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Abstract

Background: Phylogenetic analyses of jawed vertebrates based on mitochondrial sequences often
result in confusing inferences which are obviously inconsistent with generally accepted trees. In
particular, in a hypothesis by Rasmussen and Arnason based on mitochondrial trees, cartilaginous
fishes have a terminal position in a paraphyletic cluster of bony fishes. No previous analysis based
on nuclear DNA-coded genes could significantly reject the mitochondrial trees of jawed
vertebrates.

Results: We have cloned and sequenced seven nuclear DNA-coded genes from |3 vertebrate
species. These sequences, together with sequences available from databases including |3 jawed
vertebrates from eight major groups (cartilaginous fishes, bichir, chondrosteans, gar, bowfin,
teleost fishes, lungfishes and tetrapods) and an outgroup (a cyclostome and a lancelet), have been
subjected to phylogenetic analyses based on the maximum likelihood method.

Conclusion: Cartilaginous fishes have been inferred to be basal to other jawed vertebrates, which
is consistent with the generally accepted view. The minimum log-likelihood difference between the
maximum likelihood tree and trees not supporting the basal position of cartilaginous fishes is 18.3
1 13.1. The hypothesis by Rasmussen and Arnason has been significantly rejected with the minimum
log-likelihood difference of 123 £ 23.3. Our tree has also shown that living holosteans, comprising
bowfin and gar, form a monophyletic group which is the sister group to teleost fishes. This is
consistent with a formerly prevalent view of vertebrate classification, although inconsistent with
both of the current morphology-based and mitochondrial sequence-based trees. Furthermore, the
bichir has been shown to be the basal ray-finned fish. Tetrapods and lungfish have formed a
monophyletic cluster in the tree inferred from the concatenated alignment, being consistent with
the currently prevalent view. It also remains possible that tetrapods are more closely related to
ray-finned fishes than to lungfishes.
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Background

The evolutionary relationship among jawed vertebrates is
currently a controversial issue. Cartilaginous fishes are tra-
ditionally considered to be ancestral to other jawed verte-
brates (Figure 1A). Arnason and colleagues challenged the
traditional view, based on phylogenetic analyses of com-
plete mitochondrial sequences from several vertebrates
[1-3]. According to their mitochondrial tree (Figure 1B),
cartilaginous fishes have a terminal position in the phyl-
ogeny of bony fishes (coelacanth, lungfishes, bichirs, tele-
ost fishes and other ray-finned fishes), implying that bony
fishes are ancestral to cartilaginous fishes. Furthermore,
the mitochondrial tree shows a basal split between tetrap-
ods and other jawed vertebrates.

Phylogenetic analyses based on mitochondrial sequences,
however, often result in misleading trees when distantly
related vertebrates are compared [4-7]. Some efforts have
been made by several groups to obtain the robust phylo-
genetic trees of jawed vertebrates based on nuclear DNA-
coded genes. In the LSU rRNA tree by Zardoya and Meyer
[6], the basal position of cartilaginous fishes is not signif-
icantly supported; the bootstrap probabilities are 72%,
68% and 74%, for the maximum parsimony (MP)
method, the neighbor joining (NJ) method and the max-
imum likelihood (ML) method, respectively. On the basis
of presence or absence of insertions or deletions within
conserved sequences [8], Venkatesh et al.[9] claimed to
have found robust molecular evidence (molecular
synapomorphy) against the mitochondrial tree [1-3].
However, their tree is basically an unrooted tree of major
groups of jawed vertebrates as pointed out by Dimmick
[10], because none of the molecular synapomorphies they
found included an outgroup (cyclostomes or lancelets).
Apart from the position of bichir, the tree by Venkatesh et
al. is equivalent to that by Rasmussen et al., when com-
pared as unrooted trees.

Martin [11] analyzed multiple nuclear DNA-coded genes
and the hypothesis by Rasmussen et al. [1-3] could not be
refuted. Hedges[12] analyzed 10 nuclear DNA-coded
genes from two cyclostomes and three jawed vertebrates,
and concluded the basal position of cartilaginous fishes in
the jawed vertebrate tree. Takezaki et al. [13] confirmed
this finding based on a comparison of 31 nuclear DNA-
coded genes. Because only a single bony fish lineage rep-
resented by teleost fishes is included in these analyses, it
remains possible that other bony fishes (lungfishes or
bichir) are more deeply branching than cartilaginous
fishes are. If it is the case, one cannot refute the hypothesis
by Rasmussen and Arnason [3] that bony fishes are ances-
tral to cartilaginous fishes. The phylogenetic position of
bichir is particularly important; bichir is often inferred to
be the outgroup to all other jawed vertebrates in mito-
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Figure |
Two hypotheses on jawed vertebrates. (A) Traditional view.
(B) Mitochondrial tree proposed by Arnason's group [1-3].

chondrial trees, when amphibian data is included in com-
parison (data not shown).

The phylogenetic relationship amongst teleost fishes and
two holosteans is also controversial. Living holosteans,
comprising bowfin and gar, are possible sister groups of
teleost fishes [14,15]. All of three possible topologies (Fig-
ure 2A,2B,2C) were proposed by morphologists to date
(see references cited in [15] and [16]). Partial mitochon-
drial and LSU rRNA data, on the other hand, do not sup-
port any of these morphology-based trees at a statistically
significant level [17,18]. Venkatesh et al. [9] noted the
possibility of an alternative tree (Figure 2D) based on a
molecular synapomorphy. Inoue et al. [16] recently
reported that this tree was supported by complete mito-
chondrial sequences. Mitochondrial sequences, however,
may not be suitable for inferring phylogenetic relation-
ships among such distantly related groups [6,19].

