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Abstract: 3-Azabicyclo[3.1.0]hexanes are common structural components in natural products and
bioactive compounds. Traditionally, the metal-mediated cyclopropanation domino reaction of chain
enzymes is the most commonly used strategy for the construction of this type of aza[3.1.0]bicycle
derivative. In this study, a base-promoted intramolecular addition of alkenes used to deliver confor-
mationally restricted highly substituted aza[3.1.0]bicycles is reported. This reaction was tailor-made
for saturated aza[3.1.0] bicycle-containing fused bicyclic compounds that may be applied in the
development of concise and divergent total syntheses of bioactive compounds.
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1. Introduction

Saturated N-heterocycles such as 3-azabicyclo[3.1.0]hexanes are common structural
components in natural products and bioactive compounds with a broad spectrum of activ-
ity against various bacteria, mycobacteria, parasites, tumors, and neurological disorders
(Figure 1) [1–9]. For example, Duocarmycin SA, Yatakemycin, and CC-1065 are representa-
tive members of such well-known biomolecules that derive their antitumor activity from
their ability to alkylate DNA [10]. Furthermore, they have been identified as useful syn-
thons in a range of organic transformations [11–19]. Consequently, the development of
methods enabling the efficient construction of such structures has been a research focus in
organic chemistry.
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Figure 1. Bioactive molecules containing aza[3.1.0]bicycles.

A literature review indicates that the metal-mediated cyclopropanation domino reaction
of chain enynes is the most commonly used strategy for the construction of aza[3.1.0]bicycle
derivatives in terms of scalability and substrate scope, which highly rely on the in situ-
generated metal carbene species in the presence of Pd, Au, Ru, Co, Ni, and Rh salts as
catalysts [20–33]. Occasionally, the same conversion starting from enyne analogues has also
been achieved by a photocatalytic pathway [34–36] as well as metal-free organocatalytic
processes [37–42], mechanisms that are similar to the metal carbene processes (Scheme 1a).
Another two effective approaches for the synthesis of 3-azabicyclo[3.1.0]hexanes involve
the derivatization reactions of substituted cyclopropanes, such as C(sp3)–H bond acti-
vated alkenylation/amination tandem reactions and intramolecular aminolysis reactions
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(Scheme 1b) [43–53], and the reaction of functionalized maleimide derivatives with one car-
bon donor generated in situ derived from substituted diazomethanes, bromo(nitro)methane,
substituted α-diazoacetates, and N-tosylhydrazones via an intermolecular [2+1] fused-
annulation reaction (Scheme 1c) [54–64]. In particular, the base-induced intramolecular
spirocyclization method of the alkylation subunit precursor appeared to be a more efficient
proprietary reaction to access 3-azabicyclo[3.1.0]hexane scaffold-containing natural prod-
ucts via aryl metal or radical dearomatization/cyclization reactions (Scheme 1d) [65–77].
Although remarkable processing has been achieved in the last decades, achieving the
synthesis of the structurally versatile aza[3.1.0]bicycles through readily available starting
materials and simple and efficient chemical transformation remains a challenge. Here,
describe our recent effort on the base-promoted intramolecular addition of vinyl cyclo-
propanecarboxamides 1 to access conformationally restricted aza[3.1.0]bicycles core 2
(Scheme 1e).
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2. Results and Discussion
2.1. Reaction Optimization

Very recently, we developed a palladium(II)-catalyzed intramolecular oxidative aza-
Wacker-type reaction to access a series of highly substituted aza[3.1.0]bicycles, starting
from readily available compounds 1. Combined with our other works related to the
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derivatization reactions of amides and previous reports, we envisioned that compound 1
may continue to generate highly substituted aza[3.1.0] bicycles 2 via a molecular olefin aza-
addition reaction under appropriate bases (Scheme 1e). With this assumption in mind, the
model reagent 1-(4-chlorophenyl)-N-(p-tolyl)-2-vinyl cyclopropane-1-carboxamide (1a) was
selected to explore the feasibility of the designed transformation; some key results are listed
in Table 1. After many attempts, we found that the desired product 1-(4-chlorophenyl)-
4-methyl-3-(p-tolyl)-3-azabicyclo[3.1.0]hexan-2-one (2a) was isolated in 82% yield in the
presence of 4.0 equiv. of tBuOK in DMF after 24 h, along with 11% of recovered 1a, which
could not be consumed by prolonging the reaction time (Table 1, entry 1). Notably, when
we added 4.2 equiv. of 18-crown-6 ether to the reaction [48,78], starting material 1a was
completely consumed within 24 h (Table 1, entry 2). However, considering that it did not
significantly affect the reaction time and the yield of product 2a, as well as the economy
of the transformation, it was not added in the later experiments. Moreover, reactions
performed at a lower or higher loading of tBuOK failed to give a higher yield of fuse-
heterocycle 2a (Table 1, entries 3–5). Similarly, lower or higher temperatures did not help
improve the reaction efficiency (Table 1, entries 6–9). The yield of the target product 2a was
not increased when the reactions were carried out in the presence of four other types of
bases, namely, K3PO4, NaH, NaOH, and Cs2CO3 (Table 1, entries 10–13). Other solvents,
including MeCN, dioxane, toluene, NMP, and DMSO, all provided diminished or no yields
of the product (Table 1, entries 14–18).

Table 1. Survey of the reaction conditions a.

Entry Base/equiv Solvent t/◦C Time/h Yield/% b

1 tBuOK (4.0) DMF 110 24 82 (11)
2 tBuOK (4.0) DMF 110 24 86 c

3 tBuOK (2.0) DMF 110 24 64 (35)
4 tBuOK (3.0) DMF 110 24 72 (6)
5 tBuOK (5.0) DMF 110 24 57 (26)
6 tBuOK (4.0) DMF 100 24 47 (48)
7 tBuOK (4.0) DMF 120 24 77 (16)
8 tBuOK (4.0) DMF 130 24 73 (8)
9 tBuOK (4.0) DMF 140 24 43
10 K3PO4 (4.0) DMF 110 24 39 (58)
11 NaH (4.0) DMF 110 24 15 (81)
12 NaOH (4.0) DMF 110 24 22 (68)
13 Cs2CO3 (4.0) DMF 110 24 20 (72)
14 tBuOK (4.0) MeCN 110 24 18 (76)
15 tBuOK (4.0) Dioxane 110 24 0 (93)
16 tBuOK (4.0) Toluene 110 24 0 (91)
17 tBuOK (4.0) NMP 110 24 68 (6)
18 tBuOK (4.0) DMSO 110 24 0 (85)

a Unless otherwise indicated, the reaction was conducted with 1a (0.5 mmol, 1.0 equiv), base (4.0 equiv), and
solvent (2 mL) at 110 ◦C under air in a sealed tube, and isolated yields are reported. b The recovery of 1a is shown
in parentheses. c In the presence of tBuOK (4.0 equiv) and 18-crown-6 ether (4.2 equiv).

