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Elimination of the data processing bottleneck in high-throughput sequencing will require both improved
accuracy of data processing software and reliable measures of that accuracy. We have developed and
implemented in our base-calling program phred the ability to estimate a probability of error for each base-call, as
a function of certain parameters computed from the trace data. These error probabilities are shown here to be
valid (correspond to actual error rates) and to have high power to discriminate correct base-calls from incorrect
ones, for read data collected under several different chemistries and electrophoretic conditions. They play a
critical role in our assembly program phrap and our finishing program consed.

Read data from automated sequencers varies signifi-
cantly in quality for a number of reasons (for re-
view, see Ewing et al. 1998), and making the most
effective use of such data requires having some mea-
sure of its reliability. Position-specific error prob-
abilities (Lawrence and Solovyev 1994) are particu-
larly useful for this purpose. In conjunction with
appropriate assembly software they can: improve
the accuracy and completeness of assembly by al-
lowing better discrimination of repeats and by mak-
ing it possible to use full read lengths; permit a more
accurate consensus sequence to be derived; provide
an objective criterion for guiding the finishing (de-
ciding where additional data or editing are needed);
and provide an objective measure useful in moni-
toring data quality and in setting the quality stan-
dard for the final sequence.

A number of developers of base-calling algo-
rithms (Giddings et al. 1993; Golden et al. 1993;
Berno 1996) have developed confidence measures
for the base-calls, but do not report studies of their
validity or discrimination power. The most thor-
ough study of which we are aware is that of
Lawrence and Solovyev (1994), who defined a large
number of trace parameters and carried out an ex-
tensive discriminant analysis to determine the ones
most effective at distinguishing accurate base calls
from errors and assigning error probabilities. Here,
we describe a different procedure for estimating er-
ror probabilities and investigate its properties. The
main distinguishing features of our work are (1) a

novel algorithm for deriving the probabilities, that
does not require the multivariate normality distri-
butional assumptions that are needed for discrimi-
nant analysis but are very far from being true in the
case of the parameters we consider; (2) use of pa-
rameters computed from windows of the trace, that
appear more effective at discrimination than the
single-peak measures considered by Lawrence and
Solovyev; and (3) an emphasis on optimizing dis-
crimination ability in the high-quality part of the
trace (error rates <0.01) rather than over the entire
range, as it is this part of the trace that tends to be
more important in practice.

An important technical aspect of our work is the
use of log-transformed error probabilities rather
than untransformed ones, which facilitates working
with error rates in the range of most importance
(very close to 0). Specifically, we define the quality
value q assigned to a base-call to be

q = −10 × log10~p!

where p is the estimated error probability for that
base-call. Thus a base-call having a probability of
1/1000 of being incorrect is assigned a quality value
of 30. Note that high quality values correspond to
low error probabilities, and conversely.

METHODS

Overview of Error Probability Issues

Obvious requirements for the error probabilities are
that they must be predictive, that is, assigned by use
of a method that does not require knowledge of the
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true sequence; and they must be valid in the sense
that they correspond to observed error rates, that is,
the set of bases assigned a particular error probabil-
ity p should have an actual error rate equal to p.

Given these constraints, there are still many
possible ways of assigning error probabilities to
base-calls. For example, if a set of 1,000,000 base-
calls contains 10,000 errors, then a method that as-
signs an error probability of 0.01 to each base-call is
valid; but so is another method that identifies two
sub-sets of 500,000 base-calls each, with the first set
containing 9000 errors and the second set 1000 er-
rors, and assigns an error probability of 0.018 to
every base-call in the first set and 0.002 to every
base-call in the second set. While the second
method is no more valid than the first, it clearly
does a better job at discriminating the less accurate
base-calls from the more accurate.