To test the mitochondrial trees at a statistically significant
level, it is therefore necessary to perform phylogenetic
analyses based on nuclear DNA-coded genes. There is,
however, a possible error from paralogous comparisons
when a nuclear DNA-coded gene tree is used for inferring
the phylogenetic relationship of organisms. To avoid this,
we selected basically single copy genes, such as enzymes
in glycolysis, which are evolving at roughly constant rates
over a wide range of animal taxa [20,21]. Since their evo-
lutionary rates are generally low, no single gene amongst
them has detailed phylogenetic information. Thus a large
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Figure 2

Four hypotheses of phylogenetic relationship among ray-
finned fishes. (A) Formerly accepted view. (B) Currently
accepted view. (C) An alternative hypothesis by Olsen [42].
(D) Mitochondrial tree by Inoue et al. [16].

amount of sequence is needed for a statistically solid
inference.

We have cloned and sequenced seven nuclear DNA-coded
genes comprising ~3,000 amino acid residues in total,
from eleven jawed vertebrate species, two cyclostomes
(lamprey and/or hagfish) and a lancelet. These amino
acid sequences, together with those available from the
DDBJ/EMBL/GenBank databases, were subjected to phyl-
ogenetic analyses and statistical tests based on the ML
method. We report here that the nuclear DNA-coded gene
tree differs sharply from the mitochondrial tree on the two
phylogenetic problems of jawed vertebrates; our tree sup-
ports the deepest position of cartilaginous fishes in jawed-
vertebrate phylogeny, and the monophyly of holosteans.

Results and discussion

Phylogenetic tree inference

Teleost fishes have two TPI genes (TPI-A and TPI-B) [22];
A. baerii has two ALDa genes (AB111402 and AB111403);
mammals have two PGK genes (M11968 and X05246 for
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human, M15668 and M17299 for mouse); and the mouse
has two G6PD genes (284471 and AF326207). Each of
these four gene pairs is shown to have multiplied within
the respective taxonomic group by preliminary phyloge-
netic analyses. To avoid 'long branch attraction' (LBA)
artifact [23], the slowly evolving counterpart for each of
these gene pairs was selected for phylogenetic inference:
O. latipes ortholog of TPI-B, AB111402 for A. baerii ALDa,
M11968 for human PGK, M15668 for mouse PGK and
AF326207 for mouse G6PD. Cyclostomes have muscle
and non-muscle types of aldolase (ALD) genes [24].
Although the relationship between these two cyclostome
ALD genes and three ALD genes (a, b and ¢) from jawed
vertebrates is not clearly resolved, each of the jawed-verte-
brate ALD genes was inferred to be orthologous [25]. The
muscle-type ALD gene of hagfish, the non-muscle-type
ALD gene of hagfish and the non-muscle-type ALD gene
of lamprey were used as outgroups for ALDa, ALDb and
ALDc of jawed vertebrates, respectively.

For each of the seven proteins, the amino acid sequences
from 15 vertebrate species listed in Materials and methods
have been aligned, and phylogenetic tree analyses have
been carried out for regions comprising 317 amino acid
residues (aa) in ALDa, 316aa in ALDb, 317aa in ALDc,
463aa in G6PD, 940aa in GAG, 383aa in PGK and 206aa
in TPI, for each of which unambiguous alignment is pos-
sible. The total data set of 2,942aa was subjected to phyl-
ogenetic analyses based on the GAMT program [26] as
described in materials and methods.

We have selected the candidate topologies - a set of topol-
ogies with log-likelihood values close to that of the ML
tree — from seven protein data sets as described in Materi-
als and Methods. The numbers of candidate topologies
selected are 379 from the ALDa data set, 91 from the
ALDDb data set, 1,121 from the ALDc data set, 665 from the
G6PD data set, 11 from the GAG data set, 652 from the
PGK data set and 2,860 from the TPI data set, and 103
from the concatenated alignment. Excluding identical
topologies, a total of 5,801 topologies were subjected to
further analyses as the candidate topologies. For each can-
didate topology, the likelihood value of totalml and that
of concatenated alignment were computed.

Figure 3 shows the ML tree inferred from the concatenated
alignment. This tree strongly supports the basal position
of cartilaginous fishes and the monophyly of holosteans,
although individual trees inferred from each of seven pro-
teins did not give statistically significant results, probably
because of limited phylogenetic information held in a sin-
gle gene (data not shown). Tables 1 and 2 show the ML
topology and some topologies with large likelihood val-
ues inferred from concatenated alignment analysis and
totalml analysis, respectively. Each table includes only
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Figure 3
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The maximum likelihood tree inferred from the concatenated amino acid sequences (2,942 residues) of seven proteins. Relia-
bility index [26] and the bootstrap probability for each branch are indicated before and after a slant, respectively. This tree cor-
responds to topology a in Tables | and 2. Topology b in Tables | and 2 is indicated by a dotted arrow. A dash-dotted line

indicates the position of plownose chimaera inferred from six proteins. Branch lengths are proportional to accumulated amino

acid substitutions.

topologies with P-values larger than 5% calculated by the
Kishino-Hasegawa (KH) test. Note that the ML tree in
totalml analysis (topology b in Table 2) differs from that
in concatenated alignment analysis (Figure 3 and topol-
ogy a in Table 1).

Statistical tests

Topologies a and b in Tables 1 and 2 differ considerably
from other topologies in their bootstrap probabilities and
P-values. These two topologies have approximately equal
likelihood values in each of the totalml and concatenated
alignment analyses, although the ML tree in concatenated
alignment analysis is the second best tree in totalml anal-
ysis, and vice versa.