2.2. Substrate Scope

With the identified optimal reaction conditions in hand, we evaluated the scope and
drawbacks of this base-promoted intramolecular addition (Scheme 2). The variation in
R1 was examined first. A variety of aryl groups having electron-releasing, -neutral, or
-withdrawing groups at the 3- or 4-position of the benzene ring underwent smooth in-
tramolecular annulation leading to the formation of the aza[3.1.0]bicycles 2a–g in 40–85% yields
with the regioselectivity ratio ranging from 1:1 to 2:1. Unfortunately, the analogous α-
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naphthyl-based substrate 1h was not suitable for this system. N-Alkyl-substituted starting
material 1i afforded the desired product 2i with excellent yield (85%) in ca 5:4 of dr value.
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Scheme 2. Extension of the reaction scope with various R1 a,b. a Unless otherwise indicated, all these
reactions were conducted with 1 (0.5 mmol, 1.0 equiv), tBuOK (4.0 equiv), and DMF (2 mL) at 110 ◦C
under air in a sealed tube. b Isolated yields are reported, and unless otherwise indicated, the yields in
parentheses are based on the conversion of substrate 1. The dr values were determined from the 1H
NMR analysis of the crude reaction mixture. c Recovery of 1h.

Next, the scope of the reaction was evaluated using different R2. Selected examples
are presented in Scheme 3. It can be seen that the addition reaction was proved to be well
tolerated by various 1-aryl-substituted vinyl cyclopropanecarboxamides bearing a MeO–
(2j and 2k), Me– (2l–n), F– (2p), and Br– (2q) group at the para-, meta-, or ortho-position,
along with the phenyl group-substituted cyclopropane derivative (2o). Notably, the bro-
mobenzene moiety of product 2q retains a derivatization site for further functionalization
reactions, including Suzuki–Miyaura [15,79–82], Buchwald–Hartwig [83–85], and Sono-
gashi coupling reactions [86–90]. In particular, the starting material 1r with a styrene group
on the cyclopropyl moiety provided the product 2r with an 81% yield.
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Scheme 3. Extension of the reaction scope with various R2 a,b. a Unless otherwise indicated, all these
reactions were conducted with 1 (0.5 mmol, 1.0 equiv), tBuOK (4.0 equiv), and DMF (2 mL) at 110 ◦C
under air in a sealed tube. b Isolated yields are reported, and the yields in parentheses are based on
the conversion of substrate 1. The dr values were determined from the 1H NMR analysis of the crude
reaction mixture.
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With the aim of devising a practical, gram-scale synthesis of a biovaluable aza[3.1.0]bicycle
scaffold, a reaction on 7 mmol (1.841 g) was carried out with this improved synthetic method
based on the base-promoted intramolecular addition of alkenes. When we treated 1o under
optimal conditions, the reaction smoothly furnished a 73% yield of 2o after 72 h under
standard conditions, with 17% 1o recovered (86% yield of 2o based on the conversion of
the substrate) (Scheme 4).
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3. Materials and Methods
3.1. General Remarks

Unless stated otherwise, reactions were conducted in Schlenk under air. All reagents
were purchased from commercial sources and used without further treatment unless
otherwise indicated. Starting materials were synthesized following the literatures [91–93],
and the procedures were described in the Supporting Information. DMF, CH3CN, DMSO,
THF, and toluene for reactions were distilled under an atmosphere of dry N2. Petroleum
ether (PE), used here, refers to the 60–90 ◦C boiling point fraction of petroleum. Ethyl
acetate is abbreviated as EA. 1H NMR and 13C NMR spectra were recorded on a Bruker
Avance/600 (1H: 600 MHz, 13C: 151 MHz) or Bruker Avance/400 (1H: 400 MHz, 13C: 101
MHz at 25 ◦C). Fluorine nuclear magnetic resonance (19F NMR) spectra were recorded
on a Bruker Avance/600 spectrometer or a Bruker Avance/400. 1H NMR spectra were
calibrated against residual CHCl3 in the solvent (7.26 ppm). 13C NMR spectra were
calibrated against the peak of the residual CHCl3 in the solvent (77.2 ppm). NMR data
are represented as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet,
t = triplet, q = quartet, and m = multiplet), coupling constant in hertz (Hz), and integration.
All high-resolution mass spectra (HRMS) were measured on a mass spectrometer by
using electrospray ionization orthogonal acceleration time-of-flight (ESI-OA-TOF), and the
purity of all samples used for HRMS (>95%) was confirmed by 1H NMR and 13C NMR
spectroscopic analysis. All reactions were monitored by thin-layer chromatography (TLC)
(PE: EA = 10:1) with GF254 silica gel-coated plates.

3.2. Typical Experimental Procedure for 2 (2a as an Example)

In a Schlenk tube (25 mL), 1a (156 mg, 0.5 mmol) and tBuOK (224 mg, 4.0 equiv.) were
added. The mixture was stirred well in DMF (2 mL) and stirred at 110 ◦C in a sand bath
under air (the whole process was closely monitored by TLC). After the completion of the
reaction, DCM (5 mL) was added to water (10 mL) and extracted with dichloromethane
(3 × 10 mL). Then the organic solvent was washed with H2O (15 mL) and saturated NaCl
(15 mL) solutions, dried over anhydrous Na2SO4, and concentrated in vacuo. The residue
was purified by flash column chromatography with PE and EA (PE: EA = 20: 1) as eluent
to give 2a as a white solid (128 mg, 82%).
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3.3. Characterization of Products

1-(4-Chlorophenyl)-4-methyl-3-(p-tolyl)-3-azabicyclo[3.1.0]hexan-2-one (2a). White solid.
(Yield: 82%). Mp = 74–76 ◦C. dr ≈ 1:1. 1H NMR (600 MHz, CDCl3) δ 7.44–7.40 (m, 4H,
Ar-H), 7.34–7.30 (m, 4H, Ar-H), 7.29 (dt, J = 9.0, 2.4 Hz, 2H, Ar-H), 7.17 (t, J = 7.2 Hz, 4H,
Ar-H), 7.12 (d, J = 8.4 Hz, 2H, Ar-H), 4.53 (p, J = 6.0 Hz, 1H, N-CH), 4.20 (q, J = 6.4 Hz, 1H,
N-CH), 2.38–2.35 (m, 2H, CH), 2.33 (s, 3H, Ar-CH3), 2.33 (s, 3H, Ar-CH3), 2.04 (dd, J = 7.8,
4.8 Hz, 1H, CH), 1.51 (dd, J = 7.8, 4.8 Hz, 1H, CH2), 1.39 (dd, J = 7.8, 4.8 Hz, 1H, CH2), 1.36
(d, J = 6.0 Hz, 3H, CH3), 1.31 (t, J = 4.5 Hz, 1H, CH2), 1.26 (t, J = 4.5 Hz, 1H, CH2), 1.19
(d, J = 6.0 Hz, 3H, CH3). 13C NMR (101 MHz, CDCl3) δ 173.5 (C=O), 172.4 (C=O), 135.8,
135.3, 135.1, 135.0, 134.9, 134.1, 133.1, 132.8, 130.1, 129.8, 129.61, 129.58, 128.6, 128.5, 124.6,
123.5, 56.4 (C-N), 53.1 (C-N), 34.4 (C), 33.4 (C), 26.9 (CH), 26.6 (CH), 21.5 (Ar-CH3), 21.0
(Ar-CH3), 20.9 (CH3), 20.1 (CH3), 16.9 (CH2), 16.8 (CH2). HRMS (ESI) (m/z) calculated for
C19H18ClNO [M + Na]+: 334.0969, found: 334.0968. IR v/cm−1 (KBr) 1678, 1512, 1496, 1391,
1396, 1292, 1182, 1086, 1012, 839, 756, 718, 521.