We can formalize the notion of discrimination
ability as follows. Intuitively, a method with high
discrimination ability should spread out the error
probabilities (or quality values) as much as possible.
By that criterion, one natural measure of discrimi-
nation power is simply the variance of the quality
value distribution. However, in practice, it is the
most accurate read data that are most important, as
those are the data used to derive the consensus se-
quence, and consequently we prefer to judge differ-
ent methods by how well they perform at identify-
ing a subset of the bases with a very low error prob-
ability. Specifically, given a set B of base-calls and a
valid method of assigning an error probability e(b)
to each base-call b, then for any subset B of B, the
expected number of errors in B is Sb∈Be(b) (since the
error probability for a base-call is also the expected
number of errors for that call); and the expected
error rate for B is the expected number of errors in B,
divided by the number of base-calls in B. It is easy to
see that for any given error rate, r, there is a unique
largest set of base-calls, Br, having the properties
that (1) the expected error rate of Br is ø r, and (2)
whenever Br includes a base-call b, it includes all
other base-calls whose error probabilities are
ø e(b). The discrimination power at the error rate r is
then defined to be

Pr = S?Br?

?B?D
that is, the number of base-calls in Br divided by the
total number of base calls. Pr measures the effective-
ness of the error probability assignments at extract-
ing a subset of bases having a low error rate r. (There
is a precise analogy here to the notions of validity
and power of a statistical test.)

Our goal in this study was to develop error prob-
abilities that are valid and have high discrimination
power at small values of r (r ø 0.01). For this pur-
pose, we used parameters computed from the pro-
cessed trace from which the base-calls were made,
focusing most on those parameters that appear to
play a role in intuitive human assessments of data
quality as data quality should be predictive of error
probabilites. A number of different sets of such pa-
rameters were tested, using an algorithm (described
below in Error Probability Calibration) that, given a
set of parameters and a training set of reads for
which it is known which base-calls are correct and
which are errors, finds a way of associating param-
eter values to error probabilities that has (near)
maximum discrimination power for small r.

Trace Parameters

Errors by the basecaller often are attributable to mis-
interpretation of peaks in a region of the trace, and,
as a result, indications of the error may be present in
the vicinity of the erroneous peak but not at the
peak itself. Consequently the parameters most effec-
tive at detecting errors tend to be those that con-
sider a window of the trace that includes several
peaks flanking the one whose base-call is being as-
sessed. The parameters that turned out to be the
most powerful in our tests were all of this type. A
by-product of using parameters computed from
such a window is a smoothing of the parameter val-
ues (and hence of the error probabilities) from base
to base.

The following four parameters were found to be
particularly effective at discriminating errors from
correct base-calls. In each case, smaller parameter
values correspond to higher quality (more accurate
sequence).

1. Peak spacing. The ratio of the largest peak-to-
peak spacing, in a window of seven peaks cen-
tered on the current one, to the smallest peak-to-
peak spacing. The minimum possible value of
one corresponds to evenly spaced peaks.

2. Uncalled/called ratio. The ratio of the amplitude
of the largest uncalled peak, in a window of
seven peaks around the current one, to the small-
est called peak; if there is no uncalled peak, the
largest of the three uncalled trace array values at
the location of the called base peak is used in-
stead. [An uncalled peak is a peak in the signal
that was not assigned to a predicted location by
phred (Ewing et al. 1998) and thus does not result
in a base call.] If the called base is an N, phred
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assigns a large value of 100.0. Note that this is
not what is sometimes called the signal to noise
ratio, as uncalled peaks may be true peaks missed
by the base-calling program rather than noise in
the conventional sense. The minimum param-
eter value is 0 for traces with no uncalled peaks.

3. Same as 2, but using a window of three peaks.
4. Peak resolution. The number of bases between

the current base and the nearest unresolved base,
times 11 (to force the parameter to have the
right direction). (A base is unresolved if it is
called as N or if for at least one of its neighboring
bases, there is no point between the two corre-
sponding peaks at which the signal is less than
the signal at each peak). The minimum possible
parameter value is half the number of bases in
the trace, times 11, and the maximum value is 0.

