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Base size, metric dimension and other invariants
of groups and graphs

Robert F. Bailey and Peter J. Cameron

Abstract

The base size of a permutation group, and the metric dimension of a graph, are two of a number
of related parameters of groups, graphs, coherent configurations and association schemes. They
have been repeatedly re-defined with different terminology in various different areas, including
computational group theory and the graph isomorphism problem. We survey results on these
parameters in their many incarnations, and propose a consistent terminology for them. We also
present some new results, including on the base sizes of wreath products in the product action,
and on the metric dimension of Johnson and Kneser graphs.

1. Introduction

The base size of a permutation group is the smallest number of points whose stabiliser is the
identity. The metric dimension of a graph is the smallest number of vertices such that all vertices
are uniquely determined by their distances to the chosen vertices. The two parameters are
related by a straightforward inequality: the metric dimension of a graph gives an upper bound
on the base size of its automorphism group. Neither parameter is new: base size has a history
dating back around 40 years, while metric dimension dates back over 30 years. Both parameters
have been heavily studied, by a variety of authors, especially in the last decade. Furthermore,
as we shall see, both parameters keep being rediscovered, or reinvented, in different guises.

The purpose of this paper is not to be a complete survey of either base size or of metric
dimension, but rather to describe those cases where relationship between the two is particularly
interesting. Primarily, this is when the permutation group is the automorphism group of a graph
with a considerable amount of symmetry or regularity. As well as surveying existing results, we
also introduce some new material: the main new results are Theorem 2.13 on the base sizes of
wreath products in the product action, and Theorem 3.32 on the metric dimension of Johnson
and Kneser graphs. Other results which are not new but which we have re-interpreted include
Theorems 2.9 and 2.10 on the distinguishing numbers of finite primitive groups, and results due
to Babai that give bounds on the metric dimension of distance-regular and strongly-regular
graphs (Theorems 3.15, 3.22 and 3.31). In Theorem 2.22, we give a previously unpublished
result of Maund on the base size of the symmetric group acting on subsets.

As this paper is concerned with both groups and graphs, we need to decide upon our notation
carefully. Throughout, G will denote a permutation group, which will be assumed to be finite
unless otherwise stated, acting upon a set Ω. The degree of G is the size of Ω. Graphs will
be denoted by Γ, with vertex set V and edge set E; the group of automorphisms of Γ will be
denoted by Aut(Γ).
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2. Bases and base sizes

2.1. Background

The following definition is a fundamental one in permutation group theory.

Definition 2.1. A base for a permutation group G acting faithfully on a finite set Ω is a
subset B ⊆ Ω chosen so that its pointwise stabiliser in G is trivial.

Bases were originally introduced in the 1960s by Sims [89], in the context of computational
group theory. Indeed, many algorithms for computing with finite permutation groups use bases
(see Seress [88] for examples). However, the concept can be traced back to the work of Bochert
in the 19th century [16]. Bases have the property that the action of an element g ∈ G is
uniquely determined by its action on a base, so in a reasonable sense, bases generalise the
notion of bases in vector spaces. (Indeed, a basis for Fn

q is a base for the action of GL(n, q) on
the non-zero vectors.)

A base is minimal if no proper subset of it is a base. In computational group theory, bases
are usually treated as ordered sequences of points [x1, . . . , xb]. This is because the ordering
defines a chain of subgroups, the stabiliser chain,

G = G0 ≥ G1 ≥ G2 ≥ · · · ≥ Gb = 1,

where Gi denotes the pointwise stabiliser of the subsequence [x1, . . . , xi]. If all the inclusions in
the stabiliser chain are strict, the base is called irredundant. We note that being irredundant
is a property of the ordering of the base: reordering may introduce redundancy. For example,
the group G = 〈(1, 3)(2, 6)(5, 7)(4, 8), (2, 4)(3, 6, 7, 8)〉 has both [1, 2, 3] and [1, 3] as irredundant
bases. Clearly, however, any minimal base is irredundant in any ordering.

The base size of a group G in its action on Ω is the cardinality of the smallest base for G in
this action; we denote this by b(G). Some straightforward examples are given below.

Example 2.2. In their natural actions on n points, the symmetric group Sn has base size
n − 1, and the alternating group An has base size n − 2.

Example 2.3. More generally, for a sharply k-transitive group G (i.e. for any two ordered
k-tuples of distinct points, there exists a unique g ∈ G mapping the first to the second) has
base size k (since the stabiliser of any k-tuple is trivial, by definition).

Example 2.4. The general linear group GL(n, q) acting on the non-zero vectors of Fn
q has

base size n.

As well as having practical implications for computational purposes, determining base sizes is
of much theoretical interest, especially because of the following inequality. For any permutation
group G of degree n, we have

2b(G) ≤ |G| ≤ nb(G)

which follows from considering the maximum and minimum possible indices in the stabiliser
chain. Using this, one can obtain bounds on the orders of groups in a given class by bounding
the sizes of bases for such groups.
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In recent years, a considerable body of work has been developed determining the base sizes
of groups, particularly primitive actions of almost simple groups. This study was begun by
Cameron and Kantor [36] in 1993, and has been continued by various authors including Liebeck
and Shalev [25, 75, 77, 78], James [68, 69], and by Burness and various coauthors [23, 24,
25, 26]; broadly speaking, the purpose of this work has been to show that if a primitive action
of an almost simple group is “non-standard” (for example, not on subspaces of the natural
module of a classical group), then the base size is at most 7. In many cases, it is actually a
constant less than 7, with the extreme case being the 24-point action of the Mathieu group
M24.

Also in a 1993 paper, Pyber [82] conjectured that there is an absolute constant c such that
for a primitive permutation group G of degree n,

b(G) ≤ c · log |G|
log n

.

Progress towards this conjecture has been made by Gluck and various coauthors [59, 60], by
Liebeck and Shalev [76], and in the (unpublished) Ph.D. thesis of Benbenishty [13]; see [77]
for further details. Another interesting result is due to Seress, who showed in a 1996 paper
[86] that a primitive, soluble permutation group has a base of size at most 5. Algorithmically,
determining the base size of a permutation group is an NP-hard problem: this was shown by
Blaha [15] in 1992.

Given that bases are a natural concept, it is perhaps not surprising that the notion has arisen
independently on a number of occasions. This is especially true in the context of automorphism
groups of graphs, where at least three different pieces of terminology have been used, and in each
case the parameter b(G) is treated as a property of the graph rather than the automorphism
group.

Let Γ = (V,E) denote a finite graph, and suppose that G = Aut(Γ). Erwin and Harary [53]
used the term fixing set to mean a base for Aut(Γ), and call the base size the fixing number of
Γ. In a similar manner, Boutin [19] used the term determining set to mean a base for Aut(Γ),
and calls the base size of Aut(Γ) the determining number of Γ. Also, Fijavž and Mohar [55]
call the base size of Aut(Γ) the rigidity index of Γ.

Not surprisingly, these reinventions have led to duplication of results in the literature.
Also, many results which have been published in terms of graphs are really statements about
permutation groups, and which are of interest from a purely group-theoretical point of view.
The main aim of this section is to discuss some of these and put them into this context. Before
doing so, we will introduce another, related, concept: the distinguishing number.

2.2. Distinguishing number

The distinguishing number of a permutation group G on Ω is defined to be the smallest
number of parts in a partition of Ω with the property that only the identity fixes every part.
Such a partition is called a distinguishing partition. While distinguishing partitions are not
used widely in algorithms in computational group theory (in the way that bases are), the two
concepts are related. For example, in [86], Seress showed that the distinguishing number of
soluble permutation groups is at most 5, on the way to his result on the base sizes of primitive
soluble groups. Also, in subsection 2.3 below, we use it in describing the base sizes of wreath
products in the product action.

The term ‘distinguishing number’ arose in the graph-theoretic literature, where it was
introduced in 1996 by Albertson and Collins [2] and has spawned a considerable number of
papers by several authors. In this setting, it is customary to speak of a distinguishing partition
or the distinguishing number of a graph to mean the corresponding objects for its automorphism
group. The partition is commonly regarded as a labelling or colouring of the vertex set. This
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colouring is not necessarily a proper graph colouring (where adjacent vertices have different
colours), but this extra assumption has been considered by Collins and Trenk [41]; the number
of colours needed is referred to as the distinguishing chromatic number of the graph.

We denote the distinguishing number of G by D(G). Distinguishing number and base size are
related by the inequality D(G) ≤ b(G) + 1: given a minimum base B, we obtain a distinguishing
partition by giving each point in B a different colour, and colouring all of Ω \ B with another
colour. Given that “most” primitive groups are believed to have small base size, it should follow
that “most” will have small distinguishing number. In what follows, we shall see that this is
the case.

Some elementary properties of the distinguishing number are summarised in the next two
results.

Proposition 2.5. A permutation group has distinguishing number 1 if and only if it is
the trivial group.

Proposition 2.6. The distinguishing numbers of the symmetric and alternating groups
of degree n are n and n − 1 respectively.

In the case where G has distinguishing number 2, we also have the following characterisation.

Proposition 2.7. Let G be a permutation group acting on a finite set Ω. Then the
following are equivalent:

(i) G has distinguishing number 2;
(ii) There is a subset of Ω whose setwise stabiliser in G is the identity;
(iii) G has a regular orbit on the power set of Ω.

For example, let G be the symmetric group of degree n, acting on the set Ω of 2-element
subsets of {1, . . . , n}. A subset of Ω is the edge set of a graph, and its setwise stabiliser is
the automorphism group of the graph. For n ≥ 6, there is a graph with trivial automorphism
group, so the distinguishing number of G is 2. Indeed, as n → ∞, the proportion of graphs
with trivial automorphism group tends to 1.

This pattern holds more generally. The following result is proved in two papers from the
1980s [31, 38], where the problem was formulated in terms of regular orbits on the power set.

Proposition 2.8. Let G be a primitive permutation group of degreee n, which is not the
symmetric or alternating group or one of a finite list of other groups. Then the distinguishing
number of G is 2. Indeed, the proportion of subsets which have trivial stabiliser in a primitive
group of degree n not containing the alternating group tends to 1 as n → ∞.

The exceptions in Proposition 2.8 were determined by Seress in 1997 ([87], Theorem 2).

Theorem 2.9 (Seress [87]). There are 43 groups with distinguishing number D > 2, of
degrees 5 ≤ n ≤ 17, 21 ≤ n ≤ 24 and n = 32.

As lemmas on the way to his main result, Seress also obtains results which have since been
obtained independently in the language of distinguishing numbers of graphs. His Lemma 9
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shows that the distinguishing number of the Kneser graph K(n, k) (which we will see later in
the paper in subsections 2.5 and 3.8) is 2 unless n = 5 and k = 2; this is the main result of
Albertson and Boutin [1]. Also, Seress’ Lemma 4 shows that Sm ≀ Sd, acting in the product
action (defined below), has distinguishing number 2 when m ≥ 5 and d ≥ 2, and Corollary
5 shows that this is true in general for wreath products in the product action. This implies
the main result of Imrich and Klavžar [66] on distinguishing numbers of Cartesian powers of
graphs (although Imrich and Klavžar also show what happens for m ≤ 4).