3-(4-(Tert-butyl)phenyl)-1-(4-chlorophenyl)-4-methyl-3-azabicyclo[3.1.0]hexan-2-one (2b).
White solid. (Yield: 81%). Mp = 119–121 ◦C. dr ≈ 5:3. 1H NMR (600 MHz, CDCl3) δ
7.42 (dd, J = 8.4, 3.6 Hz, 3.3H, Ar-H), 7.39 (s, 0.6H, Ar-H), 7.37 (s, 4.3H, Ar-H), 7.33 (d,
J = 8.4 Hz, 2H, Ar-H), 7.29 (d, J = 8.4 Hz, 1.2H, Ar-H), 7.15 (d, J = 8.4 Hz, 1.2H, Ar-H), 4.55
(p, J = 6.0 Hz, 0.6H, minor, N-CH), 4.23 (q, J = 6.0 Hz, 1H, major, N-CH), 2.36 (dt, J = 7.8,
4.8 Hz, 0.6H, minor, CH), 2.04 (dd, J = 7.8, 4.2 Hz, 1H, major, CH), 1.51 (dd, J = 7.8, 4.8 Hz,
1H, major, CH2), 1.41 (dd, J = 7.8, 4.8 Hz, 0.8H, minor, CH2), 1.38 (d, J = 6.6 Hz, 3H, major,
CH3), 1.32 (d, J = 4.8 Hz, 1H, minor, CH2), 1.31 (s, 14H, (CH3)3), 1.25 (t, J = 4.5 Hz, 1.3H,
major, CH2), 1.21 (d, J = 6.0 Hz, 2H, minor, CH3). 13C NMR (151 MHz, CDCl3) δ 173.5
(minor, C=O), 172.4 (major, C=O), 148.8 (minor), 148.3 (major), 135.1 (major), 135.01 (major),
134.98 (minor), 134.0 (minor), 133.1 (major), 132.8 (minor), 130.1 (major), 129.7 (minor),
128.6 (major), 128.5 (minor), 125.9 (major), 125.8 (minor), 124.1 (minor), 122.9 (major), 56.2
(major, C-N), 53.0 (minor, C-N), 34.51 (minor, Ar-(CH3)3), 34.46 (major, Ar-(CH3)3), 34.4
(major, C), 33.4 (minor, C), 31.3 ((CH3)3), 27.1 (minor, CH), 26.5 (major, CH), 21.6 (major,
CH3), 20.1 (minor, CH3), 17.0 (major, CH2), 16.8 (minor, CH2). HRMS (ESI) (m/z) calculated
for C22H24ClNO [M + Na]+: 376.1439, found: 376.1431. IR v/cm−1 (KBr) 1675, 1515, 1493,
1374, 1291, 1266, 1188, 1103, 1067, 1011, 834, 796, 728, 550.

1-(4-Chlorophenyl)-3-(4-methoxyphenyl)-4-methyl-3-azabicyclo[3.1.0]hexan-2-one (2c).
White solid. (Yield: 85%). Mp = 98–100 ◦C. dr ≈ 1:1. 1H NMR (400 MHz, CDCl3) δ
7.45–7.40 (m, 4H, Ar-H), 7.35–7.27 (m, 6H, Ar-H), 7.15–7.10 (m, 2H, Ar-H), 6.93–6.87 (m, 4H,
Ar-H), 4.48 (p, J = 6.0 Hz, 1H, N-CH), 4.12 (q, J = 6.0 Hz, 1H, N-CH), 3.80 (s, 6H, Ar-OCH3),
2.39–2.32 (m, 1H, CH), 2.04 (dd, J = 7.6, 4.4 Hz, 1H, CH), 1.51 (dd, J = 7.6, 4.4 Hz, 1H, CH2),
1.38 (dd, J = 7.8, 5.0 Hz, 1H, CH2), 1.34 (d, J = 6.0 Hz, 3H, CH3), 1.30 (t, J = 4.8 Hz, 1H, CH2),
1.27 (t, J = 4.6 Hz, 1H, CH2), 1.17 (d, J = 6.4 Hz, 3H, CH3). 13C NMR (101 MHz, CDCl3) δ
173.5 (C=O), 172.4 (C=O), 157.7, 157.5, 135.04, 134.97, 133.1, 132.8, 130.4, 130.1, 129.7, 129.6,
128.6, 128.5, 126.4, 125.6, 114.3, 114.3, 56.8 (Ar-OCH3), 55.5 (C-N), 53.5 (Ar-OCH3), 34.2 (C),
33.4 (C), 26.8 (CH), 26.7 (CH), 21.5 (CH3), 20.2 (CH3), 17.0 (CH2), 16.9 (CH2). HRMS (ESI)
(m/z) calculated for C19H18ClNO2 [M + Na]+: 350.0918, found: 350.0912. IR v/cm−1 (KBr)
1674, 1512, 1497, 1375, 1300, 1181, 1110, 1088, 1030, 832, 755, 716, 537.

1-(4-Chlorophenyl)-3-(3-methoxyphenyl)-4-methyl-3-azabicyclo[3.1.0]hexan-2-one (2d).
White solid. (Yield: 51%). Mp = 78–80 ◦C. dr ≈ 5:3. 1H NMR (400 MHz, CDCl3) δ

7.44–7.39 (m, 3H, Ar-H), 7.35–7.27 (m, 3.7H, Ar-H), 7.26–7.22 (m, 1.8H, Ar-H), 6.96 (dd,
J = 8.0, 1.2 Hz, 1H, major, Ar-H), 6.85 (t, J = 2.2 Hz, 0.6H, minor, Ar-H), 6.80 (dd, J = 8.0,
1.2 Hz, 0.6H, minor, Ar-H), 6.78–6.70 (m, 1.5H, Ar-H), 4.56 (p, J = 6.0 Hz, 0.6H, minor,
N-CH), 4.27 (q, J = 6.4 Hz, 1H, major, N-CH), 3.80 (s, 4.5H, Ar-OCH3), 2.38 (dt, J = 7.9, 5.0
Hz, 0.6H, minor, CH), 2.06 (dd, J = 8.0, 4.4 Hz, 1H, major, CH), 1.51 (dd, J = 7.6, 4.8 Hz, 1H,
major, CH2), 1.44–1.38 (m, 3.7H), 1.32 (t, J = 4.8 Hz, 1H, major, CH2), 1.26 (t, J = 4.4 Hz, 1.8H,
CH2), 1.23 (d, J = 6.4 Hz, 2H, minor, CH3). 13C NMR (101 MHz, CDCl3) δ 173.5 (minor,
C=O), 172.6 (major, C=O), 160.13 (major), 160.07 (minor), 139.2 (major), 138.0 (minor), 134.82
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(minor), 134.81 (major), 133.2 (major), 132.9 (minor), 130.3 (major), 129.9 (minor), 129.60
(major), 129.55 (minor), 128.6 (major), 128.5 (minor), 116.5 (minor), 114.6 (major), 111.7
(minor), 111.1 (major), 110.6 (minor), 108.8 (major), 56.1 (minor, Ar-OCH3), 55.4 (major,
C-N), 53.1 (major, Ar-OCH3), 34.8 (minor, C), 33.6 (major, C), 26.9 (minor, CH), 26.3 (major,
CH), 21.5 (major, CH3), 20.0 (minor, CH3), 16.9 (major, CH2), 16.7 (minor, CH2). HRMS
(ESI) (m/z) calculated for C19H18ClNO2 [M + Na]+: 350.0918, found: 350.0914. IR v/cm−1

(KBr) 1681,1602, 1579, 1490, 1456, 1373, 1293, 1173, 1087, 1068, 1037, 848, 756, 570.

