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Base rates in Bayesian inference: Signal 
detection analysis of the cab problem 

MICHAEL H.  BIRNBAUM 
University of Illinois at Urbana-Champaign 

Several investigators concluded that humans neglect base rate information 
when asked to solve Bayesian problems intuitively. This conclusion is based 
on a comparison between normative (calculated) and subjective (responses 
by naive judges) solutions to problems such as the cab problem. The present 
article shows that the previous normative analysis was incomplete. In par- 
ticular, problems of this type require both a signal detection theory and a 
judgment theory for their proper Bayesian analysis. In Bayes' theorem, 
posterior odds equals prior odds times the likelihood ratio. Previous solu- 
tions have assumed that the likelihood ratio is independent of the base rate, 
whereas signal detection theory (backed up by data) implies that this ratio 
depends on base rate. Before the responses of humans are compared with 
a normative analysis, it seems desirable to be sure that the normative analysis 
is accurate. 

Recent papers contend that humans do not make statistical inferences 
by means of Bayes' theorem (Hammerton, 1973; Kahneman & 
Tversky, 1973). In particular, it has been argued that judges neglect 
base rate information. This conclusion, which is called the "base rate 
fallacy," is based on the finding that when judges are asked to solve 
a statistical problem intuitively, the modal response differs from the 
Bayesian solution. A demonstration, which has already become some- 
thing of a classic, is the cab problem, variations of which have been 
investigated by Kahneman and Tversky (1973), Bar-Hillel (l980), 
Lyon and Slovic (1976), Fischhoff, Slovic, and Lichtenstein (1979), 
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and others. Tversky and Kahneman (1980) state the cab problem as 
follows: 

A cab was involved in a hit-and-run accident at night. Two cab companies, 
the Green and the Blue, operate in the city. You are given the following data: 
(i) 85% of the cabs in the city are Green and 15% are Blue. 
(ii) A witness identified the cab as a Blue cab. The court tested his ability 
to identify cabs under the appropriate visibility conditions. When presented 
with a sample of cabs (half of which were Blue and half of which were Green) 
the witness made correct identifications in 80% of the cases and erred in 
20% of the cases. 
Question: What is the probability that the cab involved in the accident was 
Blue rather than Green? 

The modal response by untrained judges is usually observed to be 
about .8, whereas the so-called "normative" solution is supposed to 
be .41. The purposes of this article are to question the previous solu- 
tion and to call attention to the fact that the proper normative solu- 
tion to the cab problem is a bit more complicated than previously 
supposed in papers on the "base rate fallacy." In particular, it will 
be argued that the solution called "normative" in previous papers on 
this topic makes (implicitly) a very unrealistic assumption. The basic 
purpose of this paper will be to discuss the implications of signal detec- 
tion theory for the normative solution. 

Bayes' theorem 

Bayes' theorem can be written in odds form as follows: 

where Q, = posterior odds [P(BIU~")/(1 - P(BIUB")],Qo is the prior 
odds of a Blue cab [from the base rate, P(B)/P(G)]; P("BnIB) is the 
probability that the witness reports "Blue" given the cab is actually 
Blue (hit rate); and P("BnIG) is the probability the witness reports 
"Blue" given the cab is actually Green (false alarm rate). The answer 
to the cab problem, P(BIUB"), is given by the expression Q1/(l + Q,). 

Previous solution 

The cab problem is interpreted to imply that when the two colors 
are presented with equal frequency, the hit rate is .80 and the false 
alarm rate is .20. Lyon and Slovic (1976) pointed out that early ver- 
sions of the problem did not clearly identify the hit rates and false 
alarm rates, giving the reader instead only the percentage of correct 
identifications. In newer versions of the problem, the judge is informed 
that the witness made an equal number of errors on each type of cab. 
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The hit and false alarm rates are represented in Figure 1 by the open 
circle labeled a. The problem also states that P(B), the probability 
of a blue cab, is .15, so the prior odds are .15/.85 = .176. 

If it is assumed that the ratio of hit rate to false alarm rate is independent 
of the proportion of each cab color (dashed straight line in Figure I), 
Equation 1 implies that Q1 = (.176)(.80/.20) = .706 or P(BIUB") = 

Q1/(l + Q1)= .414, which is the so-called "normative" answer utilized 
in this work as the number to be compared with the judge's response. 
Judges often respond ".8" instead of .41, which led experimenters to 
propose that judges neglect base rate information (Bar-Hillel, 1980; 
Tversky & Kahneman, 1974, 1980, 1982). However, the previous 
solution (.41) implicitly assumes that P("Bn I B)/P("BnIG) is independent 
of the base rate, which is inconsistent with theories and experiments 
in the area of signal detection. It will be shown that the answer .8 
is compatible with Equation 1 and signal detection theory. 