In 2000, Dolfi [45] improved on Seress’ results, by counting the number of regular orbits
on the set of ordered partitions of Ω into a fixed number of parts. In particular, his Lemma
1 contains the following result, which we have translated into the language of distinguishing
numbers.

Theorem 2.10 (Dolfi [45]). Of the 43 groups listed by Seress (cf. Theorem 2.9), 38 have
distinguishing number 3 and five have distinguishing number 4. The five exceptions have degrees
6, 7, 8, 11 and 12.

Thus the distinguishing numbers of all primitive groups are known. The results in Dolfi’s
paper also bound the distinguishing numbers of a large class of imprimitive and intransitive
groups, namely those for which no primitive constituent of degree at least 5 contains the
alternating group.

Finally, we note that almost 20 years before the paper of Albertson and Collins, Babai [3]
showed that the distinguishing number of a regular infinite tree, even one with infinite valency,
is 2.

2.3. Direct and wreath products

Let H and K be permutation groups on disjoint sets X and Y respectively. There are two
standard products of H and K, the direct and wreath products, and each of these has two
natural actions. In this subsection, we discuss the base sizes of each of these products.

The two actions of the direct product H × K are on X ∪ Y and on X × Y . In the former
case, it is straightforward to see that b(H × K) = b(H) + b(K). In the latter case, known as
the product action, we have the following.

Proposition 2.11. Let H × K act in its product action on X × Y . Then b(H × K) =
max{b(H), b(K)}.

Proof. Suppose {(x1, y1), . . . , (xb, yb)} is a base for H × K. Then {x1, . . . , xb} must be a
base for H and {y1, . . . , yb} must be a base for K. Hence b ≥ max{b(H), b(K)}, and the result
follows.

Note that simple induction arguments give formulas for the base sizes of direct products of
arbitrarily many factors in each action.

The wreath product H ≀ K is the semidirect product N ⋊ K, where

N =
∏

δ∈Y

Hδ

is the direct product of |Y | copies of H (indexed by Y ), and K acts on N by permuting the
factors in the same way as it permutes elements of Y . There are two natural actions of the
wreath product:
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(i) The imprimitive action on X × Y : for each δ ∈ Y , the copy Hδ of H in N acts on the
corresponding copy

Xδ = {(γ, δ) : γ ∈ X}

of X, while K permutes the copies of X according to its given action on Y .
(ii) The product action (also known as the power action) on XY : think of XY either as the

Cartesian product of |Y | copies of X, or as the set of all functions f : Y → X. This time
N acts coordinatewise, so that the factor Hδ acts on the values f(δ) of a function f ,
while the group K acts by permuting the arguments of the function, by fk(δ) = f(δk−1

).

The base size for the imprimitive action is easy to compute:

Proposition 2.12. Let H and K act on X and Y , and let G = H ≀ K have its imprimitive
action. Then

b(H ≀ K) = |Y | · b(H).

Proof. For each δ ∈ Y , if we have fewer than b(H) points of Xδ in, then they are fixed by
a non-identity element of Hδ; on the other hand, it is clear that if we choose a base in each
copy of X then we obtain a base for G.

To find the base size for the wreath product H ≀ K in the product action (in terms of b(H)
and b(K)) is more complicated. However, the following theorem, in principle, gives us what
we desire. For this subsection only, we define an ordered multi-base to be a sequence of points
(with repetitions allowed) whose stabiliser is the identity.

Theorem 2.13. Let H and K be permutation groups. Then H ≀ K (in the product action)
has a base of size t if and only if the number of orbits of H on ordered multi-bases of length t
is not less than the distinguishing number of K.

Proof. Throughout, we suppose H and K act on sets X and Y respectively, where |X| = m.
Suppose first that the inequality holds. Let D = D(K), and choose D multi-bases for H

belonging to distinct orbits, say B1, . . . , BD. Choose also a distinguishing partition for K. Now
define functions fi : Y → X for i = 1, . . . , t (where X and Y are the permutation domains for
H and K) as follows: construct an m × t array of points of X, where the ith row is Bs if i lies
in the sth part of the distinguishing partition; then let fj be the jth column of the array.

We claim that these functions form a base for H ≀ K. Suppose that g ∈ H ≀ K is an element
fixing all of them. Because bases corresponding to points in different parts lie in different orbits,
g must fix the distinguishing partition part-wise, and hence g projects onto the identity in K,
that is, g ∈ N . But the values of the functions on any coordinate form a base for H; so g = 1,
as required.

Conversely, suppose that the inequality fails. Choose any t functions. If their values on the
ith coordinate do not form a multi-base for H, then some non-identity element of N fixes
all of them; so suppose otherwise. Write the functions as columns of an array whose rows
are now known to be multi-bases for H. Partition Y according to the H-orbit containing
the corresponding multi-base. By hypothesis, the number of parts of this partition is strictly
smaller than the distinguishing number of K; so there is a non-identity element k ∈ K fixing
this partition part-wise.

For any i ∈ {1, . . . , t}, the multi-bases formed by columns i and ik belong to the same orbit
of H, so we may postmultiply by an element of H in the ik coordinate to ensure that they are
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actually equal. Then the resulting modified element fixes all the functions, so that they do not
form a base for H ≀ K.

The difficulty in applying this theorem is that it involves finding the number of H-orbits on
ordered multi-bases of size t. We suspect that there is an inclusion-exclusion formula for this.
But we can certainly bound it below by s · mt−b, where m is the degree of H, b = b(H) and s
is the number of H-orbits on ordered bases of minimum size; for this is the number of orbits
on t-tuples whose first b entries form a base. This shows the following:

Corollary 2.14. Whenever D = D(K) ≥ s, we have

b(H ≀ K) ≤ b(H) + ⌈logm(D/s)⌉.

Proof. If Nt denotes the number of H-orbits on ordered multi-bases of size t, then

b(H ≀ K) = min{t : Nt ≥ D}
≤ min{t : smt−b ≥ D}
= b + ⌈logm(D/s)⌉.

The case where s = 1 is when H is base-transitive. Such groups were classified in the late
1980s by Maund [80] and Zil’ber [97]; a statement of the classification is given in Section 2 of
[8]. In this situation, we have another corollary.

Corollary 2.15. Suppose H is base-transitive of degree m, and that K is a non-trivial
permutation group with D(K) ≤ m. Then, for H ≀ K acting in the product action, b(H ≀ K) =
b(H) + 1.

Proof. Since 2 ≤ D ≤ m, it follows that 0 < logm(D) ≤ 1, and so the previous corollary
gives us an upper bound of b(H ≀ K) ≤ b(H) + 1.

To obtain a lower bound, we note since the subgroup N = H × H × · · · × H is a direct
product in the product action, the remark after Proposition 2.11 implies b(N) = b(H), and
clearly b(N) ≤ b(H ≀ K). So we must show that no minimal base for N is a base for H ≀ K.

Since H is base-transitive, we can consider, without loss of generality, a base for N of the
form BY , where B is a minimal base for H. But clearly K permutes the copies of B in the
same way it permutes the copies of X, so BY cannot be a base for H ≀ K.

Thus b(H) < b(H ≀ K) ≤ b(H) + 1, and the result follows.

As an example of the use of this corollary, we give a result mentioned by Babai [5].

Example 2.16. For m ≥ 2, the base size of G = Sm ≀ S2, acting in the product action
on {1, . . . ,m}2, is b(G) = m: since D(S2) = 2, Sm is base-transitive and b(Sm) = m − 1, we
can immediately apply Corollary 2.15 and obtain b(G) = (m − 1) + 1 = m. An example of a
minimal base is

{(1, 1), (2, 2), . . . , (m − 1,m − 1), (1, 2)}.

In fact, the same argument shows that whenever d ≤ m we have b(Sm ≀ Sd) = m.
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The requirement in Corollary 2.15 that H is base-transitive cannot be weakened. For
instance, if the number s of H-orbits on ordered bases of minimum size is at least D(K),
then Corollary 2.14 implies that b(H ≀ K) = b(H). An example is the group D10 ≀ S2, which
has base size 2 since s = D = 2.

We conclude this subsection with another application of Theorem 2.13, to wreath products
of symmetric groups. Recall that the Stirling number of the second kind, denoted S(n, k), is
the number of partitions of an n-set into k non-empty parts (see [32], Section 5.3).

Proposition 2.17. The base size of Sm ≀ Sd, acting in the product action, is the smallest
integer t for which S(t,m) + S(t,m − 1) ≥ d.

Proof. By Theorem 2.13, b(Sm ≀ Sd) ≤ t if and only if the number of orbits of Sm on
ordered multi-bases of length t is at least D(Sd) = d. Now, a t-tuple is a multi-base for
Sm if and only if its image has size m or m − 1, and the number of such t-tuples is
m!S(t,m) + m(m − 1)!S(t,m − 1). Dividing by m!, we obtain S(t,m) + S(t,m − 1) orbits on
bases. Thus b(Sm ≀ Sd) is the least t for which S(t,m) + S(t,m − 1) ≥ d.

It would perhaps be desirable to obtain an asymptotic result for this in terms of m and d.
However, in particular cases, for fixed, small values of m, we can give precise answers. We give
the results for m = 2 and m = 3 below.

Corollary 2.18. In the product action, the base size of S2 ≀ Sd is 1 + ⌈log2 d⌉, and the
base size of S3 ≀ Sd is 1 + ⌈log3(2d + 1)⌉.

Proof. We apply Proposition 2.17 with m = 2 and with m = 3. Now, when m = 2, none
of the 2t sequences over {1, 2} are fixed by S2, and there are 2t−1 orbits (note that S(t, 2) +
S(t, 1) = 2t−1). So the base size b(S2 ≀ Sd) is t as long as 2t−1 ≥ d, that is, t ≥ 1 + log2 d. Hence
we have b(S2 ≀ Sd) = 1 + ⌈log2 d⌉.

In the case m = 3, S3 has 3t − 3 bases of length t (all except constant sequences), falling
into (3t − 3)/6 = (3t−1 − 1)/2 orbits (note that S(t, 3) + S(t, 2) = (3t−1 − 1)/2). So the base
size b(S3 ≀ Sd) is t as long as (3t−1 − 1)/2 ≥ d, that is, t ≥ 1 + log3(2d + 1). In other words, we
have b(S3 ≀ Sd) = 1 + ⌈log3(2d + 1)⌉.

In the next subsection, we will see how direct and wreath products in the product action
arise naturally as automorphism groups of graphs.

2.4. Cartesian products and Hamming graphs

The following operation is well-known in graph theory as a means of “multiplying” graphs.

