studies used fairly large databases (200-2500 patients with BCC) and found that the risk of developing more than one BCC is associated with increased age.^{92,138,140-143,145,147,148} However, one multivariate analysis of an extremely large database (71,924 patients with BCC) found a significantly higher risk of subsequent NMSC in patients who were younger than 40 years old at the time of their first BCC diagnosis.¹⁴⁹ In addition, an analysis of 100 metastatic BCC cases reported in the literature found that patients with distant metastases tended to be younger than those with only regional metastases.¹⁵⁰

These findings suggest that while younger age is not generally associated with more aggressive BCC, a small subset of patients with particularly aggressive disease tend to be younger than most patients with BCC. Consistent with this idea, multivariate analyses of patients with BCC in the Rotterdam Study showed that although risk of developing a second BCC lesion increased with age (up to approximately 68 years),¹⁴⁸ risk of developing multiple BCC lesions was highest in patients who were younger than 65 at the time of their first BCC diagnosis.¹⁴⁶ Taken together, these studies do not support that young age, in and of itself, is a high-risk factor for aggressive BCC behavior, but that patients who develop BCC at a young age may benefit from regular follow-up.

Pathologic Risk Factors for BCC: Histologic subtyping of BCC as a predictor of risk of recurrence is a well-established concept.^{151,152} The subtypes encompassed by the term "aggressive growth pattern" including micronodular, infiltrative, sclerosing, and morpheaform (or desmoplastic) patterns are more likely to recur than nodular and superficial BCC.^{153–156} Non-aggressive subtypes include the keratotic variant, infundibulocystic variant, and fibroepithelioma of Pinkus.

Basosquamous Carcinoma: Basosquamous carcinomas are tumors of which one part has the histologic appearance of BCC and another that of SCC. Some basosquamous tumors are the result of a BCC colliding with an adjacent SCC. Others represent truly biphenotypic tumors, many of which may have started as BCC, but have subsequently undergone prominent partial squamous metaplasia.¹⁵⁷ The risk for metastasis of these tumors seems to be determined by the squamous component. Data suggest that basosquamous carcinomas have a metastatic capacity that is more similar to that of SCC than BCC.^{158–160}

Local Treatment for BCC

Localized BCC is most commonly treated with surgery. Traditional techniques are mostly supported by older studies, and data from prospective trials with long-term follow-up are limited. In an evidencebased review of the literature, the best results were obtained with surgery.¹⁶¹ However, consideration of function, cosmetic outcome, and patient preference may lead to the choice of radiation therapy (RT) as primary treatment to achieve optimal overall results.

Curettage and Electrodesiccation

Curettage and electrodesiccation (C&E) is the process of alternatively scraping away tumor tissue with a curette down to a firm layer of normal dermis and denaturing the area by electrodessication. Up to 3 cycles may be performed in a session. Although a fast and cost-effective technique for superficial lesions, it does not allow histologic margin assessment. Observational and retrospective studies have reported overall 5-year cure rates ranging from 91% to 97% in patients with BCC selected for C&E.^{162,163} However, some studies have reported higher recurrence rates (19%–27%),^{164,165} possibly due to high-risk locations (21%) and histologic subtypes (27%).^{83,166,167} It should also be noted that results are highly operator-dependent, and optimal cure rates are achieved by experienced practitioners.¹⁶⁸

This technique is deemed effective for properly selected, low-risk tumors with 3 caveats.^{83,167} First, this technique should not be used to treat areas with terminal hair growth such as the scalp, pubic, axillary regions, or beard area in males due to the risk that a tumor extending down follicular structures might not be adequately removed.

Second, if the subcutaneous layer is reached during the course of surgery, surgical excision should generally be performed instead. This change in therapy is necessary because the effectiveness of the C&E technique rests on the ability of the clinician to distinguish between firm, normal dermis and soft tumor tissue when using a sharp curette. Because subcutaneous adipose is even softer than tumor tissue, the ability of the curette to distinguish and, therefore, to selectively and completely remove tumor cells, disappears.

Third, if curettage has been performed based only on the appearance of a low-risk tumor, biopsy results of the tissue taken at the time of curettage should be reviewed to make sure that there are no high-risk pathologic features that would require additional therapy.

Excision With Postoperative Margin Assessment

Another therapeutic option for BCC is standard surgical excision followed by postoperative pathologic evaluation of margins. This technique has been reported to achieve 5-year disease-free rates of more than 98% for BCC.^{162,164,169,170}

The clinical margins chosen by the panel for low-risk tumors are based on the work of Wolf and Zitelli.¹⁷¹ Their analysis indicated that for well-circumscribed BCC lesions less than 2 cm in diameter, excision with 4-mm clinical margins should result in complete removal in more than 95% of cases. The indications for this approach were also expanded to include re-excision of low-risk primary BCC located on the trunk and extremities, excluding pretibia, hands, feet, nail units, and ankles (area L regions), if positive margins are obtained after an initial excision with postoperative margin assessment.

If lesions can be excised with the recommended margins, then linear closure, skin grafting, or second intention healing (ie, closures do not rotate tissue around and alter anatomy, where residual "seeds" of tumor may remain) are all appropriate reconstructive approaches. However, if tissue rearrangement or skin graft placement is necessary to close the defect, the group believes intraoperative surgical margin assessment is necessary before closure.

As noted subsequently, excision with comprehensive intraoperative margin control is the preferred surgical technique for high-risk BCC. However, if standard excision with postoperative margin assessment is used for treatment of a high-risk tumor due to patient-related clinical circumstances or other variables, wider surgical margins than those recommended for low-risk lesions must be taken, and increased recurrence rates should be expected.

Mohs Micrographic Surgery or Excision With Intraoperative Frozen Section Assessment

Mohs micrographic surgery (MMS) is the preferred surgical technique for high-risk BCC because it allows intraoperative analysis, of 100% of the excision margin. Two meta-analyses published in 1989 associated MMS with a 5-year recurrence rate of 1.0% for primary BCC, and 5.6% for recurrent BCC.^{162,172} In both these meta-analyses, the recurrence rate for MMS was lower than that for standard surgical excision (10.1% and 17.4% for primary and recurrent BCC, respectively), and lower than the recurrence rate for any other treatment modality included in the analysis (C&E, cryotherapy, and RT). The only prospective randomized trial comparing MMS with standard excision was performed in the Netherlands.¹⁷³ After 10 years' minimum follow-up, treatment of high-risk facial BCC with MMS resulted in fewer recurrences compared with standard excision, although the difference was only statistically significant for recurrent tumors.¹⁷⁴ Importantly, a large proportion of recurrences occurred more than 5 years after treatment: 56% for primary and 14% for recurrent BCC. This finding emphasizes the importance of long-term follow-up in therapeutic trials evaluating treatment modalities for BCC, as well as the need for long-term follow-up of patients with high-risk tumors.

Excision with complete circumferential peripheral and deep-margin assessment (CCPDMA) using intraoperative frozen section (IOFS) assessment is acceptable as an alternative to MMS provided it includes a complete assessment of all deep and peripheral margins. The descriptive term *CCPDMA* underscores the panel's belief that intraoperative assessment of all tissue margins is the key to complete tumor removal for high-risk tumors.

Radiation Therapy

Although surgery is the mainstay of local treatment for BCC, patient preference and other factors may lead to the choice of RT as primary therapy.¹⁷⁵ Two meta-analyses reported 5-year recurrence rates of 8.7% and 10% after RT on primary and recurrent BCC, respectively.^{164,174} More recent retrospective analyses of BCC treated with RT have reported 5-year local control, cure, or complete response rates ranging from 93% to 96%, 176-179 and 5-year recurrence rates from 4% to 16%.¹⁸⁰⁻¹⁸² Efficacy of RT was better for BCCs that were less advanced, primary (vs recurrent), and that had smaller diameter or nodular histologic subtype (vs any other subtype).^{176,177,179–181} In a randomized study involving 347 patients receiving either surgery or RT as primary treatment, RT resulted in higher recurrence rates than surgery (7.5% vs 0.7%; P=.003),¹⁸³ poorer cosmetic outcomes, and more postoperative complications.¹⁸⁴

Specifics about the application of RT, including total doses and fractionation ranges, are described under "Principles of Radiation Therapy" (see page 582). RT is contraindicated in genetic conditions predisposing to skin cancer (eg, basal cell nevus syndrome, xeroderma pigmentosum) and connective tissue diseases (eg, lupus, scleroderma).

Intensity-modulated RT (IMRT) has been gaining wide use in recent years for the concurrent treatment of the primary skin tumor and the draining lymphatic beds. The panel emphasized the importance of proper support and training by medical physicists in using this technology as primary treatment. Special attention is warranted to ensure adequate surface dose to the target area. RT is often reserved for patients older than 60 years because of concerns about long-term sequelae.¹⁸⁵

The value of postoperative radiation in reducing the rate of recurrence in high-risk patients has been widely accepted.¹⁷⁵ The panel recommends adjuvant radiotherapy for any BCC that shows evidence of substantial perineural involvement (ie, involvement of more than just a few small sensory nerve branches or large nerve involvement).¹⁸⁶ In select patients, local control approaches 100% with postoperative RT.¹⁸⁷ Adjuvant RT should also be considered if tissue margins are positive after MMS or CCPDMA.

Superficial Therapies

Because cure rates may be lower, superficial therapies should be reserved for patients for whom surgery or RT is contraindicated or impractical.¹⁸⁸ Superficial therapies include topical treatment with 5-fluoro-uracil (5-FU) or imiquimod, photodynamic therapy (PDT), and cryotherapy.