1-(4-Chlorophenyl)-4-methyl-3-phenyl-3-azabicyclo[3.1.0]hexan-2-one (2e). White solid.
(Yield: 64%). Mp = 88–90 ◦C. dr ≈ 5:3. 1H NMR (400 MHz, CDCl3) δ 7.49–7.45 (m, 2H,
Ar-H), 7.43 (d, J = 8.4 Hz, 3H, Ar-H), 7.40–7.37 (m, 1.3H, Ar-H), 7.35 (d, J = 9.2 Hz, 2.8H,
Ar-H), 7.33–7.28 (m, 2H, Ar-H), 7.25–7.21 (m, 1.3H, Ar-H), 7.18 (t, J = 7.4 Hz, 1.3H, Ar-H),
4.59 (p, J = 6.0 Hz, 0.6H, minor, N-CH), 4.27 (q, J = 6.4 Hz, 1H, major, N-CH), 2.42–2.35
(m, 0.6H, minor, CH), 2.06 (dd, J = 7.6, 4.4 Hz, 1H, major, CH), 1.52 (dd, J = 7.6, 4.8 Hz,
1H, major, CH2), 1.43–1.40 (m, 0.5H, minor, CH2), 1.38 (d, J = 6.0 Hz, 3H, major, CH3), 1.33
(t, J = 4.8 Hz, 0.7H, minor, CH2), 1.27 (t, J = 4.6 Hz, 1.5H, major, CH2), 1.21 (d, J = 6.0 Hz,
2H, minor, CH3). 13C NMR (151 MHz, CDCl3) δ 173.5 (minor, C=O), 172.5 (major, C=O),
137.8 (major), 136.8 (minor), 134.9 (major), 134.8 (minor), 133.2 (major), 132.9 (minor), 130.1
(major), 129.8 (minor), 129.0 (major), 128.9 (minor), 128.6 (major), 128.5 (minor), 125.9
(minor), 125.4 (minor), 124.5 (major), 123.2 (major), 56.1 (major, C-N), 53.0 (minor, C-N),
34.6 (major, C), 33.5 (minor, C), 26.9 (minor, CH), 26.5 (major, CH), 21.5 (major, CH3),
20.1 (minor, CH3), 16.9 (major, CH2), 16.8 (minor, CH2). HRMS (ESI) (m/z) calculated for
C18H16ClNO [M + Na]+: 320.0813, found: 320.0807. IR v/cm−1 (KBr) 1680, 1595, 1491, 1374,
1294, 1178, 1102, 1065, 1039, 838, 753, 719, 528.

1-(4-Chlorophenyl)-3-(4-fluorophenyl)-4-methyl-3-azabicyclo[3.1.0]hexan-2-one (2f). White
solid. (Yield: 61%). Mp = 82–84 ◦C. dr ≈ 3:2. 1H NMR (400 MHz, CDCl3) δ 7.44–7.36 (m,
5.3H, Ar-H), 7.35–7.31 (m, 2H, Ar-H), 7.31–7.28 (m, 2H, Ar-H), 7.22–7.16 (m, 1.3H, Ar-H),
7.11–7.02 (m, 3.2H, Ar-H), 4.52 (p, J = 6.0 Hz, 0.7H, minor, N-CH), 4.19 (q, J = 6.4 Hz, 1H,
major, N-CH), 2.39 (dt, J = 8.0, 4.8 Hz, 0.7H, minor, CH), 2.07 (dd, J = 7.6, 4.4 Hz, 1H, major,
CH), 1.53 (dd, J = 7.6, 4.8 Hz, 1H, major, CH2), 1.41 (dd, J = 7.6, 4.8 Hz, 1H, major, CH2),
1.36 (d, J = 6.0 Hz, 3H, major, CH3), 1.31 (t, J = 4.8 Hz, 0.8H, minor, CH2), 1.27 (t, J = 4.8 Hz,
2H, CH2), 1.20 (d, J = 6.4 Hz, 2H, minor, CH3). 13C NMR (151 MHz, CDCl3) δ 173.6 (minor,
C=O), 172.5 (major, C=O), 160.5 (d, J = 246.1 Hz, minor, C-F), 160.2 (d, J = 244.6 Hz, major,
C-F), 134.7 (major), 134.6 (minor), 133.6 (d, J = 3.0 Hz, major), 133.3 (major), 133.0 (minor),
132.7 (d, J = 2.7 Hz, minor), 130.1 (major), 129.8 (minor), 128.6 (major), 128.5 (minor), 126.4
(d, J = 4.5 Hz, minor), 125.4 (d, J = 7.6Hz, major), 115.9 (d, J = 4.5 Hz, minor), 115.8 (d,
J = 6.0 Hz, major), 56.5 (major, N-CH), 53.3 (minor, N-CH), 34.3 (major, C), 33.4 (minor, C),
26.8 (minor, CH), 26.5 (major, CH), 21.4 (major, CH3), 20.1 (minor, CH3), 16.9 (major, CH2),
16.8 (minor, CH2). 19F NMR (565 MHz, CDCl3) δ −115.8 (minor), −116.4 (major). HRMS
(ESI) (m/z) calculated for C18H15ClFNO [M + Na]+: 338.0718, found: 338.0716. IR v/cm−1

(KBr) 1682, 1505, 1378, 1180, 1101, 1064, 1014, 833, 718, 533.