In addition to the bootstrap probability and the KH test, a
test based on Bayesian posterior probability (BPP) has
been carried out. The resulting BPP values are self-contra-
dictory; topology a, which was the best topology in con-
catenated alignment analysis (Table 1), is significantly
rejected in totalml analysis (Table 2; the BPP value was
0.005). Thus the BPP test might be too liberal, as already
pointed out [27,28]. The approximately unbiased (AU)
test has also been carried out for reference.

Focusing on some phylogenetic problems, the support
values for each competing hypothesis were computed
based on the intact bootstrap probability (BP) analysis
(see Materials and Methods), the TREE-PUZZLE (TP) pro-
gram [29] and the MRBAYES[30] program (Table 3). In
addition, the RELL BP value, the BPP value and the P-val-
ues by the KH test and the AU test, which are based on
concatenated alignment analysis described above, are also
shown. The intact BP value is largely accordant to the
RELL BP value, whereas low support values are observed
in the TP method. This may be an artifact derived from the
limited topology searches in the TP method, because the
same result as shown in Table 1 was obtained, when the
candidate topologies described above were subjected to
the TREE-PUZZLE program with the 'user defined trees'
option.

Cartilaginous fishes have a basal position among jawed
vertebrates

Cartilaginous fishes are thought to be ancestral to other
jawed vertebrates in the traditional view (Figure 1A). In
contrast, Rasmussen and Arnason [1,2] and Arnason et al.
[3] pointed out another possibility that bony fishes are
ancestral to cartilaginous fishes (Figure 1B). The present
results strongly support the traditional view as shown in
Figure 3 and Table 3. The bootstrap probabilities of the
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Table I: Log-likelihood differences based on the concatenated alignment

P-values
Topology AlnL;tg; KH AU BPP BP
a ((((tp,lu),(((tl,(ga,bo)),st),bi)),ca),out) (A A) ML 0.59 0.88 0.89 0.44
b ((((tp.(((tl,(ga,bo)),st),bi)),lu),ca),out) (A A) 2.08 £ 9.55 0.41 0.74 0.11 0.33
¢ (((tp,(lu,(((tl,(ga,bo)),st),bi))),ca),out) (A, A) 9.88 £ 7.57 0.10 0.14 0.00 0.02
d ((((tp,lu),((((tl,bo),ga),st),bi)),ca),out) (A, B) 166+ 11.6 0.08 0.19 0.00 0.04
e ((((tp,lu),ca),(((tl,(ga,bo)),st),bi)),out) (- A) 18.3 £ 13.1 0.09 0.21 0.00 0.03
f ((((tp,((((t],bo),ga),st),bi)),lu),ca),out) (A, B) 18.6 + 15.0 0.11 0.14 0.00 0.03
g (((tp,((((tl,(ga,bo)),st),bi),ca)),lu),out) (- A) 220+ 10.7 0.07 0.20 0.00 0.03
h (((tp,(lu,ca)),(((t!,(ga,bo)),st),bi)),out) (- A) 223 £ 157 0.08 0.20 0.00 0.02
i ((((tp(((tl,(ga,bo)),st),bi)),ca),lu),out) (- A) 22,6 £ 15.8 0.08 0.11 0.00 0.0l
j ((((tp,((((tl,ga),bo),st),bi)),lu),ca),out) (A, O 240 £ 144 0.05 0.05 0.00 0.00
k ((((tp,ca),lu),(((tl,(ga,bo)),st),bi)),out) (- A) 24.1 £ 15.5 0.06 0.14 0.00 0.0l
I (((tp,(((tl,(ga,bo)),st),bi)),(lu,ca)),out) (- A) 25.7 £ 154 0.05 0.04 0.00 0.00

Topologies that are not significantly rejected (P-value > 0.05) by the Kishino-Hasegawa (KH) test are listed. P-values by the approximately unbiased
(AU) test, the Bayesian posterior probability (BPP), and the bootstrap probability (BP) are also shown for each topology. Abbreviations for species
names are: tp, tetrapods; lu, lunfishes; tl, teleost fishes; bo, bowfin; ga, gar; st, sturgeon; bi, bichir; ca, cartilaginous fishes; out, outgroup.

Corresponding hypotheses in Figures | and 2 are also shown; (A, B) at topology d, for example, indicates that topology d corresponds to Figure |A

and Figure 2B.

topologies having a basal position of cartilaginous fishes
totaled 88.2% and 87.8% in concatenated alignment
analysis and totalml analysis, respectively. The minimum
log-likelihood difference between the ML tree and trees
not supporting a basal split between cartilaginous fishes
and remaining jawed vertebrates was 18.3 + 13.1 (P-value
=0.09) and 15.3 + 12.7 (P-value = 0.12), in concatenated
alignment analysis and totalml analysis, respectively. The
minimum log-likelihood difference between the ML tree
and that supporting the bony fish origin of cartilaginous
fishes was 123 + 23.3 (P-value < 0.01) and 137 + 29.6 (P-
value < 0.01) in concatenated alignment analysis and
totalml analysis, respectively, providing strong evidence
against the hypothesis by Arnason's group [1-3]. When
the lancelet (a distant outgroup) sequences are excluded
from the analysis, the minimum log-likelihood difference
between the ML tree and trees that support their hypothe-
sis was 122 + 25.9, still being statistically significant.

According to the phylogenetic analysis based on mito-
chondrial sequences, however, all topologies consistent
with the present analysis are significantly rejected (P-value
<0.01). This controversial result may be due to the incom-
pleteness of phylogenetic information retained in the
mitochondrial sequences; the amino acid composition of
mitochondrial DNA-coded proteins is highly biased to
hydrophobic residues and thus multiple and reverse sub-
stitutions may occurs very frequently [4]. In addition, the
evolutionary rates of mitochondrial sequences often differ
greatly for different lineages; the mitochondrial sequences
of most tetrapods evolve more rapidly than those of fishes

[31,32]. These evolutionary features characteristic of
mitochondrial sequences might result in the LBA artifact
[23].

