BASE AND SUBBASE IN INTUITIONISTIC I-FUZZY TOPOLOGICAL SPACES

Chengyu Liang* and Conghua Yan ${ }^{\dagger}$

Abstract

In this paper, the concepts of the base and subbase in intuitionistic I fuzzy topological spaces are introduced, and use them to discuss fuzzy continuous mapping and fuzzy open mapping. We also study the base and subbase in the product of intuitionistic I-fuzzy topological spaces, and T_{2} separation in product intuitionistic I-fuzzy topological spaces. Finally, the relation between the generated product intuitionistic I fuzzy topological spaces and the product generated intuitionistic I fuzzy topological spaces are studied.

Keywords: Intuitionistic I-fuzzy topological space; Base; Subbase; T_{2} separation; Generated Intuitionistic I-fuzzy topological spaces.

2000 AMS Classification: 54A40

1. Introduction

As a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets was first introduced by Atanassov [1]. From then on, this theory has been studied and applied in a variety areas ($[4,14,18]$, etc). Among of them, the research of the theory of intuitionistic fuzzy topology is similar to the the theory of fuzzy topology. In fact, Çoker [4] introduced the concept of intuitionistic fuzzy topological spaces, this concept is originated from the fuzzy topology in the sense of Chang [3](in this paper we call it intuitionistic I-topological spaces). Based on Çoker's work [4], many topological properties of intuitionistic I-topological spaces has been discussed ($[5,10,11,12,13])$. On the other hand, ${ }_{S}$ ostak [17] proposed a new notion of fuzzy topological spaces, and this new fuzzy topological structure has been accepted widely. Influenced by Šostak's work [17], Çoker [7] gave the notion of intuitionistic fuzzy topological spaces in the sense of \check{S} ostak. By the standardized terminology introduced in [16], we will call it intuitionistic I-fuzzy

[^0]topological spaces in this paper. In [15], the authors studied the compactness in intuitionistic I-fuzzy topological spaces.

Recently, Yan and Wang [19] generalized Fang and Yue's work ([8, 21]) from I-fuzzy topological spaces to intuitionistic I-fuzzy topological spaces. In [19], they introduced the concept of intuitionistic I-fuzzy quasi-coincident neighborhood systems of intuitiostic fuzzy points, and construct the notion of generated intuitionistic I-fuzzy topology by using fuzzifying topologies. As an important result, Yan and Wang proved that the category of intuitionistic I-fuzzy topological spaces is isomorphic to the category of intuitionistic I-fuzzy quasi-coincident neighborhood spaces in [19].

It is well known that base and subbase are very important notions in classical topology. They also discussed in I-fuzzy topological spaces by Fang and Yue [9]. As a subsequent work of Yan and Wang [19], the main purpose of this paper is to introduce the concepts of the base and subbase in intuitionistic I-fuzzy topological spaces, and use them to discuss fuzzy continuous mapping and fuzzy open mapping. Then we also study the base and subbase in the product of intuitionistic I-fuzzy topological spaces, and T_{2} separation in product intuitionistic I-fuzzy topological spaces. Finally, we obtain that the generated product intuitionistic I-fuzzy topological spaces is equal to the product generated intuitionistic I-fuzzy topological spaces.

Throughout this paper, let $I=[0,1], X$ a nonempty set, the family of all fuzzy sets and intuitionistic fuzzy sets on X be denoted by I^{X} and ζ^{X}, respectively. The notation $\operatorname{pt}\left(I^{X}\right)$ denotes the set of all fuzzy points on X. For all $\lambda \in I, \underline{\lambda}$ denotes the fuzzy set on X which takes the constant value λ. For all $A \in \zeta^{X}$, let $A=<\mu_{A}, \gamma_{A}>$. (For the relating to knowledge of intuitionistic fuzzy sets and intuitionistic I-fuzzy topological spaces, we may refer to [1] and [19].)

2. Some preliminaries

2.1. Definition. ([20]) A fuzzifying topology on a set X is a function $\tau: 2^{X} \rightarrow I$, such that
(1) $\tau(\emptyset)=\tau(X)=1$;
(2) $\forall A, B \subseteq X, \tau(A \wedge B) \geq \tau(A) \wedge \tau(B)$;
(3) $\forall A_{t} \subseteq X, t \in T, \tau\left(\bigvee_{t \in T} A_{t}\right) \geq \bigwedge_{t \in T} \tau\left(A_{t}\right)$.

The pair (X, τ) is called a fuzzifying topological space.
2.2. Definition. ([1, 2]) Let a, b be two real numbers in $[0,1]$ satisfying the inequality $a+b \leq 1$. Then the pair $\langle a, b\rangle$ is called an intuitionistic fuzzy pair.

Let $<a_{1}, b_{1}>,<a_{2}, b_{2}>$ be two intuitionistic fuzzy pairs, then we define
(1) $<a_{1}, b_{1}>\leq<a_{2}, b_{2}>$ if and only if $a_{1} \leq a_{2}$ and $b_{1} \geq b_{2}$;
(2) $<a_{1}, b_{1}>=<a_{2}, b_{2}>$ if and only if $a_{1}=a_{2}$ and $b_{1}=b_{2}$;
(3) if $<a_{j}, b_{j}>_{j \in J}$ is a family of intuitionistic fuzzy pairs, then $\bigvee_{j \in J}<$ $a_{j}, b_{j}>=<\bigvee_{j \in J} a_{j}, \bigwedge_{j \in J} b_{j}>$, and $\bigwedge_{j \in J}<a_{j}, b_{j}>=<\bigwedge_{j \in J} a_{j}, \bigvee_{j \in J} b_{j}>$;
(4) the complement of an intuitionistic fuzzy pair $\langle a, b\rangle$ is the intuitionistic fuzzy pair defined by $\overline{\langle a, b\rangle}=<b, a\rangle$;

In the following, for convenience, we will use the symbols 1^{\sim} and 0^{\sim} denote the intuitionistic fuzzy pairs $<1,0>$ and $<0,1>$. The family of all intuitionistic fuzzy pairs is denoted by \mathcal{A}. It is easy to find that the set of all intuitionistic fuzzy pairs with above order forms a complete lattice, and $1^{\sim}, 0^{\sim}$ are its top element and bottom element, respectively.
2.3. Definition. ([4]) Let X, Y be two nonempty sets and $f: X \rightarrow Y$ a function, if $B=\left\{<y, \mu_{B}(y), \gamma_{B}(y)>: y \in Y\right\} \in \zeta^{Y}$, then the preimage of B under f, denoted by $f^{\leftarrow}(B)$, is the intuitionistic fuzzy set defined by

$$
f^{\leftarrow}(B)=\left\{<x, f^{\leftarrow}\left(\mu_{B}\right)(x), f^{\leftarrow}\left(\gamma_{B}\right)(x)>: x \in X\right\} .
$$

Here $f \leftarrow\left(\mu_{B}\right)(x)=\mu_{B}(f(x)), \quad f \leftarrow\left(\gamma_{B}\right)(x)=\gamma_{B}(f(x))$. (This notation is from [16]).

If $A=\left\{<x, \mu_{A}(x), \gamma_{A}(x)>: x \in X\right\} \in \zeta^{X}$, then the image A under f, denoted by $f \rightarrow(A)$ is the intuitionistic fuzzy set defined by

$$
f^{\rightarrow}(A)=\left\{<y, f^{\rightarrow}\left(\mu_{A}\right)(y),\left(\underline{1}-f^{\rightarrow}\left(\underline{1}-\gamma_{A}\right)\right)(y)>: y \in Y\right\} .
$$

Where

$$
\begin{aligned}
& f^{\rightarrow}\left(\mu_{A}\right)(y)=\left\{\begin{array}{cl}
\sup _{x \in f \leftarrow(y)} \mu_{A}(x), & \text { if } f^{\leftarrow}(y) \neq \emptyset, \\
0, & \text { if } f^{\leftarrow}(y)=\emptyset .
\end{array}\right. \\
& \underline{1}-f^{\rightarrow}\left(\underline{1}-\gamma_{A}\right)(y)=\left\{\begin{array}{cc}
\inf _{x \in f \leftarrow(y)} \gamma_{A}(x), & \text { if } f^{\leftarrow} \leftarrow(y) \neq \emptyset, \\
1, & \text { if } f^{\leftarrow}(y)=\emptyset .
\end{array}\right.
\end{aligned}
$$

2.4. Definition. ([7]) Let X be a nonempty set, $\delta: \zeta^{X} \rightarrow \mathcal{A}$ satisfy the following:
(1) $\delta(<\underline{0}, \underline{1}>)=\delta(<\underline{1}, \underline{0}>)=1^{\sim}$;
(2) $\forall A, B \in \zeta^{X}, \delta(A \bigwedge B) \geq \delta(A) \bigwedge \delta(B)$;
(3) $\forall A_{t} \in \zeta^{X}, t \in T, \delta\left(\bigvee_{t \in T} A_{t}\right) \geq \bigwedge_{t \in T} \delta\left(A_{t}\right)$.

