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Abstract

Background: Basal-like constitutes an important molecular subtype of breast cancer characterised by an aggressive
behaviour and a limited therapy response. The outcome of patients within this subtype is, however, divergent. Some
individuals show an increased risk of dying in the first five years, and others a long-term survival of over ten years after
the diagnosis. In this study, we aim at identifying markers associated with basal-like patients’ survival and
characterising subgroups with distinct disease outcome.

Methods: We explored the genomic and transcriptomic profiles of 351 basal-like samples from the METABRIC and
ROCK data sets. Two selection methods, labelled Differential and Survival filters, were employed to determine
genes/probes that are differentially expressed in tumour and control samples, and are associated with overall survival.
These probes were further used to define molecular subgroups, which vary at the microRNA level and in DNA copy
number.

Results: We identified the expression signature of 80 probes that distinguishes between two basal-like subgroups
with distinct clinical features and survival outcomes. Genes included in this list have been mainly linked to cancer
immune response, epithelial-mesenchymal transition and cell cycle. In particular, high levels of CXCR6, HCST, C3AR1
and FPR3 were found in Basal I; whereas HJURP, RRP12 and DNMT3B appeared over-expressed in Basal II. These genes
exhibited the highest betweenness centrality and node degree values and play a key role in the basal-like breast
cancer differentiation. Further molecular analysis revealed 17 miRNAs correlated to the subgroups, including
hsa-miR-342-5p, -150, -155, -200c and -17. Additionally, increased percentages of gains/amplifications were detected
on chromosomes 1q, 3q, 8q, 10p and 17q, and losses/deletions on 4q, 5q, 8p and X, associated with reduced survival.

Conclusions: The proposed signature supports the existence of at least two subgroups of basal-like breast cancers
with distinct disease outcome. The identification of patients at a low risk may impact the clinical decisions-making by
reducing the prescription of high-dose chemotherapy and, consequently, avoiding adverse effects. The recognition of
other aggressive features within this subtype may be also critical for improving individual care and for delineating
more effective therapies for patients at high risk.
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Background
Approximately 15% of all breast cancer cases are of basal-

like subtype, often aggressive and highly recurrent lesions

[1–3]. Basal-like breast cancers (BLBCs) are defined by

the lack of expression of the hormone receptors oestro-

gen (ER) and progesterone (PR), and the human epidermal

growth factor receptor-2 (HER2) [4, 5]. Histologically,

these tumours show high grade, high mitotic indices,

presence of central necrotic or fibrotic zones, pushing

borders of invasion, lymphocytic infiltrate and atypical

medullary features [6]. The breast basal cell layer is also

characterised by high expression of cytokeratins (CK5/6,

CK14, and CK17) and epidermal growth factor receptor

(EGFR), amongst other markers [7–11]. All these features

contribute to the limited therapeutic response and there-

fore impact in the refractory nature of these tumours

[12, 13]. Thus, patients diagnosed with BLBC have a poor

prognosis and a short-term disease-free and overall sur-

vival [14]. A better understanding of the pathophysiology

and molecular basis of basal-like tumours is necessary to

delineate patient outcomes.

At the molecular level, basal-like tumours are consid-

ered more homogeneous than the immunohistochem-

ically defined triple-negative breast cancers (TNBCs),

even though the terminologies are used interchangeably

[1, 15]. Despite the relative molecular homogeneity,

patients within this group still show divergent disease out-

comes [12, 14, 16]: some patients show high mortality and

recurrence rates within the first 3-5 years, in contrast to

others who survive over 10 years – with no recurrence –

following the diagnosis [12, 14, 16]. For the latter group,

the prognosis is better than those of luminal breast cancer

subtype [8, 17]. These observations suggest that BLBCs

may be composed of at least two clinically distinct groups,

with poor or excellent survival [10]. The molecular char-

acterisation of these basal-like tumours is of particular

interest in medicine since it may bring new insights to

the disease understanding and management. Identifying

markers andmechanisms involved in the differentiation of

BLBCs is therefore an essential progression towards this

end. Moreover, it would allow the development of tailored

treatments with more effective individual response, lead-

ing to more personalised and conservative interventions

for breast cancers [18].

Recent investigation of TNBCs pointed to the exis-

tence of intrinsic basal-like subtypes, with distinct molec-

ular patterns [19–21]. The stratification performed and

described by Lehmann et al. (2011) [19] revealed the

involvement of enriched cell cycle and cell division com-

ponents in Basal-like 1 (BL1); growth factor signalling,

glycolisis and gluconeogenesis pathways in Basal-like 2

(BL2); and immune cell processes in Immunomodula-

tory (IM). The authors also determined two other groups

partially overlapping the basal-like subtype defined

by the PAM50 classifier [22]: Mesenchymal (M) and

Mesenchymal stem-like (MSL). Alternatively, Burstein

and colleagues [20] defined the Basal-Like Immune-

Suppressed (BLIS) and Basal-Like Immune-Activated

(BLIA) subtypes. The former tumour type is charac-

terised by multiple SOX family transcription factors,

while the latter is described by Stat signal transduc-

tion molecules and cytokines. More recently, Jézéquel

et al. (2015) [21] pointed to two other groups: a

basal-like with low immune response and high M2-like

macrophages, and a basal-enriched with high immune

response and low M2-like macrophages. All studies

above described have focused on investigating the

molecular heterogeneity of TNBCs, partially supporting

each other.

Multi-gene models have also been applied to predict

breast cancer subtype [22, 23], recurrence [24] and sur-

vival [25, 26]. The selection of genes across samples has

generally been associated with hormonal expression levels

and proliferation modules. Since BLBCs and TNBCs are

hormone receptor (ER and PR) negative and highly prolif-

erative, the prediction power of markers to further sepa-

rate patients at risk within these groups is of limited value

in the current models [27]. Clinical assays independently

modelling triple-negative samples have revealed supe-

rior ability in predicting outcomes of early stage tumours

[28, 29]. These assays andmost approaches, however, have

focused on the immunohistochemically defined TNBCs

[10, 30, 31]. A more robust approach for characteris-

ing BLBC outcomes is yet to be developed. Accordingly,

a proper investigation of BLBCs remains mandatory

and determinant for patients diagnosed within this

subtype [9].