Did tetrapods originate from lobe-finned fishes?

Several molecular phylogenetic analyses were carried out
to clarify the phylogenetic relationship among tetrapods,
coelacanth and lungfishes, using ray-finned fishes [33-36]
and/or cartilaginous fishes [5,9,37] as an outgroup. The
validity of these two rootings needs to be confirmed with
molecular evidence [2,5]. Although no coelacanth
sequence is included, the present analysis provides a con-
firmation for the cartilaginous fish rooting. Ray-finned
fishes, however, cannot be used as an outgroup, because it
remains possible that tetrapods are more closely related to
ray-finned fishes than to lobe-finned fishes (topology b in
Tables 1 and 2).

Since bichir, the basal ray-finned fishes (see below), have
a pair of lungs and fleshy pectoral fins [38], the common
ancestor of bony fishes are likely to be somewhat like
lobe-finned fishes. Thus it remains possible that tetrapods
originated from such ancestral ray-finned fishes or from
the common ancestor of ray-finned fishes and lobe-
finned fishes. Recently reported fossil records suggest that
the divergence of lungfish and tetrapods occurred at least
as early as 417-412 Mya [39,40]. According to Kumar and
Hedges [41] and Hedges [12], the divergence of ray-finned
fishes and lobe-finned fishes was estimated to have
occured at 450-400 Mya, which is simultaneous with or
immediately before the divergence of lungfish and
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Table 2: Log-likelihood differences based on totalml analysis
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Inference from each protein P-values
Topology ALDa ALDb ALDc G6PD GAG PGK TPI AlnL it KH AU BPP BP
b ((((tp.(((tl(ga,bo)),st),bi)),lu),ca),out) (A, A) 0.2 1.6 1.3 1.0 1.0 1.6 1.0 ML 0.67 0.93 0.99 0.45
a ((((tp,lu),(((tl,(ga,bo)),st),bi)),ca),out) (A, A) 1.0 1.4 1.3 0.7 0.5 1.7 1.1 530£ 122 033 0.76 0.0l 0.23
¢ (((tp,(lu,(((t),(ga,bo)).st),bi))),ca),out) (A, A) 1.0 1.7 1.3 0.6 1.2 1.7 1.2 135+ 11.0 0.11 0.28 0.00 0.03
f ((((tp,((((t),bo),ga),st),bi)),lu),ca),out) (A, B) 0.2 20 1.2 1.3 I 1.7 1.0 153127 0.12 0.24 0.00 0.05
J ((((tp.((((tl,ga),bo),st),bi)),lu),ca),out) A0 0.4 1.8 1.3 1.6 I 1.7 0.8 17.1 £ 123 0.08 0.21 0.00 0.04
i ((((tp»(((tl,(ga,bo)),st),bi)),ca),lu),out) (- A) 0.6 22 1.4 1.1 1.3 1.7 1.2 19.9 £ 13.1 0.07 0.20 0.00 0.03
d ((((tp.lu),((((t],bo),ga),st),bi)),ca),out) (A, B) 0.8 1.7 1.2 1.1 0.6 1.8 1.0 202+ 176 0.12 0.29 0.00 0.03
m ((((tp,lu),((((tl.ga),bo),st),bi)),ca),out) A Q) 1.1 1.6 1.3 1.4 0.6 1.8 0.9 218+ 169 0.10 0.20 0.00 0.02
e ((((tp.lu),ca),(((tl(ga,bo)).st),bi)),out) (- A) 1.4 1.7 1.3 0.6 0.0 1.9 1.6 267 £19.1 0.08 0.23 0.00 0.0l
g (((tp((((t],(ga,bo)),st),bi) ca)),lu),out) (- A) 1.4 22 1.2 0.9 I 1.6 1.0 27.1 £183 0.07 0.31 0.00 0.02
n (((tp,(lu,((((tl.ga),bo),st),bi))),ca),out) A0 1.1 1.9 1.3 1.4 1.3 1.8 1.1 304+ 16.0 0.06 0.12 0.00 0.0l

Topologies that are not significantly rejected (P-value > 0.05) by the Kishino-Hasegawa (KH) test are listed. P-values by the approximately unbiased
(AU) test, the Bayesian posterior probability (BPP), and the bootstrap probability (BP) are also shown for each topology. The A In L; + ; values are
shown for each protein. Abbreviations for species names are: tp, tetrapods; lu, lunfishes; tl, teleost fishes; bo, bowfin; ga, gar; st, sturgeon; bi, bichir;
ca, cartilaginous fishes; out, outgroup. Corresponding hypotheses in Figure | and 2 are also shown; (A, B) at topology d, for example, indicates that

topology d corresponds to Figure |A and Figure 2B.

tetrapods. This is consistent with the present study sug-
gesting the almost simultaneous divergence of tetrapods,
lungfishes and ray-finned fishes.

Living holosteans form a natural group

The phylogenetic relationship among teleost fishes and
holosteans comprising bowfin and gar is controversial
[15]. Four different tree topologies (Figure 2A,2B,2C,2D)
have been proposed to date from morphological and
molecular data. According to a formerly accepted view,
living ray-finned fishes are divided into three major
groups (Figure 2A): Chondrostei (chondrosteans includ-
ing sturgeons and paddlefishes), 'Holostei' (holosteans
comprising bowfin and gar), and Teleostei (teleost fishes
consisting all other living ray-finned fishes). 'Holostei' is,
however, a term that has fallen into disuse in formal clas-
sifications. Instead, in the currently accepted view, holo-
steans are considered to be paraphyletic; bowfin is
thought to be more closely related to teleost fishes than
gar is [14,38], as shown in Figure 2B, and therefore ray-
finned fishes are classified into two monophyletic groups:
Chondrostei and Neopterygii (holosteans and teleost
fishes). Another possibility that gar is closely related to tel-
eost fishes (Figure 2C) was also proposed [42]. Further-
more, mitochondrial sequences suggest a distinct tree
topology (Figure 2D), in which holosteans and chondro-
steans form a monophyletic group [16].

