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Nomenc la tu re  

• base drag coefficient, [ Cp,,(rlc)] 

• total drag coefficient 
• pressure coefficient. (p - p,jlq. 

•  - base pressure coefficient, (pb - pjlgx 

airfoil chord 
riblet height 

 
• = local static pressure 
• = freestream static pressure 
• = freestream dynamic pressure = trailing-edge thickness 

friction velocity 
= distance along the chord 
= distance normal to tunnel axis = 
angle of attack 

• (CD61,1r~ CD gin ri8]el) 

kinematic viscosity 

Introduction 
 AMONG various methods explored for turbulent drag reduction on 
aerodynamic surfaces, riblets have beer the most promising.' As 
much as 4-8% of viscous drag reduction has been reported for 
simple two-dimensional configurationsPlastic sheets with symmetric 
v-grooves (manufactured by the 3M Co.) have been employed 
widely in research- Assessment of viscous drag reduction on two-
dimensional airfoils. both at low and transonic speeds, has been
reported as well.

-
 Excellent reviews on the subject covering 

aspects of drag reduction and flow structure are contained in 
Refs. 1 and 7. 

There have been very few attempts exploring the fuse of giblets in 
separated flows, either from the point of view of drag reduction or 
separation control-

r
'
°
 Recently. Krishnan et al.' showed that riblets

actually increase the base drag (about 8.7 on a long axisymmetric 
body with a blunt base at low speeds: the base diameter was about 
four times the boundary -layer thickness ahead of the base corner- They 
used 3M riblet sheers and systematically studied the effect of h+` on 
base pressure. They also speculated that, while riblets caused an
increase in the base drag for a large-scale separated flow (like on 
the axisymmetric blunt base'), the effect could be favorable on an 
airfoil with a blunt trading edge, which is a case of a small-
scale separated flow. 

The present investigation was undertaken specifically to assess 
the effect of 3M riblets on the base pressure of an airfoil with a 
blunt trailing edge. Experiments were made at low speeds on 
a 13.6% thick GAW(2) airfoil model, which has a trailing-edge 
thickness ratio of 0.5%. The results show very clearly that the base 
drag reduction of an engineering value can be achieved for the 
optimized riblet geometry. 

Experiments 

Facility and Model 

The experiments were conducted in a 300 X 1500 ntm 
boundary-layer tunnel. The GAW(2) airfoil model. with a r of 
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Fig. 1 Variations of h` on upper surface of GAW(2) airfoil. Fig. 3 Variation of normalized base drag with incidence. 

600 mm and a span of 300 mm, having a trailing-edge thickness of 
3 mm, was mounted vertically in the test section. The ,nodel was 
instrumented with 38 static pressure taps of o.d. 1.2 mm ~n the 
upper and lower surfaces. The base pressure was measured and
averaged using three ports distributed along the vicin'iy of the 
midspan of the model. 

hfeasurements 

The tests were performed at a freestream velocity of 30 nil s,
providing a chord Reynolds number of f X 10'. The boundary layer 
on the top and bottom surfaces of the model was tripped at 10% 
chord from the leading edge using a sandpaper strip (24 grade, 30 
mm wide). 

Riblet films with a height of 0.076 and 0.152 mm were used in 
this work; they were applied between 0.1 and 0.96c on both the top 
and bottom surfaces. Streamwise variations of ii' calculated using an 
integral turbulent boundary-layer code"' for the measured 
pressure distributions on the airfoil upper surface at a = 0 and 
6 deg are displayed in Fig. 1. The riblet films with h = 0.076 
and 0.152 mm appear optimum at a = f) and 6 deg, respectively, 
considering viscous drag reduction. 
The Freestream dynamic pressure, model surface. and the case  

pressures  were  measured us ing three  micromanometers supplied 
by Furness Controls, UK. The total drag was determined from the 
picot and static measurements in the wake using the method of Jones,"
A constant temperature hot-wire anemometer was used to assess the
existence of vortex shedding behind the base. Measurements of
model static pressures and picot profiles in the wake were made over
an angle-ofattack range of -2 to 6 deg. The reference configuration
for determining drag reduction was the smooth airfoil model without 
the riblet and with the same transition trip. 
 
Accuracy of the Measured Data 

The uncertainties in the measured data estimated using the
methodology of Kline and McClintock'" and taking into ac-
count repeatability are 
 

AC, = ~0.0035C,, AC, = !0.015C" 
 

Two Dimensionality 

The two dimensionality of the flow was assessed by employing 
the two-dimensional momentum integral in the wake. Picot profiles 
for the smooth model (without riblets) at three streamwise locations
in the wake (xlc = 10, 2.5, and 3.01 were measured for 
determining the total drag. Excellent constancy of drag coefficient
(within the estimated uncertainty) was ob 

served to suggest good mean flow two dimensionality in the 
experiments." 
 