Signal detection theory 
Although it may be reasonable to assume for some sources of in- 

formation that the ratio of hit rate to false alarm rate is independent 
of signal probability, this assumption would not be realistic for the 
human witness2 (Schum, 1981). A good deal of research has shown 
that a better approximation to the behavior of witnesses would be 
the curve shown in Figure 1 (Green & Swets, 1966). The curve in 
Figure 1 is based on the theory that each color of cab produces a 
normal distribution on a discriminal continuum, as shown in the inset 
of Figure 1. The witness responds "Blue" when the value on the Green- 
Blue continuum exceeds the response criterion, indicated by one of 
the vertical lines in the inset. For simplicity, the two variances are 
assumed to be equal and can be set to 1.0. 

This signal detection theory can be written: 

where N represents the cumulative standard normal density function, 
g is the mean value of Green cabs on the discriminal continuum, b 
is the corresponding value for Blue cabs, and t is the criterion for re- 
sponding "Bluen or "Green." It follows that d' = b -g = Arl[P("B"IB)] -
N-'[P("BVIG)] where N-' is the inverse cumulative standard normal 
and d' is discriminability. For hit and false alarm rates of .80 and .20, 
d' = 1.68, which was the value used to derive the curve in Figure 1 . 3  

In order to solve the cab problem by means of Equation 1, it is 
necessary to generalize the hitlfalse alarm ratio from the court's sig- 
nal detection experiment, where P(G) = P(B), to the city conditions, 
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Figure 1. Signal detection analysis of the witness in the cab problem. Hit 
rate [P("BnIB)] plotted against false alarm rate [P("BnIG]. Point a shows values 
specified in the problem. Dashed line shows loci of points for which ratio 
of hit rate to false alarm rate is constant. The curve was derived from signal 
detection theory assuming each color of cab produces a normal distribution 
on a sensory continuum (inset). Point b is based on range-frequency theory. 
Point c is based on probability matching. Point d is close to a point that 
maximizes percentage of correct responses. The Bayesian solution to the 
cab problem changes depending on the theory of the witness. Assuming sig- 
nal detection theory, virtually any answer from P(B) to 1.0would be accept- 
able. The slope of the chord from the origin through the point is the likeli- 
hood ratio [P("BnI B)/P("BnIG)]. If point d is assumed, then P(B 1"B") would 
be .82, rather than .41. 

where P(B) is only .15. To accomplish this generalization, one needs 
both signal detection theory (e.g., Equation 2) for the witness and 
a theory of judgment to predict how the witness will adjust hislher 
criterion (t in Equation 2) in response to changes in the signal prob- 
ability (the proportion of Blue cabs). In other words, one needs to 
know the curve in Figure 1 and also how the point along the curve 
depends on P(B). Given only the curve, virtually any value from P(B) 
to 1.0 would be an acceptable solution to the cab problem. To pin 
down the solution requires a judgment theory, i .e.,  a theory of t. 

Unfortunately, competing theories of judgment have received sup- 
porting evidence, though under different conditions. Several theories 
predict that when the signal frequency is increased, the response cri- 
terion will move to increase the probability of a correct response 
(Friedman, Carterette, Nakatani, & Ahumada, 1968;Green & Swets, 
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1966). Range-frequency theory (Parducci & Sandusky, 1970) predicts 
that when signal frequency is increased, the criterion will move the 
opposite direction, tending to equalize the two response frequencies. 

Range-frequency solution 
Range-frequency theory states that judges have a tendency to use 

response categories with equal frequency. Parducci and Sandusky 
(1970) have shown that when the witness is not given information 
about signal probabilities and is not given feedback on each trial, the 
response probabilities are largely independent of stimulus probabili- 
ties. If the witness reports half the cabs are "Blue" and half "Green" 
and if d' is constant (consistent with the results of Parducci & Sandusky, 
1970), then the hit rate and false alarm rate will be .933 and .429, 
respectively, shown by point b in Figure 1. If such a witness reports 
"Blue," then by Equation 1, fl, = (.176)(.933/.429) = .383, or 
P(B I"Bn) = .28. Thus, assuming range-frequency theory, the "correctn 
answer of previous investigators (.41) is too large. The calculations 
are summarized in Table 1. 