Topical Therapies Imiquimod was found to be effective for treating multiple superficial BCC in randomized studies.^{189–191} A prospective trial reported an 85% 5-year disease-free rate in superficial BCC.¹⁹¹ A phase III randomized trial in patients with superficial or nodular BCC showed that imiquimod provided an 84% rate of clinical success, defined as absence of initial treatment failure or signs of recurrence at 3 years from start of treatment.¹⁹² Although the clinical success rate was significantly higher in patients treated with surgical excision using a 4-mm margin (98%, P < .001), cosmetic outcomes by dermatologist assessment were significantly better with imiquimod (excellent/good at 3 years: 61% vs 36%; P<.0001). Another topical cream with efficacy against BCC is 5-FU, which has been shown in a randomized trial to have similar efficacy, safety, and cosmetic outcomes as imiquimod.¹⁹³

Cryosurgery: Cryosurgery, which destroys tumors cells by freeze-thaw cycles, has been used for many years as a fast and cost-effective means for removal of BCCs. Systematic reviews of historical data in primary BCCs have reported recurrence rates for cryosurgery ranging from 0% to 13%, and mean recurrence rates from pooled analyses between 3% and 4%.^{162,164} In prospective trials, cryosurgery has been shown to result in BCC recurrence rates ranging from 5% to 39%.¹⁹⁴⁻¹⁹⁷ Variability in reported recurrence rates may be in part due to patient selection, variable follow-up durations, and differences in technique and operator skill. One of the lowest recurrence rates reported (5-year cure rate, 99%) is from a retrospective review of 415 BCCs treated by a single clinician.¹⁹⁸ A key limitation of cryotherapy is poorer cosmetic outcomes compared with other treatment options, as demonstrated by prospective randomized trials. 196, 197, 199

Photodynamic Therapy: PDT involves the application of a photosensitizing agent on the skin followed

by irradiation with a light source. Photosensitizing agents often used include methyl aminolevulinate (MAL) and 5-aminolaevulinic acid. These agents have similar efficacy outcomes and pain scores when used to treat patients with nodular BCC.^{200,201} Multiple randomized trials and a meta-analysis that included 4 of these trials have shown that rates of excellent or good cosmetic outcomes were higher with PDT versus surgery, even though surgery was superior to PDT in terms of efficacy (complete clearance, 1-year and 5-year recurrence rates).^{170,202–206}

Reviews of clinical trials reported cure rates from 70% to 90% by PDT for patients with BCC.^{201,207} Most of the studies of PDT for BCC have focused on the superficial and nodular histologic subtypes, and several have found higher cure rates for superficial versus nodular subtypes.^{208,209} Ulceration and thickness are associated with lower response to therapy,²⁰⁸ and within the nodular subtype, cure rates are better with thinner lesions.²⁰⁴ Clinical studies have demonstrated PDT activity against "difficult to treat" lesions, with a 24-month complete response rate of 78%.^{209,210} Currently, PDT is being used at some NCCN Member Institutions for premalignant or superficial low-risk lesions on any location on the body, although response rates may be higher on the face and scalp.^{211,212}

Although MAL is an approved photosensitizer for PDT, it is no longer produced in the United States.

Comparisons of Superficial Therapies: Several randomized studies and meta-analyses have compared superficial therapies for BCC. Table 1 summarizes efficacy and cosmetic outcome results from the most informative studies. Results from these studies indicate that in patients with superficial BCC, 1) PDT has similar efficacy as cryotherapy but much better cosmetic outcomes; and 2) PDT, imiguimod, and fluorouracil have similar efficacy and cosmetic outcomes, although risk of recurrence may be somewhat higher with PDT versus imiquimod. Whereas a meta-analysis of 23 randomized and nonrandomized trials found no significant difference in efficacy for PDT versus imiquimod in patients with superficial BCC,²¹³ a more recent randomized trial (ISRCTN 79701845) showed that treatment success was more likely with imiquimod.¹⁹³ Exploratory subanalyses found that treatment success rates were significantly higher with imiquimod versus PDT for tumors that

Basal Cell Skin Cancer, Ve	ersion 1.2016
----------------------------	---------------

Table 1. Studies Comparing Superficial Therapies in Patients with Superficial Basal Cell Carcinoma

	•								
Study	Histologic Subtype	Treatments (n)		Ef	ficacy		Cosn	netic Ou	ıtcome
Phase III randomized trial Wang et al, ¹⁹⁶ 2001	Superficial and nodular	Cryosurgery (39) ALA-PDT (44)	1-year recurrence:	15% 25%	} NS		Excellent:	8% 50%	} P<.001
Randomized trial Basset-Seguin et al, ¹⁹⁷ 2008	Superficial	Cryotherapy (58) MAL-PDT (60)	5-year recurrence:	20% 22%	} NS		Excellent:	16% 60%	} P=.00078
Meta-analysis ^a Roozeboom et al, ²¹³ 2012	Superficial	Imiquimod (1088) PDT (934)	1-year tumor free survival:	87% 84%	} NS			NR	
Randomized, single- blind, non-inferiority ISRCTN 79701845 Arits et al, ¹⁹³ 2013	Superficial	MAL-PDT (202) Imiquimod cream (198) Fluorouracil cream (201)	Treatment success ^b :	73% 83% 80%	<pre>} P=.021 } NS</pre>	} NS	Good/ excellent:	62% 61% 58%	All comparisons NS

Abbreviations: MAL, methyl aminolevulinate; NR, not reported; NS, no statistically significant difference; PDT, photodynamic therapy. ^aMeta-analysis of 23 randomized and non-randomized studies.

^bTreatment success was defined as the product of the percent patients with clearance at 3-months by the percentage with sustained clearance during the next 9 months.

are large or truncal, whereas PDT provided significantly better outcomes than imiquimod in elderly patients with lesions on the lower extremities.²¹⁴

Safety results from this randomized trial showed that PDT and topical treatments are all associated with moderate to severe local skin redness.¹⁹³ Whereas PDT causes moderate to severe pain during treatment administration, imiquimod and fluorouracil are more likely to cause moderate to severe local swelling, erosion, crust formation, itching, and wound infections.¹⁹³ Both cryosurgery and PDT are associated with pain during and after treatment, and data from a randomized trial indicates a trend toward a higher likelihood of pain with PDT.¹⁹⁶

NCCN Recommendations

Low-Risk BCC: Primary treatment options for lowrisk BCC include 1) C&E in areas without hair growth (ie, excluding terminal hair-bearing regions, such as scalp, pubic, axillary regions, and beard area in men), provided that the treatment is changed to excision if the adipose is reached; 2) standard excision if the lesion can be excised with 4-mm clinical margins and with reconstruction techniques such as linear closure, second intention healing, or skin graft; and 3) RT for nonsurgical candidates, generally limited to those older than 60 years of age because of risk of long-term toxicity.

If margins are positive after excision, patients should receive adjuvant therapy. MMS, resection with CCPDMA with frozen or permanent section, or standard re-excision for area L regions (trunk and extremities, excluding pretibia, hands, feet, nail units, and ankle) are recommended, while radiation may be administered to non-surgical candidates.

The NCCN Panel discussed the use of alternative therapies as first-line treatment in patients with low-risk, superficial BCC where surgery or radiation is contraindicated or impractical. These include 5-FU, imiquimod, PDT with porfimer sodium or aminolevulinic acid, or vigorous cryotherapy. Data suggest that the cure rate of these approaches may be lower compared with surgery. On the other hand, panelist experience indicated that they may be effective for anatomically challenging locations, and recurrences are often small and manageable. Panelists agreed that these therapies may be considered for superficial BCCs based on patient preference.

High-Risk BCC: Recommended options for highrisk lesions include 1) standard excision, using wider margins with linear or delayed repair with standard re-excision; 2) MMS or resection with CCPDMA; and 3) RT for non-surgical candidates.

Patients treated with MMS or resection with CCPDMA should receive adjuvant therapy if clear margins cannot be achieved. Recommended adjuvant therapy options include radiation and/or multidisciplinary consultation to consider systemic therapy with a hedgehog pathway inhibitor or treatment in the context of a clinical trial. FDA-approved hedgehog pathway inhibitors include vismodegib and sonidegib.^{215,216}

Adjuvant RT is also recommended for patients with negative margins after surgery but with large

nerve or extensive perineural involvement. Due to the potential for skull involvement and intracranial extension, an MRI should be considered if large-nerve invasion is suspected for tumors on the head and neck.

If negative margins are not achieved after standard excision, patients should undergo MMS or resection with CCPDMA, or receive adjuvant RT. If residual disease is still present after adjuvant treatment, and further surgery and RT are contraindicated, clinicians should consider multidisciplinary consultation to determine whether the patient should be offered systemic treatment with a hedgehog pathway inhibitor or treatment in the context of a clinical trial.

Recurrence and Metastasis

Systemic Therapy

Recent FDA approval of the new agent vismodegib, a first-in-class hedgehog pathway inhibitor, provided another option for patients who have exhausted surgical and radiation options for treating advanced BCC.²¹⁵ Approval was based on a multicenter, single-arm, 2-cohort, open-label, phase II trial enrolling 104 patients (ERIVANCE).²¹⁷ About 95% of patients were previously treated with surgery, RT, and/or systemic therapies. In the most recent report, based on 21-month minimum follow-up, objective response was recorded in 48% and 33% of patients with locally advanced and metastatic disease (mBCC), respectively, with median response duration of 9.5 months and 7.6 months, respectively.²¹⁸ As shown in Table 2, several other studies testing vismodegib in patients with advanced BCC reported response rates and median progression-free survival times that were similar or better to those from ERIVANCE, and found that median time to response was 2.6 to 2.8 months. A separate independent analysis of photographic evidence from the ERIVANCE trial, using a different system for scoring baseline disease severity and clinical efficacy, determined that 65% of patients with locally advanced BCC showed significant improvement, and 11% significantly worsened.²¹⁹

Vismodegib has also been tested as BCC treatment and prophylaxis in patients with nevoid BCC syndrome. A double-blind randomized phase II study in patients with nevoid BCC syndrome and at least 10 operable BCC lesions found that vismodegib significantly reduced incidence of new BCC lesions compared with placebo, and also significantly reduced the size of existing lesions and the number of surgeries needed to remove BCC lesions.²²⁰

Data from ERIVANCE and other studies have shown that nearly all patients treated with vismodegib experienced at least one treatment-emergent

Study			Patie	nts, n	Foll up T Mini (med	ime,		ective se Rated [.]	Resp	e to onse, dian ^c	Resp	ation onse, dian ^c	Survival	sion-Free , median ^c gressed)
Name and References	Phase, Design	Tx ^b	laBCC	mBCC	laBCC	mBCC	laBCC	mBCC	laBCC	mBCC	laBCC	mBCC	laBCC	mBCC
ERIVANCE NCT00833417 ^{218,e}	II OL	Vismo	71	33	≥21; (22.4)	≥21; (21.7)	48%	33%	NR	NR	9.5	7.6	9.5 (3%)	9.5 (13%)
NCT01160250 ²²¹	II OL	Vismo	56	39	N (6.	R ^f .5)	46%	31%	2.6	2.6	NR	NR	NR (0%)	NR (8%)
STEVIE NCT01367665 ²²²	II OL	Vismo	453	29	≥12; (12.7)	≥12; (12.9)	67%	38%	2.6	2.8	22.7	10	24.5 (2%)	13.1 (14%)
RegiSONIC NCT01604252 ²³⁰	Obs	Vismo	66	-	(13.2)	-	68%	-	NR	-	5.95	-	NE	-
BOLT	II RDB	Soni 200 mg	42	13	≥	6	43%	15%	3.9	4.6	NE	NE	NE (12%)	13.1 (31%)
NCT01327053 ²²¹		Soni 800 mg	93	23	(13	8.9)	38%	17%	3.7	1.0	NE	NE	NE (9%)	7.6 (43%)

Abbreviations: BCC, basal cell carcinoma; laBCC, locally advanced BCC; mBCC, metastatic BCC; NR, not reported; NE, not reached; Obs, prospective observational; OL, open-label; RDB, randomized double-blind; soni, sonidegib; Tx, treatment; vismo, vismodegib.