1-(4-Chlorophenyl)-3-(3-fluorophenyl)-4-methyl-3-azabicyclo[3.1.0]hexan-2-one (2g). White
solid. (Yield: 40%). Mp = 82–84 ◦C. dr ≈ 2:1. 1H NMR (400 MHz, CDCl3) δ 7.43–7.38 (m,
3.8H, Ar-H), 7.36–7.34 (m, 1.5H, Ar-H), 7.33–7.31 (m, 1.7H, Ar-H), 7.30 (d, J = 1.6 Hz, 0.5H,
Ar-H), 7.29 (d, J = 3.6 Hz, 0.5H, Ar-H), 7.27–7.26 (m, 0.6H, Ar-H), 7.25–7.23 (m, 0.4H, Ar-H),
7.03 (dd, J = 8.8, 1.2 Hz, 1H, Ar-H), 6.93–6.83 (m, 1.4H, Ar-H), 4.57 (p, J = 6.0 Hz, 0.5H,
minor, N-CH), 4.28 (q, J = 6.4 Hz, 1H, major, N-CH), 2.45–2.38 (m, 0.4H, minor, CH), 2.07
(dd, J = 8.0, 4.4 Hz, 1H, major, CH), 1.53 (dd, J = 7.6, 4.8 Hz, 1H, major, CH2), 1.45–1.39
(m, 3.5H), 1.32 (t, J = 4.6 Hz, 0.6H, minor, CH2), 1.28–1.22 (m, 3H). 13C NMR (151 MHz,
CDCl3) δ 173.5 (minor, C=O), 172.6 (major, C=O), 163.0 (d, J = 246.1 Hz, major, C-F), 162.9
(d, J = 246.1 Hz, minor, C-F), 139.6 (d, J = 10.6 Hz, major), 138.4 (d, J = 10.6 Hz, minor),
134.5 (d, J = 3.0 Hz, major), 133.4 (major), 133.1 (minor), 130.2 (minor), 130.1 (d, J = 9.1
Hz, major), 130.0 (d, J = 9.1 Hz, minor), 129.9 (major), 128.7 (major), 128.5 (minor), 119.6
(d, J = 3.0 Hz, minor), 117.4 (d, J = 3.0 Hz, major), 112.6 (d, J = 6.0 Hz, minor), 111.8 (d,
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J = 21.1 Hz, major), 111.5, 109.8 (d, J = 25.7 Hz, major), 55.9 (major, N-CH), 52.9 (minor,
N-CH), 34.8 (major, C), 33.6 (minor, C), 26.9 (minor, CH), 26.3 (major, CH), 21.3 (major,
CH3), 20.0 (minor, CH3), 16.9 (major, CH2), 16.7 (minor, CH2). 19F NMR (565 MHz, CDCl3)
δ -111.3 (major), -111.8 (minor). HRMS (ESI) (m/z) calculated for C18H15ClFNO [M + Na]+:
338.0718, found: 338.0712. IR v/cm−1 (KBr) 1682, 1588, 1491, 1452, 1368, 1296, 1185, 1087,
1064, 1014, 856, 754, 719, 591, 482.

3-Butyl-1-(4-chlorophenyl)-4-methyl-3-azabicyclo[3.1.0]hexan-2-one (2i). yellow oil. (Yield:
85%) ◦C. dr ≈ 5:4. 1H NMR (600 MHz, CDCl3) δ 7.35 (dd, J = 10.8, 8.4 Hz, 3H, Ar-H),
7.28 (d, J = 7.8 Hz, 3H, Ar-H), 3.98 (p, J = 6.0 Hz, 1H, minor, N-CH), 3.61–3.55 (m, 1.5H,
minor), 3.54–3.48 (m, 1H, major, N-CH), 2.90–2.83 (m, 1.6H, major), 2.21–2.16 (m, 1H, major,
CH), 1.86 (dd, J = 7.8, 4.2 Hz, 1H, minor, CH), 1.52–1.45 (m, 1.5H, major), 1.45–1.42 (m,
1H, minor), 1.41 (dd, J = 7.8, 4.8 Hz, 1.6H, major), 1.32 (d, J = 6.0 Hz, 2.7H, minor, CH3),
1.31–1.29 (m, 2H), 1.28–1.26 (m, 1.3H), 1.25 (d, J = 6.6 Hz, 3H, major, CH3), 1.08 (t, J = 4.8
Hz, 1H, major, CH2), 0.99 (t, J = 4.2 Hz, 0.8H, minor, CH2), 0.95–0.90 (m, 5H). 13C NMR
(151 MHz, CDCl3) δ 173.9 (major, C=O), 173.2 (minor, C=O), 135.4 (minor), 135.3 (major),
132.8 (minor), 132.7 (major), 129.9 (minor), 129.7 (major), 128.5 (major), 128.4 (minor), 53.8
(minor, N-CH), 51.3 (major, N-CH), 39.8 (minor, N-CH2), 39.5 (major, N-CH2), 33.5 (minor,
CH2-C-CH2), 33.2 (major, CH2-C-CH2), 29.9 (minor, CH), 29.5 (major, CH), 27.0 (minor, C),
26.9 (major, C), 21.0 (major, CH2-C-CH3), 20.2 (major, CH2-C-CH3), 20.1 (minor, CH3), 19.9
(minor, CH3), 17.1 (major, CH2), 16.6 (minor, CH2), 13.83 (minor, CH2-CH3), 13.79 (major,
CH2-CH3). HRMS (ESI) (m/z) calculated for C16H20ClNO [M + Na]+: 300.1126, found:
300.1127. IR v/cm−1 (KBr) 1676, 1497, 1455, 1417, 1376, 1091, 1013, 819, 723, 527.

1-(4-Methoxyphenyl)-4-methyl-3-phenyl-3-azabicyclo[3.1.0]hexan-2-one (2j). White solid.
(Yield: 72%). Mp = 48–50 ºC. dr ≈ 2:1. 1H NMR (400 MHz, CDCl3) δ 7.49 (d, J = 7.6 Hz, 2H,
Ar-H), 7.42–7.32 (m, 6H, Ar-H), 7.25–7.13 (m, 2H, Ar-H), 6.93–6.84 (m, 3H, Ar-H), 4.59 (p,
J = 6.0 Hz, 0.5H, minor, N-CH), 4.27 (q, J = 6.4 Hz, 1H, major, N-CH), 3.81 (s, 3H, major,
Ar-OCH3), 3.80 (s, 1.4H, minor, Ar-OCH3), 2.34 (dt, J = 7.6, 4.8 Hz, 0.5H, minor, CH), 2.01
(dd, J = 7.6, 4.0 Hz, 1H, major, CH), 1.50 (dd, J = 7.6, 4.4 Hz, 1H, major, CH2), 1.41–1.36 (m,
4H), 1.29–1.24 (m, 1.5H, CH2), 1.23–1.19 (m, 2.8H). 13C NMR (151 MHz, CDCl3) δ 174.2
(minor, C=O), 173.3 (major, C=O), 158.9 (major), 158.7 (minor), 138.1 (major), 137.0 (minor),
130.2 (major), 129.9 (minor), 129.0 (major), 128.9 (minor), 128.4 (major), 128.3 (minor), 125.6
(minor), 125.1 (major), 124.5 (minor), 123.0 (minor), 114.0 (major), 113.8 (minor), 56.1 (major,
Ar-OCH3), 55.4 (major, C-N), 55.3 (minor, Ar-OCH3), 53.0 (minor, C-N), 34.8 (major, C), 33.7
(minor, C), 26.6 (minor, CH), 26.2 (major, CH), 21.5 (major, CH3), 19.6 (major, CH3), 17.0
(minor, CH2), 16.2 (minor, CH2). HRMS (ESI) (m/z) calculated for C19H19NO2 [M + Na]+:
316.1308, found: 316.1308. IR v/cm−1 (KBr) 1682, 1516, 1492, 1392, 1369, 1296, 1177, 1107,
1031, 838, 761, 747, 538.