Definition 2.19. Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be graphs. Then the Cartesian
product Γ1 2Γ2 is the graph with vertex set V1 × V2, and where (v1, v2) ∼ (w1, w2) if either
v1 = w1 and v2w2 ∈ E2 or v2 = w2 and v1w1 ∈ E1.

Furthermore, we denote Γ2Γ2 · · · 2Γ (with k factors) by Γk. A graph is prime with respect
to the Cartesian product if it cannot be expressed as the Cartesian product of smaller graphs.
Cartesian products were introduced by Sabidussi in 1960 [84], where he proved the following.
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Theorem 2.20 (Sabidussi [84]). Let Γ be a finite, connected graph. Then:
(i) There is a unique set of prime graphs Γ1, . . . ,Γk such that

Γ = Γn1

1 2 · · · 2Γnk

k

for some integers n1, . . . , nk;
(ii) The automorphism group of Γ is of the form

Aut(Γ) = (G1 ≀ Sn1
) × · · · × (Gk ≀ Snk

)

where Gi = Aut(Γi), and all direct and wreath products are in their product actions.

The first part was also proved independently by Vizing [94]. Both parts are discussed by
Imrich and Klavžar [65], in Sections 4.1 and 4.2 respectively, but the terminology of wreath
products is used neither there nor in Sabidussi’s original paper. Note that in the case of
the Cartesian product of two relatively prime graphs Γ1 and Γ2, we have Aut(Γ1 2Γ2) =
Aut(Γ1) × Aut(Γ2) (in the product action), while in the case of Cartesian powers of a given
prime graph Γ, we have

Aut(Γk) = Aut(Γ) ≀ Sk.

Consequently results about direct and wreath products in their product actions give us
corollaries about automorphism groups of Cartesian products. Also, as we shall see, many
results stated in terms of such graphs are really special cases of these group-theoretical results.

The Hamming graph H(d,m) is defined as follows. Its vertex set is the set of all words of
length d over an alphabet of size m, and two vertices are adjacent if and only if the words differ
in precisely one entry (i.e. their Hamming distance is 1). It follows that the distance between
two vertices is the Hamming distance between the two corresponding words.

Two straightforward examples of Hamming graphs are H(d, 2), which is the d-dimensional
hypercube, and H(2,m), which is the line graph of Km,m, and is also known as the square
lattice graph (see [37], Example 2.8) or rook’s graph. H(3, 2) and H(2, 3) are shown in Figure
1 below.
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Figure 1. The Hamming graphs H(3, 2) (left) and H(2, 3) (right).

An alternative way to describe the Hamming graph is as the Cartesian product of d copies
of the complete graph on m vertices, Kd

m. We note that some authors (such as Imrich and
Klavžar [65]) use the term Hamming graph to describe a Cartesian product of complete graphs
of different sizes. From Sabidussi’s Theorem (Theorem 2.20), it follows that the automorphism
group of H(d,m) is the wreath product Sm ≀ Sd, acting in the product action (although this
can also be seen directly).

In the previous subsection, we obtained results on the base sizes of direct and wreath products
in the product action. We conclude this subsection by showing how these generalise results in
the graph theory literature, which are expressed in terms of Cartesian products of graphs. For
instance, Theorem 1 of Boutin [20] and Theorem 4 of Cáceres et al. [28] both give restatements
of Proposition 2.11 in the case of Cartesian products.
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A deeper result is Theorem 5 of Boutin [20]. This states that, for a given integer k, the
maximum d for which the base size of Aut(H(d,m)) is k is equal to the number of equivalence
classes of m × k covering matrices. A covering matrix is defined to be a 01-matrix with distinct
rows and a single 0 in each column; two such matrices are equivalent if there is a permutation
of the rows taking one to the other. However, if we transpose such a matrix and interchange
the rôles of 0 and 1, we obtain precisely the incidence matrix of a partition of the set {1, . . . , k}
into either m or m − 1 parts (an all-zero column would correspond to an empty part). Thus
the number of equivalence classes is the number of such set partitions, which is given by the
sum of the Stirling numbers S(k,m) and S(k,m − 1). Consequently, we recover the result of
Proposition 2.17.

Our use of this result in Corollary 2.18 gives two more of Boutin’s results in [20]: her Theorem
3, expressed as the determining number of the hypercube, is that b(S2 ≀ Sd) = 1 + ⌈log2 d⌉,
while her Corollary 6.1, expressed as the determining number of Kd

3 , is that b(S3 ≀ Sd) = 1 +
⌈log3(2d + 1)⌉.

2.5. The symmetric group, Johnson and Kneser graphs, and the greedy algorithm

Consider the symmetric group Sn. One of the natural actions of Sn is on the set Ω =
(

{1,...,n}
k

)

of all k-subsets of {1, . . . , n}: for 2 ≤ k < n/2, this action is primitive. Two well-known families
of graphs have Sn, acting in this way, as their automorphism group.

The Johnson graph J(n, k) has vertex set Ω =
(

{1,...,n}
k

)

, and two subsets X and Y are
adjacent if and only if |X ∩ Y | = k − 1. The Kneser graph K(n, k) is defined similarly: it also
has vertex set Ω, and two vertices are adjacent if and only if the corresponding k-subsets are
disjoint. In the case k = 2, we can think of the 2-subsets as edges of the complete graph Kn:
the Johnson graph J(n, 2) is its line graph, and the Kneser graph K(n, 2) is its complement.

Example 2.21. The Kneser graph K(5, 2) is the well-known Petersen graph, as shown in
Figure 2. The vertex labels are the corresponding 2-subsets of {1, . . . , 5}.
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Figure 2. The Petersen graph.

Base sizes for the action of Sn on k-subsets were first studied in the (unpublished)
1989 D.Phil. thesis of Maund [80]. We summarise Maund’s results below, which include a
characterision of bases for this action.
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Theorem 2.22 (Maund [80]). Let G denote the action of Sn on k-subsets of {1, . . . , n}.
Then:

(i) A family of k-subsets B = {X1, . . . ,Xt} is a base for G if and only if, for all
x, y ∈ {1, . . . , n} with x 6= y, there is some Xi ∈ B such that |Xi ∩ {x, y}| = 1.

(ii) b(G) ≥ ⌈2(n − 1)/(k + 1)⌉.
(iii) If k(k + 1)/2 divides n − 1, then b(G) = 2(n − 1)/(k + 1).

Example 2.23. Suppose k(k + 1)/2 divides n, for k = 2, 3, 4. In that case, we can “cover”
the n points with disjoint copies of the configurations shown in Figure 3 to obtain minimum
bases for the action of Sm on k-subsets.
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Figure 3. Some minimum bases for Sn acting on k-subsets, where k(k + 1)/2 | n, and k = 2, 3, 4.

Maund also considers the case when k(k + 1)/2 does not divide n − 1 in detail, and the
results are rather more complicated.

In the special case of k = 2, we can be more specific. Thinking of the 2-subsets as the edges
of Kn, Maund’s criterion translates as follows: a base for Sn acting on the edges of Kn consists
of the edges of a spanning subgraph with no isolated edges and at most one isolated vertex.
With that in mind, the next result is straightforward.

Proposition 2.24. Let G be the symmetric group Sn in its action on 2-subsets. Then
b(G) is dependent on congruence classes modulo 3:

(i) For n ≡ 0 (mod 3), b(G) = 2
3n;

(ii) For n ≡ 1 (mod 3), b(G) = 2
3 (n − 1);

(iii) For n ≡ 2 (mod 3), b(G) = 2
3 (n − 2) + 1.

Proof. To see this, in the case where n ≡ 0 (mod 3), we notice that a spanning subgraph
of the following form is a base for G.
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Furthermore, no graph with fewer edges will satisfy the criteria. When n ≡ 1 (mod 3), we add
an extra isolated vertex; when n ≡ 2 (mod 3), we add two extra vertices: one joined to an
incident pair somehow, the other remaining isolated.

The equivalent problem of finding the determining numbers of Kneser graphs has been
considered more recently, starting in the 2006 paper of Boutin [19], and continued in the recent
work of Cáceres et al. [27]. Their methods and results are very similar to Maund’s, although
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were obtained independently, and are expressed in the language of graphs and hypergraphs.
Their main theorem implies parts (ii) and (iii) of Maund’s Theorem 2.22.

Theorem 2.25 (Cáceres et al. [27]). Let G denote the action of Sn on k-subsets of
{1, . . . , n}. Then:

(i) If b is a positive integer satisfying b > 2 and k ≤ b, and where n = ⌊d(k+1)
2 ⌋ + 1, we have

b(G) = b;
(ii) If b is a positive integer satisfying 2 ≤ k ≤ b − 1, then for all values of n satisfying

⌊

(b − 1)(k + 1)

2

⌋

< n + 1 <

⌊

b(k + 1)

2

⌋

,

we have b(G) = b.

Thus we have precise values for the base size of Sn acting on k-subsets, provided that
n ≥ k(k+1)

2 + 1.
In her (also unpublished) 2005 Ph.D. thesis [13], Benbenishty also obtained bounds on the

base size of the symmetric group acting on k-subsets. (We would like to thank the referee for
directing us to her results.)

Proposition 2.26 (Benbenishty [13]). Let G denote the action of Sn on k-subsets of
{1, . . . , n}, and let n = rk + d. Then:

(i) When n ≥ k2, we have b(G) ≤ r + k⌊r/k⌋ + d;
(ii) When n < k2, and where c = ⌊logr k⌋, we have b(G) ≤ 3r(c + 1).

The bounds in Proposition 2.26(i) (for n ≥ k2) are not quite as strong as in Theorems
2.22 and 2.25, although for larger values of k they are asymptotically similar: the bound is
approximately 2⌊n/k⌋, compared that of 2⌊(n − 1)/(k + 1)⌋. However, the focus here was to
verify Pyber’s conjecture (see subsection 2.1 above) for these groups, rather than obtain exact

values. Also, Proposition 2.26(ii) gives bounds for when n < k(k+1)
2 + 1, where Theorems 2.22

and 2.25 do not apply.
In [58], Gibbons and Laison consider some problems about bases of automorphism groups

of graphs (although they used the terms fixing set and fixing number). They give a greedy
algorithm for finding bases (build a base by successively choosing vertices from the largest
orbit of the stabiliser of the points previously chosen). This algorithm is exactly the same as
that given, for permutation groups in general, by Blaha [15] in 1992. This algorithm always
produces a base which is irredundant.

Gibbons and Laison ask if there exists a graph for which the greedy algorithm always gives
a base strictly larger than the minimum possible. In [33], Section 4.13, it is shown that for the
symmetric group Sn in its action on the 2-subsets of {1, . . . , n} the greedy algorithm returns a
base of size ∼ 3

4n. This contrasts with Proposition 2.24, which shows the minimum base size to
be ∼ 2

3n. Of course, this action is precisely the automorphism group of J(n, 2) and K(n, 2), so
these graphs provide infinite families of examples which answer Gibbons and Laison’s question.