Error Probability Calibration

Given a set of parameters that can be computed
from the trace for each base-call, a set of threshold
values for those parameters is said to be optimal for
a particular error rate r, if the set B consisting of all
bases whose parameter values are less than the
threshold values has an error rate ør, and no other
set of thresholds yields a larger set with error rate ør.
We describe below a simple greedy algorithm that
finds a nearly optimal set of thresholds for small
error rates. With respect to linear discriminant
analysis (which has similar goals), our method has
the advantages of not assuming multivariate nor-
mality (which is very far from being true in our case)
or other distributional properties for the param-
eters, of allowing parameters that take on non-
numerical values, and of not requiring that param-
eters be transformed to normality or that outliers
receive any special treatment. It is compute-
intensive, however, and, in the form described, can
only be used with a relatively small number of pa-
rameters simultaneously. The only significant as-
sumption about the parameters is that their values
should be ordered such that small values tend to
correspond to more accurate base-calls and large
values to less accurate base-calls.

The algorithm produces a lookup table consist-
ing of a set of lines, each line containing a set of
parameter thresholds, together with the error prob-
ability and quality value corresponding to those
thresholds (there can be multiple lines having the
same quality value). Although we have only applied
the algorithm to generate a single error probability
for each base (combining all types of error—

substitution, deletion, and insertion), it can easily
be adapted to produce separate probabilities for
each error type.

The basic idea of the algorithm is as follows.
One starts with a small number of parameters (in
our case, four). First, a finite number of threshold
values for each parameter is selected; we allow 50
different thresholds, a number large enough to
avoid significantly sacrificing resolution but small
enough that it is computationally feasible to con-
sider each possible threshold for each parameter in
subsequent steps. Then each 4-tuple of parameter
thresholds (one for each parameter) is considered in
turn, and the empirical error rate is computed for
the set of bases defined by those thresholds. The
4-tuple for which the empirical error rate is smallest
is selected (in the event of ties, the largest set having
a given error rate is taken) and defines the first line
of the lookup table. The set of bases defined by these
thresholds is then eliminated, and the process is re-
peated using the remaining bases. Iteration of this
procedure produces the desired lookup table.

Note that by construction the first set of thresh-
olds found by this procedure is nearly optimal for its
error rate, in the sense defined above (it may fail to
be strictly optimal because only a finite set of
thresholds are considered for each parameter). Sub-
sequent sets of thresholds also tend to be nearly
optimal, but in this case the effect of eliminating
bases at earlier steps is another factor which may
cause strict optimality to fail. This effect tends to be
small in the early steps when error rates are small,
but may become more significant later.

We now give a more precise description of the
algorithm, in the case where four different param-
eters r, s, t, and u are used. In the following, if p
denotes a parameter, then p(b) indicates the value of
the parameter for a particular base-call b. First, for
each parameter p we find values p0 < p1 < . . . .
< p49 < p50 such that all p(b) lie between p0 and p50,
and the number of bases b satisfying pi-1 < p(b) ø pi

is approximately the same for all i.
We define a cut to be a 4-tuple (i, j, k, m) where

i, j, k, and m range between 1 and 50. There are 504,
or 6.25 million cuts in all; although this is large
relative to the number of data points, we will avoid
overfitting by imposing a monotonicity condition.
Each cut has a corresponding set of parameter
thresholds ri, sj, tk, and um, defined as above. For
each cut (i, j, k, m), define err(i,j,k,m) to be the total
number of erroneous base calls b below the cut, that
is, satisfying r(b) ø ri, s(b) øsj, t(b) ø tk, and
u(b) ø um. Similarly, let corr(i,j,k,m) be the total num-
ber of correct base-calls below the cut.
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The error rate below the cut, e(i,j,k,m), is defined by

e~i,j,k,m! =
1.0 + err~i,j,k,m!

1.0 + corr~i,j,k,m! + err~i,j,k,m!

and the corresponding quality value by

q~i,j,k,m! = −10 × log10~e~i,j,k,m!!

Here 1.0 is a small-sample correction added to en-
sure that both the numerator and denominator are
positive; it produces a slight upward bias in e, that is
most pronounced for very small e. We round q(i,j,k,m)

to the nearest integer. The following two steps are
now iterated to create the lookup table.

