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With the complete sequencing of
the human genome under way and the
sequencing of complete microorganism
genomes becoming commonplace, we
have truly entered the era of large-scale
DNA sequencing. Why now? As in some
other data-rich areas of modern biology,
for example, protein structure determi-
nation, it can be argued that the rate-
limiting factors in increasing efficiency
and throughput have been computer
power and software. We could have run
thousands of sequencing gels 20 years
ago, but without image-processing soft-
ware and fragment assembly packages it
would not have been feasible to put to-
gether all of the individual sequence
fragments from the gels to give megab-
ases of continuous, accurate sequence.
At any rate, the development of power-
ful computational tools is central to
large-scale sequencing.

This special informatics issue con-
tains several papers on the software used
in genome sequencing centers, and in
particular three papers on the set of pro-
grams from Phil Green’s group at the
University of Washington in Seattle
(Ewing and Green 1998; Ewing et al.
1998; Gordon et al. 1998). These pro-
grams have played a key role in the
progress of the largest-scale projects un-
der way. They have been used exten-
sively in the 100-Mb Caenorhabditis el-
egans project being completed this year
and predominate among groups se-
quencing the human genome.

Such sequencing groups start with
large clones such as BACs or PACs of 100
kb or more, or small genomes of up to a
few megabases, for which the goal is to
obtain complete accurate sequence.
However, the raw sequences, or ‘‘reads,’’
obtained from the gels run on auto-
mated machines such as ABI 377s are
only on the order of 500–1000 bp long
and contain errors, particularly at the

start and end of the read. To build up the
longer sequence, many large-scale
projects use a shotgun strategy, in which
the first step is to collect thousands of
primary reads from random subclones.
These are pieced together by assembly
software based on overlaps detected by
sequence comparison. Following assem-
bly, the sequence is made contiguous
and accurate by adding extra ‘‘finish-
ing’’ reads selected from the subclones
to fill gaps and cover ambiguous regions
where the primary data did not give suf-
ficiently reliable information.

The goals of computer software in
this process are to (1) make the most of
the available data, so as to minimize
costly data collection, and (2) reduce
and simplify human interaction by a
combination of clever algorithms and
good ergonomics. Currently no system
works in a completely automated fash-
ion; there are some pattern recognition
and analysis tasks that humans still per-
form much better than our software
does. We support the view expressed by
Churchill and Waterman (1992), that it
will continue to be important to involve
human input, targeted at progressively
more specific cases, and via progres-
sively better interfaces. This will both
improve overall accuracy, and, impor-
tantly, provide the source of new ideas
for increasing automation.

Simplistically, sequencing software is
involved in three stages: (1) obtaining
the primary read data from the gel im-
ages; (2) assembling the reads into the
correct map to derive a consensus; and
(3) supporting the finishing process. The
first two are essentially automatic, but
for now the last is interactive, involving
human input to make those remaining
decisions that cannot yet be left reliably
to computers.

A number of different software pack-
ages have been developed to handle
these tasks over the years, in both aca-
demic and commercial settings. Until re-
cently, these dealt exclusively with base
sequences determined from the reads.

Where bases disagreed because of errors,
either sufficient reads had to be present
for a clear consensus to be obtained
(which might still be wrong) or a user
had to examine the original trace data
manually. To minimize editing, the
reads were conservatively clipped to
avoid the lower accuracy regions at the
ends. Programs such as GAP (Dear and
Staden 1991; Bonfield et al. 1995), fol-
lowed by many others, made this
manual editing process much easier by
presenting aligned trace data graphi-
cally, but editing continued to be a sig-
nificant bottleneck.

The major innovation of the software
from Phil Green’s group has been to al-
ways keep an error probability measure,
known as a ‘‘quality,’’ attached to each
base prediction, either in a read or in the
consensus. The initial quality values are
obtained by the program phred (Ewing
and Green 1998; Ewing et al. 1998),
which makes base and quality calls for
each read from the raw trace data. The
assembly program phrap (P. Green, pers.
comm.) uses the qualities both to sig-
nificantly improve assembly and also to
give a more accurate consensus se-
quence. Finally, the interactive program
consed (Gordon et al. 1998) works in
tight conjunction with phrap to provide
a finishing environment, with an em-
phasis on editing the quality values and
reassembly using these together with
new finishing reads, so as to minimize
editing the base calls themselves in the
traditional fashion. Using estimates of
confidence per base is not a new idea,
for example, see Lawrence and Solovyev
(1994) and Bonfield and Staden (1995),
but the phred/phrap/consed package is
perhaps the first to use it in such a cen-
tral and ubiquitous fashion.

One of the most important gains
coming from systematic use of qualities
is that clipping is no longer needed be-
fore sequence assembly: The entire read
length can be used. This has made an
enormous difference for assembling hu-
man genomic sequence, ∼35% of
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which consists of Alu and other repeats
(Smit 1996). Many of these are several
hundred base pairs long; use of full read
lengths allows them to be bridged,
where the clipped, good sequence might
not. Not only is the bridging important,
but also having quality values allows
more stringent matching, as more
weight can be attached to cases where
two aligned high-quality bases disagree
than when two bases of unknown reli-
ability disagree.

The quality values obtained in phred
have been calibrated extensively, so
they can be used to give reliable esti-
mates of error rates; this calibration is
the subject of one of the papers in this
issue (Ewing and Green 1998), and it has
been verified across data from a variety
of sites by Richterich (1998). The result-
ing objectivity has had important con-
sequences, both in terms of establishing
standards that can be used meaningfully
by others and also in allowing the qual-
ity values to be used for many other pur-
poses. For example, they have been used
for polymorphism detection (Nickerson
et al. 1997), during oligonucleotide
primer selection to avoid potentially in-
accurate regions (Li et al. 1997), and to
clip reads when the reliable part of
single reads is needed, such as in EST
projects.

As illustrated by these multiple ancil-
lary uses, a modular approach to se-
quencing software is important. It al-
lows insertion of extra checks and com-
p o n e n t s , a n d r e p l a c e m e n t o f
components from one group with those
of another when new features become
available. By adopting such standards as
SCF files (Dear and Staden 1992) and tag
value–based text files like .ace files,
phred, phrap, and consed, easy integration
has been allowed into the inevitably
complex software environments in
place in large genome centers. One ex-
ample of how this can be done is also
illustrated in a paper in this issue, on the
CAF package from the Sanger Centre
and Genome Sequencing Center, St
Louis (Dear et al. 1998).

Despite the evident successes of using
base quality values, it is worth noting
that they are not inevitable. Clearly one
wants to make use of the qualitative in-
formation in the raw data (the traces),
but other approaches to doing that can
be imagined besides extracting a single
number per base. After all, human edi-
tors use all of the trace information

when editing interactively. The auto-
editor module of the CAF package refers
back to the original traces in the context
of a complete assembly to make edits,
and there have been explorations of use
of the complete trace data during assem-
bly (R. Jones, pers. comm.). For now,
however, the complexities of using
traces directly have not been robustly
overcome, and the single well-defined
probabilistic quality measure extracted
by phred and used by phrap and consed
clearly defines the state of the art.
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