Then δ is called an intuitionistic I-fuzzy topology on X , and the pair (X, δ) is called an intuitionistic I-fuzzy topological space. For any $A \in \zeta^{X}$, we always suppose that $\delta(A)=<\mu_{\delta}(A), \gamma_{\delta}(A)>$ later, the number $\mu_{\delta}(A)$ is called the openness degree of A, while $\gamma_{\delta}(A)$ is called the nonopenness degree of A. A fuzzy continuous mapping between two intuitionistic I-fuzzy topological spaces $\left(\zeta^{X}, \delta_{1}\right)$ and $\left(\zeta^{Y}, \delta_{2}\right)$ is a mapping $f: X \rightarrow Y$ such that $\delta_{1}(f \leftarrow(A)) \geq \delta_{2}(A)$. The category of intuitionistic I-fuzzy topological spaces and fuzzy continuous mappings is denoted by II-FTOP.
2.5. Definition. ($[6,11,12]$) Let X be a nonempty set. An intuitionistic fuzzy point, denoted by $x_{(\alpha, \beta)}$, is an intuitionistic fuzzy set $A=\left\{<y, \mu_{A}(y), \gamma_{A}(y)>\right.$: $y \in X\}$, such that

$$
\mu_{A}(y)= \begin{cases}\alpha, & \text { if } y=x \\ 0, & \text { if } y \neq x\end{cases}
$$

and

$$
\gamma_{A}(y)= \begin{cases}\beta, & \text { if } y=x \\ 1, & \text { if } y \neq x\end{cases}
$$

Where $x \in X$ is a fixed point, the constants $\alpha \in I_{0}, \beta \in I_{1}$ and $\alpha+\beta \leq 1$. The set of all intuitionistic fuzzy points $x_{(\alpha, \beta)}$ is denoted by $\operatorname{pt}\left(\zeta^{X}\right)$.
2.6. Definition. ([12]) Let $x_{(\alpha, \beta)} \in \operatorname{pt}\left(\zeta^{X}\right)$ and $A, B \in \zeta^{X}$. We say $x_{(\alpha, \beta)}$ quasi-coincides with A, or $x_{(\alpha, \beta)}$ is quasi-coincident with A, denoted $x_{(\alpha, \beta)} \hat{q} A$, if $\mu_{A}(x)+\alpha>1$ and $\gamma_{A}(x)+\beta<1$. Say A quasi-coincides with B at x, or say A is quasi-coincident with B at $x, A \hat{q} B$ at x, in short, if $\mu_{A}(x)+\mu_{B}(x)>1$ and $\gamma_{A}(x)+\gamma_{B}(x)<1$. Say A quasi-coincides with B, or A is quasi-coincident with B, if A is quasi-coincident with B at some point $x \in X$.
Relation"does not quasi-coincides with" or "is not quasi-coincident with " is denoted by $\neg \hat{q}$.

It is easily to know for $\forall x_{(\alpha, \beta)} \in \operatorname{pt}\left(\zeta^{X}\right), x_{(\alpha, \beta)} \hat{q}<\underline{1}, \underline{0}>$ and $x_{(\alpha, \beta)} \neg \hat{q}<\underline{0}, \underline{1}>$.
2.7. Definition. ([19]) Let (X, δ) be an intuitionistic I-fuzzy topological space. For all $x_{(\alpha, \beta)} \in \operatorname{pt}\left(\zeta^{X}\right), U \in \zeta^{X}$, the mapping $Q_{x_{(\alpha, \beta)}^{\delta}}^{\delta}: \zeta^{X} \rightarrow \mathcal{A}$ is defined as follows

$$
Q_{x_{(\alpha, \beta)}}^{\delta}(U)= \begin{cases}\bigvee_{x_{(\alpha, \beta)} \widehat{q} V \leq U} \delta(V), & x_{(\alpha, \beta)} \widehat{q} U \\ 0^{\sim}, & x_{(\alpha, \beta)}, \widehat{q} U .\end{cases}
$$

The set of $Q^{\delta}=\left\{Q_{x_{(\alpha, \beta)}}^{\delta}: x_{(\alpha, \beta)} \in \operatorname{pt}\left(\zeta^{X}\right)\right\}$ is called intuitionistic I-fuzzy quasicoincident neighborhood system of δ on X.
2.8. Theorem. ([19]) Let (X, δ) be an intuitionistic I-fuzzy topological space, $Q^{\delta}=\left\{Q_{x_{(\alpha, \beta)}}^{\delta}: x_{(\alpha, \beta)} \in \operatorname{pt}\left(\zeta^{X}\right)\right\}$ of maps $Q_{x_{(\alpha, \beta)}}^{\delta}: \zeta^{X} \rightarrow \mathcal{A}$ defined in Definition 2.7 satisfies: $\forall U, V \in \zeta^{X}$,
(1) $Q_{x_{(\alpha, \beta)}}^{\delta}(\langle\underline{1}, \underline{0}\rangle)=1^{\sim}, Q_{x_{(\alpha, \beta)}}^{\delta}(\langle\underline{0}, \underline{1}\rangle)=0^{\sim}$;
(2) $Q_{x_{(\alpha, \beta)}^{\delta}}^{\delta}(U)>0^{\sim} \Rightarrow x_{(\alpha, \beta)} \widehat{q} U$;
(3) $Q_{x_{(\alpha, \beta)}}^{\delta}(U \wedge V)=Q_{x_{(\alpha, \beta)}}^{\delta}(U) \wedge Q_{x_{(\alpha, \beta)}}^{\delta}(V)$;
(4) $Q_{x_{(\alpha, \beta)}}^{\delta}(U)=\bigvee_{x_{(\alpha, \beta)} \widetilde{q} V \leq U} \bigwedge_{y_{(\lambda, \rho)} \widehat{q} V} Q_{y_{(\lambda, \rho)}}^{\delta}(V)$;
(5) $\delta(U)=\bigwedge_{x_{(\alpha, \beta) \widehat{q} U}} Q_{x_{(\alpha, \beta)}}^{\delta}(U)$.
2.9. Lemma. ([21]) Suppose that (X, τ) is a fuzzifying topological space, for each $A \in I^{X}$, let $\omega(\tau)(A)=\bigwedge_{r \in I} \tau\left(\sigma_{r}(A)\right)$, where $\sigma_{r}(A)=\{x: A(x)>r\}$. Then $\omega(\tau)$ is an I-fuzzy topology on X, and $\omega(\tau)$ is called induced I-fuzzy topology determined by fuzzifying topology τ.
2.10. Definition. ([19]) Let (X, τ) be a fuzzifying topological space, $\omega(\tau)$ is an induced I-fuzzy topology determined by fuzzifying topology τ. For each $A \in \zeta^{X}$, let $\mathrm{I} \omega(\tau)(A)=<\mu^{\tau}(A), \gamma^{\tau}(A)>$, where $\mu^{\tau}(A)=\omega(\tau)\left(\mu_{A}\right) \wedge \omega(\tau)\left(\underline{1}-\gamma_{A}\right), \gamma^{\tau}(A)=$ $1-\mu^{\tau}(A)$.We say that $\left(\zeta^{X}, \mathrm{I} \omega(\tau)\right)$ is a generated intuitionistic I-fuzzy topological space by fuzzifying topological space (X, τ).
2.11. Lemma. ([19]) Let (X, τ) be a fuzzifying topological space, then
(1) $\forall A \subseteq X, \mu^{\tau}\left(<1_{A}, 1_{A^{c}}>\right)=\tau(A)$.
(2) $\forall A=<\underline{\alpha}, \underline{\beta}>\in \zeta^{X}, \operatorname{I} \omega(\tau)(A)=1^{\sim}$.
2.12. Lemma. ([19]) Suppose that $\left(\zeta^{X}, \delta\right)$ is an intuitionistic I-fuzzy topological space, for each $A \subseteq X$, let $[\delta](A)=\mu_{\delta}\left(<1_{A}, 1_{A^{c}}>\right)$. Then $[\delta]$ is a fuzzifying topology on X.
2.13. Lemma. ([19]) Let (X, τ) be a fuzzifying topological space and $(X, \mathrm{I} \omega(\tau))$ a generated intuitionistic I-fuzzy topological space. Then $[\mathrm{I} \omega(\tau)]=\tau$.

3. Base and subbase in Intuitionistic I-fuzzy topological spaces

3.1. Definition. Let (X, τ) be an intuitionistic I-fuzzy topological space and $\mathcal{B}: \zeta^{X} \rightarrow \mathcal{A} . \mathcal{B}$ is called a base of τ if \mathcal{B} satisfies the following condition

$$
\tau(U)=\bigvee_{\lambda \in K}^{\bigvee} \bigwedge_{\lambda}=U \text { 位 } \mathcal{B}\left(B_{\lambda}\right), \forall U \in \zeta^{X}
$$

3.2. Definition. Let (X, τ) be an intuitionistic I-fuzzy topological space and $\varphi: \zeta^{X} \rightarrow \mathcal{A}, \varphi$ is called a subbase of τ if $\varphi^{(\sqcap)}: \zeta^{X} \rightarrow \mathcal{A}$ is a base, where $\varphi^{(\sqcap)}(A)=\bigvee_{\sqcap\left\{B_{\lambda}: \lambda \in E\right\}=A} \bigwedge_{\lambda \in E} \varphi\left(B_{\lambda}\right)$, for all $A \in \zeta^{X}$ with (\sqcap) standing for "finite intersection".
3.3. Theorem. Suppose that $\mathcal{B}: \zeta^{X} \rightarrow \mathcal{A}$. Then \mathcal{B} is a base of some intuitionistic I-fuzzy topology, if \mathcal{B} satisfies the following condition
(1) $\mathcal{B}\left(0_{\sim}\right)=\mathcal{B}\left(1_{\sim}\right)=1^{\sim}$,
(2) $\forall U, V \in \zeta^{X}, \mathcal{B}(U \wedge V) \geq \mathcal{B}(U) \wedge \mathcal{B}(V)$.

