
Abstract

Pervasive computing environments add a multitude of

additional devices to our current computing landscapes.

Specialized embedded systems provide sensor information

about the real world or offer a distinct functionality, e.g.

presentation on a “smart wall”. Spontaneous networking

leads to constantly changing availability of services. This

requires middleware support to ease application develop-

ment. Additionally, we argue that an extensible middleware

platform covering small embedded systems to full-fledged

desktop computers is needed. Such a middleware should

provide easy-to-use abstractions to access remote services

and device-specific capabilities. We present a micro-bro-

ker-based approach which meets these requirements by al-

lowing uniform access to device capabilities and services

through proxies and the integration of different interopera-

bility protocols. A minimum configuration of the middle-

ware can be executed on embedded systems. Resource-rich

execution environments are supported by the extensibility

of the middleware.

1. Introduction

Existing middleware platforms are characterized by

their precautions to overcome heterogeneity of computer

systems with respect to the hardware platforms and pro-

gramming languages. However, the computer systems on

which applications are executed are mostly homogeneous

according to their processing and storage capabilities. The

vision of ubiquitous or pervasive computing [31] creates a

world populated not only by computers as we know them

today but also with sensors and smart “everyday items”.

The heterogeneity added by these smart things is character-

ized by an additional property: the embedded systems inte-

grated in the environment are typically tailored to distinct

purposes. Hence, not only processing and storage capabili-

ties differ widely but local device capabilities, such as dif-

ferent sensor types for temperature, pressure or positioning,

are also device-specific. Communication between the dif-

ferent end-systems can take place over different kinds of

network interfaces, such as infrared communication or ra-

dio links, e.g. Bluetooth or IEEE 802.11, and additionally

via different interoperability protocols, such as IIOP, RMI,

or simple event-based protocols.

The availability of resources, remote ones as well as lo-

cal ones, can change over time, due to network connectivity

as well as sensor-specific properties, e.g. it is unlikely that

a GPS-based positioning system will work indoors.

In order to provide application programmers with sup-

port for conquering the additional complexity in pervasive

computing environments, we have developed a micro-bro-

ker-based middleware. Our middleware will serve as a

foundation for applications as well as component systems,

hence the name BASE. Key features of BASE are the uni-

form access to remote services and device-specific capabil-

ities, the decoupling of the application communication

model and the underlying interoperability protocols, and its

dynamic extensibility supporting the range of devices from

sensors to full-fledged computers.

The paper is structured as follows. Next, we will moti-

vate the requirements for such a middleware and introduce

an example scenario. Existing approaches are classified and

discussed in the related work section before we will sketch

the overall design rationale of our approach BASE. Some

implementation details of BASE and an evaluation will be

presented before we close the paper with a conclusion and

outlook on future work.
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2. Requirements

In order to clarify our system model and derive our re-

quirements, we want to sketch a small scenario. In a future

“pervasive computing world”, a building, e.g. an office,

contains a huge number of highly specialized and therefore

very heterogeneous computing devices. While some of

them are stationary, e.g. placed in a room, others are carried

by users, e.g. as  wearable computers. Devices range from

small embedded sensors to classic stand-alone computers.

Clearly, the resources and capabilities of such devices dif-

fer widely, due to cost and size restrictions. Note, that the

capabilities of a mobile device can also change dynamical-

ly. As an example, a GPS-sensor will stop functioning

when entering a building. To summarize, a pervasive com-

puting environment consists of a multitude of heteroge-

neous devices, both stationary and mobile, with different

and dynamically changing capabilities and specific ways to

access them.

One essential device capability is the ability to commu-

nicate and interact with other devices. This is achieved by

forming spontaneous networks with changing members

due to the communication range. Following [12] we prefer

to use the term ’spontaneous’ instead of ’ad-hoc’ as ad-hoc

tends to be restricted to specific lower level functionality

like routing. The network interfaces used are highly heter-

ogeneous ranging from infrared communication over radio

links to wired connections. Interoperability protocols are

tailored to specific requirements as well, e.g. a sensor does

not need to implement a complex interoperability protocol

but can simply emit its data periodically as events. To sum-

marize, devices interact by forming spontaneous networks

using different network interfaces and interoperability pro-

tocols. Membership in these networks is temporary and

network related properties like communication cost and

bandwidth change dynamically.