1-(3-Methoxyphenyl)-4-methyl-3-phenyl-3-azabicyclo[3.1.0]hexan-2-one (2k). White solid.
(Yield: 80%). Mp = 78–80 ◦C. dr ≈ 5:3. 1H NMR (600 MHz, CDCl3) δ 7.48 (d, J = 7.8 Hz,
2H, Ar-H), 7.37 (dd, J = 16.6, 8.9 Hz, 3H, Ar-H), 7.28 (t, J = 7.8 Hz, 1H, Ar-H), 7.26–7.15 (m,
4H, Ar-H), 7.11 (s, 1H, Ar-H), 7.04 (d, J = 7.8 Hz, 1H, major, Ar-H), 6.99 (d, J = 7.8 Hz, 0.5H,
minor, Ar-H), 6.84 (dd, J = 8.4, 2.4 Hz, 1H, major, Ar-H), 6.81 (dd, J = 7.8, 2.1 Hz, 0.5H, minor,
Ar-H), 4.59 (p, J = 6.0 Hz, 0.6H, minor, N-CH), 4.26 (q, J = 6.0 Hz, 1H, major, N-CH), 3.83 (s,
3H, major, Ar-OCH3), 3.81 (s, 1.7H, minor, Ar-OCH3), 2.40 (dt, J = 7.8, 5.0 Hz, 0.6H, minor,
CH), 2.06 (dd, J = 7.8, 4.2 Hz, 1H, major, CH), 1.55 (dd, J = 7.8, 4.8 Hz, 1H, major, CH2), 1.44
(dd, J = 7.8, 4.8 Hz, 0.6H, minor, CH2), 1.39 (d, J = 6.6 Hz, 3H, major, CH3), 1.32 (t, J = 4.8 Hz,
0.6H, minor, CH2), 1.25 (t, J = 4.5 Hz, 1H, major, CH2), 1.21 (d, J = 6.0 Hz, 1.7H, minor,
CH3). 13C NMR (101 MHz, CDCl3) δ 173.7 (minor, C=O), 172.8 (major, C=O), 159.64 (major),
159.59 (minor), 138.0 (major), 137.9 (major), 136.9 (minor), 129.4 (major), 129.3 (minor),
129.0 (major), 128.9 (minor), 125.8 (minor), 125.3 (major), 124.6 (minor), 123.2 (major), 120.9
(major), 120.3 (minor), 114.7 (major), 114.0 (minor), 113.0 (minor), 112.8 (major), 56.1 (minor,
Ar-OCH3), 55.3 (major, C-N), 53.0 (minor, Ar-OCH3), 35.1 (major, C), 33.9 (minor, C), 27.1
(minor, CH), 26.5 (major, CH), 21.4 (major, CH3), 20.0 (major, CH3), 17.0 (minor, CH2), 16.9
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(major, CH2). HRMS (ESI) (m/z) calculated for C19H19NO2 [M + Na]+: 316.1308, found:
316.1308. IR v/cm−1 (KBr) 1682, 1594, 1493, 1456, 1372, 1293, 1186, 1040, 1028, 939, 759, 623.

4-Methyl-3-phenyl-1-(p-tolyl)-3-azabicyclo[3.1.0]hexan-2-one (2l). White solid. (Yield: 67%).
Mp = 89–91 ◦C. dr ≈ 5:4. 1H NMR (600 MHz, CDCl3) δ 7.49 (d, J = 7.8 Hz, 2H, Ar-H),
7.39–7.34 (m, 7H, Ar-H), 7.25 (s, 0.7H, Ar-H), 7.20–7.13 (m, 5H, Ar-H), 4.59 (p, J = 6.0 Hz,
0.7H, minor, N-CH), 4.27 (q, J = 6.0 Hz, 1H, major, N-CH), 2.37–2.34 (m, 3.8H), 2.33 (s, 2H),
2.02 (dd, J = 7.8, 4.2 Hz, 1H, major, CH), 1.54 (dd, J = 7.8, 4.8 Hz, 1H, major, CH2), 1.42 (dd,
J = 7.8, 4.8 Hz, 0.8H, minor, CH2), 1.39 (d, J = 6.0 Hz, 3H, major, CH3), 1.28 (t, J = 4.2 Hz, 1H,
major, CH2), 1.23 (d, J = 4.2 Hz, 1H, major, CH2), 1.21 (d, J = 6.6 Hz, 2.4H, minor, CH3). 13C
NMR (151 MHz, CDCl3) δ 174.1 (minor, C=O), 173.1 (major, C=O), 138.1 (major), 137.03
(major), 137.00 (minor), 136.7 (minor), 133.3 (major), 133.2 (minor), 129.2 (major), 129.1
(major), 128.95 (major), 128.85 (minor), 128.8 (minor), 128.5 (minor), 125.6 (minor), 125.1
(minor), 124.5 (major), 123.0 (major), 56.1 (major, C-N), 53.0 (minor), 35.0 (major, C), 33.9
(minor, C), 26.8 (minor, CH), 26.4 (major, CH), 21.5 (major, Ar-CH3), 21.15 (minor, Ar-CH3),
21.11 (minor, CH3), 19.6 (major, CH3), 17.0 (major, CH2), 16.2 (minor, CH2). HRMS (ESI)
(m/z) calculated for C19H19NO [M + Na]+: 300.1359, found: 300.1358. IR v/cm−1 (KBr)
1678, 1595, 1493, 1456, 1371, 1296, 1179, 1110, 1066, 1031, 922, 762, 640, 529.

4-Methyl-3-phenyl-1-(m-tolyl)-3-azabicyclo[3.1.0]hexan-2-one (2m). White solid. (Yield:
76%). Mp = 103–105 ◦C. dr ≈ 2:1. 1H NMR (400 MHz, CDCl3) δ 7.52–7.48 (m, 2H, Ar-
H), 7.40–7.30 (m, 5H, Ar-H), 7.26–7.14 (m, 5H, Ar-H), 7.13–7.05 (m, 1.6H, Ar-H), 4.59 (p,
J = 6.0 Hz, 0.6H, minor, N-CH), 4.27 (q, J = 6.4 Hz, 1H, major, N-CH), 2.39–2.35 (m, 3.8H),
2.34 (s, 1.7H, minor), 2.04 (dd, J = 8.0, 4.4 Hz, 1H, major, CH), 1.57–1.54 (m, 1H, CH2), 1.45
(dd, J = 7.6, 4.8 Hz, 0.6H, CH2), 1.40 (d, J = 9.6 Hz, 3H, major, CH3), 1.29 (t, J = 4.8 Hz, 0.6H,
minor, CH2), 1.24 (d, J = 4.4 Hz, 1H, CH2), 1.22 (d, J = 6.0 Hz, 2H, minor, CH3). 13C NMR
(101 MHz, CDCl3) δ 174.0 (C=O), 173.1 (C=O), 138.1, 137.9, 137.0, 136.2, 136.1, 129.7, 129.5,
129.0, 128.9, 128.4, 128.3, 128.1, 127.8, 125.9, 125.7, 125.4, 125.2, 124.5, 123.1, 56.1 (C-N), 53.0
(C-N), 35.2 (C), 34.1 (C), 26.9 (CH), 26.4 (CH), 21.5 (Ar-CH3), 21.4 (CH3), 19.6 (CH3), 17.0,
(CH2), 16.2 (CH2). HRMS (ESI) (m/z) calculated for C19H19NO2 [M + Na]+: 300.1359, found:
300.1359. IR v/cm−1 (KBr) 1683, 1494, 1455, 1376, 1296, 1181, 1108, 1067, 758, 606, 511.