Proof. For $\forall A \in \zeta^{X}$, let $\tau(A)=\bigvee_{\lambda \in K}^{\bigvee} B_{\lambda}=A \bigwedge_{\lambda \in K} \mathcal{B}\left(B_{\lambda}\right)$. To show that \mathcal{B} is a base of τ, we only need to prove τ is an intuitionistic I-fuzzy topology on X. For all $U, V \in \zeta^{X}$,

$$
\begin{aligned}
& \tau(U) \wedge \tau(V)=\left(\underset{\bigvee_{\alpha \in K_{1}} A_{\alpha}=U}{\bigvee} \bigwedge_{\alpha \in K_{1}} \mathcal{B}\left(A_{\alpha}\right)\right) \wedge\left(\bigvee_{\beta \in K_{2}}^{\bigvee} B_{\beta}=V \bigwedge_{\beta \in K_{2}} \mathcal{B}\left(B_{\beta}\right)\right) \\
& =\bigvee_{\alpha \in K_{1}}^{\bigvee} A_{\alpha}=U, \bigvee_{\beta \in K_{2}} B_{\beta}=V\left(\left(\bigwedge_{\alpha \in K_{1}} \mathcal{B}\left(A_{\alpha}\right)\right) \wedge\left(\bigwedge_{\beta \in K_{2}} \mathcal{B}\left(B_{\beta}\right)\right)\right) \\
& \leq \bigvee_{\alpha \in K_{1}, \beta \in K_{2}}^{\vee} \bigvee_{\left(A_{\alpha} \wedge B_{\beta}\right)=U \wedge V}\left(\bigwedge_{\alpha \in K_{1}, \beta \in K_{2}} \mathcal{B}\left(A_{\alpha} \wedge B_{\beta}\right)\right) \\
& \leq \bigvee_{\substack{ \\
\bigvee_{K}}} \bigwedge_{\lambda} \mathcal{B} \mathcal{B}\left(C_{\lambda}\right) \\
& =\tau(U \wedge V) \text {. }
\end{aligned}
$$

For all $\left\{A_{\lambda}: \lambda \in K\right\} \subseteq \zeta^{X}$, Let $\mathcal{B}_{\lambda}=\left\{\left\{B_{\delta_{\lambda}}: \delta_{\lambda} \in K_{\lambda}\right\}: \underset{\delta_{\lambda} \in K_{\lambda}}{\left.\bigvee_{\delta_{\lambda}}=A_{\lambda}\right\} \text {, then }}\right.$

$$
\tau\left(\bigvee_{\lambda \in K} A_{\lambda}\right)=\bigvee_{\delta \in K_{1}}^{\bigvee} \bigvee_{B_{\delta}=}^{\bigvee} \bigvee_{\lambda \in K} A_{\lambda} \bigwedge_{\delta \in K_{1}} \mathcal{B}\left(B_{\delta}\right)
$$

For all $f \in \prod_{\lambda \in K} \mathcal{B}_{\lambda}$, we have

$$
\bigvee_{\lambda \in K} \bigvee_{B_{\delta_{\lambda}} \in f(\lambda)} B_{\delta_{\lambda}}=\bigvee_{\lambda \in K} A_{\lambda}
$$

Therefore,

$$
\begin{aligned}
& \mu_{\tau\left(\underset{\lambda \in K}{ } \bigvee_{\lambda} A_{\lambda}\right)}=\bigvee_{\delta \in K_{1}}^{\bigvee}{ }_{B_{\delta}=} \bigvee_{\lambda \in K} A_{\lambda} \bigwedge_{\delta \in K_{1}} \mu_{\mathcal{B}\left(B_{\delta}\right)} \\
& \geq \bigvee_{f \in \prod_{\lambda \in K} \mathcal{B}_{\lambda}} \bigwedge_{\lambda \in K} \bigwedge_{B_{\delta_{\lambda}} \in f(\lambda)} \mu_{\mathcal{B}\left(B_{\delta_{\lambda}}\right)} \\
& =\bigwedge_{\lambda \in K} \bigvee_{\left\{B_{\delta_{\lambda}}: \delta_{\lambda} \in K_{\lambda}\right\} \in \mathcal{B}_{\lambda}} \bigwedge_{\delta_{\lambda} \in K_{\lambda}} \mu_{\mathcal{B}\left(B_{\delta_{\lambda}}\right)} \\
& =\bigwedge_{\lambda \in E} \mu_{\tau\left(A_{\lambda}\right)} \text {. }
\end{aligned}
$$

Similarly, we have

$$
\gamma_{\tau\left(\bigvee_{\lambda \in K} A_{\lambda}\right)} \leq \bigvee_{\lambda \in K} \gamma_{\tau\left(A_{\lambda}\right)}
$$

Hence

$$
\tau\left(\bigvee_{\lambda \in K} A_{\lambda}\right) \geq \bigwedge_{\lambda \in K} \tau\left(A_{\lambda}\right)
$$

This means that τ is an intuitionistic I-fuzzy topology on X and \mathcal{B} is a base of τ.
3.4. Theorem. Let $(X, \tau),(Y, \delta)$ be two intuitionistic I-fuzzy topology spaces and δ generated by its subbase φ. The mapping $f:(X, \tau) \rightarrow(Y, \delta)$ satisfies $\varphi(U) \leq \tau\left(f^{\leftarrow}(U)\right)$, for all $U \in \zeta^{Y}$. Then f is fuzzy continuous, i.e., $\delta(U) \leq$ $\tau(f \leftarrow(U)), \forall U \in \zeta^{Y}$.
Proof. $\forall U \in \zeta^{Y}$,

$$
\begin{aligned}
& \delta(U)=\bigvee_{\bigvee_{\lambda \in K} A_{\lambda}=U} \bigwedge_{\lambda \in K} \bigvee_{\square\left\{B_{\mu}: \mu \in K_{\lambda}\right\}=A_{\lambda}} \bigwedge_{\mu \in K_{\lambda}} \varphi\left(B_{\mu}\right) \\
& \leq \bigvee_{\substack{\bigvee \\
\lambda \in K}} \bigwedge_{\lambda}=U \text { } \bigvee_{\lambda \in K} \bigwedge_{\sqcap\left\{B_{\mu}: \mu \in K_{\lambda}\right\}=A_{\lambda}} \tau\left(f^{\leftarrow}\left(B_{\mu}\right)\right) \\
& \leq \bigvee_{\lambda \in K} \bigvee_{\lambda}=U \text { } \bigwedge_{\lambda \in K} \tau\left(f^{\leftarrow}\left(A_{\lambda}\right)\right) \\
& \leq \bigvee_{\lambda \in K} \bigvee_{\lambda}=U \quad \tau\left(f^{\leftarrow}\left(\bigvee_{\lambda \in K} A_{\lambda}\right)\right) \\
& =\tau\left(f^{\leftarrow}(U)\right) .
\end{aligned}
$$

This completes the proof.
3.5. Theorem. Suppose that $(X, \tau),(Y, \delta)$ are two intuitionistic I-fuzzy topology spaces and τ is generated by its base \mathcal{B}. If the mapping $f:(X, \tau) \rightarrow(Y, \delta)$ satisfies $\mathcal{B}(U) \leq \delta\left(f^{\rightarrow}(U)\right)$, for all $U \in \zeta^{X}$. Then f is fuzzy open, i.e., $\forall W \in \zeta^{X}, \tau(W) \leq$ $\delta(f \rightarrow(W))$.
Proof. $\forall W \in \zeta^{X}$,

$$
\begin{aligned}
\tau(W) & =\bigvee_{\bigvee_{\lambda \in K} A_{\lambda}=W} \bigwedge_{\lambda \in K} \mathcal{B}\left(A_{\lambda}\right) \\
& \leq \bigvee_{\substack{ \\
\bigvee_{K}}} \bigwedge_{\lambda}=W \\
& \leq \bigvee_{\lambda \in K} \delta\left(f^{\rightarrow}\left(A_{\lambda}\right)\right) \\
& \bigvee_{\lambda \in K} A_{\lambda}=W \\
& \delta\left(f^{\rightarrow}\left(\bigvee_{\lambda \in K} A_{\lambda}\right)\right) \\
& \delta\left(f^{\rightarrow}(W)\right)
\end{aligned}
$$

Therefore, f is open.
3.5. Theorem. Let $(X, \tau),(Y, \delta)$ be two intuitionistic I-fuzzy topology spaces and $f:(X, \tau) \rightarrow(Y, \delta)$ intuitionistic I-fuzzy continuous, $Z \subseteq X$. Then $\left.f\right|_{Z}$: $\left(Z,\left.\tau\right|_{Z}\right) \rightarrow(Y, \delta)$ is continuous, where $\left(\left.f\right|_{Z}\right)(x)=f(x),\left(\left.\tau\right|_{Z}\right)(A)=\vee\{\tau(U):$ $\left.\left.U\right|_{Z}=A\right\}$, for all $x \in Z, A \in \zeta^{Z}$.
Proof. $\forall W \in \zeta^{Z},\left(\left.f\right|_{Z}\right)^{\leftarrow}(W)=\left.f \leftarrow(W)\right|_{Z}$, we have

$$
\begin{aligned}
\left(\left.\tau\right|_{Z}\right)\left(\left(\left.f\right|_{Z}\right)^{\leftarrow}(W)\right) & =\vee\left\{\tau(U):\left.U\right|_{Z}=\left(\left.f\right|_{Z}\right)^{\leftarrow}(W)\right\} \\
& \geq \tau\left(f^{\leftarrow}(W)\right) \\
& \geq \delta(W)
\end{aligned}
$$

Then $\left.f\right|_{Z}$ is intuitionistic I-fuzzy continuous.
3.6. Theorem. Let (X, τ) be an intuitionistic I-fuzzy topology space and τ generated by its base $\mathcal{B},\left.\mathcal{B}\right|_{Y}(U)=\vee\left\{\mathcal{B}(W):\left.W\right|_{Y}=U\right\}$, for $Y \subseteq X, U \in \zeta^{Y}$. Then $\left.\mathcal{B}\right|_{Y}$ is a base of $\left.\tau\right|_{Y}$.
Proof. For $\forall U \in \zeta^{X},\left(\left.\tau\right|_{Y}\right)(U)=\underset{\left.V\right|_{Y}=U}{\bigvee} \tau(V)=\bigvee_{\left.V\right|_{Y}=U}^{\bigvee} \bigvee_{\lambda \in K} \bigvee_{A_{\lambda}=V} \bigwedge_{\lambda \in K} \mathcal{B}\left(A_{\lambda}\right)$. It remains to show the following equality

$$
\bigvee_{\left.V\right|_{Y}=U} \bigvee_{\lambda \in K} \bigwedge_{A_{\lambda}=V} \mathcal{B}\left(A_{\lambda}\right)=\bigvee_{\lambda \in K} \bigwedge_{\lambda \in K} \bigvee_{B_{\lambda}=U} \mathcal{V} \mathcal{B}(W)
$$