Distributed applications in this scenario are structured

into application objects, or services, interacting with each

other. Services in turn use device capabilities or further ser-

vices, which are provided by either the local device, or by

remote interaction with other devices. From the applica-

tion’s point of view, one of the main challenges is to use

services and capabilities with changing availability. As we

have seen, this is true for local, e.g. GPS, as well as remote

cases, e.g. due to reachability. In addition, even a service

that is both functional and reachable can become unavail-

able. Take for example a presentation system integrated

into a video projector. If the user leaves the room, the pre-

sentation system becomes unavailable, because the user

cannot see its output anymore.

Existing middleware platforms typically address porta-

bility of applications via standardized interfaces for remote

service interaction, e.g. via stub and skeleton objects, and

interoperability of applications across different middle-

ware platforms via interoperability protocols. We derive

three additional requirements:

1. Uniform programming interface: while classical

middleware addresses uniform access to remote ser-

vices the additional heterogeneity of specialized device

capabilities requires similar abstractions, e.g. proxy

objects,  in order to access different device capabilites

in a uniform way independent of the underlying plat-

form.

2. Flexible protocol support: the service model of a mid-

dleware, e.g. remote procedure call or events, is typi-

cally reflected in its underlying interoperability

protocol, e.g. using request/response messages or emit-

ting event messages. The devices and systems in the

above-mentioned scenario would need the integration

of a variety of such service models which are reflected

by their correspondent interoperability models. A

decoupling of the service model from the interoperabil-

ity model used by the middleware can help to bridge

these interoperability domains. Additionally, this

allows different communication paths for the incoming

and outgoing messages. As an example think about two

devices communicating via infrared in order to save

energy. If the infrared link breaks due to obstacles or

distance and a wireless radio link still exists, communi-

cation can continue. This can be either achieved by pro-

viding one interoperability protocol over different

network interfaces or by the abstraction of different

interoperability protocols which allows flexible usage

of existing technologies. 

3. Tailorable: To be useable on all kinds of devices found

in future scenarios, the middleware has to be tailorable

to the device at hand, a sensor device as well as a main-

frame. The core functionality should be small enough to

be executed on a sensor platform, but easily extensible

to use the capabilities of resource richer devices.

Nowadays middleware platforms already provide high

abstractions for programming distributed systems. Some

platforms are already targeted to the above mentioned sce-

narios. The next section will discuss related work before

we will present our approach.

3. Related Work

3.1. Conventional Middleware Systems

Device heterogeneity is not a unique characteristic of

pervasive computing, but can be found in conventional sys-

tems, too. Different middleware systems like CORBA [19],

Java RMI [8] or DCOM [6] have been developed to pro-



vide a homogeneous access to remote entities independent

of e.g. operating systems or hardware architectures. Typi-

cally, these middleware systems try to provide as much

functionality as possible, which leads to very complex and

resource consuming systems, that are not suitable for small

devices. Approaches to solve this problem exist and are

discussed below. Conventional middleware systems are

designed for mostly stable network environments, in which

service unavailability is a rare event and can be treated as

an error.

3.2. Dynamically Reconfigurable Middleware

Extending conventional middleware systems to dynam-

ically reconfigurable middleware systems (e.g. [2]-[4],

[13], [24], [25]) enables such middleware to adapt its be-

havior at runtime to different environments and application

requirements, e.g. how marshalling is done. Still, different

communication models or different protocols for outgoing

and incoming messages are typically not supported. As one

exception, the Rover toolkit [9] provides this functionality

for its queued RPC (QRPC) concept, layered on top of dif-

ferent transport protocols. However, Rover only supports

the QRPC and addresses potentially disconnected access to

an infrastructure and not spontaneous networking. 

A further difference from BASE is that most existing

reconfigurable middleware systems concentrate on power-

ful reconfiguration interfaces and not on supporting small,

resource-poor devices. A notable exception to this is UIC

[25], which is discussed below.