While this example shows that the greedy algorithm does not always succeed, it does provide
a reasonable approximation. In [15], Blaha showed that if G has degree n, then the greedy
algorithm produces an irredundant base of size O(b(G) log log n).
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2.6. The exchange property and IBIS groups

Given that bases for groups are a generalisation of bases for vector spaces, it is natural to
ask which properties of vector space bases are carried over. One such property is the “exchange
property”. Namely, given two bases B1 and B2 for a vector space V and an element x ∈ B1 \ B2,
does there exist y ∈ B2 \ B1 such that (B1 \ {x}) ∪ {y} is also a base? A pair (Ω,B), where B
is a non-empty family of subsets of a set Ω satisfying this axiom, is called a matroid. (This is
only one of a number of equivalent definitions of a matroid: see Oxley [81] for details.) The
members of B are called the bases of the matroid. The bases of a vector space provide a natural
motivating example.

The exchange property was first investigated for bases of permutation groups by Cameron
and Fon-Der-Flaass in their 1995 paper [35]. They proved the following theorem:

Theorem 2.27 (Cameron and Fon-Der-Flaass [35]). Suppose G is a permutation group
acting on a set Ω. Then the following are equivalent:

(i) the irredundant bases of G have the same size;
(ii) the irredundant bases of G are preserved by re-ordering;
(iii) the irredundant bases of G form the bases of a matroid.

A group satisfying the conditions in Theorem 2.27 is called an IBIS group; the acronym
stands for “Irredundant Bases of Invariant Size”. As observed earlier, any minimal base is
irredundant, so it follows that the minimal bases of an IBIS group must also be equicardinal.
(In fact, it is straightforward to verify that condition (ii) is equivalent to every irredundant
base being minimal.) Examples of IBIS groups include the base-transitive groups we mentioned
in subsection 2.3.

More recently, Boutin [21] has investigated graphs for which the minimum determining sets
(i.e. bases) have the exchange property. In other words, this is studying which graphs have
automorphism groups which are IBIS groups. In particular, she considers outerplanar graphs,
and obtains a criterion for when the automorphism group of an outerplanar graph is an IBIS
group. She also shows that the automorphism groups of trees and of wheels are IBIS groups.

One of the results obtained by Cameron and Fon-Der-Flaass [35] is a characterisation of the
IBIS groups for which the matroid obtained is the uniform matroid Uk,n (i.e. the matroid on
{1, . . . , n} for which every k-subset is a base: see Oxley [81], Example 1.2.7). They showed
that such a group is necessarily (k − 1)-transitive. Since the only graphs with 2-transitive
automorphism groups are complete, then (other than the symmetric group Sn acting on Kn)
the only possibility for automorphism groups of graphs are when the uniform matroid has
rank 2. In this case (i.e. any pair of points is a base for the group G), the groups are precisely
the Frobenius groups (see Dixon and Mortimer [44], Section 3.4).

Burnside’s theorem on groups of prime degree states that a transitive group of prime degree
which is not 2-transitive is a Frobenius group (see Dixon and Mortimer [44], Section 3.5). Thus
we have the following result.

Proposition 2.28. Let p be a prime, and let Γ be a vertex-transitive graph with p vertices
(other than a complete graph or null graph). Then Aut(Γ) is an IBIS group, for which the
associated matroid is the uniform matroid U2,p (i.e. any pair of vertices is a base for Aut(Γ)).

Proof. Since Γ is not complete, Aut(Γ) is not 2-transitive, so by Burnside’s theorem Aut(Γ)
is a Frobenius group. Thus any pair of vertices forms a base, and therefore Aut(Γ) is an IBIS
group associated with the uniform matroid U2,p.
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Example 2.29. Suppose q is a prime power such that q ≡ 1 (mod 4). Then the Paley
graph Pq has vertex set Fq, and x is adjacent to y if and only if x − y is a quadratic residue
(i.e. non-zero square) in Fq.

It is easy to see that the Paley graph is vertex-transitive. Thus when the number of vertices
is a prime p, Proposition 2.28 shows that Aut(Pp) is an IBIS group associated with the uniform
matroid U2,p.

Paley graphs will reappear as examples later in this paper.

3. Metric and other dimensions

3.1. Metric dimension

The metric dimension is a well-known parameter in graph theory. It was first introduced in
the 1970s, independently by Harary and Melter [62] and by Slater [90].

Definition 3.1. A resolving set for a graph Γ = (V,E) is a set of vertices S = {v1, . . . , vk}
such that for all w ∈ V , the ordered list of distances D(w|S) = (d(w, v1), . . . , d(w, vk))
(corresponding to an arbitrary ordering of S) uniquely determines w.

That is, S is a resolving set for Γ if for any pair of vertices u,w, D(u|S) = D(w|S) if and
only if u = w.

Definition 3.2. The metric dimension of Γ, denoted µ(Γ), is the smallest size of a resolving
set for Γ.

Example 3.3. Recall the Petersen graph from Example 2.21. It is straightforward to check
that {12, 13, 14} is a resolving set for the Petersen graph, and that its metric dimension is 3.

The notion of metric dimension makes sense in any metric space. For instance, in Euclidean
space, the metric dimension is precisely the affine dimension, so it really is a “dimension” in a
geometric sense. In graph theory, it is a parameter that has appeared in various applications,
as diverse as combinatorial optimisation [85], pharmaceutical chemistry [39], robot navigation
[71] and sonar [90], to name but a few. The paper by Hernando et al. [63] contains a
considerable bibliography.

Computing the metric dimension of a graph is an NP-hard problem: it is one of the examples
given in the book by Garey and Johnson [57] (Appendix A1, GT61), while a proof of this is
given by Khuller et al. in [71]. Indeed, the problem is one of the computationally hard problems
that have had genetic algorithms applied to them: see Kratica et al. [73] for details.

As with base size, metric dimension is a subject rife with non-standard terminology. For
example, resolving sets are also known as locating sets [90], metric generators [85], metric
bases [62], or even just bases [70], minimum resolving sets known as reference sets [90] and
the metric dimension also known as the locating number [90] or the rigidity [70] of a graph.
In addition, as we shall see later, various other parameters turn out to be equivalent to metric
dimension in certain cases.

The following results are straightforward, and proofs can be found in Chartrand et al. [39],
for instance.



BASE SIZE AND METRIC DIMENSION Page 15 of 34

Proposition 3.4. Suppose a graph Γ has n vertices and diameter d. Then µ(Γ) ≤ n − d.

Proposition 3.5. A graph on n vertices has metric dimension n − 1 if and only if it is
complete.

An implicit lower bound on µ(Γ) can be obtained by considering the maximum possible
number of vertices of a graph with diameter d and metric dimension k. The following result is
also straightforward.

Proposition 3.6. The suppose Γ is a graph with n vertices, diameter d and metric
dimension k. Then n ≤ k + dk.

Proof. Let S be a resolving set. If y ∈ S, then there are exactly k possibilities for D(y|S);
if y 6∈ S, then there are dk possibilities for D(y|S).

A generalisation of this bound has been given by Hernando et al. [63].

Theorem 3.7 (Hernando et al. [63]). Suppose Γ is a graph with n vertices, diameter d
and metric dimension k. Then

n ≤
(⌊

2d

3

⌋

+ 1

)k

+ k

⌈d/3⌉
∑

i=1

(2i − 1)k−1.

This is indeed a generalisation: the two bounds agree when d = 2 and d = 3, and thereafter
it is stronger. Hernando et al. also go on to show that this bound is sharp, by constructing a
graph which meets this bound for each d ≥ 2 and k ≥ 1.

In [43], Cvetković et al. called a graph which meets the upper bound in Proposition 3.6
distance-perfect. They showed that such graphs are rare: a distance-perfect graph is either
complete, or has diameter at least 3; Theorem 3.7 implies that there are no distance-perfect
graphs of diameter d ≥ 4.

3.2. Base size and metric dimension

Bringing the two main strands of this paper together, we see that metric dimension and base
size are related, thanks to the following straightforward result.

Proposition 3.8. A resolving set for Γ is a base for Aut(Γ).

Proof. Let S = (x1, . . . , xk) be an (ordered) resolving set for Γ, and let G = Aut(Γ). We
will show that the pointwise stabiliser of S in G is trivial.

Choose a vertex v ∈ V (Γ); since S is a resolving set, the vector of distances
(d(v, x1), . . . , d(v, xk)) is unique. However, for any g ∈ G, d(v, xi) = d(vg, xg

i ), and thus if g
fixes each xi ∈ S, it must also fix v. Hence g ∈ ⋂

v∈V (Γ) Gv, and since the action is faithful,
this is trivial.

As a consequence, the following corollary is obvious.
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Corollary 3.9. For any graph Γ, b(Aut(Γ)) ≤ µ(Γ).

Thus it is possible to use the metric dimension of a graph to bound the base size of its
automorphism group. However, the bound is not always a good one: as we will see in Section
4, there are examples of families of graphs where the difference between the two parameters
can be made arbitrarily large.

Given the relationship between the metric dimension of a graph and the base size of
its automorphism group, one could ask if there is an analogue of metric dimension for
arbitrary permutation groups. In order for us to address this, we need first to discuss coherent
configurations, which we do now.

3.3. Coherent configurations and association schemes

The orbitals of a permutation group G are its orbits on Ω × Ω. There are two types of
orbital: diagonal (orbits on pairs of the form (x, x)) and non-diagonal (orbits on pairs of the
form (x, y) where x 6= y). If the group is transitive, then there is only one diagonal orbital, and
the non-diagonal orbitals are in a one-to-one correspondence with the suborbits of G, i.e. the
orbits of the stabiliser of a point. The number of orbitals is the rank of G. (See Dixon and
Mortimer [44], Section 3.2, for further details.)

We can think of the orbitals of G as a partition of Ω × Ω into a set of binary relations on Ω;
label these relations as R = {R1, . . . , Rt} (where t is the rank of G). Now, the relations satisfy
the following three conditions:

CC1. There is a subset of R which partitions {(x, x) | x ∈ Ω}.
CC2. For each Ri ∈ R, its transpose R∗

i = {(y, x) | (x, y) ∈ Ri} ∈ R.
CC3. For any i, j, k ∈ {1, . . . , t}, given a pair (x, y) ∈ Rk, the number of points z ∈ Ω such that

(x, z) ∈ Ri and (z, y) ∈ Rj is dependent only on i, j and k, not on the choice of (x, y).
(We denote this number by pk

ij .)

Definition 3.10. Suppose Ω is a finite set, and that R is a partition of Ω × Ω. Then
(Ω,R) is a coherent configuration if and only if conditions CC1–CC3 are satisfied.

Often we will just denote a coherent configuration by R. They were defined by D. G. Higman
[64] as a means of studying finite permutation groups. (For a detailed treatment of coherent
configurations, and their relationship to permutation groups, see Chapter 3 of [33]; for an
interesting account of their development, see the biography of Higman by Bannai et al. [11].)
However, not all coherent configurations arise as the orbitals of a permutation group: if one
does, then it is called Schurian, and we denote it by R(G).