4-Methyl-3-phenyl-1-(o-tolyl)-3-azabicyclo[3.1.0]hexan-2-one (2n). White solid. (Yield:
62%). Mp = 100–102 ◦C. dr ≈ 5:3. 1H NMR (600 MHz, CDCl3) δ 7.47 (d, J = 7.8 Hz, 2H,
Ar-H), 7.40–7.31 (m, 4H, Ar-H), 7.27 (s, 0.5H, Ar-H), 7.25–7.14 (m, 7H, Ar-H), 4.66 (p, J = 6.0
Hz, 0.6H, minor, N-CH), 4.33 (q, J = 6.0 Hz, 1H, major, N-CH), 2.54 (s, 3H, major, Ar-CH3),
2.40 (s, 1.7H, minor, Ar-CH3), 2.22 (dt, J = 7.8, 4.8 Hz, 0.6H, minor, CH), 2.06 (dd, J = 7.2,
3.6 Hz, 1H, major, CH), 1.52 (dd, J = 7.8, 4.8 Hz, 1H, major, CH2), 1.47 (d, J = 4.8 Hz, 0.5H,
minor, CH2), 1.45 (d, J = 6.0 Hz, 3H, major, CH3), 1.33–1.29 (m, 2H, CH2), 1.25 (d, J = 6.6 Hz,
2.4H, minor, CH3). 13C NMR (151 MHz, CDCl3) δ 173.9 (minor, C=O), 172.8 (major, C=O),
139.8 (major), 139.2 (minor), 138.0 (major), 137.1 (minor), 134.6 (minor), 134.3 (major), 130.7
(minor), 130.6 (major), 130.5 (major), 130.2 (minor), 128.95 (major), 128.89 (minor), 128.0
(major), 127.9 (minor), 125.9 (minor), 125.74 (major), 125.70 (minor), 125.2 (major), 124.5
(minor), 123.1 (major), 56.3 (major, C-N), 53.2 (minor, C-N), 35.5 (major, C), 34.7 (minor, C),
26.2 (minor, CH), 26.0 (major, CH), 20.9 (major, Ar-CH3), 20.1 (minor, Ar-CH3), 19.6 (minor,
CH3), 19.5 (major, CH3), 17.1 (major, CH2), 14.6 (minor, CH2). HRMS (ESI) (m/z) calculated
for C19H19NO2 [M + Na]+: 300.1359, found: 300.1358. IR v/cm−1 (KBr) 1682, 1596, 1495,
1456, 1373, 1293, 1179, 1099, 1067, 1027, 923, 751, 728, 659, 533.

4-Methyl-1,3-diphenyl-3-azabicyclo[3.1.0]hexan-2-one (2o). Yellow solid. (Yield: 83%).
Mp = 87–89 ◦C. dr ≈ 3:2. 1H NMR (400 MHz, CDCl3) δ 7.52–7.46 (m, 5H, Ar-H), 7.41–7.33
(m, 6H, Ar-H), 7.32–7.28 (m, 1.2H, Ar-H), 7.28–7.26 (m, 1H, Ar-H),7.25–7.23 (m, 0.7H, Ar-H),
7.22–7.15 (m, 1.6H, Ar-H, 4.60 (p, J = 6.0 Hz, 0.7H, minor, N-CH), 4.28 (q, J = 6.3 Hz, 1H,
major, N-CH), 2.43–2.37 (m, 0.7H, minor, CH), 2.07 (dd, J = 7.6, 4.4 Hz, 1H, major, CH),
1.58–1.55 (m, 1H, major, CH2), 1.46 (dd, J = 7.6, 4.8 Hz, 0.7H, minor, CH2), 1.39 (d, J = 6.0 Hz,
3H, major, CH3), 1.32 (t, J = 4.8 Hz, 0.7H, minor, CH2), 1.26 (t, J = 4.8 Hz, 1H, major, CH2),
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1.22 (d, J = 6.0 Hz, 2H, minor, CH3). 13C NMR (151 MHz, CDCl3) δ 173.9 (minor, C=O),
173.0 (major, C=O), 138.0 (major), 136.9 (major), 136.3 (minor), 136.2 (minor), 129.0 (minor),
128.9 (major), 128.50, 128.47, 128.4, 127.3, 127.0, 125.7, 125.2, 124.6, 123.1, 56.1 (major, C-N),
53.0 (minor, C-N), 35.2 (major, C), 34.1 (minor, C), 26.9 (minor, C-H), 26.4 (major, C-H), 21.5
(major, CH2), 19.7 (minor, CH2), 17.0 (major, CH3), 16.4 (minor, CH3). HRMS (ESI) (m/z)
calculated for C18H17NO [M + Na]+: 286.1202, found: 286.1202. IR v/cm−1 (KBr) 1682,
1598, 1495, 1447, 1372, 1299, 1178, 1101, 1063, 1021, 757, 664, 530.

1-(4-Fluorophenyl)-4-methyl-3-phenyl-3-azabicyclo[3.1.0]hexan-2-one (2p). White solid.
(Yield: 79%). Mp = 98–100 ◦C. dr ≈ 2:1. 1H NMR (600 MHz, CDCl3) δ 7.48 (d, J = 7.8 Hz,
1.6H, Ar-H), 7.47–7.43 (m, 2.4H, Ar-H), 7.37 (q, J = 7.8 Hz, 2.5H, Ar-H), 7.24 (d, J = 7.8
Hz, 1H, Ar-H), 7.22–7.16 (m, 1.2H, Ar-H), 7.05 (t, J = 8.7 Hz, 1.6H, major, Ar-H), 7.02 (t,
J = 8.7 Hz, 1H, minor, Ar-H), 4.59 (p, J = 6.0 Hz, 0.4H, minor, N-CH), 4.27 (q, J = 6.0 Hz,
1H, major, N-CH), 2.38 (dt, J = 7.8, 5.1 Hz, 0.4H, minor, CH), 2.05 (dd, J = 7.8, 4.2 Hz, 1H,
major, N-CH), 1.51 (dd, J = 7.8, 4.2 Hz, 1H, major, CH2), 1.39 (d, J = 6.0 Hz, 3H, major, CH3),
1.31 (t, J = 4.5 Hz, 0.5H, minor, CH2), 1.26 (t, J = 4.5 Hz, 1H, major, CH2), 1.22 (d, J = 6.0
Hz, 1.3H, minor, CH3). 13C NMR (101 MHz, CDCl3) δ 173.8 (minor, C=O), 172.8 (major,
C=O), 162.1 (d, J = 246.4 Hz, major, C-F), 162.0 (d, J = 246.4 Hz, minor, C-F), 137.9 (major),
136.8 (minor), 132.1 (d, J = 3.0 Hz, major), 132.0 (d, J = 4.0 Hz, minor), 130.6 (d, J = 8.1 Hz,
major), 130.3 (d, J = 8.1 Hz, minor), 129.0 (major), 128.9 (minor), 125.8 (minor), 125.3 (major),
124.5 (minor), 123.2 (major), 115.3 (d, J = 22.2 Hz, major), 115.2 (d, J = 21.2 Hz, minor), 56.1
(major, C-N), 53.0 (minor, C-N), 34.7 (major, C), 33.6 (minor, C), 26.7 (minor, C-H), 26.3
(major, C-H), 21.5 (major, CH2), 19.9 (minor, CH2), 16.9 (major, CH3), 16.5 (minor, CH3). 19F
NMR (376 MHz, CDCl3) δ -115.1 (major), -115.5 (minor). HRMS (ESI) (m/z) calculated for
C18H16FNO [M + Na]+: 304.1108, found: 304.1107. IR v/cm−1 (KBr) 1685, 1493, 1455, 1406,
1394, 1381, 1250, 1230, 1076, 1066, 1028, 757, 600.