3.3. Middleware for Resource-Poor Devices

The resource restrictions on mobile devices prohibit the

application of a full-fledged middleware system. One way

to address this is to restrict existing systems and provide

only a functional subset (e.g. [18], [27], [28]) leading to

different programming models or a subset of available in-

teroperability protocols. Another option is to structure the

middleware in multiple components, such that unnecessary

functionality can be excluded from the middleware dynam-

ically. One example is the Universally Interoperable Core

(UIC) [25]. UIC is based on a micro-kernel that can be dy-

namically extended to interact with different existing mid-

dleware solutions. Still, the used protocol stack is

determined before the start of the interaction and cannot be

switched between request and reply as in BASE and ab-

stractions are only provided for remote services.

3.4. Middleware for Pervasive Computing

Most pervasive computing middleware systems (e.g.

[1], [5], [16], [22]) try to establish some kind of integrated,

preinstalled technical infrastructure in a physical area, e.g.

a room or building, often called an intelligent environment

(IE), in which the user and his/her mobile devices are inte-

grated on-the-fly when entering the area. The IE offers a

huge variety of different capabilities and middleware ser-

vices that can be used, once the device of the user is inte-

grated.

As an example, the goal of the Gaia system [22] is to

enhance physical spaces with computers to ActiveSpaces.

Gaia provides an infrastructure to spontaneously connect

devices offering or using services registered in Gaia. To in-

tegrate existing systems, like CORBA, interaction between

application objects is done via the Unified Object Bus [23],

which is layered on top of these systems. As essential sys-

tem services, such as discovery and lookup, are provided

by the Gaia infrastructure, mobile devices cannot cooperate

autonomously without the infrastructure.

In contrast to this, we aim at supporting the cooperation

of nearby devices, i.e. using only temporarily available

hardware and software capabilities of nearby devices, inde-

pendent of the presence of an external infrastructure. An in-

frastructure, such as an IE, may be included into a

spontaneous network as temporarily available services, but

the other way round - without the infrastructure - spontane-

ous networking requires additional support.

4. BASE

Before we describe the architecture and implementa-

tion of BASE, we first want to motivate our design ratio-

nale.

4.1. Design Rationale

One key idea behind BASE is the uniform abstraction

of services as well as device capabilities via proxies as the

application programming interface. Consequently, the

middleware delivers requests to either device services in

the middleware or transport protocols. Allowing different

communication models with respect to the transactional

pattern (request/response, event, synchronous, asynchro-

nous, etc.) results in the middleware to provide the syn-

chronization independent of the underlying protocols. Our

approach is inspired by micro-kernels as they were intro-

duced into the realm of operating systems (e.g. [21], [29])

and had some first applications in the middleware area as

well (e.g. [20], [25]). Only minimal functionality, i.e. ac-

cepting and dispatching requests (so-called invocations), is

located in the micro-broker. Interoperability protocols as

well as object lifecycle management can be added as addi-

tional services, realized as plug-ins. 



The micro-broker accepts requests represented as so-

called invocation objects. In the following, we will refer to

the invocation object when talking about an invocation. An

invocation is composed of a source and a target address, an

operation with parameters, and additional information con-

cerning the handling of the invocation. The micro-broker

dispatches the invocation to either a local service, a local

device capability or a transport plug-in, which transports

the invocation to a remote micro-broker. Transports which

receive an invocation or a reply to a previous invocation –

also represented by an invocation – submit them to the mi-

cro-broker to initiate the dispatching to the corresponding

local service or device capability. Invocations can be either

generated by proxies, representing a service or a device ca-

pability, or manually by the application programmer, e.g.

like the request object in the dynamic invocation interface

in CORBA [19]. Figure 1 depicts the micro-broker in a typ-

ical setting, where invocations are dispatched to (a) device

capabilities and (b) transport plug-ins for the remote pro-

cessing on other nodes. Remote service interaction follows

the same pattern and is depicted in Figure 4.

Let us briefly argue why we have chosen this approach.

Clearly, the requirement for uniform access of device capa-

bilities as well as remote services can be easily established

by our approach.