The rank of a coherent configuration is the number of relations, while the numbers pk
ij are

called the intersection numbers of R. We say that a coherent configuration is homogeneous
if the whole of the diagonal subset {(x, x) | x ∈ Ω} is a single relation R1 (a strengthening of
CC1). Furthermore, a coherent configuration is an association scheme if it satisfies R∗

i = Ri

for all i (a strengthening of CC2). Note that:

– an association scheme is necessarily a homogeneous coherent configuration (see [64]);
– the coherent configuration arising from a permutation group G is homogeneous if and only

if G is transitive, and is an association scheme if and only if G is generously transitive
(that is, any two points of Ω can be interchanged by an element of G.

The reader should be aware that the term “association scheme” is not used consistently in
the literature. We use the same definition as the books of Bailey [7] and Brouwer, Cohen and
Neumaier [22]; however, the books by Bannai and Ito [12] and Zieschang [96] each give different
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definitions, which are both weaker than ours. We refer the reader to [34] for a discussion of
the various objects that have been called “association schemes”.

There are several equivalent ways of understanding coherent configurations (and association
schemes). We can visualise them by regarding the relations {R1, . . . , Rt} as “colours”, and thus
the coherent configuration as a “colouring” of Ω × Ω.

Example 3.11. Figure 4 depicts a coherent configuration of rank 3 on 4 points.

Figure 4. A coherent configuration of rank 3.

Another approach is to think of R as a colouring of the arcs of a complete directed graph with
vertex set Ω. Thus each of the relations Ri becomes the arc set of a directed graph. (Note that
if R is an association scheme, then the graphs are undirected.) A coherent configuration is said
to be primitive if each of the digraphs corresponding to non-diagonal relations are connected.
A well-known result of Higman [64] shows that G is a primitive group if and only if R(G) is a
primitive coherent configuration.

An alternative way of studying coherent configurations is to view them purely algebraically.
Suppose R = {R1, . . . , Rt} is a coherent configuration. For each relation Ri, we define an Ω × Ω
matrix Ai, where the (x, y)-entry is 1 if and only if (x, y) ∈ Ri, and all other entries are 0. Now,
these matrices satisfy the following conditions:

CC1′. A subset of A = {A1, . . . , At} sums to the identity matrix.
CC2′. For each Ai, its transpose AT

i ∈ A.
CC3′. Any product AiAj is an integer linear combination of the matrices in A.

These conditions are equivalent to the three in the definition of a coherent configuration. We
also notice that the sum of the Ai is the all-ones matrix J .

The complex algebra generated by A is called a cellular algebra. Cellular algebras were
introduced by Weisfeiler and Leman in the late 1960s [95], independently of Higman, and have
been studied extensively in this form in the former Soviet Union (see the book by Faradžev
et al. [54]). In the case where R is an association scheme, the algebra is usually called the
Bose–Mesner algebra of the scheme. (We remark that these cellular algebras are not the same
as those introduced much later by Graham and Lehrer [61].)

3.4. Class dimension and orbital dimension

The next definition gives us an analogue of metric dimension for coherent configurations.
Let C(x, y) denote the relation containing the pair (x, y) (i.e. the “colour” of that pair).

Definition 3.12. A resolving set for a coherent configuration R is a set of points
S = {x1, . . . , xk} ⊆ Ω such that for all y ∈ Ω, the ordered list of colours O(y|S) =
(C(y, x1), . . . , C(y, xk)) is unique.
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That is, S is a resolving set for R if for any pair of points y, z, O(y|S) = O(z|S) if and only
if y = z.

Definition 3.13. The class dimension of a coherent configuration R, denoted µ(R) is the
smallest size of a resolving set for R. Where the coherent configuration consists of the orbitals
of a permutation group G, we call this invariant the orbital dimension of G and denote it by
µ(G).

Resolving sets for coherent configurations were first introduced by Babai in 1981 [5] by the
name distinguishing sets, and the class dimension was called the distinguishing number. As
we saw in in subsection 2.2, this term has recently become widespread in graph theory for a
different object, so we have avoided this term. Also, in their account of Babai’s paper, Dixon
and Mortimer ([44], Section 5.3) used the term discriminating set instead.

The following is a direct analogue of Proposition 3.8.

Proposition 3.14. A resolving set for a permutation group G is a base for G.

This is proved in exactly the same manner as Proposition 3.8, replacing “distance from x to
y” with “orbital containing x and y”. It was an important device in Babai’s paper [5], where
he was able to bound the class dimension of primitive coherent configurations of rank at least
3, used this to bound the base size of primitive permutation groups, and then used this to
bound the order of such groups. We give Babai’s most general bound below.

Theorem 3.15 (Babai [5]). Let R be a primitive coherent configuration of rank at least 3
on n points. Then the class dimension µ(R) satisfies µ(R) < 4

√
n log n.

The reason for avoiding the rank 2 case in 3.15 is that this case can easily be dealt with.
The next two results are analogues of Propositions 3.4 and 3.5 for metric dimension. Note
that while they only apply to homogeneous coherent configurations, a coherent configuration
of rank 2 is automatically homogeneous.

Proposition 3.16. Let R be a homogeneous coherent configuration of rank t on n points.
Then µ(R) ≤ n − t + 1.

Proof. Choose a point u ∈ Ω, and a set of points W = {v1, . . . , vt−1} distinct from u so
that the colours C(u, vi) are all distinct. (The fact that R is homogeneous ensures that this is
possible.) Then the set W = Ω \ {v1, . . . , vt−1} is a resolving set for R: if x ∈ W , then there
is a unique appearance of C(x, x) in O(x|W ), while for each x 6∈ W , the entry in O(x|W )
corresponding to u will be distinct.

Remark. As Babai has pointed out to the authors, the bound in Proposition 3.16 is tight
for every value of t and when n is divisible by t − 1. The coherent configuration arising from
the group Sk ≀ Ct−1 (in the imprimitive action) provides an example, with n = (t − 1)k.

Babai also points out that the methods of [5] can be used to show that, with possibly a finite
number of exceptions, if R is a homogeneous coherent configuration of rank at least 3 on n
vertices where n is composite, then µ(R) ≤ n − p(n), where p(n) is the smallest prime divisor
of n. He conjectures that there are no exceptions.
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Proposition 3.17. Let R be a homogeneous coherent configuration on n points. Then
µ(R) = n − 1 if and only if R has rank 2.

Proof. First, suppose R has rank 2. Label the two relations as 0 (for the diagonal entries)
and 1 (for the non-diagonal entries). Suppose S is a resolving set for R. For any x 6∈ S, all
entries of O(x|S) will be 1, so we can have at most one point outside of a resolving set,
and so µ(R) ≥ n − 1. Applying the upper bound from Proposition 3.16 above, it follows that
µ(R) = n − 1.

Conversely, suppose R has rank t ≥ 3. Then by Proposition 3.16, µ(R) ≤ n − t + 1 ≤ n − 2.

Since a permutation group has rank 2 if and only if it is 2-transitive, we have the following
corollary for orbital dimension.

Corollary 3.18. Let G be a group of degree n. Then µ(G) = n − 1 if and only if G is
2-transitive.

Continuing the analogy, as with metric dimension we can also obtain an implicit lower bound
for the class dimension, similar to Proposition 3.6.

Proposition 3.19. Let R be a coherent configuration on n points of rank t, with s diagonal
classes, and let µ(R) = k. Then n ≤ k + (t − s)k.

Proof. Let S be a resolving set. If y ∈ S, then O(y|S) contains an entry from a diagonal
class and there are exactly k possibilities for it; otherwise, if y 6∈ S, then O(y|S) contains only
non-diagonal classes, and so there are (t − s)k possibilities for it.

3.5. Distance-transitive and distance-regular graphs

The class of distance-transitive graphs is particularly interesting in this context, as it is
precisely where our three “dimensions” all coincide. They are defined as follows.

Definition 3.20. A graph Γ is distance-transitive if for all vertices u, v, u′, v′ such that
d(u, v) = d(u′, v′), there exists g ∈ Aut(Γ) such that ug = u′ and vg = v′.

In other words, Aut(Γ) acts transitively on pairs of vertices at a given distance. We refer the
reader to Biggs’ book [14] for background material on distance-transitive graphs.

Now, it follows from the definition that the orbitals of Aut(Γ) are precisely the pairs of
vertices at each distance, so the rank of Aut(Γ) is d + 1, where d is the diameter of Γ. Thus
we can label the orbitals as {R0, R1, . . . Rd}, where (u, v) ∈ Ri if and only if d(u, v) = i. Thus
R∗

i = Ri for all i, so the coherent configuration arising from Aut(Γ) is symmetric, and therefore
is an association scheme. Consequently, we have the following.

Proposition 3.21. Let Γ be a graph such that G ≤ Aut(Γ) acts distance-transitively on
the vertex set V . Then the orbital dimension of G is equal to the metric dimension of Γ.
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If we weaken the hypotheses so to ask merely for graphs for which the sets of pairs of vertices
at each distance form an association scheme, we obtain the class of distance-regular graphs (see
Brouwer, Cohen and Neumaier [22] for full details). In this case, the metric dimension of such
a graph is the class dimension of the association scheme, and thus Babai’s bound (Theorem
3.15) gives a bound on the metric dimension of a distance-regular graph on n vertices. However,
Babai’s paper contains a number of other results which can be applied here.

Suppose Γ is a distance-regular graph with n vertices, valency k and diameter d. Following
Biggs’ notation [14], for a given vertex v ∈ V , we let Γi(v) = {w ∈ V | d(v, w) = i}, and define
ki = |Γi(v)|. Where w ∈ Γi(v), let ci denote the number of neighbours of w at distance i − 1
from v, ai the number of neighbours of w at distance i from v, and bi the number of neighbours of
w at distance i + 1 from v. That Γ is distance-regular assures that these numbers are constants.
We put these numbers in an array, called the intersection array of Γ,

ι(Γ) =







∗ c1 · · · cd−1 cd

a0 a1 · · · ad−1 ad

b0 b1 · · · bd−1 ∗







.

The ∗ indicate that c0 and bd are undefined. It is easy to see that a0 = 0, b0 = k, c1 = 1, and
to deduce that kibi = ki+1ci+1. Hence the numbers k1, . . . , kd can be obtained from ι(Γ).

The following result is due to Babai, and holds for primitive coherent configurations in full
generality; we state his result as it holds for distance-regular graphs.

Theorem 3.22 (Babai [5]). Let Γ be a primitive distance-regular graph on n vertices of
diameter d. Then the metric dimension of Γ satisfies

µ(Γ) < 2d
n

n − M
log n

(where M = max{k1, . . . kd}).