In one hand, for all $V \in \zeta^{X}$ with $\left.V\right|_{Y}=U$, and $\bigvee_{\lambda \in K} A_{\lambda}=V$, we have $\left.\bigvee_{\lambda \in K} A_{\lambda}\right|_{Y}=U$. Put $B_{\lambda}=\left.A_{\lambda}\right|_{Y}$, clearly $\bigvee_{\lambda \in K} B_{\lambda}=U$. Then

$$
\bigvee_{\lambda \in K}^{\bigvee} \bigwedge_{B_{\lambda}=U} \bigvee_{\lambda \in K} \mathcal{B}(W) \geq \bigwedge_{\lambda \in K} \mathcal{B}\left(A_{\lambda}\right)
$$

Thus,

$$
\bigvee_{\left.V\right|_{Y}=U} \bigvee_{\bigvee_{\lambda \in K} A_{\lambda}=V} \bigwedge_{\lambda \in K} \mathcal{B}\left(A_{\lambda}\right) \leq \bigvee_{\bigvee_{\lambda \in K} B_{\lambda}=U} \bigwedge_{\lambda \in K} \bigvee_{\left.W\right|_{Y}=B_{\lambda}} \mathcal{B}(W)
$$

On the other hand, $\forall a \in(0,1], a<\bigvee_{\lambda \in K} \bigvee_{\lambda}=U \backslash \bigwedge_{\lambda \in K} \bigvee_{\left.W\right|_{Y}=B_{\lambda}} \mu_{\mathcal{B}(W)}$, there exists a family of $\left\{B_{\lambda}: \lambda \in K\right\} \subseteq \zeta^{Y}$, such that

$$
\text { (1) } \bigvee_{\lambda \in K} B_{\lambda}=U \text {; }
$$

(2) $\forall \lambda \in K$, there exists $W_{\lambda} \in \zeta^{X}$ with $\left.W_{\lambda}\right|_{Y}=B_{\lambda}$ such that $a<$ $\mu_{\mathcal{B}\left(W_{\lambda}\right)}$.

Let $V=\bigvee_{\lambda \in E} W_{\lambda}$, it is clear $\left.V\right|_{Y}=U$ and $\bigwedge_{\lambda \in K} \mu_{\mathcal{B}\left(W_{\lambda}\right)} \geq a$. Then

$$
\bigvee_{\left.V\right|_{Y}=U} \bigvee_{\lambda \in K} \bigwedge_{\lambda} \bigwedge_{\lambda \in K} \mu_{\mathcal{B}\left(A_{\lambda}\right)} \geq a
$$

By the arbitrariness of a, we have

$$
\bigvee_{\left.V\right|_{Y}=U} \bigvee_{\bigvee_{\lambda \in K}} A_{\lambda}=V \text { } \mu_{\mathcal{B}\left(A_{\lambda}\right)} \geq \bigvee_{\bigvee_{\lambda \in K} B_{\lambda}=U} \bigwedge_{\lambda \in K} \bigvee_{\left.W\right|_{Y}=B_{\lambda}} \mu_{\mathcal{B}(W)}
$$

Similarly, we may obtain that

$$
\bigwedge_{\left.V\right|_{Y}=U} \bigwedge_{\bigvee_{\lambda \in K} A_{\lambda}=V} \gamma_{\mathcal{B}\left(A_{\lambda}\right)} \leq \bigwedge_{\bigvee_{\lambda \in K} B_{\lambda}=U} \bigvee_{\lambda \in K} \bigwedge_{\left.W\right|_{Y}=B_{\lambda}} \gamma_{\mathcal{B}(W)}
$$

So we have

$$
\bigvee_{\left.V\right|_{Y}=U} \bigvee_{\lambda \in K}^{\bigvee} \bigwedge_{\lambda} \mathcal{B}\left(A_{\lambda}\right) \geq \bigvee_{\lambda \in K} \bigwedge_{\lambda \in K} \bigvee_{\lambda} \bigvee_{\lambda \in K} \mathcal{B}(W)
$$

Therefore,

$$
\bigvee_{\left.V\right|_{Y}=U} \bigvee_{\lambda \in K}^{\bigvee} \bigwedge_{\lambda} \mathcal{A}\left(A_{\lambda}\right)=\bigvee_{\lambda \in K} \bigwedge_{\lambda \in K} \bigvee_{\lambda} \bigvee_{\lambda} \mathcal{V} \mathcal{B}(W)
$$

This means that $\left.\mathcal{B}\right|_{Y}$ is a base of $\left.\tau\right|_{Y}$.
3.7. Theorem. Let $\left\{\left(X_{\alpha}, \tau_{\alpha}\right)\right\}_{\alpha \in J}$ be a family of intuitionistic I-fuzzy topology spaces and $P_{\beta}: \prod_{\alpha \in J} X_{\alpha} \rightarrow X_{\beta}$ the projection. For all $W \in \zeta^{\prod_{\alpha \in J} X_{\alpha}}, \varphi(W)=$ $\underset{\alpha \in J}{\bigvee} \underset{P \leftarrow(U)=W}{ } \tau_{\alpha}(U)$. Then φ is a subbase of some intuitionistic I-fuzzy topology τ, here τ is called the product intuitionistic I-fuzzy topologies of $\left\{\tau_{\alpha}: \alpha \in J\right\}$ and denoted by $\tau=\prod_{\alpha \in J} \tau_{\alpha}$.

Proof. We need to prove $\varphi^{(\Pi)}$ is a subbase of τ.

$$
\begin{aligned}
\varphi^{(\sqcap)}\left(1_{\sim}\right) & =\bigvee_{\Pi\left\{B_{\lambda}: \lambda \in E\right\}=1 \sim} \bigwedge_{\lambda \in E} \varphi\left(B_{\lambda}\right) \\
& =\bigvee \bigwedge^{\square\left\{B_{\lambda}: \lambda \in E\right\}=1 \sim} \bigvee_{\lambda \in E} \bigvee_{\alpha \in J} \overbrace{P_{\alpha} \leftarrow(U)=B_{\lambda}} \tau_{\alpha}(U) \\
& =1^{\sim} .
\end{aligned}
$$

Similarly, $\varphi^{(\sqcap)}\left(0_{\sim}\right)=1^{\sim}$. For all $U, V \in \zeta^{\prod_{\mathcal{J}}} X_{\alpha}$, we have

$$
\begin{aligned}
\varphi^{(\sqcap)}(U) \wedge \varphi^{(\sqcap)}(V) & =\left(\bigvee_{\sqcap\left\{B_{\alpha}: \alpha \in E_{1}\right\}=U} \bigwedge_{\alpha \in E_{1}} \varphi\left(B_{\alpha}\right)\right) \wedge\left(\bigvee_{\sqcap\left\{C_{\beta}: \beta \in E_{2}\right\}=V} \bigwedge_{\beta \in E_{2}} \varphi\left(C_{\beta}\right)\right) \\
& =\bigvee_{\sqcap\left\{B_{\alpha}: \alpha \in E_{1}\right\}=U} \bigvee_{\sqcap\left\{C_{\beta}: \beta \in E_{2}\right\}=V}\left(\left(\bigwedge_{\alpha \in E_{1}} \varphi\left(B_{\alpha}\right)\right) \wedge\left(\bigwedge_{\beta \in E_{2}} \varphi\left(C_{\beta}\right)\right)\right) \\
& \leq \bigvee_{\sqcap\left\{B_{\lambda}: \lambda \in E\right\}=U \wedge V} \varphi \text { B }_{\lambda \in E} \varphi\left(B_{\lambda}\right) \\
& =\varphi^{(\sqcap)}(U \wedge V) .
\end{aligned}
$$

Hence, $\varphi^{(\sqcap)}$ is a base of τ, i.e., φ is a subbase of τ. And by Theorem 3.3 we have

$$
\begin{aligned}
\tau(A) & =\bigvee_{\bigvee_{\lambda \in K} B_{\lambda}=A} \bigwedge_{\lambda \in K} \varphi^{(\sqcap)}\left(B_{\lambda}\right) \\
& =\bigvee_{\bigvee_{\lambda} B_{\lambda}=A} \bigwedge_{\lambda \in K} \bigvee_{\cap\left\{C_{\rho}: \rho \in E\right\}=B_{\lambda}} \bigwedge_{\rho \in E} \varphi\left(C_{\rho}\right) \\
& =\bigvee_{\lambda \in K} \bigvee_{\lambda} \bigwedge_{\lambda} \bigvee_{\lambda \in K} \bigwedge_{\sqcap\left\{C_{\rho}: \rho \in E\right\}=B_{\lambda}} \bigvee_{\rho \in E} \bigvee_{\alpha \in J} \bigvee_{\alpha}^{\leftarrow}(V)=C_{\rho}
\end{aligned} \tau_{\alpha}(V) .
$$

By the above discussions, we easily obtain the following corollary.
3.8. Corollary. Let $\left(\prod_{\alpha \in J} X_{\alpha}, \prod_{\alpha \in J} \tau_{\alpha}\right)$ be the product space of a family of intuitionistic I-fuzzy topology spaces $\left\{\left(X_{\alpha}, \tau_{\alpha}\right)\right\}_{\alpha \in J}$. Then $P_{\beta}:\left(\prod_{\alpha \in J} X_{\alpha}, \prod_{\alpha \in J} \tau_{\alpha}\right) \rightarrow$ $\left(X_{\beta}, \tau_{\beta}\right)$ is continuous, for all $\beta \in J$.