1. Find the cut (i,j,k,m) for which q(i,j,k,m) is largest.
In the event of ties, take the one for which
corr(i,j,k,m) + err(i,j,k,m) is largest; if there is more
than one of these, take the one for which the
sum of the indices is highest. Output q(i,j,k,m),
e(i,j,k,m) and the parameter values ri, sj, tk, and um.
Delete (i, j, k, m) from the list of cuts.

2. For each remaining cut (i8, j8, k8, m8), adjust the
counts err(i8,j8,k8,m8) and corr(i8,j8,k8,m8) by deleting
bases below the removed cut (i, j, k, m), and re-
compute e(i8,j8,k8,m8) and q(i8,j8,k8,m8) using the new

values. If err and corr are 0 for all remaining cuts,
stop. Otherwise go to step 1.

Note that, by construction, the error probability
e output in step 1 is the (small-sample corrected)
error rate for the set of bases defined by the property
that their parameter values are less than or equal to
the parameter thresholds output in this step, but
not less than or equal to the thresholds output in
any previous line. As a result, given the parameter
values for a base, one can find an appropriate mar-
ginal error probability for that base by looking
through the table until the first line is found in
which the parameter thresholds equal or exceed the
parameter values of the base in question and then
reading the error probability on that line.

Cosmid Sets

For these studies we used the ABI-processed trace
data from four sets of cosmids (Table 1): two train-
ing sets consisting of 9 mammalian cosmids from L.
Rowen (L. Hood’s laboratory, University of Wash-
ington), and 9 Caenorhabditis elegans cosmids from
the Washington University Genome Sequencing

Table 1. Cosmid Set Descriptions

Set Cosmidsa
%
GC

Total
reads

Dye primer reads Dye terminator reads

aligned
reads

aligned
bases errors (%)

aligned
reads

aligned
bases errors (%)

Training sets

1 9 43 8240 6527 3258752 140901 (4.3) 143 60461 2963 (4.9)
2 9 37 13448 10307 4741753 220395 (4.6) 279 113398 8019 (7.1)

Test sets

3 22 39 26091 17973 8931830 324737 (3.6) 3516 1848671 107716 (5.8)
4 36b 43 27184 21417 17379770 732303 (4.2) 1541 1338434 73070 (5.5)

aCosmid set 1 GenBank accession nos.: AE000663 (cosmid 0742C), AE000665 (cosmid 82C), U66059 (cosmids A14, G54, K26, K35,
and X21B), AF029308 (cosmids X13A and X224). Cosmid set 2 accession nos.: U23454, U39645, U23529, U39742, U29535, U23518,
U29381, U28732, and U29536. Cosmid set 3 accession nos: U88311, AF016443, AF003740, AF016447, AF040643, AF036695,
AF040649, AF026210, AF040648, AF040653, AF016678, U97001, AF040654, U80848, AF026211, U97550, AF040655, U41017,
AF014940 (cosmids C11D2, C45G7, and R12E2 were not submitted yet). Cosmid set 4 accession nos: AC000099, AC000123,
AC000109, AC000110, AC000354, AC000361, AC000362, AC000363, AC000364, AC000355, AC000356, AC000124, AC000125,
AC000357, AC000126, AC000127, AC000358, AC000359, AC002495, AC002424, AC000373, AC000365, AC000366, AC000367,
AC002113, AC002114, AC002497, AC002083, AC002084, AC000369, AC000370, AC002057, AC000374, AC000371, AC000372,
and AC002498.
bTwo of these are cosmid fragments 4.2 and 8.9 kb long.
Sequencing reactions used Taq polymerase (sets 1 and 2), Sequitherm or TaqFS (set 3), or TaqFS (set 4). Sets one and two were
generated almost entirely on ABI 373 sequencing machines running short (34 cm) gels. Set three was generated on ABI 373 machines
running short gels (50%) or on ABI 377 machines running short (36 cm) or long (48 cm) gels (21%). (Information about the remaining
29% of the data in this set was not recorded.) Set four was generated mostly on ABI 373 machines running long (48 cm) gels (2.2%
of set 4 was sequenced on ABI 377 machines). ABI analysis software was used for lane tracking and processing, and phred v. 0.961028
was used to call bases and assign quality values.
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Center (R. Waterston), and two test sets consisting
of 22 C. elegans cosmids from the Washington Uni-
versity Genome Sequencing Center, and 36 human
chromosome 7 cosmids from the University of
Washington Genome Sequencing Center (M. Ol-
son). Phred basecalls (Ewing et al. 1998) were gener-
ated for each trace, and reads were then screened for
sequencing vector and aligned against the finished
cosmid sequence using cross match as described
previously (Ewing et al. 1998). Each read base in the
alignable part of the read was classified as correct
(matching the final sequence) or erroneous (discrep-
ant with the final sequence); deletion errors (i.e.
cases where one or more bases in the cosmid se-
quence are missing from the read) were assigned
randomly to one of the two read bases adjacent to
the deletion. Unaligned bases are ignored in the fol-
lowing.