Thus this result gives an upper bound on the metric dimension of a primitive distance-regular
graph, which can be obtained from its intersection array. We remark that the imprimitive
distance-regular graphs have a straightforward characterisation (known as Smith’s Theorem,
after D. H. Smith [91] who proved it for distance-transitive graphs): a distance-regular graph
of valency at least 3 is imprimitive if and only if it is either bipartite or antipodal. (A graph
Γ of diameter d is antipodal if for any u,w ∈ Γd(v), we have d(u,w) = d.) For a proof, see
Theorem 4.2.1 of Brouwer, Cohen and Neumaier [22].

Many of the families of graphs for which metric dimension (or equivalent parameters) have
been investigated are distance-transitive. We discuss some of these families below.

3.6. Hamming graphs, coin-weighing and Mastermind

Consider the Hamming graphs H(d, q) which we saw in subsection 2.4. These are a classical
example of distance-regular graphs, and the association scheme arising is called the Hamming
scheme. Recall that the hypercube H(d, 2) is a special case of a Hamming graph. In [39],
Chartrand et al. obtained an upper bound on the metric dimension of the hypercube. This was
improved by Sebő and Tannier, who realised that it is equivalent to solving a coin-weighing
problem posed by Erdős and Rényi [47] in 1963 and solved by Lindström [79] in 1964.

Theorem 3.23 (Lindström [79]; Sebő and Tannier [85]). The metric dimension of the
hypercube H(d, 2) satisfies

µ(H(d, 2)) =
2d

log2 d
(1 + o(1)).
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Since H(d, 2) is distance-transitive, the metric dimension of the hypercube is equal to the
orbital dimension of its automorphism group S2 ≀ Sd (acting in the product action). Of course,
this is also the class dimension of the Hamming scheme H(d, 2).

For the general Hamming scheme H(d, q), bounds follow from the work of Chvátal [40] on
strategies for the game Mastermind. In this game, the first player chooses a “mystery” vector
m = [m1, . . . ,md] over an alphabet of size q. (In the game, where d is usually 4 or 5 and q = 6,
the vector is represented by d pins in q colours.) The second player then successively chooses
“response” vectors r = [r1, . . . , rd], in an attempt to deduce the mystery vector; at each stage,
his opponent provides two pieces of information, namely (i) the number a of positions where m

and r agree, and (ii) the total number b of pins of the correct colour but in the wrong position.
Now, the mystery vector m and the response vectors r are vertices of the Hamming scheme

H(d, q), and the number d − a is the Hamming distance between m and r. Thus, if the response
vectors chosen are a resolving set for H(d, q) of size k, then (in theory at least) after k responses
the player will be able to deduce m. Thus the metric dimension of H(d, q) provides an upper
bound on the number of guesses f(d, q) needed for a successful deduction.

Chvátal obtained an upper bound on f(d, q), which is valid when q is small when compared
to d. As his proof only uses the first piece of information, a, this also gives an upper bound on
µ(H(d, q)). This is another asymptotic result.

Theorem 3.24 (Chvátal [40]). Given ε > 0, there exists an integer dε such that if d > dε

and q < d1−ε, then the metric dimension of H(d, q) satisfies

µ(H(d, q)) ≤ (2 + ε)d
1 + 2 log2 q

log2 d − log2 q
.

Kabatianski et al. [70] have reported improved bounds for the metric dimension of H(d, 3)
and H(d, 4); however, this was published only in an extended abstract, with all proofs omitted.
Cáceres et al. [30] have also studied the problem, for H(2,m) (the square lattice graphs). They
obtained the following exact result, as part of an investigation into the metric dimension of
Cartesian products of graphs.

Theorem 3.25 (Cáceres et al. [30]). For all m ≥ 1, the metric dimension of the square
lattice graph H(2,m) is µ(H(2,m)) = ⌊ 2

3 (2m − 1)⌋.

3.7. Separation index and strongly regular graphs

In [93], Vince defines the separation index of a finite permutation group G acting on a set
Ω, which is defined in terms of partitions. The set of all partitions of Ω forms a lattice, ordered
by refinement, and the unique minimal element is the partition 0 into singletons. For x ∈ Ω,
let π(x) denote the partition of Ω into the orbits of the point stabiliser Gx (i.e. suborbits).

Definition 3.26. A subset S = {x1, . . . , xk} of Ω is said to separate G if in the lattice of
all partitions of Ω, the meet

∧

x∈S

π(x) = 0.

The separation index of G, denoted σ(G), is the smallest cardinality of a separating set.
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Vince goes on to define the separation index of a graph to be that of its automorphism group,
and then the separation index of a surface to be the largest separation index of a 3-connected
graph embedded in that surface. Vince’s main result is that the separation index of the sphere
is 3. (Further results in this topological setting have been obtained by Fijavž and Mohar [56].)

Now, in the case where G is transitive, because of the correspondence between suborbits and
orbitals, the separation index is precisely the orbital dimension, as the next proposition shows.

Proposition 3.27. Let G be a transitive permutation group on Ω. Then a subset S ⊆ Ω
is a separating set for G if and only if it is a resolving set for G, and so σ(G) = µ(G).

Proof. Let S = {x1, . . . , xk}, and suppose it is a separating set for G. Thus for all y, z ∈ Ω,
if y and z belong to π(xi) for all i, then y = z (as otherwise,

∧

x∈S π(x) would contain a part of
size greater than 1). So if for all i the orbital containing (y, xi) is the same as that containing
(z, xi) (i.e. if O(y|S) = O(z|S)) then y = z. Hence S is a resolving set for G.

The reverse implications work identically.

In particular, if G is the automorphism group of a distance-transitive graph Γ, then the
separation index of G is equal to the metric dimension of Γ. We note also that a separating set
is a base for G (even if G is intransitive).

In [55], Fijavž and Mohar considered the separation index of the Paley graph Pp (recall
Example 2.29). They obtained upper and lower bounds on σ(Pp) where p is prime. Since Paley
graphs are distance-transitive, then these bounds hold for their metric dimension.

Theorem 3.28 (Fijavž and Mohar [55]). Let p be a prime satisfying p ≡ 1 (mod 4). Then
the metric dimension of the Paley graph Pp satisfies

⌊log2 p⌋ ≤ µ(Pp) ≤ ⌊2 log2 p⌋.

The lower bound, which is true for all graphs of diameter 2, is immediate from Proposition
3.4. The upper bound turns out to follow from a much more general result due to Babai [4]
about arbitrary graphs. For a graph Γ, let m(Γ) denote the largest integer with the property
that the symmetric difference |N(u)△N(v)| ≥ m for all distinct vertices u, v of Γ.

Proposition 3.29 (Babai [4]). Let Γ be a graph with n vertices. Then

µ(Γ) ≤ 2 log n

1 − log(1 − m(Γ)/n)
,

which implies that µ(Γ) ≤ 2n log n/m(Γ).

This is particularly useful in the case of strongly regular graphs, which we define now.

Definition 3.30. A connected, regular graph Γ with n vertices and valency k is said to
be strongly regular if:

– each pair of adjacent vertices has a constant number a of common neighbours;
– each pair of non-adjacent vertices has a constant number c of common neighbours.

The integers (n, k, a, c) are called the parameters of Γ.
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It follows from the definition that a connected graph is strongly regular if and only if it is
distance-regular and its diameter is 2; as association schemes these have rank 3, and in fact
every rank 3 association scheme arises in this way. A rank 3 permutation group is therefore
contained in the automorphism group of some distance-transitive graph of diameter 2; such
graphs are known as rank 3 graphs, and Paley graphs form examples of these. From the
parameters (n, k, a, c), all the intersection numbers of the corresponding association scheme
can be obtained. (See Chapter 2 of [37] for further background material.)

A strongly regular graph is primitive if and only if the corresponding association scheme is
primitive. However, the only imprimitive strongly regular graphs are the complete multipartite
graphs.

In a primitive strongly regular graph with parameters (n, k, a, c), it is straightforward to see
that m(Γ) = min{2(k − a − 1), 2(k − c)}. Using this, Babai [5] showed the following. (This a
special case of the bound for primitive distance-regular graphs we saw in Theorem 3.22 above.)

Theorem 3.31 (Babai [5]). Let Γ be a primitive strongly regular graph with n vertices
and valency k < 1

2n. Then

µ(Γ) <
2n2 log n

k(n − k)
<

4n log n

k
.

In the special case of the Paley graph Pp, we have m(Γ) = (p − 1)/2, and the upper bound
of Theorem 3.28 follows.

There are also some computational results on the metric dimension of strongly regular graphs,
due to Kratica et al. [72]. Using an integer programming formulation of the metric dimension
problem due to Currie and Oellermann [42], and the online catalogue of strongly regular graphs
due to Spence [92], they were able to calculate the metric dimension of every strongly regular
graph on up to 45 vertices. In a vast majority of cases, the metric dimension is determined by
the parameters of the graph (for instance, all 32,548 strongly regular graphs with parameters
(36, 15, 6, 6) have metric dimension 6), or when different values are possible, they differ by 1
(for instance, of the 41 strongly regular graphs with parameters (29, 14, 6, 7), 40 have metric
dimension 5 and one has metric dimension 6). It would be interesting to find a theoretical
explanation of these phenomena.

3.8. Johnson and Kneser graphs

Recall the Johnson graphs from subsection 2.5. The Johnson graph J(n, k) is another classical
example of a distance-transitive graph. When n > 2k, the Johnson graph is primitive; when
n = 2k, it is antipodal (since each vertex has a unique antipode) and thus imprimitive. In
this case, the automorphism group Aut(J(2k, k)) is Sn × C2 (the extra automorphisms being
those interchanging a k-subset with its complement). The corresponding association scheme,
the Johnson scheme, is precisely the coherent configuration arising from the action of the
symmetric group Sn on k-subsets. By abuse of notation, we will also denote the Johnson
scheme by J(n, k).

The Kneser graph is not distance-transitive in general. One case where it is distance-transitive
is when k = 2 (for n ≥ 5): the graph K(n, 2) is the complement of the Johnson graph J(n, 2),
and both are distance-transitive graphs of diameter 2. Another example of a distance-transitive
Kneser graph is K(2k − 1, k − 1), known as the odd graph Ok (see Biggs [14]); the odd graph
O3 is the Petersen graph.

In the remainder of this subsection, we will consider the case k = 2 only. Recall Proposition
2.24, which gives the base size of the symmetric group in its action on 2-subsets to be around
2
3n. By Proposition 3.14, this gives a lower bound on the class dimension of the Johnson
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scheme J(n, 2), and thus the metric dimension of both the Johnson graph J(n, 2) and Kneser
graph K(n, 2). We shall see that, unlike the Hamming graphs, this bound can actually be met
infinitely often.

Theorem 3.32. Let G denote the action of Sn on 2-subsets of {1, . . . , n}, where n ≥ 6.
Then for the orbital dimension µ(G), we have:

(i) For n ≡ 0 (mod 3), µ(G) = b(G) = 2
3n;

(ii) For n ≡ 1 (mod 3), µ(G) = b(G) + 1 = 2
3 (n − 1) + 1;

(iii) For n ≡ 2 (mod 3), µ(G) = b(G) + 1 = 2
3 (n − 2) + 2.