1-(4-Bromophenyl)-4-methyl-3-phenyl-3-azabicyclo[3.1.0]hexan-2-one (2q). White solid.
(Yield: 80%). Mp = 119–121 ◦C. dr ≈ 5:3. 1H NMR (600 MHz, CDCl3) δ 7.49 (d, J = 8.4 Hz,
2H, Ar-H), 7.46 (t, J = 8.1 Hz, 3H, Ar-H), 7.40–7.34 (m, 6.5H, Ar-H), 7.24 (d, J = 7.8 Hz,
1H, Ar-H), 7.19 (dt, J = 11.4, 7.5 Hz, 1.6H, Ar-H), 4.58 (p, J = 6.0 Hz, 0.6H, minor, N-CH),
4.27 (q, J = 6.0 Hz, 1H, major, N-CH), 2.39 (dt, J = 7.8, 5.1 Hz, 0.6H, minor, CH), 2.06 (dd,
J = 7.2, 4.8 Hz, 1H, major, CH), 1.52 (dd, J = 7.2, 4.8 Hz, 1H, major, CH2), 1.41 (dd, J = 7.8,
4.8 Hz, 1H, major, CH2), 1.38 (d, J = 6.6 Hz, 3H, major, CH3), 1.33 (t, J = 4.8 Hz, 0.7H, minor,
CH2), 1.28 (t, J = 4.8 Hz, 1H, major, CH2), 1.21 (d, J = 6.6 Hz, 1.8H, minor, CH3). 13C NMR
(101 MHz, CDCl3) δ 173.4 (minor, C=O), 172.4 (major, C=O), 137.8 (major), 136.7 (minor),
135.42 (major), 135.36 (minor), 131.6 (major), 131.4 (minor), 130.5 (major), 130.1 (minor),
129.0 (major), 128.9 (minor), 125.9 (minor), 125.4 (major), 124.6 (minor), 123.2 (major), 121.3
(major), 121.0 (minor), 56.1 (major, C-N), 53.0 (minor, C-N), 34.6 (major, C), 33.5 (minor,
C), 26.9 (minor, CH), 26.5 (major, CH), 21.5 (major, CH3), 20.1 (minor, CH3), 16.9 (major,
CH2), 16.8 (minor, CH2). HRMS (ESI) (m/z) calculated for C18H16BrNO [M + Na]+: 364.0307,
found: 364.0307. IR v/cm−1 (KBr) 1682, 1489, 1389, 1382, 1100, 1066, 1057, 765, 699.

4-Benzyl-1-(4-chlorophenyl)-3-(p-tolyl)-3-azabicyclo[3.1.0]hexan-2-one: (2r). White solid.
(Yield: 81%). Mp = 92–93 ◦C. dr ≈ 10:1. 1H NMR (600 MHz, CDCl3) δ 7.50 (d, J = 7.8 Hz,
2H, Ar-H), 7.43 (d, J = 7.8 Hz, 0.2H, Ar-H), 7.37 (d, J = 7.8 Hz, 0.5H, Ar-H), 7.36–7.27 (m,
3.5H, Ar-H), 7.24 (d, J = 7.8 Hz, 2.4H, Ar-H), 7.23–7.16 (m, 2.4H, Ar-H), 7.16–7.10 (m, 1.8H,
Ar-H), 4.60–4.55 (m, 0.2H, N-CH), 4.49 (dd, J = 6.0, 3.4 Hz, 1H, N-CH), 3.01 (d, J = 13.8, 3.6
Hz, 1H, CH2), 2.94 (dd, J = 13.8, 6.6 Hz, 1H, CH2), 2.48–2.41 (m, 0.3H, CH2), 2.37 (s, 3H,
major, CH3), 2.34 (s, 0.3H, minor, CH3), 2.31–2.45 (m, 0.2H, CH2), 2.17–2.12 (m, 0.2H, CH2),
2.06 (dd, J = 7.8, 4.8 Hz, 1H, CH2), 1.62–1.56 (m, 0.3H, CH2),1.52 (dd, J = 7.8, 5.4 Hz, 0.1H,
CH2), 1.46 (dd, J = 7.7, 4.9 Hz, 1H), 1.27 (t, J = 4.4 Hz, 1H), 1.22–1.15 (m, 1H). 13C NMR (151
MHz, CDCl3) δ 173.5 (minor, C=O), 172.8 (major, C=O), 137.2, 136.1, 135.9, 135.2, 135.1, 134.,
134.50, 134.1, 133.0, 132.9, 130.2, 129.9, 129.81, 129.78, 129.7, 129.1, 128.9, 128.7, 128.4, 128.3,
126.95, 126.88, 124.8, 122.9, 60.6 (major, N-CH), 59.2 (minor, N-CH), 39.2 (major, Ar-CH2),
37.5 (minor, Ar-CH2), 34.9 (major, CH), 33.8 (minor, CH), 24.9 (minor, C), 24.0 (major, C),
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21.1 (minor, CH3), 21.0 (major, CH3), 19.0 (major, CH2), 17.3 (minor, CH2). HRMS (ESI)
(m/z) calculated for C25H22ClNO [M + Na]+: 410.1282, found: 410.1275. IR v/cm−1 (KBr)
1681, 1514, 1494, 1384, 1293, 1082, 1066, 836, 749, 726, 531.

4. Conclusions

In summary, we developed a base-promoted intramolecular alkene addition reaction
starting from readily available vinyl cyclopropanes to access a series of conformationally
restricted biologically valuable highly substituted aza[3.1.0]bicycles in moderate to good
yields. The transformation was performed in the presence of tBuOK in DMF at 110 ◦C
under an air atmosphere. Experiments showed that large concentrations of the base are
beneficial to the nucleophilic addition process. Although the protocol is limited to sub-
stituted cyclopropionamides with a range of functional aryl groups, the cyclopropane
moiety in the fused ring is a valuable derivatization unit for the further construction of
structurally diverse biologically organic molecules. This reaction was tailor-made for satu-
rated aza[3.1.0]bicycle-containing fused bicyclic compounds. Further derivatization and
chemical biology application evaluation of aza[3.1.0]bicyclic compounds are concurrently
underway in our laboratory.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28093691/s1. Characterization data for product 2,
including 1H-NMR and 13C-NMR spectroscopies, are available online. References [91–93] are cited in
the Supplementary Materials.
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