Proof. $\forall U \in \zeta^{X_{\beta}}$,

$$
\begin{aligned}
\tau\left(P_{\beta}^{\leftarrow}(U)\right) & =\bigvee_{\bigvee_{\lambda \in K} B_{\lambda}=P_{\beta}^{\leftarrow}(U)} \bigwedge_{\lambda \in K} \bigvee_{\square\left\{C_{\rho}: \rho \in E\right\}=B_{\lambda}} \bigwedge_{\rho \in E} \bigvee_{\alpha \in J} \bigvee_{P_{\alpha}^{\leftarrow}(V)=C_{\rho}} \tau_{\alpha}(V) \\
& \geq \tau_{\beta}(U)
\end{aligned}
$$

Therefore, P_{β} is continuous.

4. Applications in product Intuitionistic I-fuzzy topological space

4.1. Definition. Let (X, τ) be an intuitionistic I-fuzzy topology space. The degree to which two distinguished intuitionistic fuzzy points $x_{(\alpha, \beta)}, y_{(\lambda, \rho)} \in \operatorname{pt}\left(\zeta^{X}\right)(x \neq$ $y)$ are T_{2} is defined as follows

$$
T_{2}\left(x_{(\alpha, \beta)}, y_{(\lambda, \rho)}\right)=\bigvee_{U \wedge V=0 \sim}\left(Q_{x_{(\alpha, \beta)}}(U) \wedge Q_{y_{(\lambda, \rho)}}(V)\right)
$$

The degree to which (X, τ) is T_{2} is defined by

$$
T_{2}(X, \tau)=\bigwedge\left\{T_{2}\left(x_{(\alpha, \beta)}, y_{(\lambda, \rho)}\right): x_{(\alpha, \beta)}, y_{(\lambda, \rho)} \in \operatorname{pt}\left(\zeta^{X}\right), x \neq y\right\}
$$

4.2. Theorem. Let $(X, \mathrm{I} \omega(\tau))$ be a generated intuitionistic I-fuzzy topological space by fuzzifying topological space (X, τ) and $T_{2}(X, \mathrm{I} \omega(\tau)) \triangleq\left\langle\mu_{T_{2}(X, \mathrm{I} \omega(\tau))}, \gamma_{T_{2}(X, \mathrm{I} \omega(\tau))}\right\rangle$. Then $\mu_{T_{2}(X, \mathrm{I} \omega(\tau))}=T_{2}(X, \tau)$.
Proof. For all $x, y \in X, x \neq y$, and each $a<\bigwedge\left\{\underset{U \wedge V=0 \sim}{ } \bigvee_{\sim_{x_{(\alpha, \beta)}}(U)} \wedge \mu_{Q_{y_{(\lambda, \rho)}}(V)}\right)$: $\left.x_{(\alpha, \beta)}, y_{(\lambda, \rho)} \in \operatorname{pt}\left(\zeta^{X}\right), x \neq y\right\}$, there exists $U, V \in \zeta^{X}$ with $U \wedge V=0 \sim$ such that $a<\mu_{Q_{x_{(1,0)}}(U)}, a<\mu_{Q_{y_{(1,0)}}(V)}$. Then there exists $U_{1}, V_{1} \in \zeta^{X}$, such that

$$
\begin{aligned}
x_{(1,0)} \widehat{q} U_{1} & \leq U, a<\omega(\tau)\left(\mu_{U_{1}}\right), \\
y_{(1,0)} \widehat{q} V_{1} & \leq V, a<\omega(\tau)\left(\mu_{V_{1}}\right)
\end{aligned}
$$

Denote $A=\sigma_{0}\left(\mu_{U_{1}}\right), B=\sigma_{0}\left(\mu_{V_{1}}\right)$, it is clear that $x \in A, y \in B$. From the fact $U \wedge V=0_{\sim}$, it implies $\mu_{U_{1}} \wedge \mu_{V_{1}}=\underline{0}$. Then we have $\sigma_{0}\left(\mu_{U_{1}}\right) \wedge \sigma_{0}\left(\mu_{V_{1}}\right)=\emptyset$, i.e., $A \wedge B=\emptyset$.

$$
a<\omega(\tau)\left(\mu_{U_{1}}\right)=\bigwedge_{r \in I} \tau\left(\sigma_{r}\left(\mu_{U_{1}}\right)\right) \leq \tau\left(\sigma_{0}\left(\mu_{U_{1}}\right)\right)=\tau(A)
$$

Thus

$$
a<\bigvee_{x \in U \subseteq A} \tau(U)=N_{x}(A)
$$

Similarly, we have $a<N_{y}(B)$. Hence

$$
a<\bigvee_{A \cap B=\emptyset}\left(N_{x}(A) \wedge N_{y}(B)\right)
$$

Then

$$
a \leq \bigwedge\left\{\bigvee_{A \cap B=\emptyset}\left(N_{x}(A) \wedge N_{y}(B)\right): x, y \in X, x \neq y\right\}
$$

Therefore,

$$
\begin{aligned}
& \bigwedge\left\{\bigvee_{U \wedge V=0}\left(\mu_{Q_{x(\alpha, \beta)}(U)} \wedge \mu_{Q_{y_{(\lambda, \rho)}}(V)}\right): x_{(\alpha, \beta)}, y_{(\lambda, \rho)} \in \operatorname{pt}\left(\zeta^{X}\right), x \neq y\right\} \\
& \leq \bigwedge\left\{\bigvee_{A \cap B=\emptyset}\left(N_{x}(A) \wedge N_{y}(B)\right): x, y \in X, x \neq y\right\}
\end{aligned}
$$

On the other hand, for all $x_{(\alpha, \beta)}, y_{(\lambda, \rho)} \in \operatorname{pt}\left(\zeta^{X}\right), x \neq y$, and $a<\bigwedge\left\{\underset{A \cap B=\emptyset}{\bigvee}\left(N_{x}(A) \wedge\right.\right.$ $\left.\left.N_{y}(B)\right): x, y \in X, x \neq y\right\}$, there exists $A, B \in 2^{X}, A \wedge B=\emptyset$, such that $a<N_{x}(A), a<N_{y}(B)$. Then there exists $A_{1}, B_{1} \in 2^{X}$, such that

$$
x \in A_{1} \subseteq A, a<\tau\left(A_{1}\right)
$$

$$
y \in B_{1} \subseteq B, a<\tau\left(B_{1}\right)
$$

Let $U=\left\langle 1_{A_{1}}, 1_{A_{1}^{c}}\right\rangle, V=\left\langle 1_{B_{1}}, 1_{B_{1}^{c}}\right\rangle$, where A_{1}^{c} is the complement of A_{1}, then $x_{(\alpha, \beta)} \widehat{q} U, y_{(\lambda, \rho)} \widehat{q} V$. In fact, $1_{A_{1}}(x)=1>1-\alpha, 1_{A_{1}^{c}}(x)=0<1-\beta$. Thus $x_{(\alpha, \beta)} \widehat{q} U$. Similarly, we have $y_{(\lambda, \rho)} \widehat{q} V$. By $A \wedge B=\emptyset$, we have $A_{1} \wedge B_{1}=\emptyset$. Then for all $z \in X$, we obtain

$$
\begin{aligned}
& \left(1_{A_{1}} \wedge 1_{B_{1}}\right)(z)=1_{A_{1}}(z) \wedge 1_{B_{1}}(z)=0, \\
& \left(1_{A_{1}^{c}} \vee 1_{B_{1}^{c}}\right)(z)=1_{A_{1}^{c}}(z) \vee 1_{B_{1}^{c}}(z)=1 .
\end{aligned}
$$

Hence

$$
1_{A_{1}} \wedge 1_{B_{1}}=\underline{0}, 1_{A_{1}^{c}} \vee 1_{B_{1}^{c}}=\underline{1}
$$

Since $\forall r \in I_{1}, \sigma_{r}\left(1_{A_{1}}\right)=A_{1}$, we have

$$
\omega(\tau)\left(1_{A_{1}}\right)=\bigwedge_{r \in I_{1}} \tau\left(\sigma_{r}\left(1_{A_{1}}\right)\right)=\tau\left(A_{1}\right)
$$

By $\underline{1}-1_{A_{1}^{c}}=1_{A_{1}}$, and $a<\tau\left(A_{1}\right)$, we have

$$
\begin{aligned}
a & <\omega(\tau)\left(1_{A_{1}}\right) \wedge \omega(\tau)\left(\underline{1}-1_{A_{1}^{c}}\right) \\
& =\omega(\tau)\left(\mu_{U}\right) \wedge \omega(\tau)\left(\underline{1}-\gamma_{U}\right)
\end{aligned}
$$

So,

$$
a<\bigvee_{x_{(\alpha, \beta)} \widetilde{q} W \subseteq U}\left(\omega(\tau)\left(\mu_{W}\right) \wedge \omega(\tau)\left(\underline{1}-\gamma_{W}\right)\right)=\mu_{Q_{x_{(\alpha, \beta)}}(U)}
$$

Similarly, we have $a<\mu_{Q_{y_{(\lambda, \rho)}}(V)}$. This deduces that

$$
a<\bigvee_{U \wedge V=0 \sim}\left(\mu_{Q_{x_{(\alpha, \beta)}}(U)} \wedge \mu_{Q_{y_{(\lambda, \rho)}}(V)}\right)
$$

Furthermore, we may obtain

$$
a \leq \bigwedge\left\{\bigvee_{U \wedge V=0 \sim}\left(\mu_{Q_{x(\alpha, \beta)}(U)} \wedge \mu_{Q_{y_{(\lambda, \rho)}}(V)}\right): x_{(\alpha, \beta)}, y_{(\lambda, \rho)} \in \operatorname{pt}\left(\zeta^{X}\right), x \neq y\right\}
$$