As the classification of TNBCs is not an ideal surro-

gate for defining BLBCs entities, a characterisation of

basal-like tumours at the genomic and transcriptomic

levels is an urgent need. In this contribution, we aim

at identifying markers associated with patients’ survival

using larger breast cancer cohorts from the Molecular

Taxonomy of Breast Cancer International Consortium

(METABRIC) [32] and Research Online Cancer Knowl-

edgebase (ROCK) [33]. Through the determination of

this signature, our objective is to stratify 351 tumours

into basal-like subgroups, with varying clinical features

and survival outcomes, and further describe each of

them. Accordingly, we plan to explore the microarray

data – including gene (mRNA) and microRNA (miRNAs)

expression values, and copy number aberration (CNA)

measurements – to expand themolecular characterisation

of BLBCs, which to our knowledge has not yet been per-

formed. The assessment of more comprehensive profiles

of BLBCs is relevant for defining groups-at-risk in clini-

cal settings and, more importantly, for improving therapy

response.
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Methods

Breast cancer data sets

The METABRIC genomic and transcriptomic data

sets were downloaded from the European Genome-

Phenome Archive (EGA) (http://www.ebi.ac.uk/ega),

under the accession numbers EGAS00000000083 and

EGAS00000000122. These publicly available collections

contain genotyping (Affymetrix SNP 6.0), log2 nor-

malised gene expression (Illumina_Human_WG-v3)

and miRNA expression (Agilent ncRNA 60k) arrays for

over 2000 breast tumours and 144 control (non-tumour)

breast samples [32]. The original METABRIC study was

approved by the ethics Institutional Review Boards in the

UK and Canada (Addenbrooke’s Hospital, Cambridge,

United Kingdom; Guy’s Hospital, London; Nottingham;

Vancouver; Manitoba). Further analysis on this data

was approved by the Human Research Ethics Commit-

tee (HREC) at the University of Newcastle, Australia

(approval number: H-2013-0277).

The METABRIC cohort has a comprehensive descrip-

tion of patients long-term clinical and pathological out-

comes. Tumour samples were assigned to a breast cancer

subtype (luminal A, luminal B, HER2-enriched, normal-

like, or basal-like) using an ensemble learning approach

[34], employing the set of 50 genes defined by Parker

et al. (2009) [22]. This approach has been previously

shown to improve the samples classification and subtypes’

assignement in METABRIC data set, and has revealed

more consistency in terms of clinical features and sur-

vival outcomes [34]. Based on these labels, a subset of 250

basal-like tumours was selected for analysis in this study.

For training and test purposes, this subset was randomly

split into two sets of equal size (125) to avoid possible bias

from the original cohort. The sets are hereafter referred to

as the training and validation sets.

For additional validation across platforms, we used the

ROCK data set obtained at Gene Expression Omnibus

(GEO) (http://www.ncbi.nlm.nih.gov/geo/), under data

source number GSE47561 [33, 35]. This data set integrates

ten different studies (GSE2034, GSE11121, GSE20194,

GSE1456, GSE2603, GSE6532, GSE20437, GSE7390,

GSE5847 and E-TABM-185) performed on the Affymetrix

HG-U133A technology. The compiled matrix contains

log2 RMA renormalised gene expression values for 1570

tumour samples, 101 of which are of basal-like subtype.

The ROCK data set includes representative information

for survival analysis, however, it lacks standard clinico-

pathological data which therefore has not been considered

in this study.

Probe selection approach

Since the first aim of our study is to identify markers driv-

ing survival among basal-like patients, we designed a fil-

tering technique to select a representative probe signature

and reduce the bias arising from the high number of

probes (48,803) and low number of samples (125) in the

training set. We defined two relevant criteria to select

probes, which are involved in tumour initiation and/or

progression, and are also correlated to survival, as detailed

below.

The Differential filter [36] was employed to select

probes exhibiting distinct expression levels between

tumours and controls. The underlying assumption is that

probes truly correlated with breast cancer are linked to

genomic changes or variations from healthy to cancer-

ous tissue. We applied the Differential filter to each of

the 48803 probes to test their separation power between

the 125 tumours and 144 controls. This filter tests for

three feasible cases: the expression levels in tumours are

(a) lower than, (b) higher than, or (c) lower and higher

than in control samples. The last case refers to genes that

are up-regulated in some tumours and down-regulated in

others, while the expression levels of controls lie between

these two groups. To calculate a p-value for this case, we

mirrored all expression levels on one side with respect

to the mean value of controls. The separation power of

each probe was defined as the minimal Wilcoxon test p-

value calculated for the three cases. To determine the

number of probes passing the Differential filter, we plot-

ted the ordered log10-normalised p-values against the

corresponding probe ranks. The threshold was set approx-

imately at the point of the highest curvature of this func-

tion. This threshold is based on the naturally emerging

systemic behaviour and does not require an external def-

inition. Probes passing this filter are referred to as the

differential probe set.

The Survival filter [36] was used to further identify

probes for which the expression levels are associated with

patients’ survival. This filter employs the Kaplan-Meier

estimator to compute the survival probabilities. The strat-

ification power of each probe is calculated using the Log-

rank test applied to two groups of samples corresponding

to quantiles with the lowest and the highest expression

values, respectively. We defined these quantiles by order-

ing all samples by their expression values of a probe and

selected samples in the first and last thirds (the quantile

from 0 to 33% in the relatively under-expressed and from

67 to 100% in the relatively over-expressed group). This

analysis was performed in R using the package survival

[37]. Since the survival information is not provided for

all samples, this calculation was based on 115 basal-like

tumour samples (from the total of 125) in the METABRIC

training set. To determine the number of probes passing

the Survival filter we used a similar threshold definition

as for the Differential approach, i.e. by ordering the log10-

normalised p-values that emerged from the Log-rank

test. These probes are further referred to as the survival

probe set.

http://www.ebi.ac.uk/ega
http://www.ncbi.nlm.nih.gov/geo/
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Clustering basal-like tumour samples

The second aim of our study is to identify and charac-

terise basal-like subgroups with varying disease outcomes.

To this end, we performed a hierarchical clustering of

samples based on the previously defined survival probe

set. This procedure exploits the assumption that probes

showing most variations in expression and co-expression

among each other are involved in similar biological mech-

anisms and have a high impact on the groups delineation.

To calculate the dissimilarity between the 115 samples

from the METABRIC training set, for which the sur-

vival information is provided, we used the square root of

the Jensen-Shannon divergence [38–40]. We then gener-

ated the hierarchical clustering with the Ward’s criterion

that minimises the variance within clusters, using the R

package stats [41].

We further examined which probes from the survival

probe set contribute the most to the separation of basal-

like subgroups using the Wilcoxon test. We then ordered

the log10-normalised p-values to determine the probes

that significantly differentiate between the subgroups by

using the same threshold criterion as for the Differential

filter. The purpose of this procedure is to refine the probes

that best segregate basal-like subgroups of distinct disease

outcome. These probes are further referred to as the probe

signature and expose striking genes and cell mechanisms

involved in the subgroups differentiation.

Validation across data sets

The basal-like entities were first matched to the

METABRIC validation set by means of centroids com-

puted based on the previously defined probe signature.

Samples in this data set were then assigned to a subgroup

according to the minimal Euclidean distance to a centroid.