^aTrials included patients with advanced BCC that was inappropriate for surgery or RT.

^bInhibitors were taken orally once daily. Vismodegib dose was 150 mg. 'Times are reported in months.

^dResponse criteria varied between studies.

eRIVANCE data per independent review facility assessment.

'Trial was terminated early due to FDA approval of vismodegib.

adverse event (TEAE), but a significant proportion of these were low grade (grade ≤2).^{218,221,222} Serious AEs occurred in 25% to 32% of patients in these studies. Across studies the most common TEAEs (any grade) include muscle spasms, alopecia, taste loss, weight loss, decreased appetite, fatigue, nausea, and diarrhea. These AEs were also the most likely to lead to discontinuation. Median time to onset is less than 6 months for all the most common AEs, but for some AEs the incidence continues to increase beyond 12 months from the start of treatment.

Sonidegib, another hedgehog pathway inhibitor, has also been approved by the FDA for treatment of patients with locally advanced BCC that has recurred following surgery or RT, or who are not candidates for surgery or RT.²¹⁶ FDA approval was based on data from the phase II BOLT trial comparing 2 different doses of sonidegib in patients with either 1) locally advanced BCC not amenable to curative surgery or RT or 2) mBCC for which all available treatment options have been exhausted.²²³ Whereas response rates were similar for the 2 doses tested (Table 2), the higher dose (800 mg/d) was associated with higher rates of serious AEs (14% vs 30%) and AEs leading to dose interruptions, reductions, or discontinuation. As with vismodegib, nearly all patients experienced at least one AE, and the most common AEs were muscle spasms, dysgeusia, alopecia, nausea, weight decrease, and fatigue. Elevated creatinine kinase was also frequently observed, and was one of the most common grade 3 to 4 AEs, along with elevated lipase.

A key limitation to hedgehog pathway inhibitor therapies is that advanced BCC can develop resistance, which limits the duration of response (Table 2). A small investigator-initiated trial in patients with vismodegib-resistant advanced BCC saw no responses during treatment with sonidegib for a median of 6 weeks (range, 3–58 weeks), and 5 of 9 patients experienced progression.²²⁴

Ongoing clinical research is exploring various dosing regimens of vismodegib and sonidegib in a variety of BCC treatment settings, including less advanced disease or as part of primary treatment for previously untreated disease.^{225–231} An open-label single-arm trial in large (mean tumor area, 12.6 cm² [range 1.0–78.0 cm²]) high-risk BCC eligible for surgical removal (n=11) found that 3 to 6 months of vismodegib before resection reduced the surgical de-

fect area by 27% compared with baseline (P=.006).²²⁵ A phase II open-label, multicenter trial in lower-risk operable BCC lesions (diameter <3 cm, previously untreated, nodular) tested the efficacy and safety of neoadjuvant vismodegib in patients willing to delay surgery (n=74).²²⁹ Although 50% of patients experienced investigator-assessed complete clinical clearance while on vismodegib, this trial did not meet its primary endpoints based on complete histologic clearance. Safety data from cohort 2 in this trial (n=24), who received 12 weeks of vismodegib followed by 24 weeks of observation before surgery, showed high rates of AE reversibility (75%-100%) for some of the most common toxicities associated with vismodegib treatment (muscle spasm, alopecia, dysgeusia, ageusia).

Other hedgehog pathway inhibitors are being tested in patients with BCC to see if they can provide higher rates of response, more durable responses, responses in less advanced BCC or responses in BCC resistant to vismodegib. Results from phase I-II trials with small BCC sample sizes (N<40 patients) have shown that itraconazole and saridegib can elicit responses in patients with BCC, although not in patients who previously received vismodegib (n=12 patients tested).^{232,233} Due to the rarity of advanced cases, the literature on chemotherapy for BCC is limited to case reports.²³⁴⁻²⁴⁰

NCCN Recommendations

For the management of local tumor recurrence, the algorithm directs clinicians to follow the appropriate pathways for primary treatment. Although the behavior of cutaneous BCC is characteristically indolent, the disease does rarely metastasize to distant sites. Whenever possible, nodal or distant metastases should be treated with surgery with or without RT, and managed by a multidisciplinary tumor board. The board should consider systemic therapy with a hedgehog pathway inhibitor or treatment in the context of a clinical trial. FDA-approved hedgehog pathway inhibitors include vismodegib and sonidegib.^{215,216} The panel agreed that many patients with metastatic basosquamous carcinoma will also likely respond to vismodegib.

Follow-Up

Two well-established points about patients with BCC underlie the follow-up schedules. One point

is that 30% to 50% of these patients will develop another BCC within 5 years.^{142,147,241–244} This represents a 10-fold increase in risk compared with the general population.²⁴² Patients with a prior BCC are also at increased risk of developing SCC and cutaneous melanoma.^{142,244} Therefore, continued long-term surveillance of these patients is essential, as is patient education about the values of sun protection and regular self-examination of the skin. A prospective population-based cohort study found that development of a second BCC is most likely during the short-term follow-up period after diagnosis of the first lesion.¹⁴⁶ Therefore, close follow-up of these patients during this time period is critical.

NCCN Recommendations

The frequency of follow-up should be based on risk. In addition to patient education about sun protection and self-examination, patients should be monitored with regular physical examinations, including complete skin examination. Monitoring during the first 2 years is the most critical, and examinations should occur at least every 6 to 12 months during this timeframe. If no further skin cancer develops in the first 2 years, then it may be appropriate to reduce exam frequency.

References

- Miller DL, Weinstock MA. Nonmelanoma skin cancer in the United States: incidence. J Am Acad Dermatol 1994;30:774–778.
- Asgari MM, Moffet HH, Ray GT, Quesenberry CP. Trends in basal cell carcinoma incidence and identification of high-risk subgroups, 1998–2012. JAMA Dermatol 2015;151:976–981.
- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66:7–30.
- Rogers HW, Weinstock MA, Feldman SR, Coldiron BM. Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012. JAMA Dermatol 2015 151:1081–1086.
- Chen JG, Fleischer AB, Jr., Smith ED, et al. Cost of nonmelanoma skin cancer treatment in the United States. Dermatol Surg 2001;27:1035–1038.
- Mudigonda T, Pearce DJ, Yentzer BA, et al. The economic impact of nonmelanoma skin cancer: a review. J Natl Compr Canc Netw 2010;8:888–896.
- Christenson LJ, Borrowman TA, Vachon CM, et al. Incidence of basal cell and squamous cell carcinomas in a population younger than 40 years. JAMA 2005;294:681–690.
- Athas WF, Hunt WC, Key CR. Changes in nonmelanoma skin cancer incidence between 1977–1978 and 1998–1999 in Northcentral New Mexico. Cancer Epidemiol Biomarkers Prev 2003;12:1105–1108.
- Brewster DH, Bhatti LA, Inglis JH, et al. Recent trends in incidence of nonmelanoma skin cancers in the East of Scotland, 1992-2003. Br J Dermatol 2007;156:1295–1300.
- Hayes RC, Leonfellner S, Pilgrim W, et al. Incidence of nonmelanoma skin cancer in New Brunswick, Canada, 1992 to 2001. J Cutan Med Surg 2007;11:45–52.
- Karagas MR, Greenberg ER, Spencer SK, et al. Increase in incidence rates of basal cell and squamous cell skin cancer in New Hampshire, USA. New Hampshire Skin Cancer Study Group. Int J Cancer 1999;81:555–559.