The micro-broker allows the flexible integration of new

transport plug-ins and device capabilities by simply regis-

tering a new entity which accepts an invocation. This al-

lows to provide access to all features available on resource-

rich computer systems. The minimal functionality of the

micro-broker itself allows the deployment of the middle-

ware on resource-poor devices as well. To sum up, the uni-

form programming abstraction is provided by the service

abstraction for remote service access and device capabili-

ties. Together with the extensibility of the micro-broker

this fullfils the first and third requirement that we have

identified. The micro-broker allows in- and out-going mes-

sages over different transport protocols that can be dynam-

ically loaded and configured through the invocation

abstraction, which satisfies the second requirement. Al-

though our implementation does not rely on reflection, the

dynamic composable invocations along with the service

registries provide means for reflection about services regis-

tered with the middleware.

The prototype of BASE is implemented in Java but re-

lies only on features available in the Java Microedition.

This allows the deployment on small Java-based embedded

systems (e.g. [14]) or specialized Java processors (e.g.

[11]). The proliferation of end-systems besides classical

computers capable of executing Java, such as cell-phones

or PDAs, and the aforementioned embedded systems make

Java a suitable starting point providing a uniform abstrac-

tion for our middleware.

The benefit of our micro-broker approach compared to

existing middleware platforms is the minimal footprint

needed for a basic configuration which qualifies it for small

embedded systems as well as the extensibility providing

the means to use features of more sophisticated computers.

The configurability that reflective middleware typically

provides is also supported by BASE. A major difference to

existing middleware platforms is the support of different

communication models, such as RPC or events with differ-

ent synchronization semantics, by the micro-broker, which

allows these communication models over a variety of dif-

ferent interoperability protocols. Typically, the main com-

munication model of a middleware is reflected in its

interoperability protocols, e.g. CORBA’s IIOP reflects the

RPC by request/response messages. The BASE micro-bro-

ker only requires a transport plug-in to marshal and send an

invocation. If responses are expected they may be received

by any other transport plug-in.

4.2. BASE Architecture

Figure 2 depicts the overall architecture of BASE. Four

layers are involved. The micro-broker is the central part of

the system, consisting of the invocation broker and two

registries for local services and devices which can currently

be reached. 

Figure 1: Local and remote capability usage. 
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The micro-broker accepts invocations which are either

manually assembled or generated by a stub-call. Addition-

ally, an invocation can be used to access the registries for

service lookups.

The plug-in layer maintains plug-ins which represent

the entities capable of receiving invocations. Examples for

plug-ins are transport protocols or encapsulations of device

capabilities, such as sensor systems like positioning or tem-

perature, or other services depending on the device, like in-

put/output capabilities such as printing or video projection.

Plug-ins typically involve interaction with the underlying

operating system or directly with the hardware to offer ac-

cess to a device capability or transport. The invocation bro-

ker accesses the plug-ins via invocations. Thus the

underlying platform is encapsulated by the plug-ins. The

device capability layer represents the device platform by its

supported hardware and software.

In the remainder of this section the layers sketched

above are discussed in more detail starting with invoca-

tions, the invocation broker, registries, stubs and skeletons,

and the plug-in layer.

4.2.1. Invocation. Invocations are similar to dynamic in-

vocation interface requests in CORBA. Figure 3 shows the

elements of an invocation. Naturally, an invocation is rep-

resented as an object. Device and service IDs are used to

denote a sender and receiver of an invocation. Services are

given unique IDs that are local to a device. This ID is com-

bined with a unique device ID to form a globally unique ID.

The message IDs are needed for synchronization issues and

are described in the paragraph discussing the invocation

broker. A service context field allows the specification of

additional parameters that indicate properties relevant to

the processing of the invocation in the middleware such as

synchronization issues or Quality of Service parameters.

Basically, the context is a name-value list where parame-

ters can be added freely. The payload contains the opera-

tions and parameters. In the case of event-based

communication no receiver needs to be specified and the

operation denotes the event-type on which applications can

subscribe. The parameters then carry additional informa-

tion of the event. In point-to-point communication the op-

erations and parameters are interpreted as a remote method

invocation.