An external validation was conducted on the ROCK

data set, for which the centroids were mapped across

technologies – from Illumina to Affymetrix – using

the gene annotation packages hgu133a.db and illumi-

naHumanv3.db [42] in R Bioconductor. Since the mRNA

level measurement and normalisation differ between

METABRIC (Illumina) and ROCK (Affymetrix) data sets,

we standardised the calculated centroid absolute values

with respect to the average expression levels computed for

all basal-like samples. This procedure is depicted in Eq. 1,

where si,j is the expression value of probe j for sample i,

andN is the total number of basal-like samples (N is equal

to 115 in the METABRIC training set).

sstandardi,j =
si,j

1
N

∑N
i=1 si,j

(1)

Following the centroids’ normalisation, an analogous

transformation of Affymetrix gene expression values was

necessary to enable their direct application. Thus, we

applied the same formula (Eq. 1) to the ROCK data set,

where the number N of total samples is 101. The assign-

ment to subgroups was based on the minimal Euclidean

distance to a standardised centroid.

Network analysis

With the purpose to identify key players within the probe

signature and their relation to each other, we generated

and plotted a network graph using the Minimum Span-

ning Tree (MST) [43]. The distance d(x, y) between two

probes x and y were defined as d(x, y) = 1 − |ρS(x, y)|,

where ρS(x, y) is the value of the Spearman correlation

between the probe expression calculated for 125 tumour

samples from the training set. To quantify the network

analysis, we computed the betweenness centrality and

node degree of each node (probe) using the package

igraph [44] in R.

Generally, nodes with high betweenness centrality and

degree values represent potential key players within the

network. With regards to the centrality values, the most

representative entities are highly connected to the rest of

the tree; leaf-nodes have a betweenness centrality value of

0, while the most traversed nodes are assigned with the

highest values (normalised up to 1). Node degree, on the

other hand, is indicative of the number of direct neigh-

bours of a node. Thus, probes with high degrees are also

central (representative) for local groups with a relatively

strong probe co-expression.

MicroRNA differential expression

To uncover the miRNAs differentiating the most between

the basal-like subgroups, we applied the Wilcoxon test

to expression values of each of the 853 probes avail-

able in the METABRIC data set. We considered those

miRNAs with the emerging p-values smaller than 0.01

in both training and validation sets, as relevant for the

separation between the subgroups. Both data sets were

used due to the limited number of samples (146 in total)

for which the miRNA expression profiles were provided.

The miRNA probes were further investigated for possi-

ble target genes within the probe signature using R Bio-

conductor (RmiR.Hs.miRNA [45]) across five databases:

miRBase, TarBase, PicTar, MirTarget2 and miRanda. For

the miRNA and gene annotation we used the pack-

ages hgug4112a.db [46] and illuminaHumanv3.db [42],

respectively.

Copy number aberration profiles

To quantise the CNA information we employed the cyto-

bands defined in the hg18 data base that corresponds to

the METABRIC platform. Aberrations were divided into

two categories: losses (originally denoted as homozygous

and heterozygous deletions) and gains (gains and amplifi-

cations). For each basal-like subgroup we then calculated

the occurrence rates of gains and losses per cytoband,
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and applied the Binomial test to examine the hypothesis

that the CNA distributions were the same among patient

subgroups.

We further calculated the Percent Genome Altered

(PGA) for each of the basal-like subgroups and applied the

Wilcoxon test to these rates to obtain a significance value

of the difference between them. The aim of this approach

is to identify stable/unstable genome profiles associated

with the patient subgroups defined by our probe signature

and to statistically describe whether they are consistently

diverging.

Results

Survival-related probes defining basal-like breast cancer

subgroups

With the application of theDifferential and Survival filters

in the METABRIC training set – as detailed in “Methods”

– we identified 15000 and 400 probes related to can-

cer initiation and/or progression, and patients survival,

respectively. The corresponding probes in the differential

probe set with distinct expression levels between tumours

and controls showed significant p-values ranging from

2.36 · 10−45 to 1.53 · 10−7. The reduced number of probes

in the survival probe set related to the individual survival

had significant p-values ranging from 1.11 · 10−4 to 0.038.

These probes, ultimately, comprise a representative sig-

nature driving the outcome of basal-like patients in the

METABRIC breast cancer cohort.

The hierarchical clustering of 115 basal-like samples

based on the survival probe set has revealed two major

subgroups: Basal I and Basal II (Additional file 1: Figure

S1). A separation into more than two subgroups – in the

next and subsequent hierarchical divisions in the dendro-

gram – was not supported due to the high similarity of

subgroups in terms of their molecular profile and clin-

ical outcome. The application of the Wilcoxon test has

defined the probe signature containing the top 80 probes,

with significant p-values ranging from 1.75 ·10−13 to 3.77 ·

10−4, differentiating the most between the two basal-like

groups at the transcriptomic (mRNA) level. A heat map

of the 80-probe signature for the training set is plotted in

Fig. 1, where samples are ordered within each subgroup

by their Euclidean distance to the corresponding centroids

(Additional file 2: Tables S1, S2 and S3).

To characterise the 80-probe signature with respect to

their cellular function, we clustered the probes by their

mutual correlation into three groups (Table 1) – G1, G2

and G3 – and annotated using the Database for Anno-

tation, Visualization and Integrated Discovery (DAVID)

(Additional file 3: Tables S4, S5 and S6). This analysis

revealed that G1 probes are strongly associated with cell

cycle control and cell division; they are over-expressed in

Basal II subgroup. G2 showed relation to immune system

and inflammatory response. Remarkably, the expression

levels of G2 probes in Basal II are similar to that observed

in controls, but much higher in Basal I, suggesting an

intratumoral infiltration by lymphocytes in this subgroup.

In the last group, G3, probes indicate an association (not

significant) with metal-binding processes; they are under-

expressed in Basal II when compared to Basal I and

control samples.

The betweenness centrality and node degree analysis of

the 80-probe signature (Fig. 2) further outlined impor-

tant genes differentiating between Basal I and Basal II

subgroups (Table 1). The genes with the highest cen-

trality values (B ≥ 0.1) in G1 are PSMG3, HJURP,

BEND3, C10orf2, TPX2, RRP12 and DNMT3B; in G2,

CXCR6, HCST, C3AR1, GBP4, LY96, ANKRD22, FPR3

and FCGR2A; and in G3, CTSK. Within this set, the genes

HJURP, RRP12, DNMT3B, CXCR6, HCST, C3AR1, FPR3

and CTSK also showed high node degree values (ND

≥ 4), representative for probe co-expression, corroborat-

ing with their key role on the differentiation of basal-like

carcinomas.

Basal I and Basal II validated across independent data sets

andmicroarray platforms

The quality of the 80-probe signature was evaluated using

centroids calculated for the training set and applied to

the METABRIC and ROCK validation sets. In ROCK, 55

annotated probes matched from Illumina to Affymetrix

and were validated across the microarray platforms. The

corresponding heat maps, in Fig. 1, showed the existence

of two main basal-like subgroups, Basal I and Basal II, in

bothMETABRIC and ROCK validation sets. The two sub-

groups are consistent with regards to the population size

and mRNA expression levels (in G1, G2 and G3) and fur-

ther support the quality of the 80-probe signature. The

definition of more than two subgroups in the hierarchi-

cal clustering would lead to the separation of entities with

highly similar molecular profiles.