- Staples MP, Elwood M, Burton RC, et al. Nonmelanoma skin cancer in Australia: the 2002 national survey and trends since 1985. Med J Aust 2006;184:6–10.
- Demers AA, Nugent Z, Mihalcioiu C, et al. Trends of nonmelanoma skin cancer from 1960 through 2000 in a Canadian population. J Am Acad Dermatol 2005;53:320–328.
- Kricker A, English DR, Randell PL, et al. Skin cancer in Geraldton, Western Australia: a survey of incidence and prevalence. Med J Aust 1990;152:399–407.
- **15.** Abbas M, Kalia S. Trends in non-melanoma skin cancer (basal cell carcinoma and squamous cell carcinoma) in Canada: a descriptive analysis of available data. J Cutan Med Surg 2016;20:166–175.
- Rudolph C, Schnoor M, Eisemann N, Katalinic A. Incidence trends of nonmelanoma skin cancer in Germany from 1998 to 2010. J Dtsch Dermatol Ges 2015;13:788–797.
- Bernat Garcia J, Morales Suarez-Varela M, Vilata JJ, et al. Risk factors for non-melanoma skin cancer in kidney transplant patients in a Spanish population in the Mediterranean region. Acta Derm Venereol 2013;93:422–427.
- Sella T, Goren I, Shalev V, et al. Incidence trends of keratinocytic skin cancers and melanoma in Israel 2006–11. Br J Dermatol 2015;172:202– 207.
- Kricker A, Armstrong BK, English DR, Heenan PJ. Does intermittent sun exposure cause basal cell carcinoma? a case-control study in Western Australia. Int J Cancer 1995;60:489–494.
- Kricker A, Armstrong BK, English DR, Heenan PJ. A dose-response curve for sun exposure and basal cell carcinoma. Int J Cancer 1995;60:482–488.
- Zanetti R, Rosso S, Martinez C, et al. Comparison of risk patterns in carcinoma and melanoma of the skin in men: a multicentre case-casecontrol study. Br J Cancer 2006;94:743–751.
- 22. Gallagher RP, Hill GB, Bajdik CD, et al. Sunlight exposure, pigmentary factors, and risk of nonmelanocytic skin cancer. I. Basal cell carcinoma. Arch Dermatol 1995;131:157–163.
- 23. Ramsay HM, Fryer AA, Hawley CM, et al. Factors associated with nonmelanoma skin cancer following renal transplantation in Queensland, Australia. J Am Acad Dermatol 2003;49:397–406.
- 24. Kaskel P, Lange U, Sander S, et al. Ultraviolet exposure and risk of melanoma and basal cell carcinoma in Ulm and Dresden, Germany. J Eur Acad Dermatol Venereol 2015;29:134–142.
- 25. Khalesi M, Whiteman DC, Tran B, et al. A meta-analysis of pigmentary characteristics, sun sensitivity, freckling and melanocytic nevi and risk of basal cell carcinoma of the skin. Cancer Epidemiol 2013;37:534–543.
- 26. Walther U, Kron M, Sander S, et al. Risk and protective factors for sporadic basal cell carcinoma: results of a two-centre case-control study in southern Germany. Clinical actinic elastosis may be a protective factor. Br J Dermatol 2004;151:170–178.
- Box NF, Duffy DL, Irving RE, et al. Melanocortin-1 receptor genotype is a risk factor for basal and squamous cell carcinoma. J Invest Dermatol 2001;116:224–229.
- 28. Lock-Andersen J, Drzewiecki KT, Wulf HC. Eye and hair colour, skin type and constitutive skin pigmentation as risk factors for basal cell carcinoma and cutaneous malignant melanoma: a Danish case-control study. Acta Derm Venereol 1999;79:74–80.
- 29. Chinem VP, Miot HA. Prevalence of actinic skin lesions in patients with basal cell carcinoma of the head: a case-control study. Rev Assoc Med Bras 2012;58:188–196.
- 30. Perkins JL, Liu Y, Mitby PA, et al. Nonmelanoma skin cancer in survivors of childhood and adolescent cancer: a report from the childhood cancer survivor study. J Clin Oncol 2005;23:3733–3741.
- 31. Karagas MR, Nelson HH, Zens MS, et al. Squamous cell and basal cell carcinoma of the skin in relation to radiation therapy and potential modification of risk by sun exposure. Epidemiology 2007;18:776–784.
- **32.** Watt TC, Inskip PD, Stratton K, et al. Radiation-related risk of basal cell carcinoma: a report from the Childhood Cancer Survivor Study. J Natl Cancer Inst 2012;104:1240–1250.
- 33. Schwartz JL, Kopecky KJ, Mathes RW, et al. Basal cell skin cancer after total-body irradiation and hematopoietic cell transplantation. Radiat Res 2009;171:155–163.
- 34. Lichter MD, Karagas MR, Mott LA, et al. Therapeutic ionizing radiation and the incidence of basal cell carcinoma and squamous cell carcinoma. The New Hampshire Skin Cancer Study Group. Arch Dermatol 2000;136:1007–1011.

- 35. Karagas MR, McDonald JA, Greenberg ER, et al. Risk of basal cell and squamous cell skin cancers after ionizing radiation therapy. For The Skin Cancer Prevention Study Group. J Natl Cancer Inst 1996;88:1848–1853.
- 36. Kumar S, Mahajan BB, Kaur S, et al. A study of Basal cell carcinoma in South asians for risk factor and clinicopathological characterization: a hospital based study. J Skin Cancer 2014;2014:173582.
- English DR, Kricker A, Heenan PJ, et al. Incidence of non-melanocytic skin cancer in Geraldton, Western Australia. Int J Cancer 1997;73:629– 633.
- 38. Zargaran M, Moghimbeigi A, Monsef A, et al. A clinicopathological survey of basal cell carcinoma in an Iranian population. J Dent (Shiraz) 2013;14:170–177.
- 39. Lesiak A, Sobolewska-Sztychny D, Majak P, et al. Relation between sonic hedgehog pathway gene polymorphisms and basal cell carcinoma development in the Polish population. Arch Dermatol Res 2016;308:39– 47.
- 40. Reifenberger J, Wolter M, Weber RG, et al. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 1998;58:1798–1803.
- **41.** Xie J, Murone M, Luoh SM, et al. Activating smoothened mutations in sporadic basal-cell carcinoma. Nature 1998;391:90–92.
- 42. Gailani MR, Bale SJ, Leffell DJ, et al. Developmental defects in Gorlin syndrome related to a putative tumor suppressor gene on chromosome 9. Cell 1992;69:111–117.
- 43. Soufir N, Gerard B, Portela M, et al. PTCH mutations and deletions in patients with typical nevoid basal cell carcinoma syndrome and in patients with a suspected genetic predisposition to basal cell carcinoma: a French study. Br J Cancer 2006;95:548–553.
- **44.** Hahn H, Wicking C, Zaphiropoulous PG, et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 1996;85:841–851.
- 45. Chidambaram A, Goldstein AM, Gailani MR, et al. Mutations in the human homologue of the Drosophila patched gene in Caucasian and African-American nevoid basal cell carcinoma syndrome patients. Cancer Res 1996;56:4599–4601.
- 46. Ling G, Ahmadian A, Persson A, et al. PATCHED and p53 gene alterations in sporadic and hereditary basal cell cancer. Oncogene 2001;20:7770–7778.
- Pastorino L, Cusano R, Nasti S, et al. Molecular characterization of Italian nevoid basal cell carcinoma syndrome patients. Hum Mutat 2005;25:322– 323.
- **48.** Wang W, Wang J, Li J, et al. New mutation of the patched homologue 1 gene in a Chinese family with naevoid basal cell carcinoma syndrome. Br J Oral Maxillofac Surg 2009;47:366–369.
- 49. Aszterbaum M, Rothman A, Johnson RL, et al. Identification of mutations in the human PATCHED gene in sporadic basal cell carcinomas and in patients with the basal cell nevus syndrome. J Invest Dermatol 1998;110:885–888.
- 50. Heitzer E, Lassacher A, Quehenberger F, et al. UV fingerprints predominate in the PTCH mutation spectra of basal cell carcinomas independent of clinical phenotype. J Invest Dermatol 2007;127:2872–2881.
- 51. Danaee H, Karagas MR, Kelsey KT, et al. Allelic loss at Drosophila patched gene is highly prevalent in basal and squamous cell carcinomas of the skin. J Invest Dermatol 2006;126:1152–1158.
- Reifenberger J, Wolter M, Knobbe CB, et al. Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br J Dermatol 2005;152:43–51.
- 53. Kim MY, Park HJ, Baek SC, et al. Mutations of the p53 and PTCH gene in basal cell carcinomas: UV mutation signature and strand bias. J Dermatol Sci 2002;29:1–9.
- 54. Gailani MR, Stahle-Backdahl M, Leffell DJ, et al. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet 1996;14:78–81.
- **55.** Zhang H, Ping XL, Lee PK, et al. Role of PTCH and p53 genes in earlyonset basal cell carcinoma. Am J Pathol 2001;158:381–385.
- 56. Daya-Grosjean L, Sarasin A. UV-specific mutations of the human patched gene in basal cell carcinomas from normal individuals and xeroderma pigmentosum patients. Mutat Res 2000;450:193–199.
- 57. Teh MT, Blaydon D, Chaplin T, et al. Genomewide single nucleotide polymorphism microarray mapping in basal cell carcinomas unveils uniparental disomy as a key somatic event. Cancer Res 2005;65:8597– 8603.

- 58. Ziegler A, Leffell DJ, Kunala S, et al. Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proc Natl Acad Sci U S A 1993;90:4216–4220.
- Ghaderi R, Haghighi F. Immunohistochemistry assessment of p53 protein in basal cell carcinoma. Iran J Allergy Asthma Immunol 2005;4:167–171.
- Rosenstein BS, Phelps RG, Weinstock MA, et al. p53 mutations in basal cell carcinomas arising in routine users of sunscreens. Photochem Photobiol 1999;70:798–806.
- Oluwasanmi JO, Williams AO, Alli AF. Superficial cancer in Nigeria. Br J Cancer 1969;23:714–728.
- Yakubu A, Mabogunje OA. Skin cancer in Zaria, Nigeria. Trop Doct 1995;25(Suppl 1):63–67.
- 63. Halkud R, Shenoy AM, Naik SM, et al. Xeroderma pigmentosum: clinicopathological review of the multiple oculocutaneous malignancies and complications. Indian J Surg Oncol 2014;5:120–124.
- Kraemer KH, Lee MM, Scotto J. Xeroderma pigmentosum: cutaneous, ocular, and neurologic abnormalities in 830 published cases. Arch Dermatol 1987;123:241–250.
- **65.** Bradford PT, Goldstein AM, Tamura D, et al. Cancer and neurologic degeneration in xeroderma pigmentosum: long term follow-up characterises the role of DNA repair. J Med Genet 2011;48:168–176.
- 66. Kraemer KH, Lee MM, Andrews AD, Lambert WC. The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer: the xeroderma pigmentosum paradigm. Arch Dermatol 1994;130:1018–1021.
- Kraemer KH, Lee MM, Scotto J. DNA repair protects against cutaneous and internal neoplasia: evidence from xeroderma pigmentosum. Carcinogenesis 1984;5:511–514.
- 68. Couve-Privat S, Le Bret M, Traiffort E, et al. Functional analysis of novel sonic hedgehog gene mutations identified in basal cell carcinomas from xeroderma pigmentosum patients. Cancer Res 2004;64:3559–3565.
- **69.** Couve-Privat S, Bouadjar B, Avril MF, et al. Significantly high levels of ultraviolet-specific mutations in the smoothened gene in basal cell carcinomas from DNA repair-deficient xeroderma pigmentosum patients. Cancer Res 2002;62:7186–7189.
- **70.** D'Errico M, Calcagnile A, Canzona F, et al. UV mutation signature in tumor suppressor genes involved in skin carcinogenesis in xeroderma pigmentosum patients. Oncogene 2000;19:463–467.
- Cleaver JE. Defective repair replication of DNA in xeroderma pigmentosum. Nature 1968;218:652–656.
- 72. Thielmann HW, Popanda O, Edler L, Jung EG. Clinical symptoms and DNA repair characteristics of xeroderma pigmentosum patients from Germany. Cancer Res 1991;51:3456–3470.
- **73.** Grossman L. Epidemiology of ultraviolet-DNA repair capacity and human cancer. Environ Health Perspect 1997;105(Suppl 4):927–930.
- 74. Bodak N, Queille S, Avril MF, et al. High levels of patched gene mutations in basal-cell carcinomas from patients with xeroderma pigmentosum. Proc Natl Acad Sci U S A 1999;96:5117–5122.
- Miller KL, Karagas MR, Kraft P, et al. XPA, haplotypes, and risk of basal and squamous cell carcinoma. Carcinogenesis 2006;27:1670–1675.
- **76.** Chen J, Ruczinski I, Jorgensen TJ, et al. Nonmelanoma skin cancer and risk for subsequent malignancy. J Natl Cancer Inst 2008;100:1215–1222.
- 77. Maloney ME, Miller SJ. Aggressive vs nonaggressive subtypes (basal cell carcinoma). In: Miller SJ, Maloney ME, eds. Cutaneous Oncology Pathophysiology, Diagnosis, and Management. Malden, MA: Blackwell Science; 1998:609–613.
- 78. Salasche SJ. Features associated with recurrence (squamous cell carcinoma). In: Miller SJ, Maloney ME, eds. Cutaneous Oncology Pathophysiology, Diagnosis, and Management. Malden, MA: Blackwell Science; 1998:494–499.
- 79. Gandhi MR, Panizza B, Kennedy D. Detecting and defining the anatomic extent of large nerve perineural spread of malignancy: comparing "targeted" MRI with the histologic findings following surgery. Head Neck 2011;33:469–475.
- 80. Williams LS, Mancuso AA, Mendenhall WM. Perineural spread of cutaneous squamous and basal cell carcinoma: CT and MR detection and its impact on patient management and prognosis. Int J Radiat Oncol Biol Phys 2001;49:1061–1069.
- Boeta-Angeles L, Bennett RG. Features associated with recurrence (basal cell carcinoma). In: Miller SJ, Maloney ME, eds. Cutaneous Oncology Pathophysiology, Diagnosis, and Management. Malden, MA: Blackwell Science; 1998:646–656.
- Silverman MK, Kopf AW, Bart RS, et al. Recurrence rates of treated basal cell carcinomas. Part 3: Surgical excision. J Dermatol Surg Oncol 1992;18:471–476.