Quality Assignment

Application of the error probability calibration al-
gorithm, with the parameters described above, to a
single combined training set (containing all reads in
cosmid sets 1 and 2) produced a lookup table with
2011 lines. This table is used to assign quality values
to the base-calls from a particular read, as follows.
For each base call, phred computes the four param-
eter values, and then searches the lookup table line
by line, in order, until it finds a line in which each
of the four parameter values is at least as large as the
corresponding parameter value for the base-call.
The quality value associated to that line is then as-
signed to the base. If no such line is found, the base-
call is assigned a quality of 0.

This procedure was used to assign a quality
value to each base-call in the two test sets of cosmids
(Table 1). Initial examination of errors and quality
values in the test data sets showed more errors than
expected among bases with predicted quality values
of 40 and above. On inspection, we found five kinds
of spurious contribution to the error counts:

1. Chimeras. Chimeric reads contain two or more
noncontiguous segments that are incorrectly
juxtaposed, as a result of a cloning artifact (a chi-
meric subclone) or a gel lane tracking error. In
such cases, cross match finds an alignment in-
volving one of the two pieces, but occasionally
the alignment extends spuriously for a few bases
into the adjacent piece because of fortuitously
matching nucleotides and includes spurious
high quality discrepancies in this extension.

2. Contaminant or Misassembled Reads. Most data

sets have a small number of contaminant reads
arising either from sample mistracking or from
low levels of contamination of the subclone li-
braries. If the contaminating read contains a re-
peated sequence, it may spuriously appear to
match the cosmid sequence with multiple high-
quality discrepancies. Similarly a noncontami-
nant read lying in a near-perfect repeat in the
cosmid may be aligned against the wrong copy of
the repeat by cross match if errors in the low-
quality part of the read result in a higher Smith–
Waterman score against the wrong copy. Such
cases are generally revealed by examining all
matches of the read to the same and other cos-
mids.

3. Subclone Mutation. Some errors in high-quality
trace regions appeared as a single inserted or de-
leted base in a long mononucleotide run, or as a
single deleted unit of a microsatellite repeat. In
several such cases another read obtained from
the same subclone showed the same discrepancy.
These examples appear to represent spontaneous
subclone mutations. Another type of subclone
mutation seen was a larger deletion, apparently
mediated by recombination involving an imper-
fect direct repeat in the subclone. In this case the
alignment found by cross match included the
part of the read lying to one side of the deletion,
but extended spuriously into the region on the
other side of the deletion (often for a significant
distance) because of the direct repeat, resulting in
multiple high-quality discrepancies.

4. Unremoved Vector. Occasionally multiple errors
in the sequencing vector part of a read prevented
cross match from finding the match between it
and the vector sequence, so that it remained un-
masked; and the alignment of the insert against
the cosmid sequence found by cross match con-
tinued into this unmasked sequence because of a
few fortuitous base matches at the end of the
vector sequence, and the extension included spu-
rious high-quality discrepancies.