Results and Discussions 

Surface Pressure Distributions 
The measured surface pressure distributions on the airfoil. both

with and without the riblets, revealed" that the effects of riblets on 
CA distributions were very small (as in many earlier studies''`'), 
which suggests that the pressure drag is virtually unaltered because 
of riblets. 

Base Pressure and Base Drag 
The base pressure coefficient for the basic airfoil (without riblets) 

is positive at all a, indicating a base thrust (Fig_ 2). It is interesting 
to note that the base pressure progressively increases with 
riblet height in the a range considered. These results are in 
contrast with those measured on an axisymmetric blunt base at 
low speeds." As may be expected, the base drag coefficient is 
obviously negative because of base thrust, and its magnitude 
increases further with riblet height. The ratio of 

a° 

Fig. 2 Variation of base pressure coefficient with incidence. 
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Fig. 4 Variation of total drag coefficient with incidence. 

a° 

Fig. 5 Total drag and base drag reductions with incidence. 

 

 

base drag coefficient with riblets relative to no riblets is shown

plotted in Fig. 3. The increase in base thrust is as high as 5090 at a

= 6 deg for the riblet height of 0.152 mm. The effectiveness of riblet

films with h > 0.152 mm could not be assessed because they are not

manufactured currently by 3M Co. 

 

Total Drag 

Results of measured total drag coefficient (C„ r), both with and

without rib€ets, are plotted against airfoil angle of attack in Fig. 4.

The riblet film with a height of 0.152 mm has the lowest drag

consistent with the optimum h' variation (discussed in Fig. 1). Figure

5 displays the results of percentage total drag reduction as well as

base drag reduction (relative to the smooth baseline configuration);

the normalizing factor for both total and base drag reduction is the

total drag coeffcient of the smooth airfoil at each a. The increasing

trend of total drag reduction with a is a feature already observed by

Sundaram et al.' and Subaschandar et al.,s ' and has been attfibuted

to the increased effectiveness of riblets in adverse pressure

gradients. The maximum base drag reduction (equivalently an 

increase in base Ihmst). of about 0.7% of the total drag ob_ served 

fair h = 0_ 152 mm, is nearly constant with re. 

 

Possible Flow Mechanisms 

Having observed the increase in base pressure because a riblets, it 

is appropriate to speculate on possible flow mecha. nisms that may 

he responsible for the same. Measurement, using a hot-wire probe in 

the near-wake showed no evidence , of vortex shedding For the 

baseline as well as the ribbed airfoil configurations, suggesting that 

the increased base pressure is obviously caused by mean Flow 

changes because of riblets, h is well known, e.g., Refs. I, 3, and 7. 

that riblets lead to lower boundary-layer displacement thickness (S*) 

and, therefore. the effective base height (including u* effect) is 

smaller cornpared with the smooth airfoil. and an increase in base 

pressure eaa be expected." In the context of base fow dynamics. it 

isgererally known' -" that the base pressure depends on the de_ 

velopinent of the free shear layer, which in turn depends as the 

initial boundary-layer conditions just ahead of the bast; Earlier 

studies" revealed that the near-wall flow is strongiv affected by 

riblets, which includes a reduction in turbulent i-_ tensities (as 

much as 10-2O%)' `-'" and Reynolds shear stre.s. e.g., about 15% in 

 experiments of Walsh" and Suzuki and Kasagi.'° It would 

therefore seem likely that the combination of lower (mean) velocity 

gradient and reduced levels of turbulent intensities and shear stress 

in the wall region of the approaching boundary layer (ahead of the 

base plane) will Cavorably affect the shear-layer development 

because the mixing zone is relatively short (comparable to the 

trailing-edge thickness). It is suggested that the increase in base 

pressure Is primarily influenced by the initial conditions of the 

boundary layer just ahead of the base because of riblets leading to 

(eel. atively) lower velocity along the dividing streamline of the shear 

layer and, hence, a higher base pressure'° in the presence of riblets. 

 

Conclusions 

It has been demonstrated for the first time that riblets can also 

provide a base drag reduction of engineering value t�n a blunt 

trailing airfoil at low speeds; the results further show that the base 

drag reduction is maintained up to an airfoil incidence of 6 deg. 

Although the base drag reduction is large (as much as 50% of the 

smooth airfoil base drag), its contribution as a fraction of the total 

drag in only about 0.7% because the base drag component itself is 

small on the airfoil. It is suggested that the increase in base pressure 

is a direct consequence of certain favorable changes in the boundary 

layer as a result of riblets ahead of separation; these include a lower 

effective base height of the airfoil (including boundary-layer 

displacement thickness) and reduced mixing in the free shear layer 

leading to lower velocity along the dividing streamline. It would be 

very informative and valuable to assess base drag reduction because 

of riblets on supercritical airfoils with a blunt trailing edge at 

transonic speeds, as well as to investigate, in d'taii. flow mechanisms 

responsible for the base pressure increase with these riblets_ 
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