Hence

$$
\begin{aligned}
& \bigwedge\left\{\bigvee_{U \wedge V=0 \sim}\left(\mu_{Q_{x_{(\alpha, \beta)}}(U)} \wedge \mu_{Q_{y_{(\lambda, \rho)}}(V)}\right): x_{(\alpha, \beta)}, y_{(\lambda, \rho)} \in \operatorname{pt}\left(\zeta^{X}\right), x \neq y\right\} \\
& \geq \bigwedge\left\{\bigvee_{A \cap B=\emptyset}\left(N_{x}(A) \wedge N_{y}(B)\right): x, y \in X, x \neq y\right\}
\end{aligned}
$$

This means that $\bigwedge\left\{\underset{U \wedge V=0 \sim}{ }\left(\mu_{Q_{x(\alpha, \beta)}(U)} \wedge \mu_{Q_{y_{(\lambda, \rho)}}(V)}\right): x_{(\alpha, \beta)}, y_{(\lambda, \rho)} \in \operatorname{pt}\left(\zeta^{X}\right), x \neq\right.$ $y\}=\bigwedge\left\{\bigvee_{A \cap B=\emptyset}\left(N_{x}(A) \wedge N_{y}(B)\right): x, y \in X, x \neq y\right\}$. Therefore we have

$$
\mu_{T_{2}(X, \mathrm{I} \omega(\tau))}=T_{2}(X, \tau)
$$

4.3. Lemma. Let $\left(\prod_{j \in J} X_{j}, \prod_{j \in J} \tau_{j}\right)$ be the product space of a family of intuitionistic I-fuzzy topology spaces $\left\{\left(X_{j}, \tau_{j}\right)\right\}_{j \in J}$. Then $\tau_{j}\left(A_{j}\right) \leq\left(\prod_{j \in J} \tau_{j}\right)\left(P_{j}^{\leftarrow}\left(A_{j}\right)\right)$, for all $j \in J, A_{j} \in \zeta^{X_{j}}$.

Proof. Let $\prod_{j \in J} \tau_{j}=\delta, x_{(\alpha, \beta)} \widehat{q} f \leftarrow(U) \Leftrightarrow f^{\rightarrow}\left(x_{(\alpha, \beta)}\right) \widehat{q} U$. Then for all $j \in J, A_{j} \in$ $\zeta^{X_{j}}$, we have

$$
\begin{aligned}
\delta\left(P_{j}^{\leftarrow}\left(A_{j}\right)\right) & =\bigwedge_{x_{(\alpha, \beta)} \widehat{q} P_{j}^{\leftarrow}\left(A_{j}\right)} Q_{x_{(\alpha, \beta)}}^{\delta}\left(P_{j}^{\leftarrow}\left(A_{j}\right)\right) \\
& \geq \bigwedge_{x_{(\alpha, \beta)} \widehat{q} P_{j}^{\leftarrow}\left(A_{j}\right)} Q_{P_{\vec{j}}\left(x_{(\alpha, \beta))}^{\tau_{j}}\left(A_{j}\right)\right.} \\
& =\bigwedge_{P_{j}^{\rightarrow}\left(x_{(\alpha, \beta)}\right) \widehat{q} A_{j}} Q_{P_{\vec{j}}\left(x_{(\alpha, \beta))}^{\tau_{j}}\left(A_{j}\right)\right.}^{\tau_{j}}\left(A_{j}\right) \\
& \geq \bigwedge_{x_{(\alpha, \beta)}^{j} \widehat{q} A_{j}} Q_{x_{(\alpha, \beta)}^{\tau_{j}^{j}}}\left(A_{j}\right) \\
& =\tau_{j}\left(A_{j}\right) .
\end{aligned}
$$

This completes the proof.
4.4. Theorem. Let $\left(\prod_{j \in J} X_{j}, \prod_{j \in J} \tau_{j}\right)$ be the product space of a family of intuitionistic I-fuzzy topology spaces $\left\{\left(X_{j}, \tau_{j}\right)\right\}_{j \in J}$. Then $\bigwedge_{j \in J} T_{2}\left(X_{j}, \tau_{j}\right) \leq T_{2}\left(\prod_{j \in J} X_{j}, \prod_{j \in J} \tau_{j}\right)$.
Proof. For all $g_{(\alpha, \beta)}, h_{(\lambda, \rho)} \in \operatorname{pt}\left(\zeta_{\zeta^{j \in J}} X_{j}\right)$ and $g \neq h$. Then there exists $j_{0} \in J$ such that $g\left(j_{0}\right) \neq h\left(j_{0}\right)$, where $g\left(j_{0}\right), h\left(j_{0}\right) \in X_{j_{0}}$.

For all $U_{j_{0}}, V_{j_{0}} \in \zeta^{X_{j_{0}}}$ with $U_{j_{0}} \wedge V_{j_{0}}=0 \sim_{\sim}^{X_{j}}$, we have

$$
P_{j_{0}}^{\leftarrow}\left(U_{j_{0}}\right) \wedge P_{j_{0}}^{\leftarrow}\left(V_{j_{0}}\right)=P_{j_{0}}^{\leftarrow}\left(U_{j_{0}} \wedge V_{j_{0}}\right)=0_{0^{j \in J}}^{\prod_{j}}
$$

Then $Q_{g\left(j_{0}\right)_{(\alpha, \beta)}}\left(U_{j_{0}}\right) \leq Q_{g_{(\alpha, \beta)}}\left(P_{j_{0}}^{\leftarrow}\left(U_{j_{0}}\right)\right)$. In fact, if $g\left(j_{0}\right)_{(\alpha, \beta)} \widehat{q} U_{j_{0}}$, then $g_{(\alpha, \beta)} \widehat{q} P_{j_{0}}^{\leftarrow}\left(U_{j_{0}}\right)$. For all $V \leq U_{j_{0}}$, we have $P_{j_{0}}^{\leftarrow}(V) \leq P_{j_{0}}^{\leftarrow}\left(U_{j_{0}}\right)$. On account of Lemma 4.3, we have

$$
\begin{aligned}
& \bigvee_{g\left(j_{0}\right)_{(\alpha, \beta)} \widehat{q}} V \leq U_{j_{0}} \\
& \tau_{j_{0}}(V) \leq \underset{g_{(\alpha, \beta) \widehat{q}}\left(P_{j_{0}^{5}}^{\leftarrow}(V) \leq P_{j_{0}}^{\leftarrow}\left(U_{\left.j_{0}\right)}\right)\right.}{ }\left(\prod_{j \in J} \tau_{j}\right)\left(P_{j_{0}}^{\leftarrow}(V)\right) \\
& \leq \bigvee_{g_{(\alpha, \beta)} \widehat{q}} \bigvee_{G \leq P_{j_{0}}^{\leftarrow}\left(U_{\left.j_{0}\right)}\right)}\left(\prod_{j \in J} \tau_{j}\right)(G),
\end{aligned}
$$

i.e., $Q_{g\left(j_{0}\right)_{(\alpha, \beta)}}\left(U_{j_{0}}\right) \leq Q_{g_{(\alpha, \beta)}}\left(P_{j_{0}}^{\leftarrow}\left(U_{j_{0}}\right)\right)$. Thus,

$$
\begin{aligned}
& \bigvee_{X_{j=0}}\left(Q_{g\left(j_{0}\right)_{(\alpha, \beta)}}(U) \wedge Q_{h\left(j_{0}\right)_{(\lambda, \rho)}}(V)\right)
\end{aligned}
$$

So we have

$$
T_{2}\left(g\left(j_{0}\right)_{(\alpha, \beta)}, h\left(j_{0}\right)_{(\lambda, \rho)}\right) \leq T_{2}\left(g_{(\alpha, \beta)}, h_{(\lambda, \rho)}\right)
$$

Thus

$$
T_{2}\left(X_{j_{0}}, \tau_{j_{0}}\right) \leq T_{2}\left(\prod_{j \in J} X_{j}, \prod_{j \in J} \tau_{j}\right)
$$

Therefore,

$$
\bigwedge_{j \in J} T_{2}\left(X_{j}, \tau_{j}\right) \leq T_{2}\left(\prod_{j \in J} X_{j}, \prod_{j \in J} \tau_{j}\right)
$$

4.5. Lemma. Let $(X, \mathrm{I} \omega(\tau))$ be a generated intuitionistic I-fuzzy topological space by fuzzifying topological space (X, τ). Then
(1) $\operatorname{I} \omega(\tau)(A)=1^{\sim}$, for all $A=\langle\underline{\alpha}, \underline{\beta}\rangle \in \zeta^{X}$;
(2) $\forall B \subseteq X, \tau(B)=\mu_{\mathrm{I} \omega(\tau)}\left(\left\langle 1_{B}, 1_{B^{c}}\right\rangle\right)$.