5. Misalignment. In some cases phred deleted the
first base in a mononucleotide run of three or
more bases, when imperfect mobility correction
shifted the run close to the preceding peak, but
(owing to the details of the Smith–Waterman al-
gorithm) the alignment constructed by cross-

match instead indicated the site of the deletion
to be the last base in the run. The called bases on
each side of the deleted peak received low-quality
values because of bad peak spacing and signal to
noise, but the last base in the run received a high-
quality value.
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To identify and remove as many of the above cases
as possible, we examined each read having two or
more discrepancies with quality values of 40 or
more, using consed (Gordon et al. 1998). Reads that
appeared to be unambiguous instances of one of the
first four types above were eliminated; in all, 10
reads (from a total of 26091) were removed from
cosmid set 3, and 35 (from a total of 27184) were
removed from cosmid set 4. It is likely that a small
number of spurious high-quality discrepancies of
the above type occurred only once in a read and
thus escaped detection by this procedure and that
others occurring at quality values below 40 were
also not detected. Instances of high quality discrep-
ancies occurring in mononucleotide runs of two or
more bases were also inspected and (in cases where
the wrong base was flagged) the quality value al-
tered to that of the base actually deleted by phred.
This resulted in changing 10 quality values in cos-
mid set 3, and 30 in set 4. Following these correc-
tions to the data set, the observed quality values
were recalculated.

RESULTS AND DISCUSSION

Initial inspection of traces and quality values using
consed (Gordon et al. 1998) indicated that the qual-
ity designations obtained using the procedure de-
scribed in Methods correspond fairly well to quality
judgments by a human reviewer of the data. The
quality values tend to decrease later in the trace be-
cause of deterioration in the peak resolution and
uncalled/called parameter values as peaks become
wider, smaller, and noisier. Similarly, noisy or weak
signal regions earlier in the trace, as in the vicinity
of the dye primer peak or peak dropouts, or in traces
from failed sequencing reactions, tend to have their
quality values reduced due to a poor uncalled/called
ratio. In higher quality parts of the trace, compres-
sions tend to receive lower quality values because of
uneven peak spacing, poor resolution, and/or poor
uncalled/called ratio (in cases where a shifted peak
is dropped by the base caller), except in rare in-
stances (see below).

For a more rigorous examination we analyzed
the quality values in two test sets of cosmids (Table
1), considering the dye primer and dye terminator
reads separately. Phred was used to assign quality
values to each base-call as described (Methods,
Quality Assignment). Note that the test sets differed
in important respects (sequencing polymerase and
chemistry, sequencing machines and running con-
ditions) from the training sets (Table 1), so the re-

sults to some extent indicate how robust the quality
values are to changes in sequencing methods.

Validity Tests

For each predicted quality value q, the numbers corrq

of correct and errq of incorrect base-calls having that
quality in the test sets were counted and the ob-
served quality value was computed as

qobs~q! = −10 × log10S errq

corrq + errq
D

Figure 1 displays the observed quality values as a
function of the phred predicted values. (Table 2 in-
dicates the number of bases in each quality range
used to determine the points in Fig. 1.) The slope
one line corresponds to perfect agreement; points
above the line (i.e., observed quality value higher
than predicted) indicate an observed error rate less
than phred predicts, while points below the line in-
dicate an observed error rate greater than predicted.

Most points lie on or very near the slope one
line, indicating that the error probabilities are rea-
sonably valid. In the quality range below 20 (pre-

Figure 1 Phred quality value validity. The solid line
corresponds to perfect agreement between observed
and predicted, and the dotted lines indicate a devia-
tion of 55 (or roughly a factor of 3 in the correspond-
ing error probabilities). Predicted quality values with
no errors among the aligned bases are assigned ob-
served quality value 60. Quality values 1, 2, 3, 46, 47,
48, and 50 are unused because the calibration proce-
dure did not produce lookup table lines at these values.
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dicted error rates above 1%), agreement is very
good. The majority of calls in this range occur where
resolution is poor or signal-to-noise is low, particu-
larly at the ends of reads or in low-quality traces.