Clinical features and survival outcomes supporting the

basal-like subgroups

The analysis of clinicopathalogical markers revealed a

significant correlation between the basal-like subgroups

defined in this study and tumour histology (Invasive Duc-

tal Carcinoma versus medullary type), tumour size and

p53 status (Table 2). According to histological classifica-

tion, the medullary type is more common among Basal

I patients. On the other hand, the Basal II subgroup is

characterised by larger tumours (in size) and a higher fre-

quency of p53 mutation. Clinical features, such as age,

menopausal status (MS), grade, Nottingham Prognostic

Index (NPI) and lymph nodes, did not show statistically

significant variations across the two basal-like subgroups.

The survival analysis revealed significant differences in

patients’ outcome between Basal I and Basal II. Basal I
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Fig. 1 Heat map of the 80-probe signature in METABRIC training set. This figure displays 80 survival-related probes clustered by their mutual
correlation. Samples in each basal-like subgroup are ordered by their overall rank and the expression values are normalised across individuals. The
subgroups in the METABRIC validation set were defined using centroids computed in the training set. In the ROCK data set, 55 Affymetrix probes
matched the 80 Illumina signature; samples in this data set are ordered by their overall rank within each subgroup

showed a better prognosis in comparison to Basal II in all

data sets (Fig. 3), with the Log-rank test p-values of 0.0097,

0.017 and 0.043 for the METABRIC training, validation

and ROCK data sets, respectively.

MicroRNAs differentially expressed between Basal I and

Basal II subgroups

We identified 17 miRNAs and 2 putative probes differ-

entially expressed between the two basal-like subgroups

(Table 3), with the Wilcoxon test p-values smaller than

0.01 in both METABRIC data sets (Additional file 4:

Tables S7, S8 and S9). The probes hsa-miR-155, -342-

5p and -150 showed the lowest p-values and an over-

expression in Basal I, when compared to Basal II and

control samples. The transcripts hsa-miR-19b-1*, -17* and

-200c*, on the other hand, were over-expressed in Basal

II tumours relative to Basal I and controls. The expres-

sion levels of all probes are depicted in Fig. 4. Additionally,

the identifiedmiRNAs werematched against the 80-probe

signature revealing a set of 50 gene-targets across five dis-

tinct databases, as listed in Table 4 and further detailed

for Basal I and Basal II in Additional file 4: Tables S7,

S8 and S9. Among the gene-targets, C10orf2, HSD11B1,

EGR2, FBXL5, CLEC7A, DNMT3B, FMO1, CTSK and

PYHIN1were present in at least two databases. A compar-

ison between miRNA and gene expression levels across

subgroups showed significant correlations of hsa-miR-

142-5p and RASSF5, hsa-miR-142-5p and TIMP3, hsa-

miR-150 and MIAT, and hsa-miR-22 and TIMP3 in both

Basal I and Basal I.

Copy number aberration profiles further differentiating

basal-like subgroups

The integrated analysis of CNA has revealed an increasing

number of genomic changes from Basal I to Basal II sub-

group (Fig. 5) and uncovered cytobands with significant

aberrations (binomial test p-values below 0.15) in both

METABRIC training and validation sets (Table 5). Accord-

ingly, critical gains/amplifications were detected on chro-

mosomes 1q, 3q, 8q, 10p and 17q, and losses/deletions on

4q, 5q, 8p, Xp and Xq. Several of these aberrations have

been previously associated with primary breast tumours

and cell lines in BLBCs and/or TNBCs studies [20, 47–50].

Notably, the percent of the genome being altered in the

training set for Basal I was 2.74% for gains and 0.23% for

losses; in Basal II it was 9.06 and 1.03%, respectively. The

Wilcoxon test showed significant heterogeneity among

the subgroups for the gains (p-value = 1.91 · 10−6) and

for losses (p-value =9.55 · 10−4). The same pattern was

observed in the validation set for Basal I (3.58% for gains

and 0.13%) and Basal II (10.46% for gains and 2.54%), also

highly significant (Wilcoxon test: p-value = 1.11 · 10−6 for



Milioli et al. BMCMedical Genomics  (2017) 10:19 Page 7 of 17

Table 1 The 80-probe signature related to survival

Gs Gene Probe ID B ND

G1 C10orf2 ILMN_1701243 0.17 3

RRP12 ILMN_1767253 0.12 4

CD24 ILMN_2060413 0 1

SURF6 ILMN_1778032 0 1

GPATCH1 ILMN_1655625 0.03 2

CEL ILMN_1723418 0 1

LOC641765 ILMN_1692198 0 1

DNMT3B ILMN_2328972 0.1 4

MIS18A ILMN_1712386 0 1

DSN1 ILMN_1715905 0.03 2

TPX2 ILMN_1796949 0.14 3

HJURP ILMN_1703906 0.42 5

CAD ILMN_1810992 0 1

BEND3 ILMN_2375032 0.21 3

EIF2AK1 ILMN_2156267 0.07 2

PSMG3 ILMN_1802627 0.47 3

MXD3 ILMN_1711904 0 1

PSRC1 ILMN_2315964 0 1

ASPSCR1 ILMN_1660749 0.05 2

PRKCSH ILMN_1777794 0.03 2

LOC650803 ILMN_1803510 0.05 2

KCTD15 ILMN_1786326 0 1

RBFA ILMN_1736130 0 1

STK25 ILMN_1668090 0.03 2

G2 PYHIN1 ILMN_1742026 0.05 3

THEMIS ILMN_1684040 0 1

PCED1B ILMN_1712431 0.03 2

PTCRA ILMN_2091920 0 1

HCST ILMN_2396991 0.57 6

LY96 ILMN_1724533 0.45 3

CASP4 ILMN_1678454 0 1

SNTB1 ILMN_1793410 0 1

GBP4 ILMN_1771385 0.46 2

DOK2 ILMN_1791211 0 1

GM2A ILMN_2221046 0 1

FPR3 ILMN_2203271 0.17 4

C3AR1 ILMN_1787529 0.47 7

FCGR2A ILMN_1666932 0.12 2

CCR1 ILMN_1678833 0 1

LOC647108 ILMN_1774206 0.03 2

CLEC12A ILMN_2403228 0 1

CLEC12A ILMN_1663142 0.03 2

ADORA3 ILMN_1730710 0 1

CLEC7A ILMN_1700610 0.03 2

LOC650799 ILMN_1715436 0 1

MIAT ILMN_1864900 0 1

IKZF3 ILMN_2300695 0 1

ANKRD22 ILMN_2132599 0.45 2

AIM2 ILMN_1681301 0.03 2

Table 1 The 80-probe signature related to survival (Continuation)