Proof. As in Proposition 2.24, we think of the 2-subsets of {1, . . . , n} as the edges of a
complete graph Kn. First, we consider case (i), where n ≡ 0 (mod 3). Let S be (the edges
of) a spanning subgraph of Kn as depicted in Proposition 2.24; we will show that S is also a
resolving set.

Now, G has three orbits on pairs of edges (e1, e2): where e1 = e2 (the diagonal orbital), where
e1 is incident with e2, and where e1 is not incident with e2. Label these orbitals as 0, 1 and 2
respectively. Also, label the edges of S as {x1, . . . , xt} (where t = 2

3n), so that incident pairs
of edges are labelled x2i−1, x2i. Choose an arbitrary e ∈ E(Kn). There are five possibilities for
O(e|S):

1. If e = xi ∈ S, then O(xi|S) contains a 0 in position i, with another entry of 1 and all other
entries 2.

2. If {e, x2i−1, x2i} forms a triangle in Kn, then O(xi|S) = (2, . . . , 2, 1, 1, 2, . . . , 2) (where the
1s are in entries 2i − 1 and 2i).

In the remaining cases, e is an edge joining two incident pairs of edges in S, as indicated in
the figure below:
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3. If e = uw, O(e|S) = (2, . . . , 2, 1, 1, 2, . . . , 2, 1, 1, 2, . . . , 2) (where the 1s are in entries 2i − 1,
2i, 2j − 1 and 2j).

4. If e = uz, O(e|S) = (2, . . . , 2, 1, 1, 2, . . . , 2, 1, 2, 2, . . . , 2) (where the 1s are in entries 2i − 1,
2i and 2j − 1).

5. If e = vz, O(e|S) = (2, . . . , 2, 1, 2, . . . , 2, 1, 2, . . . , 2) (where the 1s are in entries 2i and
2j − 1).

We observe that the same sequence can never appear more than once in any of the five cases.
Hence S is a resolving set for G. Since we know that S is a base for G of least possible size, it
follows that it must also be a resolving set of least possible size, and so b(G) = µ(G) = 2

3n.
When n ≡ 1 (mod 3), a similar argument can be used. Now, a minimal base for G in this

case is as shown below:
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However, this is not a resolving set G; the edge vw cannot be distinguished from the edge
forming a triangle with the edges incident with v. However, by adding the edge vw, the set
S ∪ {vw} is a resolving set for G. Thus µ(G) = b(G) + 1 = 2

3 (n − 1) + 1.
When n ≡ 2 (mod 3), the same difficulty arises. The following is a minimal base for G:
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Again, we can add the extra edge vw to S to obtain a resolving set, which has size b(G) + 1 =
2
3 (n − 2) + 2.

The requirement that n ≥ 6 follows from the fact that when n = 5, the problem case does
not arise; in that situation, b(G) = µ(G) = 3.

As a direct consequence, we obtain the following result on metric dimension.

Corollary 3.33. For n ≥ 6, the class dimension of the Johnson scheme J(n, 2) (and thus
the metric dimension of the Johnson graph J(n, 2) and Kneser graph K(n, 2)) is given by
µ(J(n, 2)) = µ(K(n, 2)) = 2

3 (n − i) + i, where n ≡ i (mod 3), i ∈ {0, 1, 2}.

In the cases where n ≤ 5, we note that J(3, 2) is the complete graph K3 (which has metric
dimension 2: recall Proposition 3.5), J(4, 2) is the octahedron (which has metric dimension 3:
this is a straightforward exercise), and that K(5, 2) is the Petersen graph (which has metric
dimension 3: recall Example 3.3).

3.9. Connections with the graph isomorphism problem

Babai’s motivation in proving Proposition 3.29 was the graph isomorphism problem. He has
provided us with the following comment:

In fact, breaking regularity is one of the key tools in the design of algorithms for graph
isomorphism; the graph isomorphism problem has therefore been one of the strongest
motivators of the study of all sorts of “resolving/discriminating sets”, and perhaps the
only deep motivator of the study of those in contexts where no group is present. In
particular, this was the critical motivation behind Weisfeiler and Leman’s paper [95],
my own work [4], and also the work of Evdokimov and Ponomarenko.

For instance if the metric dimension of a graph Γ is m then one can give the graph a
canonical labeling in essentially nm steps (n is the number of vertices) and thereby
deciding isomorphism of Γ against any graph in about the same amount of time.
(The more precise timing would be O(nm+2).) The same is true for “my” dimension
of a graph (take the coherent configuration generated by the graph and look at its
“class dimension”) and the EP-dimension (which is always less than or equal to “my”
dimension, as you point out).

The work of Evdokimov and Ponomarenko, and the notion of EP-dimension, referred to in
the above will be discussed later, in Section 5.

4. The dimension jump

One question regarding base size and metric dimension that has arisen repeatedly (albeit
under different names) stems from the inequality b(G) ≤ µ(G) (or that b(Aut(Γ)) ≤ µ(Γ)):
namely, how large can the gap between the two parameters be? More specifically, can the gap
between the two parameters be made arbitrarily large? This question is asked by Boutin [19]
and (implicitly) by Vince [93], while the paper by Cáceres et al. [28] is devoted to investigating
it. In the same vein, we can ask: for which graphs the two parameters are equal? To aid
discussing these questions, we make the following definition.
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Definition 4.1. The dimension jump of a permutation group G is δ(G) = µ(G) − b(G).
The dimension jump of a graph Γ is defined to be δ(Γ) = µ(Γ) − b(Aut(Γ)).

Clearly, if G = Sn in its natural action, δ(G) = 0, since both b(Sn) and µ(Sn) are equal to
n − 1. Likewise, δ(Kn) = 0. The next example shows a more interesting infinite family where
the dimension jump is also 0.

Example 4.2. As we observed in Theorem 3.32, in the case where n ≡ 0 (mod 3), the
Johnson graph Γ = J(n, 2) (and its complement, the Kneser graph K(n, 2)) satisfy µ(Γ) =
b(Aut(Γ)) = 2

3n. Thus we have δ(Γ) = 0.

Theorem 3.32 also shows that the Johnson graphs J(n, 2) when n 6≡ 0 (mod 3) are an infinite
family where the dimension jump is constant but non-zero, as in this case we have δ(J(n, 2)) =
1. On the other hand, a number of papers have found examples of families of graphs for which
δ(Γ) → ∞.

Example 4.3. Fijavž and Mohar [55] considered the Paley graphs Pp where p is prime
(recall subsection 3.7). In this situation, the base size of Aut(Pp) is 2, since this group is a
Frobenius group (recall Example 2.29). The lower bound in Theorem 3.28 shows that µ(Pp) ≥
⌊log2 p⌋; thus it follows that by choosing a sufficient large prime, δ(Pp) can be made arbitrarily
large.

Example 4.4. In earlier sections, we have discussed the hypercube H(d, 2) and its
automorphism group G = Aut(H(d, 2)) = S2 ≀ Sd. Boutin [20] showed that b(G) = ⌈log2 d⌉ + 1
(see subsection 2.4), while Sebő and Tannier [85] observed that Lindström’s work [79] shows
that µ(H(d, 2)) = 2d

log
2

d (1 + o(1)) (see Theorem 3.23). Thus for the dimension jump, we have

δ(G) = δ(H(d, 2)) = Θ

(

2d

log2 d

)

,

which can be made arbitrarily large.

Cáceres et al. [28] considered both the metric dimension of the square lattice graphs H(2, n)
and the base size of its automorphism group Sn ≀ S2 (see subsections 2.4 and 3.6), obtaining
exact values in each case. This gives the following.

Example 4.5. From Example 2.16, we have b(Aut(H(2, n))) = b(Sn ≀ S2) = n, while from
Theorem 3.25 we have µ(H(2, n)) = ⌊ 2

3 (2n − 1)⌋. Thus δ(H(2, n)) = ⌊ 2
3 ( 1

2n − 1)⌋, which can
be made arbitrarily large.

If a graph has trivial automorphism group, then the base size of its automorphism group
is 0. Consequently, the following example gives graphs with arbitrarily large dimension jump
(albeit examples which are not so interesting from the group-theoretical perspective).

Example 4.6. Cáceres et al. [28] construct an infinite family of trees Tn by attaching
n paths, of lengths 1, 2, . . . , n, to a distinguished root vertex. For n ≥ 3, Tn has trivial
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automorphism group, so b(Aut(Tn)) = 0. However, the metric dimension of Tn is n − 1: a
resolving set consists of the end vertices of n − 1 of the n paths. Thus δ(Tn) → ∞.

In fact, having δ(Γ) arbitrarily large is a property of “most” graphs in a meaningful way, as
the next example shows.

Example 4.7. Consider a random graph G(n, p) (see Chapter VII of Bollobás [17] for
background); all results we mention hold asymptotically almost surely. Now, the diameter of
a random graph is 2 (see Bollobás [17], Section VII.2), so Proposition 3.6 gives a lower bound
on µ(G(n, p)) of approximately log2 n. Also, in 1963 Erdős and Rényi [46] showed that the
automorphism group of G(n, p) is trivial, so has base size 0. Thus δ(G(n, p)) → ∞.

Babai et al. [6] showed that, in a random graph in G(n, 1
2 ), the set of 3 log n vertices of highest

degree all have different degrees, and form a resolving set (asymptotically almost surely). This
results in a canonical labelling of almost all graphs in time linear in the number of edges.

5. Other directions

5.1. Bases for coherent configurations

Related to their work with Karpinski on the graph isomorphism problem (see [48]), in [49,
51] Evdokimov and Ponomarenko introduced the notion of a base for a coherent configuration.
(We shall refer to these as EP-bases.) A remark in [50] suggests that a resolving set in Babai’s
sense (see Definition 3.13) is necessarily a base in their sense (and thus that the size of an
EP-base is bounded by the class dimension), though no proof is offered. In this subsection we
consider these two notions and prove the assertion, and also observe that the converse is false.
We will see that the gap between the two parameters can be arbitrarily large.

First, a comment about coherent configurations. Let X be any set of binary relations on
a finite set Ω. Then there is a unique coherent configuration C on Ω which is coarsest with
respect to being a refinement of X . This is most easily explained in terms of the corresponding
cellular algebra. Slightly more generally, let A be any set of Ω × Ω matrices, containing the
identity matrix. Close A under addition, scalar multiplication, matrix multiplication, and the
following: if A ∈ A and c is some entry of A, then the zero-one matrix with 1 in the positions
where A has entry c and 0 elsewhere is in A. The resulting set of matrices is the cellular algebra
of a coherent configuration, which we call the coherent configuration generated by A.