- Silverman MK, Kopf AW, Grin CM, et al. Recurrence rates of treated basal cell carcinomas. Part 2: Curettage-electrodesiccation. J Dermatol Surg Oncol 1991;17:720–726.
- **84.** Dubin N, Kopf AW. Multivariate risk score for recurrence of cutaneous basal cell carcinomas. Arch Dermatol 1983;119:373–377.
- **85.** Bogelund FS, Philipsen PA, Gniadecki R. Factors affecting the recurrence rate of basal cell carcinoma. Acta Derm Venereol 2007;87:330–334.
- 86. Rigel DS, Robins P, Friedman RJ. Predicting recurrence of basal-cell carcinomas treated by microscopically controlled excision: a recurrence index score. J Dermatol Surg Oncol 1981;7:807–810.
- von Domarus H, Stevens PJ. Metastatic basal cell carcinoma: report of five cases and review of 170 cases in the literature. J Am Acad Dermatol 1984;10:1043–1060.
- Nguyen-Nielsen M, Wang L, Pedersen L, et al. The incidence of metastatic basal cell carcinoma (mBCC) in Denmark, 1997–2010. Eur J Dermatol 2015;25:463–488.
- Snow SN, Sahl W, Lo JS, et al. Metastatic basal cell carcinoma: report of five cases. Cancer 1994;73:328–335.
- **90.** Swanson NA. Mohs surgery. Technique, indications, applications, and the future. Arch Dermatol 1983;119:761–773.
- 91. Swanson NA, Johnson TM. Management of basal and squamous cell carcinoma. In: Cummings C, ed. Otolaryngology Head and Neck Surgery. New York: Mosby Yearbook; 1998:486–501.
- 92. van Iersel CA, van de Velden HV, Kusters CD, et al. Prognostic factors for a subsequent basal cell carcinoma: implications for follow-up. Br J Dermatol 2005;153:1078–1080.
- **93.** Spiller WF, Spiller RF. Treatment of basal cell epithelioma by curettage and electrodesiccation. J Am Acad Dermatol 1984;11:808–814.
- 94. Petrovich Z, Kuisk H, Langholz B, et al. Treatment results and patterns of failure in 646 patients with carcinoma of the eyelids, pinna, and nose. Am J Surg 1987;154:447–450.
- 95. Silverman MK, Kopf AW, Grin CM, et al. Recurrence rates of treated basal cell carcinomas. Part 1: overview. J Dermatol Surg Oncol 1991;17:713– 718.
- 96. Connolly AH, Baker DR, Coldiron BM, et al. AAD/ACMS/ASDSA/ ASMS 2012 appropriate use criteria for Mohs micrographic surgery: a report of the American Academy of Dermatology, American College of Mohs Surgery, American Society for Dermatologic Surgery Association, and the American Society for Mohs Surgery. Dermatol Surg 2012;38:1582–1603.
- 97. Dixon AY, Lee SH, McGregor DH. Histologic features predictive of basal cell carcinoma recurrence: results of a multivariate analysis. J Cutan Pathol 1993;20:137–142.
- **98.** Jacobs GH, Rippey JJ, Altini M. Prediction of aggressive behavior in basal cell carcinoma. Cancer 1982;49:533–537.
- 99. de Rosa G, Vetrani A, Zeppa P, et al. Comparative morphometric analysis of aggressive and ordinary basal cell carcinoma of the skin. Cancer 1990;65:544–549.
- **100.** Sloane JP. The value of typing basal cell carcinomas in predicting recurrence after surgical excision. Br J Dermatol 1977;96:127–132.
- 101. Codazzi D, Van Der Velden J, Carminati M, et al. Positive compared with negative margins in a single-centre retrospective study on 3957 consecutive excisions of basal cell carcinomas: associated risk factors and preferred surgical management. J Plast Surg Hand Surg 2014;48:38–43.
- 102. Stern RS, Liebman EJ, Vakeva L. Oral psoralen and ultraviolet-A light (PUVA) treatment of psoriasis and persistent risk of nonmelanoma skin cancer: PUVA follow-up study. J Natl Cancer Inst 1998;90:1278–1284.
- 103. Archier E, Devaux S, Castela E, et al. Carcinogenic risks of psoralen UV-A therapy and narrowband UV-B therapy in chronic plaque psoriasis: a systematic literature review. J Eur Acad Dermatol Venereol 2012;26(Suppl 3):22–31.
- 104. Krynitz B, Olsson H, Lundh Rozell B, et al. Risk of basal cell carcinoma in Swedish organ transplant recipients: a population-based study. Br J Dermatol 2016;174:95–103.
- 105. Mackintosh LJ, Geddes CC, Herd RM. Skin tumours in the West of Scotland renal transplant population. Br J Dermatol 2013;168:1047–1053.
- 106. Karczewski M, Stronka M, Karczewski J, Wiktorowicz K. Skin cancer following kidney transplantation: a single-center experience. Transplant Proc 2011;43:3760–3761.
- 107. Bordea C, Wojnarowska F, Millard PR, et al. Skin cancers in renaltransplant recipients occur more frequently than previously recognized in a temperate climate. Transplantation 2004;77:574–579.

- 108. DePry JL, Vyas R, Lazarus HM, et al. Cutaneous malignant neoplasms in hematopoietic cell transplant recipients: a systematic review. JAMA Dermatol 2015;151:775–782.
- 109. Park GH, Chang SE, Won CH, et al. Incidence of primary skin cancer after organ transplantation: an 18-year single-center experience in Korea. J Am Acad Dermatol 2014;70:465–472.
- 110. Jensen AO, Svaerke C, Farkas D, et al. Skin cancer risk among solid organ recipients: a nationwide cohort study in Denmark. Acta Derm Venereol 2010;90:474–479.
- 111. Hartevelt MM, Bavinck JN, Kootte AM, et al. Incidence of skin cancer after renal transplantation in the Netherlands. Transplantation 1990;49:506–509.
- 112. Harwood CA, Mesher D, McGregor JM, et al. A surveillance model for skin cancer in organ transplant recipients: a 22-year prospective study in an ethnically diverse population. Am J Transplant 2013;13:119–129.
- Brewer JD, Colegio OR, Phillips PK, et al. Incidence of and risk factors for skin cancer after heart transplant. Arch Dermatol 2009;145:1391–1396.
- 114. Rashtak S, Dierkhising RA, Kremers WK, et al. Incidence and risk factors for skin cancer following lung transplantation. J Am Acad Dermatol 2015;72:92–98.
- 115. Fortina AB, Piaserico S, Caforio AL, et al. Immunosuppressive level and other risk factors for basal cell carcinoma and squamous cell carcinoma in heart transplant recipients. Arch Dermatol 2004;140:1079–1085.
- 116. Kanitakis J, Alhaj-Ibrahim L, Euvrard S, Claudy A. Basal cell carcinomas developing in solid organ transplant recipients: clinicopathologic study of 176 cases. Arch Dermatol 2003;139:1133–1137.
- 117. Harwood CA, Proby CM, McGregor JM, et al. Clinicopathologic features of skin cancer in organ transplant recipients: a retrospective case-control series. J Am Acad Dermatol 2006;54:290–300.
- 118. Lott DG, Manz R, Koch C, Lorenz RR. Aggressive behavior of nonmelanotic skin cancers in solid organ transplant recipients. Transplantation 2010;90:683–687.
- **119.** Martin H, Strong E, Spiro RH. Radiation-induced skin cancer of the head and neck. Cancer 1970;25:61–71.
- 120. Hassanein AM, Proper SA, Depcik-Smith ND, Flowers FP. Peritumoral fibrosis in basal cell and squamous cell carcinoma mimicking perineural invasion: potential pitfall in Mohs micrographic surgery. Dermatol Surg 2005;31:1101–1106.
- 121. Jackson JE, Dickie GJ, Wiltshire KL, et al. Radiotherapy for perineural invasion in cutaneous head and neck carcinomas: toward a risk-adapted treatment approach. Head Neck 2009;31:604–610.
- 122. Lin C, Tripcony L, Keller J, et al. Perineural infiltration of cutaneous squamous cell carcinoma and basal cell carcinoma without clinical features. Int J Radiat Oncol Biol Phys 2012;82:334–340.
- 123. Garcia-Serra A, Hinerman RW, Mendenhall WM, et al. Carcinoma of the skin with perineural invasion. Head Neck 2003;25:1027–1033.
- 124. Lin C, Tripcony L, Keller J, et al. Cutaneous carcinoma of the head and neck with clinical features of perineural infiltration treated with radiotherapy. Clin Oncol (R Coll Radiol) 2013;25:362–367.
- 125. Leibovitch I, Huilgol SC, Selva D, et al. Basal cell carcinoma treated with Mohs surgery in Australia III: perineural invasion. J Am Acad Dermatol 2005;53:458–463.
- 126. Ratner D, Lowe L, Johnson TM, Fader DJ. Perineural spread of basal cell carcinomas treated with Mohs micrographic surgery. Cancer 2000;88:1605–1613.
- 127. Brown CI, Perry AE. Incidence of perineural invasion in histologically aggressive types of basal cell carcinoma. Am J Dermatopathol 2000;22:123– 125.
- **128.** Galloway TJ, Morris CG, Mancuso AA, et al. Impact of radiographic findings on prognosis for skin carcinoma with clinical perineural invasion. Cancer 2005;103:1254–1257.
- 129. Balamucki CJ, DeJesus R, Galloway TJ, et al. Impact of radiographic findings on for prognosis skin cancer with perineural invasion. Am J Clin Oncol 2015;38:248–251.
- 130. Cernea CR, Ferraz AR, de Castro IV, et al. Perineural invasion in aggressive skin carcinomas of the head and neck. Potentially dangerous but frequently overlooked. ORL J Otorhinolaryngol Relat Spec 2009;71:21–26.
- Leffell DJ, Headington JT, Wong DS, Swanson NA. Aggressive-growth basal cell carcinoma in young adults. Arch Dermatol 1991;127:1663–1667.
- **132.** McCormack CJ, Kelly JW, Dorevitch AP. Differences in age and body site distribution of the histological subtypes of basal cell carcinoma: a possible indicator of differing causes. Arch Dermatol 1997;133:593–596.