4.2.2. Invocation Broker. Central to the system core, the

invocation broker realizes the core functionality of the mi-

cro-broker. Invocations are accepted and dispatched. In or-

der to separate the control flow between application and the

processing of an invocation in a plug-in, a thread pool is

maintained. Incoming calls are entered into the invocation

table, assigned a message ID in order to identify parallel in-

vocations of the same client. The context field contains,

among other information, the communication model, i.e.

synchronity and transactional pattern (request-response/

event) of the invocation. Depending on the communication

model, the invocation broker blocks the incoming thread in

case of a synchronous invocation. A new thread from the

thread-pool is taken and the delivery of the invocation to

the responsible plug-in (see below) is executed. After the

plug-in has processed the invocation by either a local ac-

tion, e.g. retrieving a sensor data, or a remote action, i.e.

marshalling and sending the request to a remote peer, the

thread returns and is added to the threadpool again. In case

of a remote processing, an invocation may be sent back to

the initial caller. The invocation broker receives the invo-

cation from a plug-in for remote interaction, which may be

different from the one that has processed the outgoing in-

vocation, as shown in Figure 4.

Figure 2: BASE architecture. 

Platform

ServiceRegistry

...

DeviceRegistry

Plug-in Manager

InvocationBroker

T
ra
n
s
p
o
rt

A
p
p
lic
a
ti
o
n

M
ic
r
o
-b
r
o
k
e
r

(S
y
s
te
m
 c
o
re
 l
a
y
e
r)

la
y
e
r

Stub / Skeleton

Application
objects

P
lu
g
-i
n
 l
a
y
e
r

D
e
v
ic
e
 c
a
p
a
b
ili
ty

la
y
e
r

P
lu
g
-I
n

R
M
I

P
lu
g
-I
n

II
O
P

P
lu
g
-I
n

D
is
c
o
v
e
ry

P
lu
g
-I
n

W
ra
p
p
e
r

P
lu
g
-I
n

...

D
e
v
ic
e

C
a
p
a
b
ili
ty

IE
E
E

8
0
2
.1
1
b

G
P
S

s
e
n
s
o
r

X
M
L

lib
ra
ry

Figure 3: Invocation object structure. 

sender

messageID

receiver
service
context

payload

serviceID

operation parameters

deviceID

messageIDserviceIDdeviceID



The invocation carries the target object and its message

ID. If a message ID is contained in the receiver field of the

invocation, this indicates that a caller is either blocked or

awaiting an asynchronous delivery of the invocation. In

case of a blocked call the waiting thread is freed and the in-

vocation is provided as return. In the asynchronous case the

invocation broker takes a thread from the thread-pool and

calls up the application through a callback. In this case the

message ID is used to designate the application callback

registered at the invocation broker.

Notice that the explicit handling of synchronization de-

pending on the communication model retrieved from the

service context is a major design decision in BASE. This

decouples the communication model from the underlying

interoperability protocols. A request/response based com-

munication model can be realized over two event-protocols

as well as an event can be sent as a single request in an

RPC-based interoperability protocol. An interaction can

take place over different transport plug-ins for out-going

and incoming invocations.

So far, BASE only supports a limited number of com-

munication models, but an extension to different synchro-

nization models, see e.g. [17], can easily be established

with the underlying concept. 

In order to determine the target of an invocation or to

provide applications with service lookup two registries are

maintained and described below.

4.2.3. Service and Device Registry . The service registry

maintains all locally available services on a device. Servic-

es - as mentioned before - can be either application objects

offering a service or device capabilities. Applications can

query for available services by either specifying a name or

the functional properties, i.e. the interface. Hence, a simple

name and trading service is provided. Due to the nature of

spontaneous networks, the availability of a lookup service

cannot be assumed. The device registry maintains a list of

all currently reachable devices and the transport plug-ins

which provide the access to another device. If multiple

transport plug-ins are possible for the same device, they are

also entered into the list. This allows for a simple service

lookup in the vicinity of a device. If a service request can-

not be fullfilled locally, registries of nearby devices are

queried and the result presented to the application.

The information of the device registry is also used by

the invocation broker in order to determine which transport

plug-in should be used. First, without any further informa-

tion, any of the available transport plug-ins can be used. As

long as there is a connection between two devices, i.e. the

device is listed in the device registry and at least one trans-

port plug-in is provided, invocations can be exchanged.