However, there are some (generally small) sys-
tematic biases for quality values above 20. In gen-
eral the error rates tend to be slightly overpredicted
in the dye primer data and underpredicted in the
dye terminator data, with the trends becoming
more pronounced at higher quality levels (the effect
is less apparent at the highest values because of
higher dispersion resulting from small sample sizes).
Such a pattern is consistent with a small systematic
excess of errors in the dye terminator test sets rela-
tive to the training set, and a small systematic excess
of errors in the training set relative to the dye primer
test sets. Such excesses would be expected to be-
come increasingly magnified towards the high end
of the quality scale as they would represent a larger
fraction of the errors as the absolute number of er-
rors decreases.

To investigate this possibility we examined a
selection of erroneous base calls having a predicted
quality value ù30. For dye primer reads we exam-
ined all errors with quality ù40 in set 4; apart from
a few apparent subclone mutations undetected by
our previous screen (Methods, Quality Assignment),
essentially all of these were CC or GG compressions,
in which two adjacent peaks of the same base merge
into a single peak, without appreciably disturbing
the peak spacing. These are difficult to detect by eye,
essentially the only clue being an increase in the
size of the merged peak relative to surrounding

peaks. For dye terminator reads we examined all er-
rors with quality ù30 in 11 of the set 3 cosmids.
These were mostly attributable to peak dropouts re-
flecting poor incorporation of a particular dye-
labeled dideoxy base by the polymerase in certain
sequence contexts; in such cases the base-caller may
call a small noise peak instead of the correct base,
and if that peak is in the expected location and
there are no other noise peaks nearby, the param-
eter values may still all be in the good range. About
85% of the high-quality dye terminator errors re-
sulted from a missing G peak following an A (Lee et
al. 1992; Parker et al. 1996), or a missing A following
a T; a missing T following an A occurred five times,
but in only one cosmid of the 11 examined. There
was also a missing T peak following a G peak, and an
apparent AA compression.

In light of these observations, we interpret the
slight deviations between the observed and pre-
dicted error rates as follows. First, there is a slight
tendency to overcount errors in the training set rela-
tive to the test sets owing both to the small sample
correction (which was applied to the training set but
not the test set) and to spurious error contributions
of the types discussed in Methods, Quality Assign-
ment (which we attempted to remove from the test
set, but not the training set). This produces a slight
upward bias in the predicted error rates, which
should be very small at the lower quality levels
(where the number of errors is high), but somewhat
larger at higher levels. This presumably accounts for
the tendency to overestimate error probabilities at
higher quality values for the dye–primer data.

The bias toward underestimating error rates in
the dye terminator test data is probably attributable
to the fact that the training data set consists almost
entirely of dye primer reads. As a result, peak drop-
outs with good parameter values of the sort occa-
sionally seen in terminator reads were largely absent
from the training data, so that the error rate in the
terminator test data at each quality value is higher
than predicted from the training set. This effect ap-
parently outweighs the opposing bias that comes
from overcounting errors in the training set. A simi-
lar effect does not occur with compression errors in
the dye primer test set data, because the training set
contains compression errors at a similar rate and the
error probability calibration therefore reflects them.

It is important to point out that both the error
probability calibration procedure and the tests de-
scribed above used only the alignable parts of the
reads, that is, the parts accurate enough to align
against the final sequence given the specifics of the
alignment algorithm (that being the only part

Table 2. Base Counts for Data Used
in Fig. 1.

Quality
value
range

Dye
primer reads

Dye
terminator reads

set 3 set 4 set 3 set 4

0–5 53994 28251 1739734 110436
6–10 1608428 466490 2445065 318662

11–15 810982 211506 1074522 117609
16–20 576383 126763 995229 85179
21–25 728923 145538 1005002 97460
26–30 1002981 141353 972248 86930
31–35 1575967 235986 1628439 148591
36–40 1552397 260893 2507051 182187
41–45 724021 167783 2427413 127885
46–50 23793 25826 391942 28218

51 249206 36241 2118720 28322
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where one can reliably distinguish correct and in-
correct base-calls). In assigning quality values to a
new read, however, it is not known in advance
which part is alignable and which is not, so all bases
are assigned quality values. The unaligned part is
generally less accurate and does indeed tend to re-
ceive substantially lower quality values; but strictly
speaking the quality estimates are not expected to
be valid there. In particular one occasionally finds
islands in this part consisting of a few high-quality
bases, which on inspection are clearly not accurate,
surrounded by low-quality bases.