Gs Gene Probe ID B ND

IL2RA ILMN_1683774 0 1

MARCH1 ILMN_2094942 0.05 3

LAP3 ILMN_1683792 0 1

GPR65 ILMN_2232121 0.03 2

GPR65 ILMN_1734740 0.05 2

FAM26F ILMN_2066849 0 1

CXCL11 ILMN_2067890 0 1

NFS1 ILMN_1761314 0.05 2

CXCR6 ILMN_1674640 0.68 10

RASSF5 ILMN_2362902 0.07 2

NAPSB ILMN_1723043 0.05 3

IKZF1 ILMN_1676575 0 1

PTPN22 ILMN_1715885 0 1

PTPRC ILMN_1653652 0.07 3

PTPN22 ILMN_2246328 0 1

G3 RPL36AL ILMN_2189936 0 1

GARNL3 ILMN_1779347 0 1

PNPLA4 ILMN_1664348 0 1

SH3BGRL ILMN_1702835 0.03 2

HS.576380 ILMN_1848030 0 1

FMO1 ILMN_1684401 0 1

CTSK ILMN_1758895 0.1 4

EGR2 ILMN_1743199 0 1

CLEC1A ILMN_1691339 0 1

HSD11B1 ILMN_2389501 0.03 2

CEBPA ILMN_1715715 0 1

TIMP3 ILMN_1701461 0.03 2

FBXL5 ILMN_1673370 0 1

SCARNA9 ILMN_1805064 0 1

PPM1M ILMN_1657810 0.05 3

DOCK6 ILMN_1801226 0 1

The 80 annotated Illumina probes distinguishing between basal-like subgroups are
listed in this table. The official gene symbol (Gene), from UCSC Genome Browser,
and Illumina probe IDs (Probe ID) are provided for each probe group (Gs), in the
same order as shown in Fig. 1. This table also contains the betweenness centrality (B)
and node degree (ND) values calculated for each probe in the basal-like training set

gains and p-value = 5.37 · 10−6 for losses). The increasing

genome instability represented by increasing PGA, plot-

ted in Fig. 5, occurred consistently, from Basal I to Basal

II, with the decreasing rates of patients’ survival.

Discussion

Survival-related probes defining the molecular signature

of basal-like breast cancer subgroups

The basal-like subgroups defined in this study show

distinct patterns in terms of tumour molecular pro-

files, clinicopathological features and patients survival
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Fig. 2Minimum Spanning Tree of the 80-probe signature. The MST graph was generated for the 80 probes in the training set. Only probes with
high correlation values between their expression levels are connected to a network. The size of each node is proportional to the computed node
degree value (number of connections). The colour of each node is reflective of the betweenness centrality value ranging between low (light pink)
and high (red)

outcomes. The characterisation of BLBCs, considering the

two major entities Basal I and Basal II, is supported by the

identification of the 80-probe signature, validated across

Illumina and Affymetrix platforms in the METABRIC

and ROCK cohorts. The importance of this signature,

genes and gene-families, is defined by their functional-

ity for each set: G1, G2 and G3. The annotated probes

revealed their association with cell cycle and cell division

components, immune/inflammatory regulation andmetal

binding, respectively, and defined Basal I (Immune Active)

and Basal II (High Proliferative) subgroups. In Basal I, the

over-expression of G2 probes suggests an immune activa-

tion and lymphocytic infiltration, particularly regulating

tumour growth and patients’ survival. This role has been

previously associated with a better prognosis and therapy

response [51], and has the potential to stratify basal-like

breast cancers. On the other hand, the over-expression of

G1 cell cycle-related genes and under-expression of G3

metal binding genes in Basal II impact on cell prolifera-

tion rates and energy metabolism. In this case, the cells

reproduce at a rate far beyond the common bounds of a

controlled cell cycle, concomitantly with other molecular

changes in metabolic processes.

The G1 genes PSMG3, HJURP, BEND3, TPX2, RRP12

and DNMT3B exhibited the highest centrality values and

were over-expressed in the Basal II subgroup. HJURP, for

instance, plays a central role in the maintenance of newly

replicated centromeres and mitotic regulation. Increased

levels of this gene in primary tumours and breast can-

cer cell lines have been previously correlated to decreased

disease-free and overall survival [52]. Also involved in the

mitotic spindle assembly, TPX2, when over-expressed, has

been associated with proliferation networks and metas-

tasis enhancement, holding a prognostic value for breast

cancer patients [53]. Additionally, the hyperactivity of the

DNA methyltransferase enzymes, or the over-expression

of DNMT3B, has been further reported in BLBCs and

TNBCs, where the hypermethylation events were more

frequent than in other breast cancer subtypes [54]. Hyper-

methylated tumours also presented decreased levels of

regulatory miRNAs, including hsa-miR-29a and -29b. In

particular, the under-expression of hsa-miR-29c has been

marked as characteristic of BLBCs, segregating them into

two subsets [55], which has been supported by our find-

ings. More studies, however, are required to investigate

the biological role of other representative genes, such as

PSMG3, BEND3 and RRP12 in G1.

A number of G2 genes are key regulators of the

basal-like tumorigenesis, such as CXCR6, HCST, C3AR1,

GBP4, LY96, ANKRD22, FPR3 and FCGR2A. These genes

show the highest betweenness centrality and node degree

among tumours, and appeared over-expressed in Basal I.

In other reports, the CXCR6 over-expression has been

linked to TNBCs, with distinct roles in autoimmunity and

cancer [56]. The co-expression of CXCR6 and CXCL16,

a chemokine ligand and receptor, has been associated
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Table 2 Clinicopathological information for patients in the
METABRIC data set

Training set Validation set

Basal I Basal II Basal I Basal II

Age [years]
≤ 40 7 18 4 17
41 to 50 11 18 10 21
51 to 60 8 20 9 16
> 60 9 24 13 35
mean 50.6 52.5 54.7 54.1
p-value 0.46 0.8

MS
Pre/post 18/17 36/43 15/21 37/52
Pre/post (%) 51.4% 45.6% 41.7% 41.6%
p-value 0.31 1

Size [cm]
≤ 2 cm 15 30 17 32
> 2 cm 20 50 19 55
Mean 23.5 30.6 22.1 29.6
p-value 0.01 0.005

Grade
Grade 2 2 8 5 3
Grade 3 33 71 30 85
Na 0 1 1 1
Mean 2.9 2.9 2.9 3
p-value 0.4 0.092

NPI
≤ 2.4 0 1 1 1
2.4 to 3.4 1 6 3 2
3.4 to 5.4 28 62 27 77
> 5.4 6 11 5 9
Mean 4.7 4.6 4.5 4.6
p-value 0.43 0.7

Lymph Node
Neg/pos 16/19 37/43 17/19 47/42
Neg/pos (%) 45.7% 46.2% 47.2% 52.8%
p-value 1 0.34

Histology
ILC 0 2 0 1
IDC 28 70 23 83
IDC-med 7 5 9 3
Others 0 3 4 2
p-value 0.001 5.4 · 10−8

p53
Mut/wild 1/15 11/14 2/11 12/17
Mut/wild (%) 6.25% 44% 15.4% 41.4%
p-value 1.1 · 10−7 7 · 10−4