Proof. By Lemma 2.11, 2.12 and 2.13, it is easy to prove it.
4.6. Lemma. Let (X, δ) be a stratified intuitionistic I-fuzzy topological space (i.e., for all $\left\langle\alpha, \beta>\in \mathcal{A}, \delta(<\underline{\alpha}, \underline{\beta}>)=1^{\sim}\right)$. Then for all $A \in \zeta^{X}$

$$
\bigwedge_{r \in I} \mu_{\delta}\left(\left\langle 1_{\sigma_{r}\left(\mu_{A}\right)}, 1_{\left.\left(\sigma_{r}\left(\mu_{A}\right)\right)^{c}\right\rangle}\right\rangle\right) \leq \mu_{\delta}(A) .
$$

Proof. For all $A \in \zeta^{X}$, and for any $a<\bigwedge_{r \in I} \mu_{\delta}\left(\left\langle 1_{\sigma_{r}\left(\mu_{A}\right)}, 1_{\left(\sigma_{r}\left(\mu_{A}\right)\right)^{c}}\right\rangle\right), y_{(\alpha, \beta)} \in$ $\operatorname{pt}\left(\zeta^{X}\right)$ with $y_{(\alpha, \beta)} \widehat{q} A$, clearly $\mu_{A}(y)>1-\alpha$. Then there exists $\delta>0$ such that $\mu_{A}(y)>1-\alpha+\delta$. Thus $y \in \sigma_{1-\alpha+\delta}\left(\mu_{A}\right)$. So we have

$$
y_{(\alpha, \beta)} \widehat{q}\left\langle 1_{\sigma_{1-\alpha+\delta}\left(\mu_{A}\right)}, 1_{\left(\sigma_{1-\alpha+\delta}\left(\mu_{A}\right)\right)^{c}}\right\rangle .
$$

Then

$$
\begin{aligned}
a & <\mu_{\delta}\left(\left\langle 1_{\sigma_{1-\alpha+\delta}\left(\mu_{A}\right)}, 1_{\left.\left(\sigma_{1-\alpha+\delta}\left(\mu_{A}\right)\right)^{c}\right\rangle}\right\rangle\right) \\
& =\bigwedge_{z_{(\alpha, \beta)} \widehat{q}\left\langle 1_{\sigma_{1-\alpha+\delta}\left(\mu_{A}\right)}, 1_{\left.\left(\sigma_{1-\alpha+\delta}\left(\mu_{A}\right)\right)^{c}\right\rangle}\right.} \mu\left(Q _ { z _ { (\alpha , \beta) } } \left(\left\langle1_{\sigma_{1-\alpha+\delta}\left(\mu_{A}\right)}, 1_{\left.\left.\left.\left(\sigma_{1-\alpha+\delta}\left(\mu_{A}\right)\right)^{c}\right\rangle\right)\right) .}\right.\right.\right.
\end{aligned}
$$

Therefore,

$$
a<\mu\left(Q_{y_{(\alpha, \beta)}}\left(\left\langle 1_{\sigma_{1-\alpha+\delta}\left(\mu_{A}\right)}, 1_{\left(\sigma_{1-\alpha+\delta}\left(\mu_{A}\right)\right)^{c}}\right\rangle\right)\right) .
$$

Since (X, δ) is a stratified intuitionistic I-fuzzy topological space, we have $\left.Q_{y_{(\alpha, \beta)}}(\underline{1-\alpha+\delta}, \underline{\alpha-\delta}\rangle\right)=1^{\sim}$. Moreover, it is well known that the following relations hold

$$
\begin{gathered}
\underline{1-\alpha+\delta} \wedge 1_{\sigma_{1-\alpha+\delta}\left(\mu_{A}\right)} \leq \mu_{A} \\
\underline{\alpha-\delta} \vee 1_{\left(\sigma_{1-\alpha+\delta}\left(\mu_{A}\right)\right)^{c}} \geq 1-\mu_{A} \geq \gamma_{A}
\end{gathered}
$$

So we have

$$
a<\mu\left(Q_{y_{(\alpha, \beta)}}\left(\left\langle\underline{1-\alpha+\delta} \wedge 1_{\sigma_{1-\alpha+\delta}\left(\mu_{A}\right)}, \underline{\alpha-\delta} \vee 1_{\left.\left(\sigma_{1-\alpha+\delta}\left(\mu_{A}\right)\right)^{c}\right\rangle}\right\rangle\right) \leq \mu\left(Q_{y_{(\alpha, \beta)}}(A)\right)\right.
$$

Then $a \leq \mu_{\delta}(A)$. Therefore,

$$
\bigwedge_{r \in I} \mu_{\delta}\left(\left\langle 1_{\sigma_{r}\left(\mu_{A}\right)}, 1_{\left(\sigma_{r}\left(\mu_{A}\right)\right)^{c}}\right\rangle\right) \leq \mu_{\delta}(A) .
$$

4.7. Theorem. Let $\left(\prod_{\alpha \in J} X_{\alpha}, \prod_{\alpha \in J} \tau_{\alpha}\right)$ be the product space of a family of fuzzifying topological space $\left\{\left(X_{\alpha}, \tau_{\alpha}\right)\right\}_{\alpha \in J}$. Then $\left(\prod_{\alpha \in J} \mathrm{I} \omega\left(\tau_{\alpha}\right)\right)(A)=\mathrm{I} \omega\left(\prod_{\alpha \in J} \tau_{\alpha}\right)(A)$.

Proof. Let $\left.\left.\left(\prod_{\alpha \in J} \mathrm{I} \omega\left(\tau_{\alpha}\right)\right)(A)=\left\langle\mu \prod_{\alpha \in J} \mathrm{I} \omega\left(\tau_{\alpha}\right)\right)(A), \gamma \prod_{\alpha \in J} \mathrm{I} \omega\left(\tau_{\alpha}\right)\right)(A)\right\rangle$. For all $\left.a<\mu \prod_{\alpha \in J} \mathrm{I} \omega\left(\tau_{\alpha}\right)\right)(A)$, there exists $\left\{U_{j}^{a}\right\}_{j \in K}$ such that $\bigvee_{j \in K} U_{j}^{a}=A$, for each U_{j}^{a}, there exists $\left\{A_{\lambda, j}^{a}\right\}_{\lambda \in E}$ such that $\bigwedge_{\lambda \in E} A_{\lambda, j}^{a}=U_{j}^{a}$, where E is an finite index set. In addition, for every $\lambda \in E$, there exists $\alpha \triangleq \alpha(\lambda) \in J$ and $W_{\alpha} \in \zeta^{X_{\alpha}}$ with $P_{\alpha}^{\leftarrow}\left(W_{\alpha}\right)=A_{\lambda, j}^{a}$ such that $a<\mu\left(\mathrm{I} \omega\left(\tau_{\alpha}\right)\left(W_{\alpha}\right)\right)$. Then we have

$$
\begin{gathered}
a<\omega\left(\tau_{\alpha}\right)\left(\mu_{W_{\alpha}}\right), \\
a<\omega\left(\tau_{\alpha}\right)\left(\underline{1}-\gamma_{W_{\alpha}}\right) .
\end{gathered}
$$

Thus for all $r \in I$, we have

$$
\begin{aligned}
a & <\tau_{\alpha}\left(\sigma_{r}\left(\mu_{W_{\alpha}}\right)\right) \\
& \leq\left(\prod_{\alpha \in J} \tau_{\alpha}\right)\left(P_{\alpha}^{\leftarrow}\left(\sigma_{r}\left(\mu_{W_{\alpha}}\right)\right)\right) \\
& =\left(\prod_{\alpha \in J} \tau_{\alpha}\right)\left(\sigma_{r}\left(P_{\alpha}^{\leftarrow}\left(\mu_{W_{\alpha}}\right)\right)\right) \\
& =\left(\prod_{\alpha \in J} \tau_{\alpha}\right)\left(\sigma_{r}\left(\mu_{A_{\lambda, j}^{a}}\right)\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
a & \leq\left(\prod_{\alpha \in J} \tau_{\alpha}\right)\left(\bigwedge_{\lambda \in E} \sigma_{r}\left(\mu_{A_{\lambda, j}^{a}}\right)\right) \\
& =\left(\prod_{\alpha \in J} \tau_{\alpha}\right)\left(\sigma_{r}\left(\bigwedge_{\lambda \in E} \mu_{A_{\lambda, j}^{a}}\right)\right) \\
& =\left(\prod_{\alpha \in J} \tau_{\alpha}\right)\left(\sigma_{r}\left(\mu_{U_{j}^{a}}\right)\right) .
\end{aligned}
$$

Furthermore

$$
\begin{aligned}
a & \leq\left(\prod_{\alpha \in J} \tau_{\alpha}\right)\left(\bigvee_{j \in K} \sigma_{r}\left(\mu_{U_{j}^{a}}\right)\right) \\
& =\left(\prod_{\alpha \in J} \tau_{\alpha}\right)\left(\sigma_{r}\left(\bigvee_{j \in K} \mu_{U_{j}^{a}}\right)\right) \\
& =\left(\prod_{\alpha \in J} \tau_{\alpha}\right)\left(\sigma_{r}\left(\mu_{A}\right)\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
a & \leq \bigwedge_{r \in I}\left(\prod_{\alpha \in J} \tau_{\alpha}\right)\left(\sigma_{r}\left(\mu_{A}\right)\right) \\
& =\omega\left(\prod_{\alpha \in J} \tau_{\alpha}\right)\left(\mu_{A}\right)
\end{aligned}
$$

Similarly, we have

$$
a \leq \omega\left(\prod_{\alpha \in J} \tau_{\alpha}\right)\left(\underline{1}-\gamma_{A}\right)
$$

Hence $a \leq \mu\left(\mathrm{I} \omega\left(\prod_{\alpha \in J} \tau_{\alpha}\right)(A)\right)$. By the arbitrariness of a, we have $\mu\left(\left(\prod_{\alpha \in J} \mathrm{I} \omega\left(\tau_{\alpha}\right)\right)(A)\right) \leq$ $\mu\left(\mathrm{I} \omega\left(\prod_{\alpha \in J} \tau_{\alpha}\right)(A)\right)$.