Discrimination Power

Figure 2 indicates the distribution of the phred qual-
ity values for the alignable bases in the test sets.
(Alignable bases here refers to the bases in each read
that could be aligned against the final sequence us-
ing cross match, with the same criteria used in
phrap assembly. This corresponds to the part of the
read usable in assembly, and includes the portion of
the read up to the point where, roughly, the discrep-
ancy rate starts to exceed 30%.)

The spread of the distribution suggests that the
quality values are doing a reasonable job of discrimi-
nating accurate from erroneous calls, and in particu-
lar that a significant fraction of basecalls are singled
out as having a high accuracy. The discrimination
power as defined earlier cannot be read directly
from the graphs, but is calculated to be as follows:

16% of the alignable bases in set 3, and 52% of the
alignable bases in set 4, can be discriminated as hav-
ing an error rate <1 per 10 kb; 65% of the alignable
bases in set 3, and 65% of the alignable bases in set
4, can be discriminated as having an error rate <1
per kb; 80% of the alignable bases in set 3, and 78%
of the alignable bases in set 4, can be discriminated
as having an error rate <1 per 100 bases.

One significant implication of the above results
is that the highest quality data from a single trace,
even in the absence of confirming reads on the op-
posite strand, can often ensure an error rate of <1
per 10 kb. This has important consequences for fin-
ishing (Gordon et al. 1998), since even if the target
error rate for the cosmid is 1 per 10 kb it is unnec-
essary to obtain opposite strand coverage, or do any
editing, for such a region.

Possible Improvements

Further improvements to the error probabilities are
certainly possible, with respect to both validity and
discrimination power. As with the accuracy of base-
calling (Ewing et al. 1998) the high-quality part of
the trace is the most important in practice and is
therefore where improvements will have the great-
est impact.

Regarding validity, the studies above suggest
that the error probabilities are generally valid inde-
pendent of sequencing chemistry and machine run-
ning conditions; preliminary studies of data gener-
ated on ABI 377 machines (which represents a sig-
nificant fraction of cosmid set 3 reads), and/or
processed using our program plan (B. Ewing and P.
Green, in prep.) instead of the ABI lane-processing
software, suggest that the error probabilities retain
their validity in this context. Nonetheless some im-
provement at the high quality end of the scale can
be gained by having separate training sets for dye
primer and dye terminator traces, and by removing
the various spurious contributions to the error
counts in the training set.

An important additional issue is whether the
error probabilities remain valid when the G + C con-
tent is significantly higher than in the cosmids stud-
ied here. In dye–primer data the frequency with
which compressions occur tends to correlate with
G + C content since G + C-rich strands are more
likely to form the stable hairpin structures which
cause compressions. Thus one might expect that in
more G + C-rich sequence high quality compression
errors occur at a significantly higher rate than
would be predicted from our current training set. If
so, it will be necessary to recalibrate the error prob-

Figure 2 Quality value distributions for cosmid sets
three (gray bars) and four (black bars).
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ability lookup table on such data. It should also be
possible to improve the accuracy of base-calling
through compressions and improve discrimination
as discussed below, either of which would tend to
reduce the magnitude of the bias.

Improvements in discrimination power should
also be possible. Because the main types of high
quality base-calling errors are compressions in dye
primer traces and peak dropouts in dye terminator
traces, improved discrimination may come from us-
ing trace parameters that are more sensitive to these
types of errors. Both cases involve peaks of abnor-
mal size (large in the case of the dye primer com-
pressions, small in the case of the dye–terminator
peak dropouts), so use of relative peak size as a pa-
rameter may improve discrimination power. More-
over, because in both cases, sequence context plays
an important role, discrimination may be improved
by including relevant features of the read sequence
as parameters.

Program Availability

C source code for phred is available at no charge to
academic researchers for research purposes, and by
commercial license from the University of Washing-
ton to other users; contact Brent Ewing at
bge@u.washington.edu.
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