- 133. Bastiaens MT, Hoefnagel JJ, Bruijn JA, et al. Differences in age, site distribution, and sex between nodular and superficial basal cell carcinoma indicate different types of tumors. J Invest Dermatol 1998;110:880–884.
- 134. Scrivener Y, Grosshans E, Cribier B. Variations of basal cell carcinomas according to gender, age, location and histopathological subtype. Br J Dermatol 2002;147:41–47.
- 135. Raasch BA, Buettner PG, Garbe C. Basal cell carcinoma: histological classification and body-site distribution. Br J Dermatol 2006;155:401–407.
- **136.** Dinehart SM, Dodge R, Stanley WE, et al. Basal cell carcinoma treated with Mohs surgery: a comparison of 54 younger patients with 1050 older patients. J Dermatol Surg Oncol 1992;18:560–566.
- 137. Milroy CJ, Horlock N, Wilson GD, Sanders R. Aggressive basal cell carcinoma in young patients: fact or fiction? Br J Plast Surg 2000;53:393– 396.
- **138.** Roudier-Pujol C, Auperin A, Nguyen T, et al. Basal cell carcinoma in young adults: not more aggressive than in older patients. Dermatology 1999;199:119–123.
- **139.** Lear JT, Smith AG, Bowers B, et al. Truncal tumor site is associated with high risk of multiple basal cell carcinoma and is influenced by glutathione S-transferase, GSTT1, and cytochrome P450, CYP1A1 genotypes, and their interaction. J Invest Dermatol 1997;108:519–522.
- 140. Ramachandran S, Fryer AA, Lovatt T, et al. The rate of increase in the numbers of primary sporadic basal cell carcinomas during follow up is associated with age at first presentation. Carcinogenesis 2002;23:2051– 2054.
- 141. Cheretis C, Angelidou E, Dietrich F, et al. Prognostic value of computerassisted morphological and morphometrical analysis for detecting the recurrence tendency of basal cell carcinoma. Med Sci Monit 2008;14:MT13–19.
- 142. Karagas MR, Stukel TA, Greenberg ER, et al. Risk of subsequent basal cell carcinoma and squamous cell carcinoma of the skin among patients with prior skin cancer. Skin Cancer Prevention Study Group. JAMA 1992;267:3305–3310.
- 143. Lovatt TJ, Lear JT, Bastrilles J, et al. Associations between ultraviolet radiation, basal cell carcinoma site and histology, host characteristics, and rate of development of further tumors. J Am Acad Dermatol 2005;52:468– 473.
- **144.** Levi F, Randimbison L, Maspoli M, et al. High incidence of second basal cell skin cancers. Int J Cancer 2006;119:1505–1507.
- 145. Richmond-Sinclair NM, Pandeya N, Williams GM, et al. Clinical signs of photodamage are associated with basal cell carcinoma multiplicity and site: a 16-year longitudinal study. Int J Cancer 2010;127:2622–2629.
- 146. Kiiski V, de Vries E, Flohil SC, et al. Risk factors for single and multiple basal cell carcinomas. Arch Dermatol 2010;146:848–855.
- 147. Flohil SC, Koljenovic S, de Haas ER, et al. Cumulative risks and rates of subsequent basal cell carcinomas in the Netherlands. Br J Dermatol 2011;165:874–881.
- **148.** Verkouteren JA, Smedinga H, Steyerberg EW, et al. Predicting the risk of a second basal cell carcinoma. J Invest Dermatol 2015;135:2649–2456.
- 149. Milan T, Pukkala E, Verkasalo PK, et al. Subsequent primary cancers after basal-cell carcinoma: a nationwide study in Finland from 1953 to 1995. Int J Cancer 2000;87:283–288.
- **150.** McCusker M, Basset-Seguin N, Dummer R, et al. Metastatic basal cell carcinoma: prognosis dependent on anatomic site and spread of disease. Eur J Cancer 2014;50:774–783.
- **151.** Dixon AY, Lee SH, McGregor DH. Factors predictive of recurrence of basal cell carcinoma. Am J Dermatopathol 1989;11:222–232.
- **152.** Smeets NW, Kuijpers DI, Nelemans P, et al. Mohs' micrographic surgery for treatment of basal cell carcinoma of the face: results of a retrospective study and review of the literature. Br J Dermatol 2004;151:141–147.
- **153.** Cigna E, Tarallo M, Maruccia M, et al. Basal cell carcinoma: 10 years of experience. J Skin Cancer 2011;2011:476362.
- 154. Szewczyk MP, Pazdrowski J, Danczak-Pazdrowska A, et al. Analysis of selected recurrence risk factors after treatment of head and neck basal cell carcinoma. Postepy Dermatol Alergol 2014;31:146–151.
- 155. Bartos V, Pokorny D, Zacharova O, et al. Recurrent basal cell carcinoma: a clinicopathological study and evaluation of histomorphological findings in primary and recurrent lesions. Acta Dermatovenerol Alp Pannonica Adriat 2011;20:67–75.
- **156.** Sartore L, Lancerotto L, Salmaso M, et al. Facial basal cell carcinoma: analysis of recurrence and follow-up strategies. Oncol Rep 2011;26:1423–1429.

- 157. Costantino D, Lowe L, Brown DL. Basosquamous carcinoma-an underrecognized, high-risk cutaneous neoplasm: case study and review of the literature. J Plast Reconstr Aesthet Surg 2006;59:424–428.
- 158. Martin RC, 2nd, Edwards MJ, Cawte TG, et al. Basosquamous carcinoma: analysis of prognostic factors influencing recurrence. Cancer 2000;88:1365–1369.
- **159.** Garcia C, Poletti E, Crowson AN. Basosquamous carcinoma. J Am Acad Dermatol 2009;60:137–143.
- 160. Wermker K, Roknic N, Goessling K, et al. Basosquamous carcinoma of the head and neck: clinical and histologic characteristics and their impact on disease progression. Neoplasia 2015;17:301–305.
- **161.** Bath-Hextall F, Bong J, Perkins W, Williams H. Interventions for basal cell carcinoma of the skin: systematic review. BMJ 2004;329:705.
- 162. Rowe DE, Carroll RJ, Day CL, Jr. Long-term recurrence rates in previously untreated (primary) basal cell carcinoma: implications for patient followup. J Dermatol Surg Oncol 1989;15:315–328.
- **163.** Barlow JO, Zalla MJ, Kyle A, et al. Treatment of basal cell carcinoma with curettage alone. J Am Acad Dermatol 2006;54:1039–1045.
- 164. Thissen MR, Neumann MH, Schouten LJ. A systematic review of treatment modalities for primary basal cell carcinomas. Arch Dermatol 1999;135:1177–1183.
- 165. Julian C, Bowers PW, Pritchard C. A comparative study of the effects of disposable and Volkmann spoon curettes in the treatment of basal cell carcinoma. Br J Dermatol 2009;161:1407–1409.
- **166.** Blixt E, Nelsen D, Stratman E. Recurrence rates of aggressive histologic types of basal cell carcinoma after treatment with electrodesiccation and curettage alone. Dermatol Surg 2013;39:719–725.
- 167. Rodriguez-Vigil T, Vazquez-Lopez F, Perez-Oliva N. Recurrence rates of primary basal cell carcinoma in facial risk areas treated with curettage and electrodesiccation. J Am Acad Dermatol 2007;56:91-95. Available at: http://www.ncbi.nlm.nih.gov/pubmed/17190625.
- 168. Kopf AW, Bart RS, Schrager D, et al. Curettage-electrodesiccation treatment of basal cell carcinomas. Arch Dermatol 1977;113:439–443.
- 169. Kuijpers DI, Thissen MR, Berretty PJ, et al. Surgical excision versus curettage plus cryosurgery in the treatment of basal cell carcinoma. Dermatol Surg 2007;33:579–587.
- **170.** Rhodes LE, de Rie MA, Leifsdottir R, et al. Five-year follow-up of a randomized, prospective trial of topical methyl aminolevulinate photodynamic therapy vs surgery for nodular basal cell carcinoma. Arch Dermatol 2007;143:1131–1136.
- **171.** Wolf DJ, Zitelli JA. Surgical margins for basal cell carcinoma. Arch Dermatol 1987;123:340–344.
- **172.** Rowe DE, Carroll RJ, Day CL, Jr. Mohs surgery is the treatment of choice for recurrent (previously treated) basal cell carcinoma. J Dermatol Surg Oncol 1989;15:424–431.
- **173.** Mosterd K, Krekels GA, Nieman FH, et al. Surgical excision versus Mohs' micrographic surgery for primary and recurrent basal-cell carcinoma of the face: a prospective randomised controlled trial with 5-years' follow-up. Lancet Oncol 2008;9:1149–1156.
- 174. van Loo E, Mosterd K, Krekels GA, et al. Surgical excision versus Mohs' micrographic surgery for basal cell carcinoma of the face: a randomised clinical trial with 10 year follow-up. Eur J Cancer 2014;50:3011–3020.
- 175. Mendenhall WM, Amdur RJ, Hinerman RW, et al. Radiotherapy for cutaneous squamous and basal cell carcinomas of the head and neck. Laryngoscope 2009;119:1994–1999.
- **176.** Wilder RB, Kittelson JM, Shimm DS. Basal cell carcinoma treated with radiation therapy. Cancer 1991;68:2134–2137.
- **177.** Wilder RB, Shimm DS, Kittelson JM, et al. Recurrent basal cell carcinoma treated with radiation therapy. Arch Dermatol 1991;127:1668–1672.
- 178. Childers BJ, Goldwyn RM, Ramos D, et al. Long-term results of irradiation for basal cell carcinoma of the skin of the nose. Plast Reconstr Surg 1994;93:1169–1173.
- 179. Hernandez-Machin B, Borrego L, Gil-Garcia M, Hernandez BH. Officebased radiation therapy for cutaneous carcinoma: evaluation of 710 treatments. Int J Dermatol 2007;46:453–459.
- 180. Silverman MK, Kopf AW, Gladstein AH, et al. Recurrence rates of treated basal cell carcinomas: part 4: x-ray therapy. J Dermatol Surg Oncol 1992;18:549–554.
- 181. Zagrodnik B, Kempf W, Seifert B, et al. Superficial radiotherapy for patients with basal cell carcinoma: recurrence rates, histologic subtypes, and expression of p53 and Bcl-2. Cancer 2003;98:2708–2714.