In the present analysis, holosteans are inferred to form a
monophyletic group that is the sister group to teleost
fishes, as shown in Figure 3 and Table 3. The bootstrap
probabilities for the holostean clade are 92.2% and 83.8%
in concatenated alignment analysis and totalml analysis,
respectively. The topologies not supporting the holostean

clade are relatively small in P-values (< 0.12), as shown in
Tables 1 and 2. This result is rather consistent with a for-
merly accepted view of vertebrate classification, but is
inconsistent with the currently accepted view. The mito-
chondrial tree shown in Figure 2D was significantly
rejected by the KH test, if its likelihood value was calcu-
lated using nuclear DNA-coded genes; its log-likelihood
difference from the ML tree was 34.9 + 18.0 (P-value =
0.03) and 42.3 + 20.8 (P-value = 0.02) in concatenated
alignment analysis and totalml analysis, respectively.

We also analyzed a mitochondrial data set and confirmed
the monophyly of holosteans and chondrosteans. In con-
trast to the high support value (100%) by the MRBAYES
program for this relationship, however, the RELL BP value
was only 71%. The likelihood difference between topolo-
gies A and D of Figure 2 was 11.9 + 13.3 (P-value = 0.18),
which is not significant, as Inoue et al. [16] noted. Consid-
ering the Bayesian inference often results in erroneously
high support values [28,43], the inconsistency between
the present inference and that based on mitochondrial
sequences might be caused by the artifact of the Bayesian
inference.

Bichir is the basal ray-finned fish

The phylogenetic position of bichir has long been contro-
versial as well, as it shares many characters with both lobe-
finned fishes and ray-finned fishes [9,44]. Most morphol-
ogists currently place bichir to a basal position in ray-
finned fishes [38,45], although it remains possible that
bichir and chondrosteans form a monophyletic group
[14]. Recently, Venkatesh et al. [9,46] found one molecu-
lar synapomorphy indicating that bichir is the basal ray-
finned fish, under the assumption that cartilaginous fishes
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Table 3: Tests of significance for conflicting phylogenetic hypotheses
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P-values
Hypotheses intact BP RELL BP KH AU BPP MRBAYES TREE-PUZZLE
|. Basal jawed vertebrate
A. Cartilaginous fishes 0.93 0.88 ML ML 1.00 1.00 0.69
B. Tetrapods 0.00 0.01 <0.03 <0.06 0.00 0.00 0.00
2. Phylogenetic relationship among ray-finned fishes
A. ((Teleostei, (bowfin, gar)), Chondrostei) 0.90 0.89 ML ML 1.00 1.00 0.34
B. (((Teleostei, bowfin), gar), Chondrostei) 0.06 0.07 <0.11 <021 0.00 0.00 0.00
C. (((Teleostei, gar), bowfin), Chondrostei) 0.03 0.0l <0.05 <0.08 0.00 0.00 0.00
D. (Teleostei, ((bowfin, gar), Chondrostei)) 0.01 0.01 <0.03 <0.05 0.00 0.00 0.37
3. Phylogenetic position of bichir
A. Bichir is the basal ray-finned fish 0.99 0.99 ML ML 1.00 1.00 0.71
B. Bichir and Chondrostei form a monophyletic group 0.00 0.01 <0.02 <0.08 0.00 0.00 0.16
4. Phylogenetic relationship among tetrapods, lobe-finned fishes and ray-finned fishes
A. ((tetrapods, lobe-finned fishes), ray-finned fishes) 0.55 0.52 ML ML 0.89 0.93 0.37
B. ((tetrapods, ray-finned fishes), lobe-finned fishes) 0.40 0.39 <042 <08l 0.11 0.07 0.51

Hypotheses | A and B and hypotheses 2 A-D correspond to those shown in Figure |A and IB and Figure 2A,2B,2C,2D, respectively. Hypotheses
supported in this study are shown in bold letters. Two types of bootstrap probabilities (intact and RELL, see Materials and Methods for their
differences), P-values by the Kishino-Hasegawa (KH) test and the approximately unbiased (AU) test, the Bayesian posterior probability (BPP) and

support values by the MRBAYES and TREE-PUZZLE programs are shown.

are basal in the jawed-vertebrate tree. Our result strongly
confirms the result from molecular synapomorphies:
bichir is placed at the deepest position in ray-finned
fishes, and the bootstrap probabilities are 98.1% and
95.1% in concatenated alignment analysis and in totalml
analysis, respectively, as shown in Figure 3 and Table 3.
The alternative hypothesis that bichir and chondrosteans
form a monophyletic group was not supported; its log-
likelihood difference from the ML tree is 37.4 + 18.5 (P-
value = 0.02) and 33.3 + 19.5 (P-value = 0.04) in concate-
nated alignment analysis and totalml analysis,
respectively.

Chimaeras and other cartilaginous fishes form a
monophyletic group

Some paleontologists have pointed out the possibility
that chimaeras were derived from placoderms independ-
ently from other cartilaginous fishes (eg, [38]). To test this
possibility, we have isolated the genes listed in Materials
and methods, except for ALDb, from a plownose chi-
maera, Callorhinchus callorhynchus, and have inferred its
phylogenetic position based on the concatenated align-
ment of 2,431 amino acid residues. The resulting tree sig-
nificantly supported the monophyly of cartilaginous
fishes including chimaeras (as shown by dash-dotted line
in Figure 3) with the RELL bootstrap probability of 100%.
Mitochondrial data also support this relationship [3].