Suppose that a set X of relations is given. Define an equivalence relation on Ω × Ω by the
rule that (x, y) and (u, v) are equivalent if and only if, for any word in the elements of X ,
the number of (x, y) paths with edges described by the entries in the word is equal to the
number of such (u, v) paths. The resulting partition of Ω × Ω is coarser than the coherent
configuration generated by X . (If we iterate this procedure until it stabilises, we obtain the
coherent configuration generated by X .)

Now we turn to the definition of an EP-base.

Definition 5.1. Let R = {R1, . . . , Rr} be a coherent configuration on Ω, and (v1, . . . , vb)
be a sequence of points from Ω. We say that (v1, . . . , vb) is an EP-base if the coherent
configuration generated by R∪ {Iv1

, . . . , Ivb
} is trivial, in that all classes are singletons (where

Iv is the relation {(v, v)}). We call the size of the smallest EP-base the EP-dimension of the
configuration.
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In the case where R arises from a group G, both a resolving set and an EP-base are bases
for G, so both “dimensions” are upper bounds for the base size of G.

Proposition 5.2. If a sequence in a coherent configuration is a resolving set, then it is
an EP-base. Hence the EP-dimension of a coherent configuration does not exceed its class
dimension.

Proof. Let R be a coherent configuration, and suppose S = (v1, . . . , vb) is a resolving set
for it. Given any distinct points x and y, their “codes” O(x|S) and O(y|S) differ, so there
is a point vi ∈ S such that the relations C(x, vi) and C(y, vi) differ. Now, thinking of R as a
colouring of the arcs of a complete directed graph, then if R = C(x, vi), there is one (R, Ivi

, R∗)
path from x to x, and none from y to y. So (x, x) and (y, y) lie in different relations in the
configuration generated by R and Iv1

, . . . , Ivb
. Again since x and y are arbitrary, this shows

that (v1, . . . , vb) is an EP-base.

The converse of the proposition is false: Theorem 1.2 of Evdokimov and Ponomarenko’s 2002
paper [52] implies that the EP-dimension of the Paley graph Pp is 2 for all p ≡ 1 mod 4. On
the other hand, Theorem 3.28 shows that the class dimension c = Ω(log2 p). Consequently, this
shows that the gap between the two parameters can be arbitrarily large.

There are other cases where the two parameters agree. The group Sn on 2-sets, where n is
a multiple of 3, has the base size of the group and the class dimension of the corresponding
coherent configuration both equal to 2n/3 (see Theorem 3.32); the EP-dimension is sandwiched
between, and so is also 2n/3.

5.2. Robinson’s bound

In Section 2, we saw how results on base sizes from the graph theory literature can be
generalised to a more algebraic setting. Not surprisingly, there are also results from the group
theory literature which can be reinterpreted graph-theoretically. In this subsection, we describe
such a result.

In [83], Robinson obtained the following bound on the base size of a primitive permutation
group in terms of its degree and rank.

Theorem 5.3 (Robinson [83]). Suppose G is a primitive permutation group of degree n
and rank r. Then

b(G) ≤ n − 1

r − 1
.

There are two proofs in the literature, which are both algebraic in nature. Robinson’s original
proof uses character theory, while Evdokimov and Ponomarenko [49, 51] obtained the result
as a corollary to a corresponding one for EP-bases (as defined above). However, in the case
where G is the automorphism group of a primitive distance-transitive graph Γ, then we can
easily rephrase Robinson’s bound graph-theoretically.

Corollary 5.4. Suppose Γ is a primitive distance-transitive graph with n vertices and
diameter d. Then

b(Aut(Γ)) ≤ n − 1

d
.
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The hypothesis cannot be weakened to imprimitive distance-transitive graphs: for the
complete bipartite graph Km,m, we have n = 2m and d = 2, but b(Aut(Km,m)) = 2m − 2 which
exceeds the bound. However, it would be interesting to see where this result holds for other
classes of graphs.

5.3. Extensions of orbital dimension

As we saw in Corollary 3.18, a group G of degree n has orbital dimension n − 1 if and only if
G is 2-transitive. There are even examples of 2-transitive groups where the gap between base
size and orbital dimension is as large as possible.

Example 5.5. Suppose G is sharply 2-transitive. Zassenhaus showed that a sharply 2-
transitive group of degree n exists if and only if n is a prime power (see Dixon and Mortimer
[44], Section 7.6). By Corollary 3.18, µ(G) = n − 1; however, it follows from the definition that
b(G) = 2.

Consequently, orbital dimension does not convey much information about 2-transitive groups.
However, we can generalise it in the following manner.

The k-orbits of G are its orbits on Ωk, i.e. on k-tuples. So, for instance, the 2-orbits are the
orbitals. Suppose G has k-orbits C1, . . . , Cr. For a given (k − 1)-tuple T = (t1, . . . , tk−1), we
let C(T, y) denote the unique k-orbit containing (t1, . . . , tk−1, y). Then for a subset S ⊆ Ω, we
define a function

Ok−1(y|S) : Sk−1 → {C1, . . . , Cr}
where each (k − 1)-tuple T ∈ Sk−1 is mapped to C(T, y).

Definition 5.6. A subset S ⊆ Ω is a k-resolving set for G if, for any y ∈ Ω, the value
of the function Ok−1(y|S) uniquely identifies y. The k-orbital dimension of G is the smallest
cardinality of a k-resolving set for G, and is denoted µk(G).

We note that as before, the k-orbital dimension of G gives an upper bound on the base size
of G.

Example 5.7. If G is sharply 2-transitive, its base size is 2, but so is its 3-orbital dimension.
This compares to its 2-orbital dimension of n − 1.

Example 5.8. Consider the group G = PSL(2, p), acting on the projective line Fp ∪ {∞}.
This is an IBIS group where b(G) = 3, and there are just two orbits on triples with all entries
distinct. Now, we can argue in the same way as Proposition 3.6 that, if µ3(G) = d, then
d + 2d ≥ p + 1, so there is a lower bound of about log2 p for µ3(G). On the other hand, if we
take the point ∞ together with a resolving set for the Paley graph Pp, then we have a 3-
resolving set for the whole group (indeed taking triples containing ∞ is enough to show this),
so there is an upper bound of about 2 log2 p for µ3(G).

5.4. Infinite structures

So far, we have only been concerned with finite structures. However, many of the parameters
we have discussed (base size, distinguishing number, metric dimension) can be defined for
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infinite structures in a meaningful way, and there are examples in the literature where these
have been studied. The distinguishing number has perhaps attracted the most interest, and we
describe some of the results below.

In their 2007 paper [67], Imrich et al. considered the countable random graph R (also known
as the Rado graph: see [33], Section 5.1), which has a large automorphism group, and proved
that Aut(R) has distinguishing number 2. Their result has been generalised in a recent paper of
Laflamme et al. [74], where they considered a broader class of structures. They show that, for
many classical examples of countable homogeneous relational structures, their automorphism
groups have distinguishing number either 2 or ∞: their examples include countable homogenous
graphs (both directed and undirected), the universal poset, and the countable dense linear
order (Q,≤). Moreover, they show that any countable homogeneous structure satisfying the
free amalgamation property (see [33], Section 5.6) has distinguishing number 2. More recently,
Bonato and Delić [18] have obtained a further generalisation: they showed that any countable
relational structure satisfying a particular adjacency property (which they call the weak-e.c.
property) has distinguishing number 2.

The metric dimension of infinite graphs has been conisdered by Cáceres et al. [29]. Naturally,
depending on the structure of the graph, metric dimension may be finite or infinite. Among
the examples they consider are Cartesian products of infinite graphs, such as the Cartesian
product of a (finite) complete graph with a two-way infinite path.

6. Some open questions

There are various interesting open questions which arise from the material we have dicussed.
We will conclude the paper by mentioning some of these.

IBIS graphs

In subsection 2.6, we considered graphs for which the automorphism group is an IBIS group
(i.e. the minimal bases have the same size). Examples include complete graphs, vertex-transitive
graphs of prime order (see Proposition 2.28), and a class of outerplanar graphs characterised
by Boutin [21].

Problem. Find further examples of IBIS graphs (i.e. graphs whose automorphism group
is an IBIS group).

It would be particularly interesting to find families of IBIS graphs which have a strong
symmetry or regularity property. We note, however, that it fails for Johnson and Kneser graphs.

Resolving sets and the exchange property

In [21], as well as considering IBIS graphs, Boutin also asks when minimal resolving sets
satisfy the exchange property (and so form the bases of a matroid). Clearly, complete graphs
have this property; Boutin also shows that it holds for trees.

Problem. Find further examples of graphs whose minimal resolving sets satisfy the
exchange property.

As with IBIS graphs, it would be interesting to find examples with a strong symmetry or
regularity property.
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Complexity of class dimension and orbital dimension

In subsection 3.1, we saw that the problem of determining the metric dimension of a graph
is NP-hard. It therefore seems natural to ask the same question for the class dimension of a
coherent configuration.

Problem. What is the computational complexity of determing the class dimension of a
coherent configuration?

We anticipate that this problem is also likely to be NP-hard.

Bounds on class dimension

In subsection 3.1, Theorem 3.7 (due to Hernando et al.) gave an upper bound on the number
of vertices of a graph with given metric dimension and diameter. This is an improvement of
Proposition 3.6, which also holds for the class dimension of coherent configurations (Proposition
3.19). So one could ask for an analogue of the result of Hernando et al.

Problem. Find an upper bound on the number of points in a coherent configuration of
given class dimension and rank, which is an analogy of Theorem 3.7.

We remark that the proof used by Hernando et al. [63] does not carry over to coherent
configurations directly, as it uses the fact that graph distance satisfies the triangle inequality,
which we don’t have for general coherent configurations. (In fact, it holds precisely for distance-
regular graphs, where we already have the bound for metric dimension.)

Metric dimension of graphs with classical parameters

In subsections 3.6 and 3.8, we considered the metric dimension of certain Hamming and
Johnson graphs. These are just two of the well-known families of graphs with classical
parameters, described in Chapter 9 of Brouwer, Cohen and Neumaier [22]. As these graphs
are all distance-regular, then as we have seen this is equivalent to finding the class dimension
of the corresponding association schemes.

Problem. Find the class dimension of the Johnson scheme J(n, k), for k > 2.

This task may be helped by the existing results on the base size of its automorphism
group (Sn in its action on k-subsets), such those of Maund (Theorem 2.22) and Cáceres et
al. (Theorem 2.25).

Problem. Find the metric dimension of Grassmann graphs, dual polar graphs, and graphs
arising from sesquilinear or quadratic forms (see [22], Chapter 9 for definitions of these).

Work is in progress on both of these problems [9, 10].
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73. J. Kratica, V. Kovačević-Vujčić and M. Čangalović, ‘Computing the metric dimension of graphs by
genetic algorithms’, Comput. Optim. Appl. 44 (2009), 343–361.
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86. Á. Seress, ‘The minimal base size of primitive solvable permutation groups’, J. London Math. Soc. (2) 53

(1996), 243–255.
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