- **182.** Cognetta AB, Howard BM, Heaton HP, et al. Superficial x-ray in the treatment of basal and squamous cell carcinomas: a viable option in select patients. J Am Acad Dermatol 2012;67:1235–1241.
- 183. Avril MF, Auperin A, Margulis A, et al. Basal cell carcinoma of the face: surgery or radiotherapy? Results of a randomized study. Br J Cancer 1997;76:100–106.
- 184. Petit JY, Avril MF, Margulis A, et al. Evaluation of cosmetic results of a randomized trial comparing surgery and radiotherapy in the treatment of basal cell carcinoma of the face. Plast Reconstr Surg 2000;105:2544–2551.
- 185. Neville JA, Welch E, Leffell DJ. Management of nonmelanoma skin cancer in 2007. Nat Clin Pract Oncol 2007;4:462-469.
- **186.** Mendenhall WM, Ferlito A, Takes RP, et al. Cutaneous head and neck basal and squamous cell carcinomas with perineural invasion. Oral Oncol 2012;48:918–922.
- 187. Han A, Ratner D. What is the role of adjuvant radiotherapy in the treatment of cutaneous squamous cell carcinoma with perineural invasion? Cancer 2007;109:1053–1059.
- **188.** Braathen LR, Szeimies RM, Basset-Seguin N, et al. Guidelines on the use of photodynamic therapy for nonmelanoma skin cancer: an international consensus. International Society for Photodynamic Therapy in Dermatology, 2005. J Am Acad Dermatol 2007;56:125–143.
- 189. Geisse J, Caro I, Lindholm J, et al. Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: results from two phase III, randomized, vehicle-controlled studies. J Am Acad Dermatol 2004;50:722–733.
- 190. Schulze HJ, Cribier B, Requena L, et al. Imiquimod 5% cream for the treatment of superficial basal cell carcinoma: results from a randomized vehicle-controlled phase III study in Europe. Br J Dermatol 2005;152:939– 947.
- 191. Quirk C, Gebauer K, De'Ambrosis B, et al. Sustained clearance of superficial basal cell carcinomas treated with imiquimod cream 5%: results of a prospective 5-year study. Cutis 2010;85:318–324.
- 192. Bath-Hextall F, Ozolins M, Armstrong SJ, et al. Surgical excision versus imiquimod 5% cream for nodular and superficial basal-cell carcinoma (SINS): a multicentre, non-inferiority, randomised controlled trial. Lancet Oncol 2014;15:96–105.
- 193. Arits AH, Mosterd K, Essers BA, et al. Photodynamic therapy versus topical imiquimod versus topical fluorouracil for treatment of superficial basal-cell carcinoma: a single blind, non-inferiority, randomised controlled trial. Lancet Oncol 2013;14:647–654.
- 194. Hall VL, Leppard BJ, McGill J, et al. Treatment of basal-cell carcinoma: comparison of radiotherapy and cryotherapy. Clin Radiol 1986;37:33–34.
- 195. Mallon E, Dawber R. Cryosurgery in the treatment of basal cell carcinoma. Assessment of one and two freeze-thaw cycle schedules. Dermatol Surg 1996;22:854–858.
- 196. Wang I, Bendsoe N, Klinteberg CA, et al. Photodynamic therapy vs. cryosurgery of basal cell carcinomas: results of a phase III clinical trial. Br J Dermatol 2001;144:832–840.
- 197. Basset-Seguin N, Ibbotson SH, Emtestam L, et al. Topical methyl aminolaevulinate photodynamic therapy versus cryotherapy for superficial basal cell carcinoma: a 5 year randomized trial. Eur J Dermatol 2008;18:547–553.
- **198.** Kuflik EG. Cryosurgery for skin cancer: 30-year experience and cure rates. Dermatol Surg 2004;30:297-300.
- **199.** Thissen MR, Nieman FH, Ideler AH, et al. Cosmetic results of cryosurgery versus surgical excision for primary uncomplicated basal cell carcinomas of the head and neck. Dermatol Surg 2000;26:759–764.
- 200. Kuijpers DI, Thissen MR, Thissen CA, Neumann MH. Similar effectiveness of methyl aminolevulinate and 5-aminolevulinate in topical photodynamic therapy for nodular basal cell carcinoma. J Drugs Dermatol 2006;5:642–645.
- 201. Savoia P, Deboli T, Previgliano A, Broganelli P. Usefulness of photodynamic therapy as a possible therapeutic alternative in the treatment of basal cell carcinoma. Int J Mol Sci 2015;16:23300–23317.
- 202. Berroeta L, Clark C, Dawe RS, et al. A randomized study of minimal curettage followed by topical photodynamic therapy compared with surgical excision for low-risk nodular basal cell carcinoma. Br J Dermatol 2007;157:401–403.
- **203.** Szeimies RM, Ibbotson S, Murrell DF, et al. A clinical study comparing methyl aminolevulinate photodynamic therapy and surgery in small superficial basal cell carcinoma (8-20 mm), with a 12-month follow-up. J Eur Acad Dermatol Venereol 2008;22:1302–1311.
- **204.** Roozeboom MH, Aardoom MA, Nelemans PJ, et al. Fractionated 5-aminolevulinic acid photodynamic therapy after partial debulking versus

surgical excision for nodular basal cell carcinoma: a randomized controlled trial with at least 5-year follow-up. J Am Acad Dermatol 2013;69:280–287.