Conclusions

Molecular phylogenetic analyses of jawed vertebrates
based on mitochondrial sequences often result in confus-
ing inferences which are obviously inconsistent with gen-

erally accepted trees. To obtain a robust tree of jawed
vertebrates, we have cloned and sequenced seven nuclear
DNA-coded genes from thirteen vertebrate species and
have carried out phylogenetic analyses including thirteen
jawed vertebrates from eight major groups and an out-
group (a cyclostome and a lancelet) based on the maxi-
mum likelihood method. We have shown that (i)
cartilaginous fishes are basal to other jawed vertebrates.
This is consistent with generally accepted view, but is
inconsistent with mitochondrial trees. (ii) Living
holosteans, comprising bowfin and gar, form a mono-
phyletic group which is the sister group to teleost fishes.
This is consistent with a formerly prevalent view of verte-
brate classification, but inconsistent with both of the cur-
rent morphology-based and mitochondrial sequence-
based trees. (iii) The bichir is the basal ray-finned fish. (iv)
Tetrapods and lungfish form a monophyletic cluster in
the tree inferred from the concatenated alignment, being
consistent with currently accepted view. It remains also
possible that tetrapods are more closely related to ray-
finned fishes than to lungfishes.

The present results are statistically solid and highly con-
sistent with traditional views based on morphological and
paleontological evidence. Comparing with trees inferred
from mitochondrial sequences, which often provide obvi-
ously bizarre phylogeny, these nuclear DNA-coded genes
probably have more accurate phylogenetic information.
More intensive taxonomic sampling, particularly inclu-
sion of coelacanth, would provide more solid inference
for the origin of tetrapods and other phylogenetic prob-
lems currently discussed mainly based on mitochondrial

Page 7 of 11

(page number not for citation purposes)



BMC Biology 2004, 2

http://www.biomedcentral.com/1741-7007/2/3

Table 4: Degenerate primers used for the cloning of cDNAs

Target Primer Amino acid sequence
ALDa-c sense 5'-CAGGATCCAARGGIATHYTIGCNGC-3' GKGILAA
sense 5-GGCCGTCGTCGGNATHAARGTNGA-3' VGIKVD
antisense 5'-CAGAATTCGTIACCATRTTIGGYTT-3' KPNMVT
antisense 5'-GTGIACGCAICKCCAYTTNGCRAA-3' FAKWRCV
ALDc antisense 5-CTCYTTYTTNCCNCCCCANGCYTT-3' KAWGGKKE
ALDa,c antisense 5-GGCTAGNGGNACNACNCCYTTRTC-3' DKGVVPLA
G6PD sense 5'-CATAATGGGIGCIWSIGGNGAYYT-3' IMGASGDL
sense 5'-GTCAGCTACTGGNGAYYTNGCNAA-3' ATGDLAK
sense 5-GTCATCTTCGGIGCNWSNGGNGAY-3' GASGD
sense 5-GACCACTAYYTNGGNAARGARATG-3' DHYLGKEM
antisense 5'-AGATGCAGGYTTYTCCATNGCNAC-3' VAMEKPAS
antisense 5'-GTCGSWNCKNACRAARTGCATYTG-3' QMHFVRSD
GAG sense 5'-CAGTGGCGGIMGIGARCAYRC-3' SGGREH(A/T)
sense 5'-GATGCCNCCIGCNCARGAYC-3' MPPAQDH
sense 5'-GAGTTYAAYTGYMGNTTYGG-3' EFNCRFG
antisense 5'-CCGAANCKRCARTTRAAYTC-3' EFNCRFG
antisense 5-GTTRAAGGTNCKIGYCATYTC-3' EM(A/T)RTFN
antisense 5'-GAAGCCTGCIARRTCRTAYTC-3' EYDLAGF
antisense 5'-GTCRTTIACRCACATNGCNAC-3' VAMCVND
PGK sense 5'-CATCCGIGTNGAYTTYAAYGTNCC-3' RVDFNVP
antisense 5-GAAGACACCNGGNGGNCCRTTCCA-3' WNGPPGVF
antisense 5-CTTGTCISWIACYTTNGCNCCNCC-3' GGAKVSDK
antisense 5-GTTCTCDATNARYTGDATYTTRTC-3' DKIQLI
TPI sense 5'-CCGGTACCAAYTGGAARATGAAYGG-3' NWKMNG
antisense 5'-ATGGATCCCCIACIARRAAICCRTC-3' DGFLV
antisense 5-GCCTATGGCCCANACNGGYTCRTA-3' YEPVWAIG

EcoRI, BamHI and Kpnl restriction sites are underlined. Amino acid sequence used for designing each degenerate primer is also shown. Abbreviation
for each protein name: ALDa, fructose-bisphosphate aldolase A; ALDDb, fructose-bisphosphate aldolase B; ALDc, fructose-bisphosphate aldolase C;
G6PD, glucose-6-phosphate |-dehydrogenase; GAG, a trifunctional protein with glycinamide ribonucleotide synthetase (GARS)-aminoimidazole

ribonucleotide synthetase (AIRS)-glycinamide ribonucleotide formyltransferase (GART); PGK, phosphoglycerate kinase; TPI, triosephosphate

isomerase.

sequences. An extended analysis including coelacanth
sequences is in progress.