Population size
35 80 36 89

The clinicopathological features described are: Age in years, menopausal status
(MS), tumour Size in cm, tumour Grade [1–3], Nottingham Prognostic Index (NPI),
Lymph Node invasion, histopathological classification (Histology) and p53 status, for
Basal I and II subgroups in the METABRIC discovery and validation sets. In all cases,
the p-value indicates the significance of the difference between Basal I and II
subgroups. For numerical variables (Age, Size, Grade, and NPI) it was calculated
using the ANOVA on ranks; for the categorical (MS, Lymph Node, Histology, p53), a
binomial test was used. Population sizes for each group are indicated in the last row.
Tumour histology is as follows: IDC=Invasive Ductal Carcinoma, ILC=Invasive
Lobular Carcinoma, IDC-med=Medullary Carcinoma, and others include tubular,
mucinous and phyllodes tumours

with inflammatory response and cell migration [57, 58]. In

addition, high levels of HCST [59, 60], C3AR1 [61], GBP4

[62], LY96 [63], ANKRD22 [64], FPR3 [65] and FCGR2A

[66], have also been related to immune activation and/or

inflammatory response in tumours; however, their role in

basal-like breast malignancies are yet to be uncovered. In

our study, the increased expression levels of these probes,

among others genes in the signature, has brought new

insights on the basal-like tumour origin and progression,

and Basal I and Basal II differentiation.

Standard clinical variables such as tumour size, his-

tology and p53 status have also corroborated with the

existence of the two basal-like subgroups. Basal I showed

the highest frequency of medullary type, whereas Basal

II exhibits the largest average of tumour size and high-

est frequency of p53 mutation. The interpretation of

these features, in practice, support the better outcome of

patients within Basal I subgroup, when compared to Basal

II. Patients’ age, post-menopausal status, tumour grade,

NPI and lymph node invasion, on the other hand, are of

a limited value for distinguishing the subgroups. Most of

these variables reflect the overall tumour aggressiveness

and the subtype poor prognosis.

MicroRNA expression levels differentiating Basal I from

Basal II subgroup

This work is the first instance of miRNA data cover-

age yielding the analysis of basal-like subgroups, which

includes patients with matched genomic, transcriptomic

and long-term survival data [67]. The miRNAs have

showed an important value for differentiating Basal I (15)

and Basal II (4). In Basal I, hsa-miR-361-3p, -342-3p, -

140-3p, -34a, -22, -142-5p, -142-3p, -155, -342-5p, -150,

-29c and -29a presented increased expression relative to

Basal II. Overall, hsa-miR-361-3p has been found over-

expressed in TNBCs with respect to other subtypes and

healthy controls [68]; and used to discriminate BRCA1/2

mutation carriers and non-carriers tumours [69]. Greater

levels of this miRNA, however, have been associated with

a protective value in tumour progression [70] and further

linked to inflammatory response [71]. In line with our

findings, these results contain additional information for

the better understanding of basal-like subgroups. Addi-

tionally, high levels of hsa-miR-342-5p [72, 73] and -34a

[74, 75] have been correlated to breast cancer decreased

recurrence and increased survival; whereas low levels have

been associated with cell death inhibition and therapy

resistance. The hsa-miR-22 [76, 77] and members of the

hsa-miR-29 family (-29a, -29b and -29c) [55, 78] – previ-

ously identified as tumour suppressors – have also been

implicated in increased survival [78] and pointed out as

promising prognostic biomarkers [77, 79].

In Basal II, hsa-miR-19b-1, -17 and -200c presented

higher expression levels relative to Basal I and control
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Fig. 3 Survival curves in METABRIC and ROCK data sets. The survival analysis was performed using the Kaplan-Meier estimator. The grey line shows the
disease specific survival of all basal-like samples in the training and validation sets, respectively. Basal I subgroup is shown in turquoise, and Basal II in
coral. Ticks represent sensors of patients who are alive and drops denote deaths. Survival curves based on the last 10 observations are plotted in dash

Table 3 MicroRNAs differentiating between basal-like breast
cancer subgroups

miRNA Probe ID p-value

hsa-put-miR-92597 CRINCR2000005427 2.8 · 10−4

hsa-miR-361-3p A_25_P00012305 2.8 · 10−4

hsa-miR-342-3p A_25_P00012357 4 · 10−4

hsa-miR-140-3p A_25_P00012177 1.3 · 10−4

hsa-miR-34a A_25_P00012086 4.9 · 10−3

hsa-miR-22 A_25_P00010204 6.3 · 10−3

hsa-miR-142-5p A_25_P00014844 2 · 10−4

hsa-miR-142-3p A_25_P00011016 2.2 · 10−3

hsa-miR-155 A_25_P00012271 6.3 · 10−6

hsa-miR-342-5p A_25_P00012354 2 · 10−7

hsa-miR-150 A_25_P00014847 8.7 · 10−6

hsa-put-miR-4391 CRINCR2000005084 1.2 · 10−4

hsa-miR-29c A_25_P00012274 6.7 · 10−3

hsa-miR-29c* A_25_P00013484 5.6 · 10−4

hsa-miR-29a A_25_P00012013 4.8 · 10−3

hsa-miR-19b-1* A_25_P00013163 5.3 · 10−4

hsa-miR-17* A_25_P00013151 5 · 10−4

hsa-miR-17 A_25_P00013841 1.9 · 10−3

hsa-miR-200c* A_25_P00013469 1.8 · 10−4

The miRNAs differentially expressed in Basal I and II subgroups are listed in this
table, with the corresponding p-value in the METABRIC training set. Probes above
the mid-line indicate the miRNAs over-expressed in Basal I, while those below are
over-expressed in Basal II. Probe IDs correspond to the Agilent platform

samples. Tumour cells with enhanced expression of hsa-

miR-19 (-19a and -19b-1) have been shown to trigger

epithelial-mesenchymal transition [80]. Notably, mem-

bers of the hsa-miR-200 family have been described as

major regulators of this biological process. High levels

of hsa-miR-200c and -200b have been observed in circu-

lating tumour cells from patients with metastatic breast

cancers [81], indicating the prognostic significance of this

biological marker [82, 83]. Consistent with these obser-

vations, our results demonstrated the recurrent over-

expression of hsa-miR-19b-1 and -200c in Basal II, with

the worst disease outcome among the two basal-like sub-

groups. Ultimately, high levels of hsa-miR-17 has been

commonly detected in TNBCs [84], associated with cell

migration in vitro and metastasis in vivo [85].

The above described miRNAs matched 50 gene-targets

from the 80-probe signature. In our study, hsa-miR-200c*

and -29c have been associated with HJURP expression

levels in G1, hsa-miR-19b-1* with CXCR6 in G2, and hsa-

miR-17 with CTSK in G3, which are among the most

important genes in the signature. None of these asso-

ciations, however, have been reported in the literature.