Notice, that even if the transport plug-in by which a request

invocation has been sent becomes unavailable replies can

be received, if another transport plug-in exists. The service

context sent with an invocation can be used to control the

selection of specific transport plug-ins, e.g. in order to save

energy or require a distinct bandwidth. We plan to extend

this concept by strategies which will provide application-

specific selection of transport plug-ins according to poli-

cies, e.g. energy awareness.

Although the current implementation of the service and

device lookup is rather simple, the underlying concept is

designed to be extensible allowing the integration of other

lookup mechanisms, e.g. Jini [30] and UPnP [15].

4.2.4. Stubs and Skeletons. A common abstraction in

middleware systems are local proxies for remote entities

providing local access for application objects - stubs repre-

senting the remote service to clients and skeletons issuing

local calls to services. In BASE, stubs and skeletons rely on

the invocation abstraction. Stubs generate invocations

upon method calls and skeletons generate local method

calls upon a received invocation. Notice, that the genera-

tion of an invocation does not result in the marshalling of

the parameters. This is a responsibility of the transport

plug-ins. Invocations are used here to provide a common

concept for interaction with the micro-broker. Applications

can, however, omit the use of stubs and skeletons and com-

pose and interpret invocations directly.

In contrast to systems like Jini [30], where stub and

skeleton can include a service specific protocol stack this is

not provided in BASE. Instead a service specific protocol

Figure 4: Request / response in BASE. 
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would be realized as a transport plug-in and thus become

re-usable for other services as well.

4.2.5. Plug-In Manager. The plug-in layer is essential for

the abstraction BASE presents to an application developer.

Platform-specific capabilites, e.g. device capabilities and

transports, are represented as plug-ins and become access-

able to the application programmer as services. The plug-in

manager allows the dynamic loading and integration of

new plug-ins. Device capabilities are registered at the local

service registry, and transport protocols at the invocation

broker itself. 

Plug-ins provide an abstraction of device-specific re-

sources. Depending on the platform interface that allows

the access of the device capability layer they can be porta-

ble among devices. Thus, an application on top of BASE

will only interact via invocations, either dynamically con-

structed or generated by stubs, with device-specific capabi-

lites.

Transport plug-ins are responsible for accepting an in-

vocation, marshal it, and transmit it as a protocol data unit

to a remote peer, which then constructs an invocation by

demarshalling it. The simplest transport plug-in would use

object serialization to marshal an invocation into a byte-

buffer and send the buffer via a transport protocol, e.g.

TCP/IP. Other transport plug-ins could rely on existing in-

teroperability protocols and marshal and represent the in-

vocation accordingly, e.g. map it to a request-message in

IIOP and marshal the parameter by CDR, which allows in-

teroperability with CORBA-based systems. 

As long as the context of an invocation does not require

a distinct transport plug-in, the invocation broker may use

any transport plug-in to send an invocation to a remote de-

vice. The device registry maintains a list of all currently

available transport plug-ins to a specific device. Hence,

communication can take place as long as at least one trans-

port plug-in allows the communication.

5. Implementation Status and Evaluation

This section will present the current status of our proto-

type implementation and discuss memory size and execu-

tion performance measurements.

5.1. Implementation Status

Our prototype has been implemented in Java to rely on

its platform-independence. Although, for small devices C

or C++ would seem to be a better choice at first, we found

that Java allows us to run our middleware on a multitude of

different devices, if the used Java features, like reflection,

etc. are carefully restricted. A Tini minicomputer for exam-

ple can execute only a subset of Java Version 1.1. Other de-

vices, like smart phones or PDAs are limited to the Java

Microedition [7].

So far, our prototype implements the basic concepts.

Namely the invocation broker, the service and the device

registry are implemented. The invocation broker handles

different synchronization concepts and the service context

is used to indicate the synchronization of RPC calls. For

synchronous invocations, stub and skeleton support is im-

plemented. Two transport plug-ins are realized so far, one

based on the Java standard serialization mechanism on top

of TCP/IP and a second based on Java RMI. Others are un-

der way. The plug-in manager is implemented and allows

the dynamic and static configuration of a BASE system.