Materials and methods

Isolation and sequencing of cDNAs

We have carried out a phylogenetic analysis of jawed ver-
tebrates based on seven nuclear DNA-coded genes from
six ray-finned fishes, three tetrapods, two lobe-finned
fishes, three cartilaginous fishes and an outgroup (a
cyclostome and a lancelet). For plownose chimaera, only
six gene sequences excluding ALDb sequence were availa-
ble for analysis. The names and abbreviations of proteins
used in the present analysis are as follows: ALDa, ALDb
and ALDc, fructose-bisphosphate aldolase A, B and C,
respectively; G6PD, glucose-6-phosphate 1-dehydroge-
nase; GAG, a trifunctional protein with glycinamide ribo-
nucleotide synthetase (GARS)-aminoimidazole
ribonucleotide synthetase (AIRS)-glycinamide ribonucle-
otide formyltransferase (GART); PGK, phosphoglycerate
kinase; TPI, triosephosphate isomerase.

Species and tissues used for RNA extraction are as follows:
Ambystoma mexicanum, axolotl (gill and tail); Lepidosiren
paradoxa, South American lungfish (brain, liver, heart and
muscle); Protopterus annectens, African lungfish (pectoral
fin); Oryzias latipes, Japanese medaka (liver); Lepisosteus
osseus, longnose gar (brain, liver and muscle); Amia calva,
bowfin (caudal fin); Acipenser baerii, Siberian sturgeon
(brain and liver); Polypterus ornatipinnis, bichir (brain,
liver and muscle); Cephaloscyllium umbratile, swell shark
(brain, liver and muscle); Potamotrygon motoro, freshwater
stingray (brain and liver); Callorhinchus callorhynchus,
plownose chimaera (embryo); Lethenteron reissneri, lam-
prey (larva); Eptatretus burgeri, inshore hagfish (liver);
Branchiostoma belcheri, lancelet (whole body). Total RNAs
were extracted using TRIZOL Reagent (GIBCO BRL).
These total RNAs were reverse-transcribed to cDNAs using
oligo(dT) primer with reverse transcriptase (SuperScript
II, GIBCO BRL) and were used as templates for PCR
amplification with Expand High-Fidelity PCR System
(Roche Diagnostics). The sense and antisense degenerate
primers of the seven proteins were designed from con-
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Table 5: Sequence data used for the present analysis
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Species ALDa ALDb ALDc G6PD GAG PGK TPI
Human M11560 D00183 X05196 L44140 X54199 M11968 BC007812
Mouse Y00516 BCO16435 BC008184 AF326207 U20892 M15668 AC002397
Axolotl ABI 11374 ABI11375 ABI 11376 ABI 11377 ABI11378 ABI 11379 ABI11380
South ABI 11367 ABI11368 ABI11369 ABI11370 ABI 11371 ABI11372 ABI11373
American
lungfish
f\fr;aa ABI11360 ABI 11361 ABI 11362 ABI11363 ABI 11364 ABI 11365 ABI 11366
ungfis
Jape:]nekse ABI 11381 ABI11382 ABI11383 ABI 11384 ABI11385 ABI 11386 ABI 11387
medaka
Fugu SINFRUP00000071  SINFRUP00000065  SINFRUP00000087  SINFRUP00000085  SINFRUP00000132  SINFRUP00000056  SINFRUP00000055
519 997 275 765 027 545 457
Longnose gar ABI11388 ABI111389 ABI11390 ABI11391 ABI11392 ABI11393 ABI11394
Bowfin ABI11395 ABI11396 ABI11397 ABI11398 ABI11399 ABI 11400 ABI 11401
Sturgeon ABI11402 ABI111404 ABI11405 ABI 11406 ABI11407 ABI 11408 ABI11409
Bichir ABI11410 ABI 11411 ABI11412 ABI 11413 ABI 11414 ABI 11415 ABI11416
Swell shark ABI11417 ABI11418 ABI11419 ABI11420 ABI 11421 ABI 11422 ABI11423
Freshwater ABI 11424 ABI 11425 ABI 11426 ABI 11427 ABI11428 ABI 11429 ABI11430
stingray
Plownose ABI 11431 - ABI11432 ABI11433 ABI11434 ABI11435 ABI11436
chimaera
Cyclostome AB0253241 AB0253251 D386192 ABI114373 ABI114391 ABI114383 AB0253273
Lancelet AB005035 AB005035 AB005035 ABI 11440 ABI 11441 ABI 11442 AB000892

DDBJ/EMBL/GenBank accession numbers of sequences used in the present analysis are shown, except for fugu sequences, for which Ensembl
transcript IDs are shown. Abbreviation for each protein name: ALDa, fructose-bisphosphate aldolase A; ALDb, fructose-bisphosphate aldolase B;
ALDc, fructose-bisphosphate aldolase C; G6PD, glucose-6-phosphate |-dehydrogenase; GAG, a trifunctional protein with glycinamide
ribonucleotide synthetase (GARS)-aminoimidazole ribonucleotide synthetase (AIRS)-glycinamide ribonucleotide formyltransferase (GART); PGK,
phosphoglycerate kinase; TP, triosephosphate isomerase. Taxonomic name for each species: Axolotl, Ambystoma mexicanum; South-American
lungfish, Lepidosiren paradoxa; African lungfish, Protopterus annectens; Japanese medaka, Oryzias latipes; Fugu, Takifugu rubripes; Longnose gar,
Lepisosteus osseus; Bowfin, Amia calva; Sturgeon, Acipenser baerii; Bichir, Polypterus ornatipinnis Swell shark, Cephaloscyllium umbratile; Freshwater
stingray, Potamotrygon motoro; Plownose chimaera, Callorhinchus callorhynchus; Cyclostome, | Eptatretus burgeri, 2 Lethenteron japonicum, 3 Lethenteron
reissneri (a hagfish sequence was used instead of lamprey sequence because of their monophyletic relationship [13,25,54]); Lancelet, Branchiostoma

belcheri.

served amino acid residues of each gene as shown in Table
4. PCR amplification was carried out under annealing
condition of 43-50°C with the sense and antisense prim-
ers. Nested PCR with a proper set of sense and antisense
primers was carried out with primary PCR product, when
needed.