On the other hand, studies have demonstrated hits on

the gene regulation between hsa-miR-142-5p and CD24

[86], hsa-miR-29 and DNMT3B [87, 88], hsa-miR-142-3p

and EGR2 [89], hsa-miR-150 and EGR2 [90], hsa-miR-34a

and IKZF3 [91], hsa-miR-150 and MIAT [92], hsa-miR-

342-3p and PSMG3[93, 94], hsa-miR-17 and TIMP3 [95].

Our results further suggested an important correlation

between miRNAS and gene expression values in both

Basal I and Basal II, identified by this in silico approach.

These and other correlations are, however, highly com-

plex and not fully understood. Additional analysis using
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Fig. 4 The box plot of miRNAs differentiating between Basal I and Basal II subgroups. The image shows the expression levels of 19 miRNAs across
basal-like subgroups and other samples in the METABRIC data set. Basal I is shown in turquoise, Basal II in coral, controls in grey and all breast cancers
in yellow

in vitro and in vivo models are required to validate our

achievements.

Genomic aberrations further characterise Basal II and Basal

I subgroups

Basal-like and triple-negative tumours exhibit the

highest frequencies of genomic gains and losses in

comparison to other breast cancer subtypes [50].

Significant aberrations observed in this study confirmed

the genomic instability among basal-like and further

differentiated the two subgroups. The most common

aberrations delineating Basal II, with respect to Basal

I, occurred on the chromosomes 1, 3, 4, 5, 8, 10, 17

and X.

Table 4 MicroRNAs and corresponding target genes

miRNA Target

hsa-miR-361-3p C3AR1, CEBPA, GM2A,MIAT, SURF6, TIMP3

hsa-miR-342-3p MXD3, PSMG3, PTCRA, PTPRC, TIMP3

hsa-miR-140-3p C10orf2, CXCL11, KCTD15, PNPLA4, PRKCSH, RRP12, STK25

hsa-miR-34a CXCL11, DSN1, FCGR2A, GPR65, IKZF3, PNPLA4

hsa-miR-22 DOK2, GM2A, HSD11B1,MXD3, PNPLA4, STK25, TIMP3

hsa-miR-142-5p C10orf2, CD24, CEBPA, EGR2, FBXL5, FPR3, HSD11B1, RASSF5, TIMP3

hsa-miR-142-3p CD24, EGR2, PNPLA4, SH3BGRL

hsa-miR-155 PSRC1, RBFA

hsa-miR-342-5p ASPSCR1, CASP4, IKZF1, PSRC1

hsa-miR-150 CCR1, EGR2, FBXL5,MIAT

hsa-miR-29c CLEC7A, DNMT3B, FCGR2A, FMO1, KCTD15,MIAT, TPX2

hsa-miR-29c* GARNL3, HJURP,MIS18A

hsa-miR-29a CLEC7A, DNMT3B, FCGR2A, FMO1, KCTD15,MIAT, TPX2

hsa-miR-19b-1* CXCR6, FCGR2A, HSD11B1,MXD3

hsa-miR-17 AIM2, BEND3, CEL, CTSK , EGR2, FBXL5, PNPLA4, PYHIN1, SNTB1, TIMP3

hsa-miR-200c* DOK2, HJURP, IL2RA, PSRC1, RRP12

The differentially expressed miRNAs and corresponding target genes within the 80-probe signature are listed in this table. The matching targets appeared in at least one of
the five databases:miRBase, TarBase, PicTar,MirTarget2 andmiRanda. Target genes that were present in at least two databases are underlined
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Fig. 5 Copy number aberration defined for basal-like subgroups in the METABRIC data set. a The CNA information is plotted for 23 chromosomes
(including the X chromosome); the percentage of the population showing amplification/gain (Amp) or deletion/loss (Del) were calculated for each
cytoband. b The boxplots represent the PGA computed for each METABRIC data set

Gains in 1q, 3q, 8q, 10p and 17q have been identi-

fied in our analysis and previously reported in triple-

negative tumours [48–50]. Overall, gains on chromosome

1q are the most frequent CNAs detected in breast

carcinomas and are normally complex and discontinu-

ous [96, 97]. Amplicons of 1q, 8p and 10p have been

also described. These amplicons have contributed to the

molecular understanding of this disease and, specially,

of basal-like intrinsic subtype [98]. For instance, amplifi-

cations in 8q21 have been associated with high tumour

grade, high levels of Ki67 and other proliferation mark-

ers, including MYC, MDM2 and CCND1 [99]. Gains in

10p have further differentiated triple-negative cancers

[48], and in 17q25 have distinguished BRCA1-mutated

tumours [100].

Losses in 4q, 5q, 8p, Xp and Xq have been defined as

key aberrations within basal-like tumours in our analysis

and among other breast cancer studies [20, 49]. Frequent

losses in 4q and 5q in BRCA1-mutated tumours have

distinguished them from sporadic neoplasms. In particu-

lar, the loss in 5q has impacted the expression of several

BRCA1-dependent genes involved in DNA repair, such as

RAD17 and RAD51 [101]. High incidence rates of gains in

5q14 have also been associated with a poor prognosis in

BLBCs [102]. Other evidence suggests that aberrations on

the X chromosome are common to both BRCA1-mutated

and sporadic tumours [103].

Overall, these aberrations yielded an additional charac-

terisation of Basal I and Basal II. The increasing PGA, or

genome instability, from one subgroup to the other com-

plemented the 80-probe signature via the transcriptomic

assessment, which is still considered more representa-

tive of cellular processes at the proteomic scale [104].

Although the identified CNA did not show a direct cor-

relation with the 80 probes’ expression levels, generally

it may lead to widespread disruptions beyond the pro-

posed signature. Ultimately, the above described gains and

losses in cytobands – supported by a range of distinct

approaches in the literature – further corroborate the dif-

ferentiation of basal-like subgroups with divergent clinical

features and survival outcomes.

Consensus on the analysis of basal-like breast cancer

subtypes: a literature overview

In this section, we further established a consensus on

the description of basal-like subgroups (Basal I and Basal

II) by comparing our results with other achievements

across the literature [10, 19–21, 31], as per the focus of

each study. Notably, most of them have centred on the

classification of triple-negative entities, a more hetero-

geneous group than basal-like. For instance, among the

six intrinsic TNBC subtypes defined by Lehmann et al.