5.2. Memory Size

The memory footprint of a minimal BASE configura-

tion is crucial in order to allow the installation on small or

embedded devices. We have measured the memory foot-

print of such a configuration, containing the micro-broker

(invocation broker and registries) plus a TCP-based trans-

port plug-in. The measurements where done using the IBM

J9 implementation of the Java Microedition, more specifi-

cally the Java Microedition with the Connected Device

Configuration and the Foundation Profile. First, in order to

determine the memory footprint without additional dynam-

ic memory consumption, i.e. BASE in idle mode, we use

the Windows Task-Manager, as suggested in [32]. In this

mode 132 KByte are used. During runtime, when invoca-

tions are exchanged, the system uses up to 420 KBytes,

which was measured using the J-Sprint profiler [10].

5.3. Execution Performance Overhead

To measure the execution performance overhead intro-

duced by the additional communication via the BASE mi-

cro-broker, we compared a BASE configuration sending

invocations via a Java RMI transport plug-in with a pure

Java RMI-based system. The measurements were conduct-

ed for a synchronous RPC communication by transmitting

invocations for an operation testOperation, that takes a sin-

gle string input parameter and returns immediately. The

string size was either 0 or 1000 characters. This was done

for local as well as remote invocations. The results are

shown in Figure 5 and  Figure 6. Each value given is the av-

erage of 12750 measurements. Measurement was done in

50 rounds with  invocations per

round, leading to a total number of 

measurements. 

5.3.1. Local Invocations. In the local case, BASE is clear-

roundnumber 10×

10 i× 12750=
i 1..50=

∑



ly faster than RMI. This is due to the fact, that RMI in this

case uses the loop-back interface including the RMI and

TCP protocol stack while the BASE micro-broker forwards

the call directly to the service skeleton and does not use the

RMI-based transport plug-in at all.

5.3.2. Remote Invocations. In the remote case, BASE in-

troduces an additional performance overhead of about

20%. Taking into account the creation of invocations from

the stub objects and their interpretation by the skeletons,

this seems acceptable. However, the absolute end-to-end

latency measured for BASE is about 4 ms per remote invo-

cation with a string size of 1000, which is rather long.

Therefore, we did some additional measurements to com-

pare this to the end-to-end latency of pure RMI, i.e. calling

the remote operation directly through RMI without mar-

shalling the invocation object. The pure RMI call only

needed about 0,95 ms or 25% of the time BASE needed.

This is due to the fact that we have used the standard Java

object serialization mechanism in our prototypical RMI

plug-in to marshal the invocation object. Note, that this is

not a problem of the micro-broker itself, but of the current

RMI plug-in implementation. Currently, other transport

plug-ins are under development to overcome this perfor-

mance bottleneck.

6. Conclusion and Future Work

We have presented the concept and design of BASE, a

flexible middleware supporting the additional require-

ments of pervasive computing environments. Based on a

micro-broker design, BASE allows minimal installations

on embedded devices or specialized platforms as well as

the integration of features available on resource-rich devic-

es, such as personal computers. Application programmers

can rely on a uniform abstraction to access remote and local

services as well as device-specific capabilities. Thus BASE

supports the portability of applications across heteroge-

neous devices. The middleware shields applications from

the multitude of different communication technologies and

interoperability protocols by separating the communication

model of the application and the interoperability protocols

used. This allows the usage of nearly arbitrary interopera-

bility protocols.

The current implementation status of BASE is promis-

ing. Currently we are adding further support for different

interoperability protocols and port BASE to some special-

ized devices. Further experience will be gained from doing

protypical implementations of pervasive computing appli-

cations in our lab.

Using BASE as a middleware already will ease the de-

sign and implementation of applications. In further re-

search directions we want to design a component system

based on BASE that will support the adaptation of applica-

tions due to their execution environment. BASE will be ex-

tended by mechanisms to enforce adaptation strategies in

the component framework, such as migration or  service se-

lection strategies. The extensibility of the micro-broker ap-

proach seems to be a good BASE here.
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