Probability matching solution 
However, the witness in the street may be aware that only 15% 

of the cabs are Blue. The witness may have learned this from news 
reports or from feedback: An observer may judge a cab's color from 
the distance and then see it up close, see cabs during the day, and/or 
hear consensus judgments of others concerning color. Should the wit- 
ness operate according to range-frequency theory, the probability of 
a correct identification would be only .63. The witness could do better 
to remain at point a, in which case the witness would be correct 80 % 
of the time. However, the witness could do still better by never saying 
"Blue," in which case the witness would be right 85% of the time, 
since 85% of the cabs are Green. Friedman et al. (1968) found that 
when the observer is given feedback, the response criterion shifts in 
the opposite direction from that predicted by range-frequency theory. 

With feedback therefore, it seems plausible that the witness might 
match response probabilities to the stimulus probabilities. When 
P("B"1 B) = .599 and P("B"1G) = .076, P("Bn) is approximately equal 
to P(B). This strategy is shown by point c in Figure 1, and row c in 
Table 1. Assuming constant d' and assuming probability matching, 
Equation 1 implies that the normative posterior probability [P(BI"Bn)] 
is .58, a normative solution actually greater than .5. 

Optimal observer 
Given feedback, it is not inconceivable that the witness could adjust 

the response criterion to maximize the probability of a correct iden- 
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tification, or to minimize some index representing the costs of differ- 
ent types of errors, such as the expected cost (Green & Swets, 1966). 
The witness could conceivably perform so that P("B"1B) = .302 and 
P("B"[G) = .012, corresponding to point d in Figure 1, giving 89 % 
correct identification, close to the maximal value. In this case, the 
witness would be highly diagnostic, and if the witness says "Blue," 
then the probability the cab was actually Blue, by Equation 1, is .82! 
Thus, it is not necessarily unreasonable for a judge to give .80 as the 
solution to the cab problem. 

Now, suppose the base rate were .50; i.e., P(B) = P(G). Under 
these conditions, the witness would likely remain at point a, which 
simultaneously equalizes the two response frequencies, matches 
stimulus and response frequencies, and maximizes the percentage of 
correct responses. Thus, the Bayesian solution would be .8, virtually 
the same as for the condition in which the base rate was .15 and the 
witness was assumed to be an ideal observer. The point is that Bayes' 
theorem does not necessarily imply an effect of the base rate unless 
a specific theory of the witness is assumed. 

DISCUSSION 

Theories of signal detection and judgment are required to generalize 
from the court's test of the witness to the performance in the street. 
In many signal detection experiments, data show that L varies as base 
rate is manipulated. When information concerning base rate is pre- 
sented or the witness is given feedback, L increases as base rate 
decreases. When the cab problem is analyzed assuming d' is constant, 
the "correct" answer would be .28 if one believes the witness will 
respond "Blue" half the time; it would be .58 if the witness matched 
the probability of responding "Blue" to the proportion of Blue cabs 
in the street; it would be .82 if the witness will respond "Blue" less 
often, in response to the less frequent presence of Blue cabs and/or 
the possible high cost of a false alarm in the courtroom. In sum, the 
modal response of .8 by untrained subjects may be closer to the best 
normative solution than the value of .41 used in previous research. 
Therefore, there may be no evidence for a base rate fallacy. 

The points of this paper may also apply to other problems employed 
in the literature on the "base rate fallacyn such as the light bulb problem 
or the engineer vs. lawyer problem (see Kahneman & Tversky, 1973). 
In the light bulb problem, the judge knows the probability of a defec- 
tive bulb and the hit and false alarm rates of a mechanical light bulb 
tester. Suppose that the light bulb tester measures the current in each 
bulb for a given voltage. Suppose among bulbs that light, the distri- 
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bution of current readings is normal for both good bulbs and defec- 
tive bulbs, but the means of the distributions differ. It seems reason- 
able that any profit-oriented factory would adjust the criterion for 
deciding "defective" as a function of the costs of false alarms (discard- 
ing a good bulb) or misses (replacing a bad one) and the probability 
of a defective bulb. 

In the engineer vs. lawyer problem, the judge is told that there is 
a group of 30 engineers and 70 lawyers that were tested by psycholo- 
gists, who then wrote thumbnail sketches. The judges' task is to guess 
whether a sketch describes a lawyer or engineer. The psychologists 
gave information such as "he shows no interest in political and social 
issues . . . spends most of his free time on . . . mathematical puzzles." 
Kahneman and Tversky (1973) found that the judged probability that 
the sketch described an engineer varied as a function of the propor- 
tion of engineers, but the effect of base rate was much less than pre- 
dicted by Bayes' theorem. However, their calculations assumed that 
the hit to false alarm ratio for the sketches would be independent of 
the base rate. The problem is that the probability of a given person 
being described as "interested in mathematical puzzles" would presum- 
ably depend on the proportion of engineers and lawyers. For example, 
if the entire population were engineers, a witness might describe Joe 
as "weak in mathematics." However, if Joe were the only engineer 
in a population of lawyers, the same witness would be unlikely to select 
this description of Joe. 