- 205. Cosgarea R, Susan M, Crisan M, Senila S. Photodynamic therapy using topical 5-aminolaevulinic acid vs. surgery for basal cell carcinoma. J Eur Acad Dermatol Venereol 2013;27:980–984.
- 206. Wang H, Xu Y, Shi J, et al. Photodynamic therapy in the treatment of basal cell carcinoma: a systematic review and meta-analysis. Photodermatol Photoimmunol Photomed 2015;31:44–53.
- **207.** Stebbins WG, Hanke CW. MAL-PDT for difficult to treat nonmelanoma skin cancer. Dermatol Ther 2011;24:82–93.
- **208.** Fantini F, Greco A, Del Giovane C, et al. Photodynamic therapy for basal cell carcinoma: clinical and pathological determinants of response. J Eur Acad Dermatol Venereol 2011;25:896–901.
- **209.** Horn M, Wolf P, Wulf HC, et al. Topical methyl aminolaevulinate photodynamic therapy in patients with basal cell carcinoma prone to complications and poor cosmetic outcome with conventional treatment. Br J Dermatol 2003;149:1242–1249.
- 210. Vinciullo C, Elliott T, Francis D, et al. Photodynamic therapy with topical methyl aminolaevulinate for 'difficult-to-treat' basal cell carcinoma. Br J Dermatol 2005;152:765–772.
- 211. Sotiriou E, Apalla Z, Maliamani F, et al. Intraindividual, right-left comparison of topical 5-aminolevulinic acid photodynamic therapy vs. 5% imiquimod cream for actinic keratoses on the upper extremities. J Eur Acad Dermatol Venereol 2009;23:1061–1065.
- **212.** Morton CA, McKenna KE, Rhodes LE. Guidelines for topical photodynamic therapy: update. Br J Dermatol 2008;159:1245–1266.
- 213. Roozeboom MH, Arits AH, Nelemans PJ, Kelleners-Smeets NW. Overall treatment success after treatment of primary superficial basal cell carcinoma: a systematic review and meta-analysis of randomized and nonrandomized trials. Br J Dermatol 2012;167:733–756.
- 214. Roozeboom MH, Nelemans PJ, Mosterd K, et al. Photodynamic therapy vs. topical imiquimod for treatment of superficial basal cell carcinoma: a subgroup analysis within a noninferiority randomized controlled trial. Br J Dermatol 2015;172:739–745.
- 215. Prescribing information: ERIVEDGE (vismodegib) capsule for oral use. 2015. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/label/2 015/203388s005s006s007s008lbl.pdf. Accessed April 1, 2016.
- 216. Prescribing information: ODOMZO (sonidegib) capsules, for oral use. 2015. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/ label/2015/205266s000lbl.pdf. Accessed April 1, 2016.
- 217. Sekulic A, Migden MR, Oro AE, et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med 2012;366:2171–2179.
- 218. Sekulic A, Migden MR, Lewis K, et al. Pivotal ERIVANCE basal cell carcinoma (BCC) study: 12-month update of efficacy and safety of vismodegib in advanced BCC. J Am Acad Dermatol 2015;72:1021–1026 e1028.
- 219. Dreno B, Basset-Seguin N, Caro I, et al. Clinical benefit assessment of vismodegib therapy in patients with advanced basal cell carcinoma. Oncologist 2014;19:790–796.
- 220. Tang JY, Mackay-Wiggan JM, Aszterbaum M, et al. Inhibiting the hedgehog pathway in patients with the basal-cell nevus syndrome. N Engl J Med 2012;366:2180–2188.
- 221. Chang AL, Solomon JA, Hainsworth JD, et al. Expanded access study of patients with advanced basal cell carcinoma treated with the hedgehog pathway inhibitor, vismodegib. J Am Acad Dermatol 2014;70:60–69.
- 222. Basset-Seguin N, Hauschild A, Grob JJ, et al. Vismodegib in patients with advanced basal cell carcinoma (STEVIE): a pre-planned interim analysis of an international, open-label trial. Lancet Oncol 2015;16:729–736.
- **223.** Migden MR, Guminski A, Gutzmer R, et al. Treatment with two different doses of sonidegib in patients with locally advanced or metastatic basal cell carcinoma (BOLT): a multicentre, randomised, double-blind phase 2 trial. Lancet Oncol 2015;16:716–728.
- **224.** Danial C, Sarin KY, Oro AE, Chang AL. An investigator-initiated openlabel trial of sonidegib in advanced basal cell carcinoma patients resistant to vismodegib. Clin Cancer Res 2016;22:1325–1329.
- **225.** Ally MS, Aasi S, Wysong A, et al. An investigator-initiated open-label clinical trial of vismodegib as a neoadjuvant to surgery for high-risk basal cell carcinoma. J Am Acad Dermatol 2014;71:904–911, e901.
- 226. Mortier L, Saiag P, Leccia MT, et al. A phase II study to assess vismodegib in the neoadjuvant treatment of locally advanced basal cell carcinoma (laBCC): the Vismodegib Neoadjuvant (VISMONEO) study [abstract]. ASCO Meeting Abstracts 2014;32:TPS9104.
- **227.** Leiter U, Hillen U, Gutzmer R, et al. A phase II, single-armed, multicenter trial of neoadjuvant vismodegib in patients with large and/or recurrent

basal cell carcinoma [abstract]: NICCI. ASCO Meeting Abstracts 2014;32:TPS9116.

- **228.** Kunstfeld R, Hauschild A, Zloty D, et al. MIKIE: A randomized, double-blind, regimen-controlled, phase II, multicenter study to assess the efficacy and safety of two different vismodegib regimens in patients with multiple basal cell carcinomas [abstract]. ASCO Meeting Abstracts 2014;32:TPS9121.
- 229. Sofen H, Gross KG, Goldberg LH, et al. A phase II, multicenter, openlabel, 3-cohort trial evaluating the efficacy and safety of vismodegib in operable basal cell carcinoma. J Am Acad Dermatol 2015;73:99–105, e101.
- 230. Lacouture ME, Tang JY, Rogers GS, et al. The RegiSONIC disease registry: preliminary effectiveness and safety in the first 66 newly diagnosed locally advanced basal cell carcinoma (BCC) patients treated with vismodegib [abstract]. ASCO Meeting Abstracts 2015;33:9023.
- 231. Tauber G, Pavlovsky L, Fenig E, Hodak E. Vismodegib for radiationinduced multiple basal cell carcinomas (BCCs) of the scalp. J Am Acad Dermatol 2015;73:799–801.
- 232. Jimeno A, Weiss GJ, Miller WH, Jr., et al. Phase I study of the hedgehog pathway inhibitor IPI-926 in adult patients with solid tumors. Clin Cancer Res 2013;19:2766–2774.
- 233. Kim DJ, Kim J, Spaunhurst K, et al. Open-label, exploratory phase II trial of oral itraconazole for the treatment of basal cell carcinoma. J Clin Oncol 2014;32:745–751.
- 234. Carneiro BA, Watkin WG, Mehta UK, Brockstein BE. Metastatic basal cell carcinoma: complete response to chemotherapy and associated pure red cell aplasia. Cancer Invest 2006;24:396–400.
- 235. Jefford M, Kiffer JD, Somers G, et al. Metastatic basal cell carcinoma: rapid symptomatic response to cisplatin and paclitaxel. ANZ J Surg 2004;74:704–705.

- 236. Ganti AK, Kessinger A. Systemic therapy for disseminated basal cell carcinoma: an uncommon manifestation of a common cancer. Cancer Treat Rev 2011;37:440–443.
- 237. Wysong A, Aasi SZ, Tang JY. Update on metastatic basal cell carcinoma: a summary of published cases from 1981 through 2011. JAMA Dermatol 2013;149:615–616.
- **238.** Pfeiffer P, Hansen O, Rose C. Systemic cytotoxic therapy of basal cell carcinoma: a review of the literature. Eur J Cancer 1990;26:73–77.
- 239. Moeholt K, Aagaard H, Pfeiffer P, Hansen O. Platinum-based cytotoxic therapy in basal cell carcinoma: a review of the literature. Acta Oncol 1996;35:677–682.
- **240.** Guthrie TH, Jr., Porubsky ES, Luxenberg MN, et al. Cisplatin-based chemotherapy in advanced basal and squamous cell carcinomas of the skin: results in 28 patients including 13 patients receiving multimodality therapy. J Clin Oncol 1990;8:342–346.
- 241. Robinson JK. Follow-up and prevention (basal cell carcinoma). In: Miller SJ, Maloney ME, eds. Cutaneous Oncology Pathophysiology, Diagnosis, and Management. Malden, MA: Blackwell Science; 1998:695–698.
- **242.** Marcil I, Stern RS. Risk of developing a subsequent nonmelanoma skin cancer in patients with a history of nonmelanoma skin cancer: a critical review of the literature and meta-analysis. Arch Dermatol 2000;136:1524–1530.
- **243.** Ramachandran S, Rajaratnam R, Smith AG, et al. Patients with both basal and squamous cell carcinomas are at a lower risk of further basal cell carcinomas than patients with only a basal cell carcinoma. J Am Acad Dermatol 2009;61:247–251.
- **244.** Flohil SC, van der Leest RJ, Arends LR, et al. Risk of subsequent cutaneous malignancy in patients with prior keratinocyte carcinoma: a systematic review and meta-analysis. Eur J Cancer 2013;49:2365–2375.

Individuals Disclosures of the NCCN Basal Cell Skin Cancer

Panel Member	Clinical Research Support/ Data Safety Monitoring Board	Scientific Advisory Boards, Consultant, or Expert Witness	Promotional Advisory Boards, Consultant, or Speakers Bureau	Date Completed
Sumaira Z. Aasi, MD	None	Genentech, Inc.	None	2/13/15
Murad Alam, MD, MSCI	None	None	Amway	4/5/16
James S. Andersen, MD	None	None	None	2/4/16
Daniel Berg, MD	None	None	None	4/6/16
Christopher K. Bichakjian, MD	None	None	None	4/9/16
Glen M. Bowen, MD	None	Castle Diagnostics	None	2/4/16
Richard T. Cheney, MD	None	None	None	9/30/15
Gregory A. Daniels, MD, PhD	Amgen Inc.; Bristol-Myers Squibb Company; Genentech, Inc.; and Prometheus	None	None	4/08/16
L. Frank Glass, MD	None	None	None	3/15/16
Roy C. Grekin, MD	None	None	None	4/22/16
Kenneth Grossmann, MD, PhD	None	Bristol-Myers Squibb Company; Castle Biosciences; and Roche Laboratories, Inc.	Roche Laboratories, Inc.	2/4/16
Susan A. Higgins, MD, MS	None	None	None	4/21/16
Alan L. Ho, MD, PhD	AstraZeneca Pharmaceuticals LP; Bayer HealthCare; Eisai Inc.; Eli Lilly and Company; Genentech, Inc.; Koltan Pharmaceuticals; and Kura Oncology	Eisai Inc.; and Novartis Pharmaceuticals Corporation	Medscape; Novartis Pharmaceuticals Corporation; Oncology Consortium; and Roche Columbia	3/3/16
Karl D. Lewis, MD	Novartis Pharmaceuticals Corporation	Genentech, Inc.	None	2/4/16
Daniel D. Lydiatt, MD, DDS	None	None	None	4/16/15
Kishwer S. Nehal, MD	None	None	None	4/7/16
Paul Nghiem, MD, PhD	Bristol-Myers Squibb Company	EMD Serono	None	2/12/16
Thomas Olencki, DO	Bristol-Myers Squibb Company; Genentech, Inc.; Pfizer Inc.; and Tracon	Genentech, Inc.	None	2/5/16
Elise A. Olsen, MD	None	AccreditEd; Aclaris; Actelion; Allergan; Celgene Corporation; Huron Life Sciences; Incyte; and Seattle Genetics	None	11/29/15
Chrysalyne D. Schmults, MD	Genentech, Inc.; and Novartis Pharmaceuticals Corporation	Genentech, Inc.; and Novartis Pharmaceuticals Corporation	International Society for Dermatology Surgery; and International Transplant Skin Cancer Collaborative	2/4/16
Aleksandar Sekulic, MD, PhD	Genentech, Inc.	Genentech, Inc.	None	7/27/15
Ashok R. Shaha, MD	None	None	None	2/4/16
Wade L. Thorstad, MD	None	None	None	2/5/16
Malika Tuli, MD	None	None	None	4/21/16
Marshall M. Urist, MD	MSLT2 Trial	None	None	4/21/16
Timothy S. Wang, MD	Melafind	None	None	2/4/16
Sandra L. Wong, MD, MS	None	None	None	4/21/16
John A. Zic, MD	Millennium Pharmaceuticals, Inc.	None	None	4/18/16

The NCCN Guidelines Staff have no conflicts to disclose.