(2011) [19], three were considered relevant for further

comparisons against the proposed basal-like subgroups:
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Table 5 Cytobands associated with significant CNA acquisitions

Type Cytobands Training set Validation set
p-value p-value

Gain 1q21.1 0.055 0.0012

1q22 0.012 0.033

1q23.1 0.038 0.024

1q24.1 0.123 0.064

1q32.3 0.099 0.14

1q42.11 0.012 0.017

1q42.12 0.08 0.015

1q42.13 0.023 0.0059

1q42.3 0.12 0.03

1q43 0.0063 0.012

1q44 0.021 0.049

3q28 0.044 0.016

8q13.2 0.044 0.054

8q21.13 0.14 0.037

8q22.1 0.092 0.06

8q22.2 0.097 0.065

8q23.2 0.12 0.0096

8q24.11 0.075 0.049

8q24.21 0.05 0.039

8q24.22 0.012 0.086

10p15.3 0.1 0.004

10p12.32 0.12 0.013

17q25.1 0.06 0.1

Loss 4q35.1 0.021 0.015

5q12.2 0.15 0.04

5q14.3 0.06 0.1

8p21.2 0.046 0.027

8p21.1 0.085 0.043

Xp22.13 0.066 0.046

Xp21.2 0.049 0.059

Xq13.3 0.066 0.053

Xq21.2 0.14 0.12

Xq21.32 0.066 0.053

Chromosome aberrations in cytobands are classified into two major types:
amplifications/gains and deletions/losses. The p-values were calculated using the
binomial test with respect to the global distribution

the basal-like (BL1 and BL2) and the immunomodula-

tory (IM). The groups were described based on cell cycle

regulation, DNA damage response and immunomodu-

latory related-genes, respectively. These genes hint to

the involvement of similar mechanisms differentiating

between Basal I and Basal II, indicating that both classifi-

cations are somehow related. Genes (G1) with high node

centrality values in Basal II, such as HJURP and TPX2

have been linked to aberrant proliferation networks, cell

invasion and metastasis in breast cancer, in line with the

definition of BL1 [19]. In addition, genes (G2) defining

the Basal I subgroup, including CXCR6, HCST, C3AR1,

GBP4, LY96,ANKRD22, FPR3 and FCGR2A, have associa-

tion with immune activation and inflammatory response,

closer to IM [19]. Major regulations involving these genes

support the existence of the two subgroups, even though

the pool of samples were considerably distinct, BLBCs and

TNBCs.

In the recent classification of TNBCs performed by

Burstein et al. (2014) [20], two groups were described:

the basal-like immune-activated (BLIA) and immune-

suppressed (BLIS) subtypes, corresponding to the best

and worst prognosis, respectively. In BLIA, tumours

display an over-expression of Stat signal transduction

molecules and cytokines; in BLIS, high levels of the

immunosuppressing molecule VTCN1. The mechanisms

defining BLIA follow the characteristics of Basal I, and

BLIS follows Basal II. For example, Basal I and BLIA

[20] contain common genes and/or genes belonging to

the same family, such as CXCL9/10/11/13, GBP4/5 and

CD2/24. Similarly, Jézéquel et al. (2015) [21] identi-

fied two relevant subtypes: basal-like with low immune

response and high M2-like macrophages (C2), and basal-

enriched with high immune response and low M2-like

macrophages (C3). The defined basal-like and basal-

enriched groups shared evident similarities with Basal

II and Basal I, respectively, and corroborated with our

study in terms of probe signature and functionality. With

regards to the TNBC classification, however, Lehmann

et al. (2011) [19], Burstein et al. (2014) [20] and Jézéquel

et al. (2015) [21] partially support each other.

An alternative approach to differentiating two sub-

groups of basal-like – associated with either a low or high

risk of disease relapse – has been tested by Hallett et al.

(2012) [10], using a 14-gene signature. Among the genes

in the signature, RPL3 andGPR27 were listed as keymark-

ers of relapse, while RPL36AL and GPR65 appeared as

variants in the 80 survival-related probes. In the same

direction, Sabatier et al. (2011) [31] identified a 28-kinase

metagene signature – associated with disease-free sur-

vival and immune response – used to divide the BLBCs

into two groups: ‘Immune High’ and ‘Immune Low’.

This approach revealed key genes, including IL2RG/B,

GBP2, CCR5/7, CXCR3/5/6 and CXCL9/13, related to

their family members in our signature, such as IL2RA,

GBP4, CCR1, CXCR6 and CXCL11. These genes appeared

over-expressed in ‘Immune High’ [31] and in Basal I

subgroup, when compared to ‘Immune Low’ [31] and

Basal II.

Integrating these observations, there is a clear con-

sensus on the segregation of basal-like breast cancers
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into at least two subgroups. Basal I (Immune Active)

show molecular overlaps and phenotypic similarities with

BLIA [20], IM [19] and C3 [21]; Basal II (High Prolif-

erative) matched with BLIS [20] and C2 [21]. The com-

prehensive genomic and transcriptomic characterisation

of the two subgroups, provided in this study, will lead

to the better understanding of the mechanisms involved

in basal-like tumours and to the identification of groups

of patients with distinct disease outcome, supported by

additional survival features [10, 31]. The latter is crucial

for improving the clinical decision-making and for help-

ing tailor treatments that are focused on the immune

system manipulation and the cell cycle pathway interven-

tion. In general, tumours with activated immune response

have shown a favourable prognosis [15] and are likely to

respond to chemotherapy [31], whereas the high prolif-

erative ones have revealed increased risk of metastasis

and recurrence [18]. In this context, patients at a low risk

should follow more conservative therapies and those at

high risk should receive more effective drugs for improv-

ing individual response, towards a more personalised

medicine.

Conclusion
Studies have demonstrated that the heterogeneity of

BLBCs extends beyond the classic immunohistochem-

istry. Although several clinicopathological features have

been used to discriminate between low- and high-risk

patients, the identification of novel biomarkers with

prognostic value remains an urgent need for improv-

ing breast cancer management. The 80-probe signature

defined in this study, associated with varying survival out-

comes, contains putative markers of disease progression

and represents a promising asset for clinical applica-

tions. The integrated assessment of miRNA expression

and CNA information, ultimately, contributes towards the

definition of more comprehensive profiles of basal-like

tumours. The importance of defining groups-at-risk of

BLBCs is reflected in the impact of survival-related fea-

tures in clinical settings and, more importantly, in therapy

response.
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Additional file 1: Figure S1. Heat map of 400 probes in METABRIC
training set. This heat map shows the hierarchical clustering of 115
basal-like samples based on the probe expression values. There are two
major clusters: Basal I (turquoise) and Basal II (coral). The 80 probes that best
discriminate between the two groups are denoted in orange. The red and
blue colours represent relative over- and under-expression, respectively.
The expression values are normalised across samples. (JPG 9635.84 kb)

Additional file 2: Basal-like samples classification into Basal I and Basal II,
and the centroids defining them. Tables S1 and S2 list sample IDs for each
basal-like subgroup, Basal I and Basal II; centroids are also provided in
Table S3. (XLSX 27 kb)

Additional file 3: Functional annotation of G1, G2 and G3 probe sets.
These tables contain all probes defined for G1 (Table S4), G2 (Table S5)
and G3 (Table S6). The annotation is based on the Database for
Annotation, Visualization and Integrated Discovery (DAVID). (XLSX 37 kb)

Additional file 4: Tables S7, S8 and S9.MicroRNAs differentiating
between Basal I and Basal II and the corresponding gene targets. Table S7
shows the miRNAs differentially expressed in Basal I and II subgroups, with
the corresponding p-value in the METABRIC training and validation sets.
Tables S8 and S9 list miRNAs and all gene targets for Basal I and Basal II,
respectively. (XLSX 69 kb)
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