A recent paper by Schum (1981) gives a very thorough analysis 
of the evidential impact of testimony in Bayesian inference. Schum 
makes an important distinction between direct testimony concern- 
ing the hypothesis and testimony concerning a datum relevant to the 
hypothesis. Similarly the distinction between the datum and the re- 
port of the datum should be maintained. The report may convey more 
information than the datum itself (Schum, 1981). For example, it may 
be that interest in mathematical puzzles is not highly diagnostic of 
being an engineer or lawyer, but the report of interest in mathemati- 
cal puzzles may be highly diagnostic of a rare engineer in a popula- 
tion consisting mostly of lawyers. 

The theoretical analysis of this paper shows that many previous 
investigations of the "base rate fallacy" were based on a normative 
solution that rested on a shaky and perhaps unrealistic assumption 
concerning the independence of the hitlfalse alarm ratio from base 
rate. It should also be noted that the empirical evidence for neglect 
of base rate is also inconsistent. When the base rate is manipulated 
in a within-subjects design, it appears to be utilized by subjects (Birn- 
baum & Mellers, Note 1; Fischhoff, Slovic, & Lichtenstein, 1979). 
Birnbaum & Mellers (Note 1) found that the weight of the base 
rate even exceeds that of highly diagnostic sources. Subjects in within- 
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subjects designs attend to base rate, to source bias, and to source diag- 
nosticity (see also Birnbaum & Stegner, 1979). Tversky and Kahne- 
man (1982) also discuss between-subject results that were interpreted 
as evidence of subjects attending to base rate information. 

CONCLUSION 

The moral of this paper is not that subjects are necessarily accu- 
rate intuitive statisticians who understand signal detection theory, 
assume the witness is an ideal observer, and correctly solve the cab 
problem. Subjects in between-subject studies may indeed neglect the 
base rate and respond ".8" because this value seems to characterize 
the believability of the source, as argued by Tversky and Kahneman 
(1980, 1982), Bar-Hillel (1980), and others. However, this note does 
call attention to the fact that the normative solution to the cab prob- 
lem requires the assumption of a theory of the witness, whether by 
the subject or the experimenter. 

Notes 
Thanks are due to Barbara Mellers, David Noreen, Amos Tversky, and 
Robert Sorkin for comments on an earlier draft. 

Requests for offprints should be addressed to Michael H .  Birnbaum, 
Department of Psychology, University of Illinois, 603 East Daniel St., Charn- 
paign, IL 61820. Received for publication September 11, 1981 ; revision re- 
ceived April 28, 1982. 

1. Other aspects of the cab problem as stated above are also unclear. For 
example, the statement that 85% of the cabs in the city are Blue does not 
necessarily imply that 85% of the cabs involved in hit and run accidents 
at night are Blue. The decision-maker is presumably supposed to assume 
that both cab companies operate at night, have drivers with comparable 
skill, etc., so that the base rate can be interpreted as relevant to the prob- 
lem. Tversky and Kahneman (1980) discuss effects of variation in the phras- 
ing of the base rate information and contend that if the base rate informa- 
tion seems "causaln then it will be utilized. However, their experiments have 
not yet unconfounded the so-called "causal" version of the problem from 
the noncausal but clearly relevant version. Tversky and Kahneman (1982) 
used a modified form of the cab problem in which the court test is described 
as being done "under the same circumstances" as existed on the night of 
the accident, but the base rate and payoff conditions of the test are not 
explicitly specified. 

2. Even mechanical devices such as a light bulb tester may be amenable 
to the same analysis. Suppose the threshold for the light bulb tester is adjust- 
able, and it is assumed that normal and defective bulbs produce normal 
distributions of resistance values with different means, the same analysis 
would apply as in Figure 1. Thus, the ratio of hit rate to false alarm rate 
will vary for some mechanical devices as well as for human witnesses. 
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3 .  Other signal detection theories assuming unequal variance or using 
other functions, such as the logistic instead of the normal, would lead to 
similar conclusions for the present analysis. Empirical curves in signal detec- 
tion studies with varying base rates typically have a shape similar to the 
curve in Figure 1 and do not resemble the dashed line in Figure 1 (e.g., 
Green & Swets, 1966, p. 88, p. 95). However, even very different theories, 
such as high threshold theory or a linear theory with slope = 1 imply that 
the ratio of P("B"IB)/P("B"IG) will change as a function of P(B). 

Reference note 
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