On the other hand, for $\forall a<\mu\left(\mathrm{I} \omega\left(\prod_{\alpha \in J} \tau_{\alpha}\right)(A)\right)$, we have

$$
a<\omega\left(\prod_{\alpha \in J} \tau_{\alpha}\right)\left(\mu_{A}\right)=\bigwedge_{r \in I}\left(\prod_{\alpha \in J} \tau_{\alpha}\right)\left(\sigma_{r}\left(\mu_{A}\right)\right)
$$

and

$$
a<\omega\left(\prod_{\alpha \in J} \tau_{\alpha}\right)\left(\underline{1}-\gamma_{A}\right)
$$

Then for all $r \in I$, we have

$$
a<\left(\prod_{\alpha \in J} \tau_{\alpha}\right)\left(\sigma_{r}\left(\mu_{A}\right)\right)
$$

Thus there exists $\left\{U_{j, r}^{a}\right\}_{j \in K} \subseteq X$ satisfies $\underset{j \in K}{ } U_{j, r}^{a}=\sigma_{r}\left(\mu_{A}\right)$, and for all $j \in K$, there exists $\left\{A_{\lambda, j, r}^{a}\right\}_{\lambda \in E}$, where E is an finite index set, such that $\bigwedge_{\lambda \in E} A_{\lambda, j, r}^{a}=U_{j, r}^{a}$. For all $\lambda \in E$, there exists $\alpha(\lambda) \in J, W_{\alpha} \in \zeta^{X_{\alpha}}$, such that $P_{\alpha}^{\leftarrow}\left(W_{\alpha}\right)=A_{\lambda, j, r}^{a}$. By Lemma 4.5 we have

$$
\begin{aligned}
a<\tau_{\alpha}\left(W_{\alpha}\right) & =\mu_{\mathrm{I} \omega\left(\tau_{\alpha}\right)}\left(\left\langle 1_{W_{\alpha}}, 1_{W_{\alpha}^{c}}\right\rangle\right) \\
& \leq \mu\left(\prod_{\alpha \in J} \mathrm{I} \omega\left(\tau_{\alpha}\right)\right)\left(P_{\alpha}^{\leftarrow}\left(\left\langle 1_{W_{\alpha}}, 1_{W_{\alpha}^{c}}\right\rangle\right)\right) \\
& =\mu\left(\prod_{\alpha \in J} \mathrm{I} \omega\left(\tau_{\alpha}\right)\right)\left(\left\langle 1_{P_{\alpha}^{\leftarrow}\left(W_{\alpha}\right)}, 1_{P_{\alpha}^{\leftarrow}\left(W_{\alpha}^{c}\right)}\right\rangle\right) \\
& =\mu\left(\prod_{\alpha \in J} \mathrm{I} \omega\left(\tau_{\alpha}\right)\right)\left(\left\langle1_{A_{\lambda, j, r}^{a}}, 1_{\left.\left.\left(A_{\lambda, j, r}^{a}\right)^{c}\right\rangle\right)}\right.\right. \\
& \leq \mu\left(\prod_{\alpha \in J} \mathrm{I} \omega\left(\tau_{\alpha}\right)\right)\left(\left\langle\bigwedge_{\lambda \in E} 1_{A_{\lambda, j, r}^{a}}, \bigvee_{\lambda \in E} 1_{\left.\left.\left(A_{\lambda, j, r}^{a}\right)^{c}\right\rangle\right)}\right.\right. \\
& \left.=\mu\left(\prod_{\alpha \in J} \mathrm{I} \omega\left(\tau_{\alpha}\right)\right)\left(\left\langle 1_{\lambda \in E} A_{\lambda, j, r}^{a}, 1_{\lambda \in E} \bigvee_{\lambda, j, r}\right)^{c}\right\rangle\right) \\
& =\mu\left(\prod_{\alpha \in J} \mathrm{I} \omega\left(\tau_{\alpha}\right)\right)\left(\left\langle 1_{U_{j, r}^{a}}, 1_{\left.\left(U_{j, r}^{a}\right)^{c}\right\rangle}\right\rangle\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
a & \leq \mu\left(\prod_{\alpha \in J} \mathrm{I} \omega\left(\tau_{\alpha}\right)\right)\left(\left\langle 1_{j \in K}^{\bigvee_{j, r} U_{j}^{a}}, 1_{\left.\left(\bigvee_{j \in K} U_{j, r}^{a}\right)^{c}\right\rangle}\right\rangle\right) \\
& =\mu\left(\prod_{\alpha \in J} \mathrm{I} \omega\left(\tau_{\alpha}\right)\right)\left(\left\langle 1_{\sigma_{r}\left(\mu_{A}\right)}, 1_{\left.\left(\sigma_{r}\left(\mu_{A}\right)\right)^{c}\right\rangle}\right\rangle\right)
\end{aligned}
$$

By Lemma 4.6 we have

$$
\begin{aligned}
a & \leq \bigwedge_{r \in I} \mu\left(\prod_{\alpha \in J} \mathrm{I} \omega\left(\tau_{\alpha}\right)\right)\left(\left\langle 1_{\sigma_{r}\left(\mu_{A}\right)}, 1_{\left(\sigma_{r}\left(\mu_{A}\right)\right)^{c}}\right\rangle\right) \\
& \leq \mu\left(\left(\prod_{\alpha \in J} \mathrm{I} \omega\left(\tau_{\alpha}\right)\right)(A)\right)
\end{aligned}
$$

Then

$$
\mu\left(\left(\prod_{\alpha \in J} \mathrm{I} \omega\left(\tau_{\alpha}\right)\right)(A)\right) \geq \mu\left(\mathrm{I} \omega\left(\prod_{\alpha \in J} \tau_{\alpha}\right)(A)\right)
$$

Hence

$$
\mu\left(\left(\prod_{\alpha \in J} \mathrm{I} \omega\left(\tau_{\alpha}\right)\right)(A)\right)=\mu\left(\mathrm{I} \omega\left(\prod_{\alpha \in J} \tau_{\alpha}\right)(A)\right)
$$

Then

$$
\gamma\left(\left(\prod_{\alpha \in J} \mathrm{I} \omega\left(\tau_{\alpha}\right)\right)(A)\right)=\gamma\left(\mathrm{I} \omega\left(\prod_{\alpha \in J} \tau_{\alpha}\right)(A)\right) .
$$

Therefore,

$$
\left(\prod_{\alpha \in J} \mathrm{I} \omega\left(\tau_{\alpha}\right)\right)(A)=\mathrm{I} \omega\left(\prod_{\alpha \in J} \tau_{\alpha}\right)(A) .
$$

5. Further remarks

As we have shown, the notions of the base and subbase in intuitionistic I-fuzzy topological spaces are introduced in this paper, and some important applications of them are obtained. Specially, we also use the concept of subbase to study the product of intuitionistic I-fuzzy topological spaces. In addition, we have proved that the functor $I \omega$ preserves the product.

There are two categories in our paper, the one is the category FYTS of fuzzifying topological spaces, and the other is the category IFTS of intuitionistic I-fuzzy topological spaces. It is easy to find that $\mathrm{I} \omega$ is the functor from FYTS to IFTS. We discussed the property of the functor $\mathrm{I} \omega$ in Theorem 4.7. A direction worthy of further study is to discuss the the properties of the functor $\mathrm{I} \omega$ in detail. Moreover, we hope to point out that another continuation of this paper is to deal with other topological properties of intuitionistic I-fuzzy topological spaces.

References

[1] K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986), 87-96.
[2] K.T. Atanassov, Intuitionistic Fuzzy Sets, Springer, Heidelberg, 1999.
[3] C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24(1968), 182-190.
[4] D. Çoker, An introduction to intuitionistic fuzzy topological space, Fuzzy Sets and Systems, 88(1997), 81-89.
[5] D. Çoker and M. Demirci, On fuzzy inclusion in the intuitionistic sense, J. Fuzzy Math., 4(1996), 701-714.
[6] D. Çoker and M. Demirci, On intuitionistic fuzzy points, Notes on IFS, 1-2(1995), 79-84.
[7] D. Çoker and M. Demirci, An introduction to intuitionistic fuzzy topological space in Šostak's sense, Busefal, $\mathbf{6 7}$ (1996), 61-66.
[8] Jin-ming Fang, I-FTOP is isomorphic to I-FQN and I-AITOP, Fuzzy Sets and Systems 147 (2004), 317-325.
[9] Jin-ming Fang and Yue-li Yue, Base and Subbase in I-fuzzy Topological Spaces, Journal of Mathematical Research and Exposition 26(2006), no 1, 89-95.
[10] I.M. Hanafy, Completely continuous functions in intuitionistic fuzzy topological spaces, Czech Math. J. 53(158) (2003) 793-803.
[11] S.J. Lee and E.P. Lee, On the category of intuitionistic fuzzy topological spaces, Bull. Korean Math. Soc, 37(2000), 63-76.
[12] F.G. Lupiáñez, Quasicoincidence for intuitionistic fuzzy points, Int. J. Math. Math. Sci. 10(2005), 1539-1542.
[13] F.G. Lupiáñez, Covering properties in intuitionistic fuzzy topological spaces, Kybernetes, 36(2007), 749-753.
[14] J.H. Park, Intuitionistic fuzzy metric spaces , Chaos, Solitons and Fractals, $22(2004)$, 1039-1046.
[15] A.A. Ramadan, S.E. Abbas and A.A. Abd El-Latif, Compactness in intuitionistic fuzzy topological spaces, Int. J. Math. Math. Sci. 1(2005), 19-32.
[16] U. Höhle and S.E. Rodabaugh, eds., Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory, The handbooks of Fuzzy Sets Series, Volume 3(1999), Kluwer Academic Publishers (Dordrecht).
[17] A. Šostak, On a fuzzy topological structure, Rendiconti Circolo Mathematico Palermo (Suppl. Ser. II) 11(1985), 89-103.
[18] Zeshui Xu and R.R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, International Journal of General Systems 35(2006), 417-433.
[19] C.H. Yan and X.K. Wang, Intuitionistic I-fuzzy topological spaces, Czechoslovak Mathematical Journal 60(2010), 233-252.
[20] Ming-sheng Ying, A new approach for fuzzy topology (I), Fuzzy Sets and Systems 9(1991), 303-321.
[21] Yue-li Yue and Jin-ming Fang, On induced I-fuzzy topological spaces, Journal of Mathematical Research and Exposition 25(2005), no 4, 665-670. (in Chinese).

[^0]: *Department of Mathematics, School of Science, Beijing Institute of Technology, Beijing 100081, PR China, Email: liangchengyu87@163.com
 ${ }^{\dagger}$ Corresponding Author, Institute of Math., School oh Math. Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, PR China,