The PCR products were separated in 1.5% agarose gel con-
taining ethidium bromide. Products of expected size were
isolated as gel slices, purified using DNA purification kit
(TOYOBO), and cloned into pT7Blue vector (Novagen).
Then, Escherichia coli strain DH5a (TOYOBO) was trans-
formed with a ligated vector. More than three independ-
ent clones were isolated for each gene and sequenced by
dideoxy chain termination method using BigDye Termi-
nator Cycle Sequencing Ready Kit (Applied Biosystems)
and ABI PRISM 377 and 3100 DNA sequencers (Applied
Biosystems).

The 3' ends of cDNAs were amplified using 3'RACE Sys-
tem for Rapid Amplification of cDNA Ends (GIBCO BRL).
The amplified fragments were purified, subcloned and
sequenced in the same way as above.

Sequence data

The following sequence data was taken from the DDBJ/
EMBL/GenBank database: the seven gene sequences from
human, mouse and Takifugu rubripes (fugu); ALD gene
sequences from Eptatretus burgeri (inshore hagfish),
Lethenteron japonicum (Japanese lamprey) and B.
belcheri; TPI gene sequences from L. reissneri and B.
belcheri. The DDBJ/EMBL/GenBank accession number of
each sequence data is shown in Table 5.

Phylogenetic tree inference

Multiple alignments of amino acid sequences were carried
out by MAFFT[47], a multiple sequence alignment pro-
gram recently developed by us, and manually inspected
on the XCED sequence alignment editor.

Using the cyclostome and lancelet sequences as an out-
group, phylogenetic analyses have been carried out by
GAMT]26], a genetic algorithm-based ML method, with
the JTT-F model [48,49]. Heterogeneity of evolutionary
rates among sites was modeled by a discrete I" distribution
[50] with the optimized shape parameter o for each
protein. A limited number of candidate tree topologies
were generated by the following procedure and subjected
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to the comparison of likelihood values and statistical
tests.

For alignment constructed from each of the seven protein
sequences and that of the concatenated sequences, the
GAMT program [26] was applied. GAMT is a method for
searching for the ML tree based on the genetic algorithm
(GA), outputting the best tree as well as multiple
alternative trees each of which has a likelihood value close
to the best one. The outline of the procedure is as follows:
(i) The initial population of tree topologies is generated
by applying the NJ method [51] to alignments generated
by the bootstrap resampling. (ii) The fitness value for the
best tree in the population is set to a constant value N,
that for the second best one is set to N,,-1, and so on. (iii)
A new tree i is generated by applying either of two opera-
tors (mutation or crossover) to trees picked up from the
current population according to their fitness values. (iv) If
there is a tree j with A InL;/c;> AlnL;/c; in the current pop-
ulation, tree i replaces tree j, where A InL;(= InL;,-InL;) is
the log-likelihood difference between tree i and the best
tree in the current population, and o; is the standard devi-
ation of A InL;. (v) The procedure from steps (ii-iv) is
repeated N, times. Parameters used in the present analysis
are as follows: N, = 100 and N, = 10,000.

This procedure was repeated for the seven different pro-
teins and the concatenated alignment. The resulting
topologies with A InL; < o; from each of the seven proteins
were selected as candidate ones. Additional topologies
with ;< A InL; < 3 o; were also selected from the concate-
nated alignment. For the all candidate topologies selected,
the log-likelihood values were computed from the seven
protein sequence data sets, and totaled following the pro-
cedure of Kishino et al. [52] using the TOTALML program
from the MOLPHY package [48]. This procedure is hereaf-
ter referred to as 'totalml' analysis. Another type of log-
likelihood value was computed from the concatenated
alignment for each candidate topology. This procedure is
hereafter referred to as 'concatenated alignment' analysis.

Statistical tests

The following known statistical tests (i-vii) were carried
out in the present analysis. (i) Kishino-Hasegawa (KH)
test and (ii) approximately unbiased (AU) test were car-
ried out using the CONSEL package [53]. (iii) Bayesian
posterior probability (BPP) value of each of the candidate
topologies was also computed using the CONSEL package
[53]. (iv) Bootstrap probability value for a hypothesis was
computed by applying the RELL (resampling of estimated
log-likelihoods) approximation [52] to the candidate
topologies and then totaling the bootstrap probabilities of
the candidates supporting the hypothesis. This value is
referred to as RELL BP value or simply BP value. (v) The
MRBAYES program [30] was applied to the concatenate

http://www.biomedcentral.com/1741-7007/2/3

alignment. Default settings were used except for aamodel
= jones, rates = gamma, ngen = 200,000 and burnin = 100.
(vi) The TREE-PUZZLE program [29] was applied to the
concatenate alignment. (vii) Intact bootstrap probability
was also computed for the concatenated alignment. The
calculation procedure is simple, but time-consuming; the
ML tree was inferred by the GAMT program independ-
ently for each of the 100 alignments generated by boot-
strap resampling, and the number of the ML trees
supporting the hypothesis was counted. This value is
referred to as intact BP value. The first four methods (i-iv),
which are for testing given candidate topologies, were
applied to both totalml and concatenated alignment anal-
yses, whereas the last three methods (v-vii), each of which
is for inferring a phylogenetic tree, were applied to the
concatenated alignment without setting any candidate
topologies.
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